• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18 
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32 
33 struct core_boot_config *mips_cps_core_bootcfg;
34 
setup_nothreads(char * s)35 static int __init setup_nothreads(char *s)
36 {
37 	threads_disabled = true;
38 	return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41 
core_vpe_count(unsigned core)42 static unsigned core_vpe_count(unsigned core)
43 {
44 	unsigned cfg;
45 
46 	if (threads_disabled)
47 		return 1;
48 
49 	if ((!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
50 		&& (!config_enabled(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
51 		return 1;
52 
53 	mips_cm_lock_other(core, 0);
54 	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
55 	mips_cm_unlock_other();
56 	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
57 }
58 
cps_smp_setup(void)59 static void __init cps_smp_setup(void)
60 {
61 	unsigned int ncores, nvpes, core_vpes;
62 	unsigned long core_entry;
63 	int c, v;
64 
65 	/* Detect & record VPE topology */
66 	ncores = mips_cm_numcores();
67 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
68 	for (c = nvpes = 0; c < ncores; c++) {
69 		core_vpes = core_vpe_count(c);
70 		pr_cont("%c%u", c ? ',' : '{', core_vpes);
71 
72 		/* Use the number of VPEs in core 0 for smp_num_siblings */
73 		if (!c)
74 			smp_num_siblings = core_vpes;
75 
76 		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
77 			cpu_data[nvpes + v].core = c;
78 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
79 			cpu_data[nvpes + v].vpe_id = v;
80 #endif
81 		}
82 
83 		nvpes += core_vpes;
84 	}
85 	pr_cont("} total %u\n", nvpes);
86 
87 	/* Indicate present CPUs (CPU being synonymous with VPE) */
88 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89 		set_cpu_possible(v, true);
90 		set_cpu_present(v, true);
91 		__cpu_number_map[v] = v;
92 		__cpu_logical_map[v] = v;
93 	}
94 
95 	/* Set a coherent default CCA (CWB) */
96 	change_c0_config(CONF_CM_CMASK, 0x5);
97 
98 	/* Core 0 is powered up (we're running on it) */
99 	bitmap_set(core_power, 0, 1);
100 
101 	/* Initialise core 0 */
102 	mips_cps_core_init();
103 
104 	/* Make core 0 coherent with everything */
105 	write_gcr_cl_coherence(0xff);
106 
107 	if (mips_cm_revision() >= CM_REV_CM3) {
108 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109 		write_gcr_bev_base(core_entry);
110 	}
111 
112 #ifdef CONFIG_MIPS_MT_FPAFF
113 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
114 	if (cpu_has_fpu)
115 		cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118 
cps_prepare_cpus(unsigned int max_cpus)119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121 	unsigned ncores, core_vpes, c, cca;
122 	bool cca_unsuitable;
123 	u32 *entry_code;
124 
125 	mips_mt_set_cpuoptions();
126 
127 	/* Detect whether the CCA is unsuited to multi-core SMP */
128 	cca = read_c0_config() & CONF_CM_CMASK;
129 	switch (cca) {
130 	case 0x4: /* CWBE */
131 	case 0x5: /* CWB */
132 		/* The CCA is coherent, multi-core is fine */
133 		cca_unsuitable = false;
134 		break;
135 
136 	default:
137 		/* CCA is not coherent, multi-core is not usable */
138 		cca_unsuitable = true;
139 	}
140 
141 	/* Warn the user if the CCA prevents multi-core */
142 	ncores = mips_cm_numcores();
143 	if ((cca_unsuitable || cpu_has_dc_aliases) && ncores > 1) {
144 		pr_warn("Using only one core due to %s%s%s\n",
145 			cca_unsuitable ? "unsuitable CCA" : "",
146 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
147 			cpu_has_dc_aliases ? "dcache aliasing" : "");
148 
149 		for_each_present_cpu(c) {
150 			if (cpu_data[c].core)
151 				set_cpu_present(c, false);
152 		}
153 	}
154 
155 	/*
156 	 * Patch the start of mips_cps_core_entry to provide:
157 	 *
158 	 * s0 = kseg0 CCA
159 	 */
160 	entry_code = (u32 *)&mips_cps_core_entry;
161 	uasm_i_addiu(&entry_code, 16, 0, cca);
162 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
163 			   (unsigned long)entry_code);
164 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
165 		     (void *)entry_code - (void *)&mips_cps_core_entry);
166 	__sync();
167 
168 	/* Allocate core boot configuration structs */
169 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
170 					GFP_KERNEL);
171 	if (!mips_cps_core_bootcfg) {
172 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
173 		goto err_out;
174 	}
175 
176 	/* Allocate VPE boot configuration structs */
177 	for (c = 0; c < ncores; c++) {
178 		core_vpes = core_vpe_count(c);
179 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
180 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
181 				GFP_KERNEL);
182 		if (!mips_cps_core_bootcfg[c].vpe_config) {
183 			pr_err("Failed to allocate %u VPE boot configs\n",
184 			       core_vpes);
185 			goto err_out;
186 		}
187 	}
188 
189 	/* Mark this CPU as booted */
190 	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
191 		   1 << cpu_vpe_id(&current_cpu_data));
192 
193 	return;
194 err_out:
195 	/* Clean up allocations */
196 	if (mips_cps_core_bootcfg) {
197 		for (c = 0; c < ncores; c++)
198 			kfree(mips_cps_core_bootcfg[c].vpe_config);
199 		kfree(mips_cps_core_bootcfg);
200 		mips_cps_core_bootcfg = NULL;
201 	}
202 
203 	/* Effectively disable SMP by declaring CPUs not present */
204 	for_each_possible_cpu(c) {
205 		if (c == 0)
206 			continue;
207 		set_cpu_present(c, false);
208 	}
209 }
210 
boot_core(unsigned core)211 static void boot_core(unsigned core)
212 {
213 	u32 access, stat, seq_state;
214 	unsigned timeout;
215 
216 	/* Select the appropriate core */
217 	mips_cm_lock_other(core, 0);
218 
219 	/* Set its reset vector */
220 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
221 
222 	/* Ensure its coherency is disabled */
223 	write_gcr_co_coherence(0);
224 
225 	/* Ensure the core can access the GCRs */
226 	access = read_gcr_access();
227 	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
228 	write_gcr_access(access);
229 
230 	if (mips_cpc_present()) {
231 		/* Reset the core */
232 		mips_cpc_lock_other(core);
233 
234 		if (mips_cm_revision() >= CM_REV_CM3) {
235 			/* Run VP0 following the reset */
236 			write_cpc_co_vp_run(0x1);
237 
238 			/*
239 			 * Ensure that the VP_RUN register is written before the
240 			 * core leaves reset.
241 			 */
242 			wmb();
243 		}
244 
245 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
246 
247 		timeout = 100;
248 		while (true) {
249 			stat = read_cpc_co_stat_conf();
250 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
251 
252 			/* U6 == coherent execution, ie. the core is up */
253 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
254 				break;
255 
256 			/* Delay a little while before we start warning */
257 			if (timeout) {
258 				timeout--;
259 				mdelay(10);
260 				continue;
261 			}
262 
263 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
264 				core, stat);
265 			mdelay(1000);
266 		}
267 
268 		mips_cpc_unlock_other();
269 	} else {
270 		/* Take the core out of reset */
271 		write_gcr_co_reset_release(0);
272 	}
273 
274 	mips_cm_unlock_other();
275 
276 	/* The core is now powered up */
277 	bitmap_set(core_power, core, 1);
278 }
279 
remote_vpe_boot(void * dummy)280 static void remote_vpe_boot(void *dummy)
281 {
282 	unsigned core = current_cpu_data.core;
283 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
284 
285 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
286 }
287 
cps_boot_secondary(int cpu,struct task_struct * idle)288 static void cps_boot_secondary(int cpu, struct task_struct *idle)
289 {
290 	unsigned core = cpu_data[cpu].core;
291 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
292 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
293 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
294 	unsigned long core_entry;
295 	unsigned int remote;
296 	int err;
297 
298 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
299 	vpe_cfg->sp = __KSTK_TOS(idle);
300 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
301 
302 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
303 
304 	preempt_disable();
305 
306 	if (!test_bit(core, core_power)) {
307 		/* Boot a VPE on a powered down core */
308 		boot_core(core);
309 		goto out;
310 	}
311 
312 	if (cpu_has_vp) {
313 		mips_cm_lock_other(core, vpe_id);
314 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
315 		write_gcr_co_reset_base(core_entry);
316 		mips_cm_unlock_other();
317 	}
318 
319 	if (core != current_cpu_data.core) {
320 		/* Boot a VPE on another powered up core */
321 		for (remote = 0; remote < NR_CPUS; remote++) {
322 			if (cpu_data[remote].core != core)
323 				continue;
324 			if (cpu_online(remote))
325 				break;
326 		}
327 		BUG_ON(remote >= NR_CPUS);
328 
329 		err = smp_call_function_single(remote, remote_vpe_boot,
330 					       NULL, 1);
331 		if (err)
332 			panic("Failed to call remote CPU\n");
333 		goto out;
334 	}
335 
336 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
337 
338 	/* Boot a VPE on this core */
339 	mips_cps_boot_vpes(core_cfg, vpe_id);
340 out:
341 	preempt_enable();
342 }
343 
cps_init_secondary(void)344 static void cps_init_secondary(void)
345 {
346 	/* Disable MT - we only want to run 1 TC per VPE */
347 	if (cpu_has_mipsmt)
348 		dmt();
349 
350 	if (mips_cm_revision() >= CM_REV_CM3) {
351 		unsigned ident = gic_read_local_vp_id();
352 
353 		/*
354 		 * Ensure that our calculation of the VP ID matches up with
355 		 * what the GIC reports, otherwise we'll have configured
356 		 * interrupts incorrectly.
357 		 */
358 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
359 	}
360 
361 	change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
362 				 STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
363 }
364 
cps_smp_finish(void)365 static void cps_smp_finish(void)
366 {
367 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
368 
369 #ifdef CONFIG_MIPS_MT_FPAFF
370 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
371 	if (cpu_has_fpu)
372 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
373 #endif /* CONFIG_MIPS_MT_FPAFF */
374 
375 	local_irq_enable();
376 }
377 
378 #ifdef CONFIG_HOTPLUG_CPU
379 
cps_cpu_disable(void)380 static int cps_cpu_disable(void)
381 {
382 	unsigned cpu = smp_processor_id();
383 	struct core_boot_config *core_cfg;
384 
385 	if (!cpu)
386 		return -EBUSY;
387 
388 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
389 		return -EINVAL;
390 
391 	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
392 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
393 	smp_mb__after_atomic();
394 	set_cpu_online(cpu, false);
395 	calculate_cpu_foreign_map();
396 	cpumask_clear_cpu(cpu, &cpu_callin_map);
397 
398 	return 0;
399 }
400 
401 static DECLARE_COMPLETION(cpu_death_chosen);
402 static unsigned cpu_death_sibling;
403 static enum {
404 	CPU_DEATH_HALT,
405 	CPU_DEATH_POWER,
406 } cpu_death;
407 
play_dead(void)408 void play_dead(void)
409 {
410 	unsigned int cpu, core, vpe_id;
411 
412 	local_irq_disable();
413 	idle_task_exit();
414 	cpu = smp_processor_id();
415 	cpu_death = CPU_DEATH_POWER;
416 
417 	pr_debug("CPU%d going offline\n", cpu);
418 
419 	if (cpu_has_mipsmt || cpu_has_vp) {
420 		core = cpu_data[cpu].core;
421 
422 		/* Look for another online VPE within the core */
423 		for_each_online_cpu(cpu_death_sibling) {
424 			if (cpu_data[cpu_death_sibling].core != core)
425 				continue;
426 
427 			/*
428 			 * There is an online VPE within the core. Just halt
429 			 * this TC and leave the core alone.
430 			 */
431 			cpu_death = CPU_DEATH_HALT;
432 			break;
433 		}
434 	}
435 
436 	/* This CPU has chosen its way out */
437 	complete(&cpu_death_chosen);
438 
439 	if (cpu_death == CPU_DEATH_HALT) {
440 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
441 
442 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
443 		if (cpu_has_mipsmt) {
444 			/* Halt this TC */
445 			write_c0_tchalt(TCHALT_H);
446 			instruction_hazard();
447 		} else if (cpu_has_vp) {
448 			write_cpc_cl_vp_stop(1 << vpe_id);
449 
450 			/* Ensure that the VP_STOP register is written */
451 			wmb();
452 		}
453 	} else {
454 		pr_debug("Gating power to core %d\n", core);
455 		/* Power down the core */
456 		cps_pm_enter_state(CPS_PM_POWER_GATED);
457 	}
458 
459 	/* This should never be reached */
460 	panic("Failed to offline CPU %u", cpu);
461 }
462 
wait_for_sibling_halt(void * ptr_cpu)463 static void wait_for_sibling_halt(void *ptr_cpu)
464 {
465 	unsigned cpu = (unsigned long)ptr_cpu;
466 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
467 	unsigned halted;
468 	unsigned long flags;
469 
470 	do {
471 		local_irq_save(flags);
472 		settc(vpe_id);
473 		halted = read_tc_c0_tchalt();
474 		local_irq_restore(flags);
475 	} while (!(halted & TCHALT_H));
476 }
477 
cps_cpu_die(unsigned int cpu)478 static void cps_cpu_die(unsigned int cpu)
479 {
480 	unsigned core = cpu_data[cpu].core;
481 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
482 	ktime_t fail_time;
483 	unsigned stat;
484 	int err;
485 
486 	/* Wait for the cpu to choose its way out */
487 	if (!wait_for_completion_timeout(&cpu_death_chosen,
488 					 msecs_to_jiffies(5000))) {
489 		pr_err("CPU%u: didn't offline\n", cpu);
490 		return;
491 	}
492 
493 	/*
494 	 * Now wait for the CPU to actually offline. Without doing this that
495 	 * offlining may race with one or more of:
496 	 *
497 	 *   - Onlining the CPU again.
498 	 *   - Powering down the core if another VPE within it is offlined.
499 	 *   - A sibling VPE entering a non-coherent state.
500 	 *
501 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
502 	 * with which we could race, so do nothing.
503 	 */
504 	if (cpu_death == CPU_DEATH_POWER) {
505 		/*
506 		 * Wait for the core to enter a powered down or clock gated
507 		 * state, the latter happening when a JTAG probe is connected
508 		 * in which case the CPC will refuse to power down the core.
509 		 */
510 		fail_time = ktime_add_ms(ktime_get(), 2000);
511 		do {
512 			mips_cm_lock_other(core, 0);
513 			mips_cpc_lock_other(core);
514 			stat = read_cpc_co_stat_conf();
515 			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
516 			mips_cpc_unlock_other();
517 			mips_cm_unlock_other();
518 
519 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
520 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
521 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
522 				break;
523 
524 			/*
525 			 * The core ought to have powered down, but didn't &
526 			 * now we don't really know what state it's in. It's
527 			 * likely that its _pwr_up pin has been wired to logic
528 			 * 1 & it powered back up as soon as we powered it
529 			 * down...
530 			 *
531 			 * The best we can do is warn the user & continue in
532 			 * the hope that the core is doing nothing harmful &
533 			 * might behave properly if we online it later.
534 			 */
535 			if (WARN(ktime_after(ktime_get(), fail_time),
536 				 "CPU%u hasn't powered down, seq. state %u\n",
537 				 cpu, stat >> CPC_Cx_STAT_CONF_SEQSTATE_SHF))
538 				break;
539 		} while (1);
540 
541 		/* Indicate the core is powered off */
542 		bitmap_clear(core_power, core, 1);
543 	} else if (cpu_has_mipsmt) {
544 		/*
545 		 * Have a CPU with access to the offlined CPUs registers wait
546 		 * for its TC to halt.
547 		 */
548 		err = smp_call_function_single(cpu_death_sibling,
549 					       wait_for_sibling_halt,
550 					       (void *)(unsigned long)cpu, 1);
551 		if (err)
552 			panic("Failed to call remote sibling CPU\n");
553 	} else if (cpu_has_vp) {
554 		do {
555 			mips_cm_lock_other(core, vpe_id);
556 			stat = read_cpc_co_vp_running();
557 			mips_cm_unlock_other();
558 		} while (stat & (1 << vpe_id));
559 	}
560 }
561 
562 #endif /* CONFIG_HOTPLUG_CPU */
563 
564 static struct plat_smp_ops cps_smp_ops = {
565 	.smp_setup		= cps_smp_setup,
566 	.prepare_cpus		= cps_prepare_cpus,
567 	.boot_secondary		= cps_boot_secondary,
568 	.init_secondary		= cps_init_secondary,
569 	.smp_finish		= cps_smp_finish,
570 	.send_ipi_single	= gic_send_ipi_single,
571 	.send_ipi_mask		= gic_send_ipi_mask,
572 #ifdef CONFIG_HOTPLUG_CPU
573 	.cpu_disable		= cps_cpu_disable,
574 	.cpu_die		= cps_cpu_die,
575 #endif
576 };
577 
mips_cps_smp_in_use(void)578 bool mips_cps_smp_in_use(void)
579 {
580 	extern struct plat_smp_ops *mp_ops;
581 	return mp_ops == &cps_smp_ops;
582 }
583 
register_cps_smp_ops(void)584 int register_cps_smp_ops(void)
585 {
586 	if (!mips_cm_present()) {
587 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
588 		return -ENODEV;
589 	}
590 
591 	/* check we have a GIC - we need one for IPIs */
592 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
593 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
594 		return -ENODEV;
595 	}
596 
597 	register_smp_ops(&cps_smp_ops);
598 	return 0;
599 }
600