• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24 
25 #include <linux/kvm_host.h>
26 
27 #include "interrupt.h"
28 #include "commpage.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100	/* for EI/VI mode */
35 #endif
36 
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39 	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
40 	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
41 	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
42 	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
43 	{ "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
45 	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
46 	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
47 	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
48 	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
49 	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
50 	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
51 	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
52 	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
53 	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
54 	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
55 	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59 	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
60 	{NULL}
61 };
62 
kvm_mips_reset_vcpu(struct kvm_vcpu * vcpu)63 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
64 {
65 	int i;
66 
67 	for_each_possible_cpu(i) {
68 		vcpu->arch.guest_kernel_asid[i] = 0;
69 		vcpu->arch.guest_user_asid[i] = 0;
70 	}
71 
72 	return 0;
73 }
74 
75 /*
76  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
77  * Config7, so we are "runnable" if interrupts are pending
78  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)79 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
80 {
81 	return !!(vcpu->arch.pending_exceptions);
82 }
83 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)84 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
85 {
86 	return 1;
87 }
88 
kvm_arch_hardware_enable(void)89 int kvm_arch_hardware_enable(void)
90 {
91 	return 0;
92 }
93 
kvm_arch_hardware_setup(void)94 int kvm_arch_hardware_setup(void)
95 {
96 	return 0;
97 }
98 
kvm_arch_check_processor_compat(void * rtn)99 void kvm_arch_check_processor_compat(void *rtn)
100 {
101 	*(int *)rtn = 0;
102 }
103 
kvm_mips_init_tlbs(struct kvm * kvm)104 static void kvm_mips_init_tlbs(struct kvm *kvm)
105 {
106 	unsigned long wired;
107 
108 	/*
109 	 * Add a wired entry to the TLB, it is used to map the commpage to
110 	 * the Guest kernel
111 	 */
112 	wired = read_c0_wired();
113 	write_c0_wired(wired + 1);
114 	mtc0_tlbw_hazard();
115 	kvm->arch.commpage_tlb = wired;
116 
117 	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
118 		  kvm->arch.commpage_tlb);
119 }
120 
kvm_mips_init_vm_percpu(void * arg)121 static void kvm_mips_init_vm_percpu(void *arg)
122 {
123 	struct kvm *kvm = (struct kvm *)arg;
124 
125 	kvm_mips_init_tlbs(kvm);
126 	kvm_mips_callbacks->vm_init(kvm);
127 
128 }
129 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131 {
132 	if (atomic_inc_return(&kvm_mips_instance) == 1) {
133 		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
134 			  __func__);
135 		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
136 	}
137 
138 	return 0;
139 }
140 
kvm_mips_free_vcpus(struct kvm * kvm)141 void kvm_mips_free_vcpus(struct kvm *kvm)
142 {
143 	unsigned int i;
144 	struct kvm_vcpu *vcpu;
145 
146 	/* Put the pages we reserved for the guest pmap */
147 	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
148 		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
149 			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
150 	}
151 	kfree(kvm->arch.guest_pmap);
152 
153 	kvm_for_each_vcpu(i, vcpu, kvm) {
154 		kvm_arch_vcpu_free(vcpu);
155 	}
156 
157 	mutex_lock(&kvm->lock);
158 
159 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
160 		kvm->vcpus[i] = NULL;
161 
162 	atomic_set(&kvm->online_vcpus, 0);
163 
164 	mutex_unlock(&kvm->lock);
165 }
166 
kvm_mips_uninit_tlbs(void * arg)167 static void kvm_mips_uninit_tlbs(void *arg)
168 {
169 	/* Restore wired count */
170 	write_c0_wired(0);
171 	mtc0_tlbw_hazard();
172 	/* Clear out all the TLBs */
173 	kvm_local_flush_tlb_all();
174 }
175 
kvm_arch_destroy_vm(struct kvm * kvm)176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 	kvm_mips_free_vcpus(kvm);
179 
180 	/* If this is the last instance, restore wired count */
181 	if (atomic_dec_return(&kvm_mips_instance) == 0) {
182 		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
183 			  __func__);
184 		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
185 	}
186 }
187 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)188 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
189 			unsigned long arg)
190 {
191 	return -ENOIOCTLCMD;
192 }
193 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)194 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
195 			    unsigned long npages)
196 {
197 	return 0;
198 }
199 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)200 int kvm_arch_prepare_memory_region(struct kvm *kvm,
201 				   struct kvm_memory_slot *memslot,
202 				   const struct kvm_userspace_memory_region *mem,
203 				   enum kvm_mr_change change)
204 {
205 	return 0;
206 }
207 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)208 void kvm_arch_commit_memory_region(struct kvm *kvm,
209 				   const struct kvm_userspace_memory_region *mem,
210 				   const struct kvm_memory_slot *old,
211 				   const struct kvm_memory_slot *new,
212 				   enum kvm_mr_change change)
213 {
214 	unsigned long npages = 0;
215 	int i;
216 
217 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
218 		  __func__, kvm, mem->slot, mem->guest_phys_addr,
219 		  mem->memory_size, mem->userspace_addr);
220 
221 	/* Setup Guest PMAP table */
222 	if (!kvm->arch.guest_pmap) {
223 		if (mem->slot == 0)
224 			npages = mem->memory_size >> PAGE_SHIFT;
225 
226 		if (npages) {
227 			kvm->arch.guest_pmap_npages = npages;
228 			kvm->arch.guest_pmap =
229 			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
230 
231 			if (!kvm->arch.guest_pmap) {
232 				kvm_err("Failed to allocate guest PMAP");
233 				return;
234 			}
235 
236 			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
237 				  npages, kvm->arch.guest_pmap);
238 
239 			/* Now setup the page table */
240 			for (i = 0; i < npages; i++)
241 				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
242 		}
243 	}
244 }
245 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)246 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
247 {
248 	int err, size, offset;
249 	void *gebase;
250 	int i;
251 
252 	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
253 
254 	if (!vcpu) {
255 		err = -ENOMEM;
256 		goto out;
257 	}
258 
259 	err = kvm_vcpu_init(vcpu, kvm, id);
260 
261 	if (err)
262 		goto out_free_cpu;
263 
264 	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
265 
266 	/*
267 	 * Allocate space for host mode exception handlers that handle
268 	 * guest mode exits
269 	 */
270 	if (cpu_has_veic || cpu_has_vint)
271 		size = 0x200 + VECTORSPACING * 64;
272 	else
273 		size = 0x4000;
274 
275 	/* Save Linux EBASE */
276 	vcpu->arch.host_ebase = (void *)read_c0_ebase();
277 
278 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
279 
280 	if (!gebase) {
281 		err = -ENOMEM;
282 		goto out_uninit_cpu;
283 	}
284 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
285 		  ALIGN(size, PAGE_SIZE), gebase);
286 
287 	/* Save new ebase */
288 	vcpu->arch.guest_ebase = gebase;
289 
290 	/* Copy L1 Guest Exception handler to correct offset */
291 
292 	/* TLB Refill, EXL = 0 */
293 	memcpy(gebase, mips32_exception,
294 	       mips32_exceptionEnd - mips32_exception);
295 
296 	/* General Exception Entry point */
297 	memcpy(gebase + 0x180, mips32_exception,
298 	       mips32_exceptionEnd - mips32_exception);
299 
300 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
301 	for (i = 0; i < 8; i++) {
302 		kvm_debug("L1 Vectored handler @ %p\n",
303 			  gebase + 0x200 + (i * VECTORSPACING));
304 		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
305 		       mips32_exceptionEnd - mips32_exception);
306 	}
307 
308 	/* General handler, relocate to unmapped space for sanity's sake */
309 	offset = 0x2000;
310 	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
311 		  gebase + offset,
312 		  mips32_GuestExceptionEnd - mips32_GuestException);
313 
314 	memcpy(gebase + offset, mips32_GuestException,
315 	       mips32_GuestExceptionEnd - mips32_GuestException);
316 
317 #ifdef MODULE
318 	offset += mips32_GuestExceptionEnd - mips32_GuestException;
319 	memcpy(gebase + offset, (char *)__kvm_mips_vcpu_run,
320 	       __kvm_mips_vcpu_run_end - (char *)__kvm_mips_vcpu_run);
321 	vcpu->arch.vcpu_run = gebase + offset;
322 #else
323 	vcpu->arch.vcpu_run = __kvm_mips_vcpu_run;
324 #endif
325 
326 	/* Invalidate the icache for these ranges */
327 	flush_icache_range((unsigned long)gebase,
328 			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
329 
330 	/*
331 	 * Allocate comm page for guest kernel, a TLB will be reserved for
332 	 * mapping GVA @ 0xFFFF8000 to this page
333 	 */
334 	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
335 
336 	if (!vcpu->arch.kseg0_commpage) {
337 		err = -ENOMEM;
338 		goto out_free_gebase;
339 	}
340 
341 	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
342 	kvm_mips_commpage_init(vcpu);
343 
344 	/* Init */
345 	vcpu->arch.last_sched_cpu = -1;
346 
347 	/* Start off the timer */
348 	kvm_mips_init_count(vcpu);
349 
350 	return vcpu;
351 
352 out_free_gebase:
353 	kfree(gebase);
354 
355 out_uninit_cpu:
356 	kvm_vcpu_uninit(vcpu);
357 
358 out_free_cpu:
359 	kfree(vcpu);
360 
361 out:
362 	return ERR_PTR(err);
363 }
364 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)365 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
366 {
367 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
368 
369 	kvm_vcpu_uninit(vcpu);
370 
371 	kvm_mips_dump_stats(vcpu);
372 
373 	kfree(vcpu->arch.guest_ebase);
374 	kfree(vcpu->arch.kseg0_commpage);
375 	kfree(vcpu);
376 }
377 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)378 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
379 {
380 	kvm_arch_vcpu_free(vcpu);
381 }
382 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)383 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
384 					struct kvm_guest_debug *dbg)
385 {
386 	return -ENOIOCTLCMD;
387 }
388 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)389 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
390 {
391 	int r = 0;
392 	sigset_t sigsaved;
393 
394 	if (vcpu->sigset_active)
395 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
396 
397 	if (vcpu->mmio_needed) {
398 		if (!vcpu->mmio_is_write)
399 			kvm_mips_complete_mmio_load(vcpu, run);
400 		vcpu->mmio_needed = 0;
401 	}
402 
403 	lose_fpu(1);
404 
405 	local_irq_disable();
406 	/* Check if we have any exceptions/interrupts pending */
407 	kvm_mips_deliver_interrupts(vcpu,
408 				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
409 
410 	__kvm_guest_enter();
411 
412 	/* Disable hardware page table walking while in guest */
413 	htw_stop();
414 
415 	r = vcpu->arch.vcpu_run(run, vcpu);
416 
417 	/* Re-enable HTW before enabling interrupts */
418 	htw_start();
419 
420 	__kvm_guest_exit();
421 	local_irq_enable();
422 
423 	if (vcpu->sigset_active)
424 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
425 
426 	return r;
427 }
428 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_mips_interrupt * irq)429 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
430 			     struct kvm_mips_interrupt *irq)
431 {
432 	int intr = (int)irq->irq;
433 	struct kvm_vcpu *dvcpu = NULL;
434 
435 	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
436 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
437 			  (int)intr);
438 
439 	if (irq->cpu == -1)
440 		dvcpu = vcpu;
441 	else
442 		dvcpu = vcpu->kvm->vcpus[irq->cpu];
443 
444 	if (intr == 2 || intr == 3 || intr == 4) {
445 		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
446 
447 	} else if (intr == -2 || intr == -3 || intr == -4) {
448 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
449 	} else {
450 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
451 			irq->cpu, irq->irq);
452 		return -EINVAL;
453 	}
454 
455 	dvcpu->arch.wait = 0;
456 
457 	if (waitqueue_active(&dvcpu->wq))
458 		wake_up_interruptible(&dvcpu->wq);
459 
460 	return 0;
461 }
462 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)463 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
464 				    struct kvm_mp_state *mp_state)
465 {
466 	return -ENOIOCTLCMD;
467 }
468 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)469 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
470 				    struct kvm_mp_state *mp_state)
471 {
472 	return -ENOIOCTLCMD;
473 }
474 
475 static u64 kvm_mips_get_one_regs[] = {
476 	KVM_REG_MIPS_R0,
477 	KVM_REG_MIPS_R1,
478 	KVM_REG_MIPS_R2,
479 	KVM_REG_MIPS_R3,
480 	KVM_REG_MIPS_R4,
481 	KVM_REG_MIPS_R5,
482 	KVM_REG_MIPS_R6,
483 	KVM_REG_MIPS_R7,
484 	KVM_REG_MIPS_R8,
485 	KVM_REG_MIPS_R9,
486 	KVM_REG_MIPS_R10,
487 	KVM_REG_MIPS_R11,
488 	KVM_REG_MIPS_R12,
489 	KVM_REG_MIPS_R13,
490 	KVM_REG_MIPS_R14,
491 	KVM_REG_MIPS_R15,
492 	KVM_REG_MIPS_R16,
493 	KVM_REG_MIPS_R17,
494 	KVM_REG_MIPS_R18,
495 	KVM_REG_MIPS_R19,
496 	KVM_REG_MIPS_R20,
497 	KVM_REG_MIPS_R21,
498 	KVM_REG_MIPS_R22,
499 	KVM_REG_MIPS_R23,
500 	KVM_REG_MIPS_R24,
501 	KVM_REG_MIPS_R25,
502 	KVM_REG_MIPS_R26,
503 	KVM_REG_MIPS_R27,
504 	KVM_REG_MIPS_R28,
505 	KVM_REG_MIPS_R29,
506 	KVM_REG_MIPS_R30,
507 	KVM_REG_MIPS_R31,
508 
509 	KVM_REG_MIPS_HI,
510 	KVM_REG_MIPS_LO,
511 	KVM_REG_MIPS_PC,
512 
513 	KVM_REG_MIPS_CP0_INDEX,
514 	KVM_REG_MIPS_CP0_CONTEXT,
515 	KVM_REG_MIPS_CP0_USERLOCAL,
516 	KVM_REG_MIPS_CP0_PAGEMASK,
517 	KVM_REG_MIPS_CP0_WIRED,
518 	KVM_REG_MIPS_CP0_HWRENA,
519 	KVM_REG_MIPS_CP0_BADVADDR,
520 	KVM_REG_MIPS_CP0_COUNT,
521 	KVM_REG_MIPS_CP0_ENTRYHI,
522 	KVM_REG_MIPS_CP0_COMPARE,
523 	KVM_REG_MIPS_CP0_STATUS,
524 	KVM_REG_MIPS_CP0_CAUSE,
525 	KVM_REG_MIPS_CP0_EPC,
526 	KVM_REG_MIPS_CP0_PRID,
527 	KVM_REG_MIPS_CP0_CONFIG,
528 	KVM_REG_MIPS_CP0_CONFIG1,
529 	KVM_REG_MIPS_CP0_CONFIG2,
530 	KVM_REG_MIPS_CP0_CONFIG3,
531 	KVM_REG_MIPS_CP0_CONFIG4,
532 	KVM_REG_MIPS_CP0_CONFIG5,
533 	KVM_REG_MIPS_CP0_CONFIG7,
534 	KVM_REG_MIPS_CP0_ERROREPC,
535 
536 	KVM_REG_MIPS_COUNT_CTL,
537 	KVM_REG_MIPS_COUNT_RESUME,
538 	KVM_REG_MIPS_COUNT_HZ,
539 };
540 
kvm_mips_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)541 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
542 			    const struct kvm_one_reg *reg)
543 {
544 	struct mips_coproc *cop0 = vcpu->arch.cop0;
545 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
546 	int ret;
547 	s64 v;
548 	s64 vs[2];
549 	unsigned int idx;
550 
551 	switch (reg->id) {
552 	/* General purpose registers */
553 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
554 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
555 		break;
556 	case KVM_REG_MIPS_HI:
557 		v = (long)vcpu->arch.hi;
558 		break;
559 	case KVM_REG_MIPS_LO:
560 		v = (long)vcpu->arch.lo;
561 		break;
562 	case KVM_REG_MIPS_PC:
563 		v = (long)vcpu->arch.pc;
564 		break;
565 
566 	/* Floating point registers */
567 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
568 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
569 			return -EINVAL;
570 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
571 		/* Odd singles in top of even double when FR=0 */
572 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
573 			v = get_fpr32(&fpu->fpr[idx], 0);
574 		else
575 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
576 		break;
577 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
578 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
579 			return -EINVAL;
580 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
581 		/* Can't access odd doubles in FR=0 mode */
582 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
583 			return -EINVAL;
584 		v = get_fpr64(&fpu->fpr[idx], 0);
585 		break;
586 	case KVM_REG_MIPS_FCR_IR:
587 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
588 			return -EINVAL;
589 		v = boot_cpu_data.fpu_id;
590 		break;
591 	case KVM_REG_MIPS_FCR_CSR:
592 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
593 			return -EINVAL;
594 		v = fpu->fcr31;
595 		break;
596 
597 	/* MIPS SIMD Architecture (MSA) registers */
598 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
599 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
600 			return -EINVAL;
601 		/* Can't access MSA registers in FR=0 mode */
602 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
603 			return -EINVAL;
604 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
605 #ifdef CONFIG_CPU_LITTLE_ENDIAN
606 		/* least significant byte first */
607 		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
608 		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
609 #else
610 		/* most significant byte first */
611 		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
612 		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
613 #endif
614 		break;
615 	case KVM_REG_MIPS_MSA_IR:
616 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
617 			return -EINVAL;
618 		v = boot_cpu_data.msa_id;
619 		break;
620 	case KVM_REG_MIPS_MSA_CSR:
621 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
622 			return -EINVAL;
623 		v = fpu->msacsr;
624 		break;
625 
626 	/* Co-processor 0 registers */
627 	case KVM_REG_MIPS_CP0_INDEX:
628 		v = (long)kvm_read_c0_guest_index(cop0);
629 		break;
630 	case KVM_REG_MIPS_CP0_CONTEXT:
631 		v = (long)kvm_read_c0_guest_context(cop0);
632 		break;
633 	case KVM_REG_MIPS_CP0_USERLOCAL:
634 		v = (long)kvm_read_c0_guest_userlocal(cop0);
635 		break;
636 	case KVM_REG_MIPS_CP0_PAGEMASK:
637 		v = (long)kvm_read_c0_guest_pagemask(cop0);
638 		break;
639 	case KVM_REG_MIPS_CP0_WIRED:
640 		v = (long)kvm_read_c0_guest_wired(cop0);
641 		break;
642 	case KVM_REG_MIPS_CP0_HWRENA:
643 		v = (long)kvm_read_c0_guest_hwrena(cop0);
644 		break;
645 	case KVM_REG_MIPS_CP0_BADVADDR:
646 		v = (long)kvm_read_c0_guest_badvaddr(cop0);
647 		break;
648 	case KVM_REG_MIPS_CP0_ENTRYHI:
649 		v = (long)kvm_read_c0_guest_entryhi(cop0);
650 		break;
651 	case KVM_REG_MIPS_CP0_COMPARE:
652 		v = (long)kvm_read_c0_guest_compare(cop0);
653 		break;
654 	case KVM_REG_MIPS_CP0_STATUS:
655 		v = (long)kvm_read_c0_guest_status(cop0);
656 		break;
657 	case KVM_REG_MIPS_CP0_CAUSE:
658 		v = (long)kvm_read_c0_guest_cause(cop0);
659 		break;
660 	case KVM_REG_MIPS_CP0_EPC:
661 		v = (long)kvm_read_c0_guest_epc(cop0);
662 		break;
663 	case KVM_REG_MIPS_CP0_PRID:
664 		v = (long)kvm_read_c0_guest_prid(cop0);
665 		break;
666 	case KVM_REG_MIPS_CP0_CONFIG:
667 		v = (long)kvm_read_c0_guest_config(cop0);
668 		break;
669 	case KVM_REG_MIPS_CP0_CONFIG1:
670 		v = (long)kvm_read_c0_guest_config1(cop0);
671 		break;
672 	case KVM_REG_MIPS_CP0_CONFIG2:
673 		v = (long)kvm_read_c0_guest_config2(cop0);
674 		break;
675 	case KVM_REG_MIPS_CP0_CONFIG3:
676 		v = (long)kvm_read_c0_guest_config3(cop0);
677 		break;
678 	case KVM_REG_MIPS_CP0_CONFIG4:
679 		v = (long)kvm_read_c0_guest_config4(cop0);
680 		break;
681 	case KVM_REG_MIPS_CP0_CONFIG5:
682 		v = (long)kvm_read_c0_guest_config5(cop0);
683 		break;
684 	case KVM_REG_MIPS_CP0_CONFIG7:
685 		v = (long)kvm_read_c0_guest_config7(cop0);
686 		break;
687 	case KVM_REG_MIPS_CP0_ERROREPC:
688 		v = (long)kvm_read_c0_guest_errorepc(cop0);
689 		break;
690 	/* registers to be handled specially */
691 	case KVM_REG_MIPS_CP0_COUNT:
692 	case KVM_REG_MIPS_COUNT_CTL:
693 	case KVM_REG_MIPS_COUNT_RESUME:
694 	case KVM_REG_MIPS_COUNT_HZ:
695 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
696 		if (ret)
697 			return ret;
698 		break;
699 	default:
700 		return -EINVAL;
701 	}
702 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
703 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
704 
705 		return put_user(v, uaddr64);
706 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
707 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
708 		u32 v32 = (u32)v;
709 
710 		return put_user(v32, uaddr32);
711 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
712 		void __user *uaddr = (void __user *)(long)reg->addr;
713 
714 		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
715 	} else {
716 		return -EINVAL;
717 	}
718 }
719 
kvm_mips_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)720 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
721 			    const struct kvm_one_reg *reg)
722 {
723 	struct mips_coproc *cop0 = vcpu->arch.cop0;
724 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
725 	s64 v;
726 	s64 vs[2];
727 	unsigned int idx;
728 
729 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
730 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
731 
732 		if (get_user(v, uaddr64) != 0)
733 			return -EFAULT;
734 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
735 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
736 		s32 v32;
737 
738 		if (get_user(v32, uaddr32) != 0)
739 			return -EFAULT;
740 		v = (s64)v32;
741 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
742 		void __user *uaddr = (void __user *)(long)reg->addr;
743 
744 		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
745 	} else {
746 		return -EINVAL;
747 	}
748 
749 	switch (reg->id) {
750 	/* General purpose registers */
751 	case KVM_REG_MIPS_R0:
752 		/* Silently ignore requests to set $0 */
753 		break;
754 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
755 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
756 		break;
757 	case KVM_REG_MIPS_HI:
758 		vcpu->arch.hi = v;
759 		break;
760 	case KVM_REG_MIPS_LO:
761 		vcpu->arch.lo = v;
762 		break;
763 	case KVM_REG_MIPS_PC:
764 		vcpu->arch.pc = v;
765 		break;
766 
767 	/* Floating point registers */
768 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
769 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
770 			return -EINVAL;
771 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
772 		/* Odd singles in top of even double when FR=0 */
773 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
774 			set_fpr32(&fpu->fpr[idx], 0, v);
775 		else
776 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
777 		break;
778 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
779 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
780 			return -EINVAL;
781 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
782 		/* Can't access odd doubles in FR=0 mode */
783 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
784 			return -EINVAL;
785 		set_fpr64(&fpu->fpr[idx], 0, v);
786 		break;
787 	case KVM_REG_MIPS_FCR_IR:
788 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
789 			return -EINVAL;
790 		/* Read-only */
791 		break;
792 	case KVM_REG_MIPS_FCR_CSR:
793 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
794 			return -EINVAL;
795 		fpu->fcr31 = v;
796 		break;
797 
798 	/* MIPS SIMD Architecture (MSA) registers */
799 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
800 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
801 			return -EINVAL;
802 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
803 #ifdef CONFIG_CPU_LITTLE_ENDIAN
804 		/* least significant byte first */
805 		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
806 		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
807 #else
808 		/* most significant byte first */
809 		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
810 		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
811 #endif
812 		break;
813 	case KVM_REG_MIPS_MSA_IR:
814 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
815 			return -EINVAL;
816 		/* Read-only */
817 		break;
818 	case KVM_REG_MIPS_MSA_CSR:
819 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
820 			return -EINVAL;
821 		fpu->msacsr = v;
822 		break;
823 
824 	/* Co-processor 0 registers */
825 	case KVM_REG_MIPS_CP0_INDEX:
826 		kvm_write_c0_guest_index(cop0, v);
827 		break;
828 	case KVM_REG_MIPS_CP0_CONTEXT:
829 		kvm_write_c0_guest_context(cop0, v);
830 		break;
831 	case KVM_REG_MIPS_CP0_USERLOCAL:
832 		kvm_write_c0_guest_userlocal(cop0, v);
833 		break;
834 	case KVM_REG_MIPS_CP0_PAGEMASK:
835 		kvm_write_c0_guest_pagemask(cop0, v);
836 		break;
837 	case KVM_REG_MIPS_CP0_WIRED:
838 		kvm_write_c0_guest_wired(cop0, v);
839 		break;
840 	case KVM_REG_MIPS_CP0_HWRENA:
841 		kvm_write_c0_guest_hwrena(cop0, v);
842 		break;
843 	case KVM_REG_MIPS_CP0_BADVADDR:
844 		kvm_write_c0_guest_badvaddr(cop0, v);
845 		break;
846 	case KVM_REG_MIPS_CP0_ENTRYHI:
847 		kvm_write_c0_guest_entryhi(cop0, v);
848 		break;
849 	case KVM_REG_MIPS_CP0_STATUS:
850 		kvm_write_c0_guest_status(cop0, v);
851 		break;
852 	case KVM_REG_MIPS_CP0_EPC:
853 		kvm_write_c0_guest_epc(cop0, v);
854 		break;
855 	case KVM_REG_MIPS_CP0_PRID:
856 		kvm_write_c0_guest_prid(cop0, v);
857 		break;
858 	case KVM_REG_MIPS_CP0_ERROREPC:
859 		kvm_write_c0_guest_errorepc(cop0, v);
860 		break;
861 	/* registers to be handled specially */
862 	case KVM_REG_MIPS_CP0_COUNT:
863 	case KVM_REG_MIPS_CP0_COMPARE:
864 	case KVM_REG_MIPS_CP0_CAUSE:
865 	case KVM_REG_MIPS_CP0_CONFIG:
866 	case KVM_REG_MIPS_CP0_CONFIG1:
867 	case KVM_REG_MIPS_CP0_CONFIG2:
868 	case KVM_REG_MIPS_CP0_CONFIG3:
869 	case KVM_REG_MIPS_CP0_CONFIG4:
870 	case KVM_REG_MIPS_CP0_CONFIG5:
871 	case KVM_REG_MIPS_COUNT_CTL:
872 	case KVM_REG_MIPS_COUNT_RESUME:
873 	case KVM_REG_MIPS_COUNT_HZ:
874 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
875 	default:
876 		return -EINVAL;
877 	}
878 	return 0;
879 }
880 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)881 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
882 				     struct kvm_enable_cap *cap)
883 {
884 	int r = 0;
885 
886 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
887 		return -EINVAL;
888 	if (cap->flags)
889 		return -EINVAL;
890 	if (cap->args[0])
891 		return -EINVAL;
892 
893 	switch (cap->cap) {
894 	case KVM_CAP_MIPS_FPU:
895 		vcpu->arch.fpu_enabled = true;
896 		break;
897 	case KVM_CAP_MIPS_MSA:
898 		vcpu->arch.msa_enabled = true;
899 		break;
900 	default:
901 		r = -EINVAL;
902 		break;
903 	}
904 
905 	return r;
906 }
907 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)908 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
909 			 unsigned long arg)
910 {
911 	struct kvm_vcpu *vcpu = filp->private_data;
912 	void __user *argp = (void __user *)arg;
913 	long r;
914 
915 	switch (ioctl) {
916 	case KVM_SET_ONE_REG:
917 	case KVM_GET_ONE_REG: {
918 		struct kvm_one_reg reg;
919 
920 		if (copy_from_user(&reg, argp, sizeof(reg)))
921 			return -EFAULT;
922 		if (ioctl == KVM_SET_ONE_REG)
923 			return kvm_mips_set_reg(vcpu, &reg);
924 		else
925 			return kvm_mips_get_reg(vcpu, &reg);
926 	}
927 	case KVM_GET_REG_LIST: {
928 		struct kvm_reg_list __user *user_list = argp;
929 		u64 __user *reg_dest;
930 		struct kvm_reg_list reg_list;
931 		unsigned n;
932 
933 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
934 			return -EFAULT;
935 		n = reg_list.n;
936 		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
937 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
938 			return -EFAULT;
939 		if (n < reg_list.n)
940 			return -E2BIG;
941 		reg_dest = user_list->reg;
942 		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
943 				 sizeof(kvm_mips_get_one_regs)))
944 			return -EFAULT;
945 		return 0;
946 	}
947 	case KVM_NMI:
948 		/* Treat the NMI as a CPU reset */
949 		r = kvm_mips_reset_vcpu(vcpu);
950 		break;
951 	case KVM_INTERRUPT:
952 		{
953 			struct kvm_mips_interrupt irq;
954 
955 			r = -EFAULT;
956 			if (copy_from_user(&irq, argp, sizeof(irq)))
957 				goto out;
958 
959 			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
960 				  irq.irq);
961 
962 			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
963 			break;
964 		}
965 	case KVM_ENABLE_CAP: {
966 		struct kvm_enable_cap cap;
967 
968 		r = -EFAULT;
969 		if (copy_from_user(&cap, argp, sizeof(cap)))
970 			goto out;
971 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
972 		break;
973 	}
974 	default:
975 		r = -ENOIOCTLCMD;
976 	}
977 
978 out:
979 	return r;
980 }
981 
982 /* Get (and clear) the dirty memory log for a memory slot. */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)983 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
984 {
985 	struct kvm_memslots *slots;
986 	struct kvm_memory_slot *memslot;
987 	unsigned long ga, ga_end;
988 	int is_dirty = 0;
989 	int r;
990 	unsigned long n;
991 
992 	mutex_lock(&kvm->slots_lock);
993 
994 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
995 	if (r)
996 		goto out;
997 
998 	/* If nothing is dirty, don't bother messing with page tables. */
999 	if (is_dirty) {
1000 		slots = kvm_memslots(kvm);
1001 		memslot = id_to_memslot(slots, log->slot);
1002 
1003 		ga = memslot->base_gfn << PAGE_SHIFT;
1004 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1005 
1006 		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1007 			 ga_end);
1008 
1009 		n = kvm_dirty_bitmap_bytes(memslot);
1010 		memset(memslot->dirty_bitmap, 0, n);
1011 	}
1012 
1013 	r = 0;
1014 out:
1015 	mutex_unlock(&kvm->slots_lock);
1016 	return r;
1017 
1018 }
1019 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1020 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1021 {
1022 	long r;
1023 
1024 	switch (ioctl) {
1025 	default:
1026 		r = -ENOIOCTLCMD;
1027 	}
1028 
1029 	return r;
1030 }
1031 
kvm_arch_init(void * opaque)1032 int kvm_arch_init(void *opaque)
1033 {
1034 	if (kvm_mips_callbacks) {
1035 		kvm_err("kvm: module already exists\n");
1036 		return -EEXIST;
1037 	}
1038 
1039 	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1040 }
1041 
kvm_arch_exit(void)1042 void kvm_arch_exit(void)
1043 {
1044 	kvm_mips_callbacks = NULL;
1045 }
1046 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1047 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1048 				  struct kvm_sregs *sregs)
1049 {
1050 	return -ENOIOCTLCMD;
1051 }
1052 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1053 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1054 				  struct kvm_sregs *sregs)
1055 {
1056 	return -ENOIOCTLCMD;
1057 }
1058 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)1059 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1060 {
1061 }
1062 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1063 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1064 {
1065 	return -ENOIOCTLCMD;
1066 }
1067 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1068 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1069 {
1070 	return -ENOIOCTLCMD;
1071 }
1072 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)1073 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1074 {
1075 	return VM_FAULT_SIGBUS;
1076 }
1077 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)1078 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1079 {
1080 	int r;
1081 
1082 	switch (ext) {
1083 	case KVM_CAP_ONE_REG:
1084 	case KVM_CAP_ENABLE_CAP:
1085 		r = 1;
1086 		break;
1087 	case KVM_CAP_COALESCED_MMIO:
1088 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1089 		break;
1090 	case KVM_CAP_MIPS_FPU:
1091 		r = !!cpu_has_fpu;
1092 		break;
1093 	case KVM_CAP_MIPS_MSA:
1094 		/*
1095 		 * We don't support MSA vector partitioning yet:
1096 		 * 1) It would require explicit support which can't be tested
1097 		 *    yet due to lack of support in current hardware.
1098 		 * 2) It extends the state that would need to be saved/restored
1099 		 *    by e.g. QEMU for migration.
1100 		 *
1101 		 * When vector partitioning hardware becomes available, support
1102 		 * could be added by requiring a flag when enabling
1103 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1104 		 * to save/restore the appropriate extra state.
1105 		 */
1106 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1107 		break;
1108 	default:
1109 		r = 0;
1110 		break;
1111 	}
1112 	return r;
1113 }
1114 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1115 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1116 {
1117 	return kvm_mips_pending_timer(vcpu);
1118 }
1119 
kvm_arch_vcpu_dump_regs(struct kvm_vcpu * vcpu)1120 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1121 {
1122 	int i;
1123 	struct mips_coproc *cop0;
1124 
1125 	if (!vcpu)
1126 		return -1;
1127 
1128 	kvm_debug("VCPU Register Dump:\n");
1129 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1130 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1131 
1132 	for (i = 0; i < 32; i += 4) {
1133 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1134 		       vcpu->arch.gprs[i],
1135 		       vcpu->arch.gprs[i + 1],
1136 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1137 	}
1138 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1139 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1140 
1141 	cop0 = vcpu->arch.cop0;
1142 	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1143 		  kvm_read_c0_guest_status(cop0),
1144 		  kvm_read_c0_guest_cause(cop0));
1145 
1146 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1147 
1148 	return 0;
1149 }
1150 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1151 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1152 {
1153 	int i;
1154 
1155 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1156 		vcpu->arch.gprs[i] = regs->gpr[i];
1157 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1158 	vcpu->arch.hi = regs->hi;
1159 	vcpu->arch.lo = regs->lo;
1160 	vcpu->arch.pc = regs->pc;
1161 
1162 	return 0;
1163 }
1164 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1165 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1170 		regs->gpr[i] = vcpu->arch.gprs[i];
1171 
1172 	regs->hi = vcpu->arch.hi;
1173 	regs->lo = vcpu->arch.lo;
1174 	regs->pc = vcpu->arch.pc;
1175 
1176 	return 0;
1177 }
1178 
kvm_mips_comparecount_func(unsigned long data)1179 static void kvm_mips_comparecount_func(unsigned long data)
1180 {
1181 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1182 
1183 	kvm_mips_callbacks->queue_timer_int(vcpu);
1184 
1185 	vcpu->arch.wait = 0;
1186 	if (waitqueue_active(&vcpu->wq))
1187 		wake_up_interruptible(&vcpu->wq);
1188 }
1189 
1190 /* low level hrtimer wake routine */
kvm_mips_comparecount_wakeup(struct hrtimer * timer)1191 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1192 {
1193 	struct kvm_vcpu *vcpu;
1194 
1195 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1196 	kvm_mips_comparecount_func((unsigned long) vcpu);
1197 	return kvm_mips_count_timeout(vcpu);
1198 }
1199 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)1200 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1201 {
1202 	kvm_mips_callbacks->vcpu_init(vcpu);
1203 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1204 		     HRTIMER_MODE_REL);
1205 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1206 	return 0;
1207 }
1208 
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)1209 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1210 				  struct kvm_translation *tr)
1211 {
1212 	return 0;
1213 }
1214 
1215 /* Initial guest state */
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)1216 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1217 {
1218 	return kvm_mips_callbacks->vcpu_setup(vcpu);
1219 }
1220 
kvm_mips_set_c0_status(void)1221 static void kvm_mips_set_c0_status(void)
1222 {
1223 	uint32_t status = read_c0_status();
1224 
1225 	if (cpu_has_dsp)
1226 		status |= (ST0_MX);
1227 
1228 	write_c0_status(status);
1229 	ehb();
1230 }
1231 
1232 /*
1233  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1234  */
kvm_mips_handle_exit(struct kvm_run * run,struct kvm_vcpu * vcpu)1235 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1236 {
1237 	uint32_t cause = vcpu->arch.host_cp0_cause;
1238 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1239 	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1240 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1241 	enum emulation_result er = EMULATE_DONE;
1242 	int ret = RESUME_GUEST;
1243 
1244 	/* re-enable HTW before enabling interrupts */
1245 	htw_start();
1246 
1247 	/* Set a default exit reason */
1248 	run->exit_reason = KVM_EXIT_UNKNOWN;
1249 	run->ready_for_interrupt_injection = 1;
1250 
1251 	/*
1252 	 * Set the appropriate status bits based on host CPU features,
1253 	 * before we hit the scheduler
1254 	 */
1255 	kvm_mips_set_c0_status();
1256 
1257 	local_irq_enable();
1258 
1259 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1260 			cause, opc, run, vcpu);
1261 
1262 	/*
1263 	 * Do a privilege check, if in UM most of these exit conditions end up
1264 	 * causing an exception to be delivered to the Guest Kernel
1265 	 */
1266 	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1267 	if (er == EMULATE_PRIV_FAIL) {
1268 		goto skip_emul;
1269 	} else if (er == EMULATE_FAIL) {
1270 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1271 		ret = RESUME_HOST;
1272 		goto skip_emul;
1273 	}
1274 
1275 	switch (exccode) {
1276 	case T_INT:
1277 		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1278 
1279 		++vcpu->stat.int_exits;
1280 		trace_kvm_exit(vcpu, INT_EXITS);
1281 
1282 		if (need_resched())
1283 			cond_resched();
1284 
1285 		ret = RESUME_GUEST;
1286 		break;
1287 
1288 	case T_COP_UNUSABLE:
1289 		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1290 
1291 		++vcpu->stat.cop_unusable_exits;
1292 		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1293 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1294 		/* XXXKYMA: Might need to return to user space */
1295 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1296 			ret = RESUME_HOST;
1297 		break;
1298 
1299 	case T_TLB_MOD:
1300 		++vcpu->stat.tlbmod_exits;
1301 		trace_kvm_exit(vcpu, TLBMOD_EXITS);
1302 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1303 		break;
1304 
1305 	case T_TLB_ST_MISS:
1306 		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1307 			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1308 			  badvaddr);
1309 
1310 		++vcpu->stat.tlbmiss_st_exits;
1311 		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1312 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1313 		break;
1314 
1315 	case T_TLB_LD_MISS:
1316 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1317 			  cause, opc, badvaddr);
1318 
1319 		++vcpu->stat.tlbmiss_ld_exits;
1320 		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1321 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1322 		break;
1323 
1324 	case T_ADDR_ERR_ST:
1325 		++vcpu->stat.addrerr_st_exits;
1326 		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1327 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1328 		break;
1329 
1330 	case T_ADDR_ERR_LD:
1331 		++vcpu->stat.addrerr_ld_exits;
1332 		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1333 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1334 		break;
1335 
1336 	case T_SYSCALL:
1337 		++vcpu->stat.syscall_exits;
1338 		trace_kvm_exit(vcpu, SYSCALL_EXITS);
1339 		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1340 		break;
1341 
1342 	case T_RES_INST:
1343 		++vcpu->stat.resvd_inst_exits;
1344 		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1345 		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1346 		break;
1347 
1348 	case T_BREAK:
1349 		++vcpu->stat.break_inst_exits;
1350 		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1351 		ret = kvm_mips_callbacks->handle_break(vcpu);
1352 		break;
1353 
1354 	case T_TRAP:
1355 		++vcpu->stat.trap_inst_exits;
1356 		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1357 		ret = kvm_mips_callbacks->handle_trap(vcpu);
1358 		break;
1359 
1360 	case T_MSAFPE:
1361 		++vcpu->stat.msa_fpe_exits;
1362 		trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1363 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1364 		break;
1365 
1366 	case T_FPE:
1367 		++vcpu->stat.fpe_exits;
1368 		trace_kvm_exit(vcpu, FPE_EXITS);
1369 		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1370 		break;
1371 
1372 	case T_MSADIS:
1373 		++vcpu->stat.msa_disabled_exits;
1374 		trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1375 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1376 		break;
1377 
1378 	default:
1379 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1380 			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1381 			kvm_read_c0_guest_status(vcpu->arch.cop0));
1382 		kvm_arch_vcpu_dump_regs(vcpu);
1383 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1384 		ret = RESUME_HOST;
1385 		break;
1386 
1387 	}
1388 
1389 skip_emul:
1390 	local_irq_disable();
1391 
1392 	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1393 		kvm_mips_deliver_interrupts(vcpu, cause);
1394 
1395 	if (!(ret & RESUME_HOST)) {
1396 		/* Only check for signals if not already exiting to userspace */
1397 		if (signal_pending(current)) {
1398 			run->exit_reason = KVM_EXIT_INTR;
1399 			ret = (-EINTR << 2) | RESUME_HOST;
1400 			++vcpu->stat.signal_exits;
1401 			trace_kvm_exit(vcpu, SIGNAL_EXITS);
1402 		}
1403 	}
1404 
1405 	if (ret == RESUME_GUEST) {
1406 		/*
1407 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1408 		 * is live), restore FCR31 / MSACSR.
1409 		 *
1410 		 * This should be before returning to the guest exception
1411 		 * vector, as it may well cause an [MSA] FP exception if there
1412 		 * are pending exception bits unmasked. (see
1413 		 * kvm_mips_csr_die_notifier() for how that is handled).
1414 		 */
1415 		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1416 		    read_c0_status() & ST0_CU1)
1417 			__kvm_restore_fcsr(&vcpu->arch);
1418 
1419 		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1420 		    read_c0_config5() & MIPS_CONF5_MSAEN)
1421 			__kvm_restore_msacsr(&vcpu->arch);
1422 	}
1423 
1424 	/* Disable HTW before returning to guest or host */
1425 	htw_stop();
1426 
1427 	return ret;
1428 }
1429 
1430 /* Enable FPU for guest and restore context */
kvm_own_fpu(struct kvm_vcpu * vcpu)1431 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1432 {
1433 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1434 	unsigned int sr, cfg5;
1435 
1436 	preempt_disable();
1437 
1438 	sr = kvm_read_c0_guest_status(cop0);
1439 
1440 	/*
1441 	 * If MSA state is already live, it is undefined how it interacts with
1442 	 * FR=0 FPU state, and we don't want to hit reserved instruction
1443 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1444 	 * play it safe and save it first.
1445 	 *
1446 	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1447 	 * get called when guest CU1 is set, however we can't trust the guest
1448 	 * not to clobber the status register directly via the commpage.
1449 	 */
1450 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1451 	    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1452 		kvm_lose_fpu(vcpu);
1453 
1454 	/*
1455 	 * Enable FPU for guest
1456 	 * We set FR and FRE according to guest context
1457 	 */
1458 	change_c0_status(ST0_CU1 | ST0_FR, sr);
1459 	if (cpu_has_fre) {
1460 		cfg5 = kvm_read_c0_guest_config5(cop0);
1461 		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1462 	}
1463 	enable_fpu_hazard();
1464 
1465 	/* If guest FPU state not active, restore it now */
1466 	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1467 		__kvm_restore_fpu(&vcpu->arch);
1468 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1469 	}
1470 
1471 	preempt_enable();
1472 }
1473 
1474 #ifdef CONFIG_CPU_HAS_MSA
1475 /* Enable MSA for guest and restore context */
kvm_own_msa(struct kvm_vcpu * vcpu)1476 void kvm_own_msa(struct kvm_vcpu *vcpu)
1477 {
1478 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1479 	unsigned int sr, cfg5;
1480 
1481 	preempt_disable();
1482 
1483 	/*
1484 	 * Enable FPU if enabled in guest, since we're restoring FPU context
1485 	 * anyway. We set FR and FRE according to guest context.
1486 	 */
1487 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1488 		sr = kvm_read_c0_guest_status(cop0);
1489 
1490 		/*
1491 		 * If FR=0 FPU state is already live, it is undefined how it
1492 		 * interacts with MSA state, so play it safe and save it first.
1493 		 */
1494 		if (!(sr & ST0_FR) &&
1495 		    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1496 				KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1497 			kvm_lose_fpu(vcpu);
1498 
1499 		change_c0_status(ST0_CU1 | ST0_FR, sr);
1500 		if (sr & ST0_CU1 && cpu_has_fre) {
1501 			cfg5 = kvm_read_c0_guest_config5(cop0);
1502 			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1503 		}
1504 	}
1505 
1506 	/* Enable MSA for guest */
1507 	set_c0_config5(MIPS_CONF5_MSAEN);
1508 	enable_fpu_hazard();
1509 
1510 	switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1511 	case KVM_MIPS_FPU_FPU:
1512 		/*
1513 		 * Guest FPU state already loaded, only restore upper MSA state
1514 		 */
1515 		__kvm_restore_msa_upper(&vcpu->arch);
1516 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1517 		break;
1518 	case 0:
1519 		/* Neither FPU or MSA already active, restore full MSA state */
1520 		__kvm_restore_msa(&vcpu->arch);
1521 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1522 		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1523 			vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1524 		break;
1525 	default:
1526 		break;
1527 	}
1528 
1529 	preempt_enable();
1530 }
1531 #endif
1532 
1533 /* Drop FPU & MSA without saving it */
kvm_drop_fpu(struct kvm_vcpu * vcpu)1534 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1535 {
1536 	preempt_disable();
1537 	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1538 		disable_msa();
1539 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1540 	}
1541 	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1542 		clear_c0_status(ST0_CU1 | ST0_FR);
1543 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1544 	}
1545 	preempt_enable();
1546 }
1547 
1548 /* Save and disable FPU & MSA */
kvm_lose_fpu(struct kvm_vcpu * vcpu)1549 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1550 {
1551 	/*
1552 	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1553 	 * in guest context (software), but the register state in the hardware
1554 	 * may still be in use. This is why we explicitly re-enable the hardware
1555 	 * before saving.
1556 	 */
1557 
1558 	preempt_disable();
1559 	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1560 		set_c0_config5(MIPS_CONF5_MSAEN);
1561 		enable_fpu_hazard();
1562 
1563 		__kvm_save_msa(&vcpu->arch);
1564 
1565 		/* Disable MSA & FPU */
1566 		disable_msa();
1567 		if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1568 			clear_c0_status(ST0_CU1 | ST0_FR);
1569 		vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1570 	} else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1571 		set_c0_status(ST0_CU1);
1572 		enable_fpu_hazard();
1573 
1574 		__kvm_save_fpu(&vcpu->arch);
1575 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1576 
1577 		/* Disable FPU */
1578 		clear_c0_status(ST0_CU1 | ST0_FR);
1579 	}
1580 	preempt_enable();
1581 }
1582 
1583 /*
1584  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1585  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1586  * exception if cause bits are set in the value being written.
1587  */
kvm_mips_csr_die_notify(struct notifier_block * self,unsigned long cmd,void * ptr)1588 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1589 				   unsigned long cmd, void *ptr)
1590 {
1591 	struct die_args *args = (struct die_args *)ptr;
1592 	struct pt_regs *regs = args->regs;
1593 	unsigned long pc;
1594 
1595 	/* Only interested in FPE and MSAFPE */
1596 	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1597 		return NOTIFY_DONE;
1598 
1599 	/* Return immediately if guest context isn't active */
1600 	if (!(current->flags & PF_VCPU))
1601 		return NOTIFY_DONE;
1602 
1603 	/* Should never get here from user mode */
1604 	BUG_ON(user_mode(regs));
1605 
1606 	pc = instruction_pointer(regs);
1607 	switch (cmd) {
1608 	case DIE_FP:
1609 		/* match 2nd instruction in __kvm_restore_fcsr */
1610 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1611 			return NOTIFY_DONE;
1612 		break;
1613 	case DIE_MSAFP:
1614 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1615 		if (!cpu_has_msa ||
1616 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1617 		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1618 			return NOTIFY_DONE;
1619 		break;
1620 	}
1621 
1622 	/* Move PC forward a little and continue executing */
1623 	instruction_pointer(regs) += 4;
1624 
1625 	return NOTIFY_STOP;
1626 }
1627 
1628 static struct notifier_block kvm_mips_csr_die_notifier = {
1629 	.notifier_call = kvm_mips_csr_die_notify,
1630 };
1631 
kvm_mips_init(void)1632 int __init kvm_mips_init(void)
1633 {
1634 	int ret;
1635 
1636 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1637 
1638 	if (ret)
1639 		return ret;
1640 
1641 	register_die_notifier(&kvm_mips_csr_die_notifier);
1642 
1643 	/*
1644 	 * On MIPS, kernel modules are executed from "mapped space", which
1645 	 * requires TLBs. The TLB handling code is statically linked with
1646 	 * the rest of the kernel (tlb.c) to avoid the possibility of
1647 	 * double faulting. The issue is that the TLB code references
1648 	 * routines that are part of the the KVM module, which are only
1649 	 * available once the module is loaded.
1650 	 */
1651 	kvm_mips_gfn_to_pfn = gfn_to_pfn;
1652 	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1653 	kvm_mips_is_error_pfn = is_error_pfn;
1654 
1655 	return 0;
1656 }
1657 
kvm_mips_exit(void)1658 void __exit kvm_mips_exit(void)
1659 {
1660 	kvm_exit();
1661 
1662 	kvm_mips_gfn_to_pfn = NULL;
1663 	kvm_mips_release_pfn_clean = NULL;
1664 	kvm_mips_is_error_pfn = NULL;
1665 
1666 	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1667 }
1668 
1669 module_init(kvm_mips_init);
1670 module_exit(kvm_mips_exit);
1671 
1672 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1673