1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #define pr_fmt(fmt) "numa: " fmt
12
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43
44 static int numa_enabled = 1;
45
46 static char *cmdline __initdata;
47
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67
68 /*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
setup_node_to_cpumask_map(void)74 static void __init setup_node_to_cpumask_map(void)
75 {
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for_each_node(node)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92 {
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 dbg("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135 }
136
reset_numa_cpu_lookup_table(void)137 static void reset_numa_cpu_lookup_table(void)
138 {
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143 }
144
update_numa_cpu_lookup_table(unsigned int cpu,int node)145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146 {
147 numa_cpu_lookup_table[cpu] = node;
148 }
149
map_cpu_to_node(int cpu,int node)150 static void map_cpu_to_node(int cpu, int node)
151 {
152 update_numa_cpu_lookup_table(cpu, node);
153
154 dbg("adding cpu %d to node %d\n", cpu, node);
155
156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158 }
159
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)161 static void unmap_cpu_from_node(unsigned long cpu)
162 {
163 int node = numa_cpu_lookup_table[cpu];
164
165 dbg("removing cpu %lu from node %d\n", cpu, node);
166
167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 } else {
170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 cpu, node);
172 }
173 }
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175
176 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)177 static const __be32 *of_get_associativity(struct device_node *dev)
178 {
179 return of_get_property(dev, "ibm,associativity", NULL);
180 }
181
182 /*
183 * Returns the property linux,drconf-usable-memory if
184 * it exists (the property exists only in kexec/kdump kernels,
185 * added by kexec-tools)
186 */
of_get_usable_memory(struct device_node * memory)187 static const __be32 *of_get_usable_memory(struct device_node *memory)
188 {
189 const __be32 *prop;
190 u32 len;
191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 if (!prop || len < sizeof(unsigned int))
193 return NULL;
194 return prop;
195 }
196
__node_distance(int a,int b)197 int __node_distance(int a, int b)
198 {
199 int i;
200 int distance = LOCAL_DISTANCE;
201
202 if (!form1_affinity)
203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204
205 for (i = 0; i < distance_ref_points_depth; i++) {
206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 break;
208
209 /* Double the distance for each NUMA level */
210 distance *= 2;
211 }
212
213 return distance;
214 }
215 EXPORT_SYMBOL(__node_distance);
216
initialize_distance_lookup_table(int nid,const __be32 * associativity)217 static void initialize_distance_lookup_table(int nid,
218 const __be32 *associativity)
219 {
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 const __be32 *entry;
227
228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229 distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 }
231 }
232
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 * info is found.
235 */
associativity_to_nid(const __be32 * associativity)236 static int associativity_to_nid(const __be32 *associativity)
237 {
238 int nid = -1;
239
240 if (min_common_depth == -1)
241 goto out;
242
243 if (of_read_number(associativity, 1) >= min_common_depth)
244 nid = of_read_number(&associativity[min_common_depth], 1);
245
246 /* POWER4 LPAR uses 0xffff as invalid node */
247 if (nid == 0xffff || nid >= MAX_NUMNODES)
248 nid = -1;
249
250 if (nid > 0 &&
251 of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 /*
253 * Skip the length field and send start of associativity array
254 */
255 initialize_distance_lookup_table(nid, associativity + 1);
256 }
257
258 out:
259 return nid;
260 }
261
262 /* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
264 */
of_node_to_nid_single(struct device_node * device)265 static int of_node_to_nid_single(struct device_node *device)
266 {
267 int nid = -1;
268 const __be32 *tmp;
269
270 tmp = of_get_associativity(device);
271 if (tmp)
272 nid = associativity_to_nid(tmp);
273 return nid;
274 }
275
276 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)277 int of_node_to_nid(struct device_node *device)
278 {
279 int nid = -1;
280
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
286
287 device = of_get_next_parent(device);
288 }
289 of_node_put(device);
290
291 return nid;
292 }
293 EXPORT_SYMBOL_GPL(of_node_to_nid);
294
find_min_common_depth(void)295 static int __init find_min_common_depth(void)
296 {
297 int depth;
298 struct device_node *root;
299
300 if (firmware_has_feature(FW_FEATURE_OPAL))
301 root = of_find_node_by_path("/ibm,opal");
302 else
303 root = of_find_node_by_path("/rtas");
304 if (!root)
305 root = of_find_node_by_path("/");
306
307 /*
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
310 *
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
314 *
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
318 */
319 distance_ref_points = of_get_property(root,
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth);
322
323 if (!distance_ref_points) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 goto err;
326 }
327
328 distance_ref_points_depth /= sizeof(int);
329
330 if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 dbg("Using form 1 affinity\n");
333 form1_affinity = 1;
334 }
335
336 if (form1_affinity) {
337 depth = of_read_number(distance_ref_points, 1);
338 } else {
339 if (distance_ref_points_depth < 2) {
340 printk(KERN_WARNING "NUMA: "
341 "short ibm,associativity-reference-points\n");
342 goto err;
343 }
344
345 depth = of_read_number(&distance_ref_points[1], 1);
346 }
347
348 /*
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
351 */
352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 printk(KERN_WARNING "NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS);
355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 }
357
358 of_node_put(root);
359 return depth;
360
361 err:
362 of_node_put(root);
363 return -1;
364 }
365
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
367 {
368 struct device_node *memory = NULL;
369
370 memory = of_find_node_by_type(memory, "memory");
371 if (!memory)
372 panic("numa.c: No memory nodes found!");
373
374 *n_addr_cells = of_n_addr_cells(memory);
375 *n_size_cells = of_n_size_cells(memory);
376 of_node_put(memory);
377 }
378
read_n_cells(int n,const __be32 ** buf)379 static unsigned long read_n_cells(int n, const __be32 **buf)
380 {
381 unsigned long result = 0;
382
383 while (n--) {
384 result = (result << 32) | of_read_number(*buf, 1);
385 (*buf)++;
386 }
387 return result;
388 }
389
390 /*
391 * Read the next memblock list entry from the ibm,dynamic-memory property
392 * and return the information in the provided of_drconf_cell structure.
393 */
read_drconf_cell(struct of_drconf_cell * drmem,const __be32 ** cellp)394 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395 {
396 const __be32 *cp;
397
398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400 cp = *cellp;
401 drmem->drc_index = of_read_number(cp, 1);
402 drmem->reserved = of_read_number(&cp[1], 1);
403 drmem->aa_index = of_read_number(&cp[2], 1);
404 drmem->flags = of_read_number(&cp[3], 1);
405
406 *cellp = cp + 4;
407 }
408
409 /*
410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411 *
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
414 * contains information as laid out in the of_drconf_cell struct above.
415 */
of_get_drconf_memory(struct device_node * memory,const __be32 ** dm)416 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417 {
418 const __be32 *prop;
419 u32 len, entries;
420
421 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 if (!prop || len < sizeof(unsigned int))
423 return 0;
424
425 entries = of_read_number(prop++, 1);
426
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
429 */
430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 return 0;
432
433 *dm = prop;
434 return entries;
435 }
436
437 /*
438 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 * from the device tree.
440 */
of_get_lmb_size(struct device_node * memory)441 static u64 of_get_lmb_size(struct device_node *memory)
442 {
443 const __be32 *prop;
444 u32 len;
445
446 prop = of_get_property(memory, "ibm,lmb-size", &len);
447 if (!prop || len < sizeof(unsigned int))
448 return 0;
449
450 return read_n_cells(n_mem_size_cells, &prop);
451 }
452
453 struct assoc_arrays {
454 u32 n_arrays;
455 u32 array_sz;
456 const __be32 *arrays;
457 };
458
459 /*
460 * Retrieve and validate the list of associativity arrays for drconf
461 * memory from the ibm,associativity-lookup-arrays property of the
462 * device tree..
463 *
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
468 */
of_get_assoc_arrays(struct device_node * memory,struct assoc_arrays * aa)469 static int of_get_assoc_arrays(struct device_node *memory,
470 struct assoc_arrays *aa)
471 {
472 const __be32 *prop;
473 u32 len;
474
475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 if (!prop || len < 2 * sizeof(unsigned int))
477 return -1;
478
479 aa->n_arrays = of_read_number(prop++, 1);
480 aa->array_sz = of_read_number(prop++, 1);
481
482 /* Now that we know the number of arrays and size of each array,
483 * revalidate the size of the property read in.
484 */
485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 return -1;
487
488 aa->arrays = prop;
489 return 0;
490 }
491
492 /*
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
495 */
of_drconf_to_nid_single(struct of_drconf_cell * drmem,struct assoc_arrays * aa)496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 struct assoc_arrays *aa)
498 {
499 int default_nid = 0;
500 int nid = default_nid;
501 int index;
502
503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 drmem->aa_index < aa->n_arrays) {
506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 nid = of_read_number(&aa->arrays[index], 1);
508
509 if (nid == 0xffff || nid >= MAX_NUMNODES)
510 nid = default_nid;
511
512 if (nid > 0) {
513 index = drmem->aa_index * aa->array_sz;
514 initialize_distance_lookup_table(nid,
515 &aa->arrays[index]);
516 }
517 }
518
519 return nid;
520 }
521
522 /*
523 * Figure out to which domain a cpu belongs and stick it there.
524 * Return the id of the domain used.
525 */
numa_setup_cpu(unsigned long lcpu)526 static int numa_setup_cpu(unsigned long lcpu)
527 {
528 int nid = -1;
529 struct device_node *cpu;
530
531 /*
532 * If a valid cpu-to-node mapping is already available, use it
533 * directly instead of querying the firmware, since it represents
534 * the most recent mapping notified to us by the platform (eg: VPHN).
535 */
536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
537 map_cpu_to_node(lcpu, nid);
538 return nid;
539 }
540
541 cpu = of_get_cpu_node(lcpu, NULL);
542
543 if (!cpu) {
544 WARN_ON(1);
545 if (cpu_present(lcpu))
546 goto out_present;
547 else
548 goto out;
549 }
550
551 nid = of_node_to_nid_single(cpu);
552
553 out_present:
554 if (nid < 0 || !node_possible(nid))
555 nid = first_online_node;
556
557 map_cpu_to_node(lcpu, nid);
558 of_node_put(cpu);
559 out:
560 return nid;
561 }
562
verify_cpu_node_mapping(int cpu,int node)563 static void verify_cpu_node_mapping(int cpu, int node)
564 {
565 int base, sibling, i;
566
567 /* Verify that all the threads in the core belong to the same node */
568 base = cpu_first_thread_sibling(cpu);
569
570 for (i = 0; i < threads_per_core; i++) {
571 sibling = base + i;
572
573 if (sibling == cpu || cpu_is_offline(sibling))
574 continue;
575
576 if (cpu_to_node(sibling) != node) {
577 WARN(1, "CPU thread siblings %d and %d don't belong"
578 " to the same node!\n", cpu, sibling);
579 break;
580 }
581 }
582 }
583
cpu_numa_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)584 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
585 void *hcpu)
586 {
587 unsigned long lcpu = (unsigned long)hcpu;
588 int ret = NOTIFY_DONE, nid;
589
590 switch (action) {
591 case CPU_UP_PREPARE:
592 case CPU_UP_PREPARE_FROZEN:
593 nid = numa_setup_cpu(lcpu);
594 verify_cpu_node_mapping((int)lcpu, nid);
595 ret = NOTIFY_OK;
596 break;
597 #ifdef CONFIG_HOTPLUG_CPU
598 case CPU_DEAD:
599 case CPU_DEAD_FROZEN:
600 case CPU_UP_CANCELED:
601 case CPU_UP_CANCELED_FROZEN:
602 unmap_cpu_from_node(lcpu);
603 ret = NOTIFY_OK;
604 break;
605 #endif
606 }
607 return ret;
608 }
609
610 /*
611 * Check and possibly modify a memory region to enforce the memory limit.
612 *
613 * Returns the size the region should have to enforce the memory limit.
614 * This will either be the original value of size, a truncated value,
615 * or zero. If the returned value of size is 0 the region should be
616 * discarded as it lies wholly above the memory limit.
617 */
numa_enforce_memory_limit(unsigned long start,unsigned long size)618 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
619 unsigned long size)
620 {
621 /*
622 * We use memblock_end_of_DRAM() in here instead of memory_limit because
623 * we've already adjusted it for the limit and it takes care of
624 * having memory holes below the limit. Also, in the case of
625 * iommu_is_off, memory_limit is not set but is implicitly enforced.
626 */
627
628 if (start + size <= memblock_end_of_DRAM())
629 return size;
630
631 if (start >= memblock_end_of_DRAM())
632 return 0;
633
634 return memblock_end_of_DRAM() - start;
635 }
636
637 /*
638 * Reads the counter for a given entry in
639 * linux,drconf-usable-memory property
640 */
read_usm_ranges(const __be32 ** usm)641 static inline int __init read_usm_ranges(const __be32 **usm)
642 {
643 /*
644 * For each lmb in ibm,dynamic-memory a corresponding
645 * entry in linux,drconf-usable-memory property contains
646 * a counter followed by that many (base, size) duple.
647 * read the counter from linux,drconf-usable-memory
648 */
649 return read_n_cells(n_mem_size_cells, usm);
650 }
651
652 /*
653 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
654 * node. This assumes n_mem_{addr,size}_cells have been set.
655 */
parse_drconf_memory(struct device_node * memory)656 static void __init parse_drconf_memory(struct device_node *memory)
657 {
658 const __be32 *uninitialized_var(dm), *usm;
659 unsigned int n, rc, ranges, is_kexec_kdump = 0;
660 unsigned long lmb_size, base, size, sz;
661 int nid;
662 struct assoc_arrays aa = { .arrays = NULL };
663
664 n = of_get_drconf_memory(memory, &dm);
665 if (!n)
666 return;
667
668 lmb_size = of_get_lmb_size(memory);
669 if (!lmb_size)
670 return;
671
672 rc = of_get_assoc_arrays(memory, &aa);
673 if (rc)
674 return;
675
676 /* check if this is a kexec/kdump kernel */
677 usm = of_get_usable_memory(memory);
678 if (usm != NULL)
679 is_kexec_kdump = 1;
680
681 for (; n != 0; --n) {
682 struct of_drconf_cell drmem;
683
684 read_drconf_cell(&drmem, &dm);
685
686 /* skip this block if the reserved bit is set in flags (0x80)
687 or if the block is not assigned to this partition (0x8) */
688 if ((drmem.flags & DRCONF_MEM_RESERVED)
689 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
690 continue;
691
692 base = drmem.base_addr;
693 size = lmb_size;
694 ranges = 1;
695
696 if (is_kexec_kdump) {
697 ranges = read_usm_ranges(&usm);
698 if (!ranges) /* there are no (base, size) duple */
699 continue;
700 }
701 do {
702 if (is_kexec_kdump) {
703 base = read_n_cells(n_mem_addr_cells, &usm);
704 size = read_n_cells(n_mem_size_cells, &usm);
705 }
706 nid = of_drconf_to_nid_single(&drmem, &aa);
707 fake_numa_create_new_node(
708 ((base + size) >> PAGE_SHIFT),
709 &nid);
710 node_set_online(nid);
711 sz = numa_enforce_memory_limit(base, size);
712 if (sz)
713 memblock_set_node(base, sz,
714 &memblock.memory, nid);
715 } while (--ranges);
716 }
717 }
718
parse_numa_properties(void)719 static int __init parse_numa_properties(void)
720 {
721 struct device_node *memory;
722 int default_nid = 0;
723 unsigned long i;
724
725 if (numa_enabled == 0) {
726 printk(KERN_WARNING "NUMA disabled by user\n");
727 return -1;
728 }
729
730 min_common_depth = find_min_common_depth();
731
732 if (min_common_depth < 0)
733 return min_common_depth;
734
735 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
736
737 /*
738 * Even though we connect cpus to numa domains later in SMP
739 * init, we need to know the node ids now. This is because
740 * each node to be onlined must have NODE_DATA etc backing it.
741 */
742 for_each_present_cpu(i) {
743 struct device_node *cpu;
744 int nid;
745
746 cpu = of_get_cpu_node(i, NULL);
747 BUG_ON(!cpu);
748 nid = of_node_to_nid_single(cpu);
749 of_node_put(cpu);
750
751 /*
752 * Don't fall back to default_nid yet -- we will plug
753 * cpus into nodes once the memory scan has discovered
754 * the topology.
755 */
756 if (nid < 0)
757 continue;
758 node_set_online(nid);
759 }
760
761 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
762
763 for_each_node_by_type(memory, "memory") {
764 unsigned long start;
765 unsigned long size;
766 int nid;
767 int ranges;
768 const __be32 *memcell_buf;
769 unsigned int len;
770
771 memcell_buf = of_get_property(memory,
772 "linux,usable-memory", &len);
773 if (!memcell_buf || len <= 0)
774 memcell_buf = of_get_property(memory, "reg", &len);
775 if (!memcell_buf || len <= 0)
776 continue;
777
778 /* ranges in cell */
779 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
780 new_range:
781 /* these are order-sensitive, and modify the buffer pointer */
782 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
783 size = read_n_cells(n_mem_size_cells, &memcell_buf);
784
785 /*
786 * Assumption: either all memory nodes or none will
787 * have associativity properties. If none, then
788 * everything goes to default_nid.
789 */
790 nid = of_node_to_nid_single(memory);
791 if (nid < 0)
792 nid = default_nid;
793
794 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
795 node_set_online(nid);
796
797 if (!(size = numa_enforce_memory_limit(start, size))) {
798 if (--ranges)
799 goto new_range;
800 else
801 continue;
802 }
803
804 memblock_set_node(start, size, &memblock.memory, nid);
805
806 if (--ranges)
807 goto new_range;
808 }
809
810 /*
811 * Now do the same thing for each MEMBLOCK listed in the
812 * ibm,dynamic-memory property in the
813 * ibm,dynamic-reconfiguration-memory node.
814 */
815 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
816 if (memory)
817 parse_drconf_memory(memory);
818
819 return 0;
820 }
821
setup_nonnuma(void)822 static void __init setup_nonnuma(void)
823 {
824 unsigned long top_of_ram = memblock_end_of_DRAM();
825 unsigned long total_ram = memblock_phys_mem_size();
826 unsigned long start_pfn, end_pfn;
827 unsigned int nid = 0;
828 struct memblock_region *reg;
829
830 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
831 top_of_ram, total_ram);
832 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
833 (top_of_ram - total_ram) >> 20);
834
835 for_each_memblock(memory, reg) {
836 start_pfn = memblock_region_memory_base_pfn(reg);
837 end_pfn = memblock_region_memory_end_pfn(reg);
838
839 fake_numa_create_new_node(end_pfn, &nid);
840 memblock_set_node(PFN_PHYS(start_pfn),
841 PFN_PHYS(end_pfn - start_pfn),
842 &memblock.memory, nid);
843 node_set_online(nid);
844 }
845 }
846
dump_numa_cpu_topology(void)847 void __init dump_numa_cpu_topology(void)
848 {
849 unsigned int node;
850 unsigned int cpu, count;
851
852 if (min_common_depth == -1 || !numa_enabled)
853 return;
854
855 for_each_online_node(node) {
856 printk(KERN_DEBUG "Node %d CPUs:", node);
857
858 count = 0;
859 /*
860 * If we used a CPU iterator here we would miss printing
861 * the holes in the cpumap.
862 */
863 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
864 if (cpumask_test_cpu(cpu,
865 node_to_cpumask_map[node])) {
866 if (count == 0)
867 printk(" %u", cpu);
868 ++count;
869 } else {
870 if (count > 1)
871 printk("-%u", cpu - 1);
872 count = 0;
873 }
874 }
875
876 if (count > 1)
877 printk("-%u", nr_cpu_ids - 1);
878 printk("\n");
879 }
880 }
881
dump_numa_memory_topology(void)882 static void __init dump_numa_memory_topology(void)
883 {
884 unsigned int node;
885 unsigned int count;
886
887 if (min_common_depth == -1 || !numa_enabled)
888 return;
889
890 for_each_online_node(node) {
891 unsigned long i;
892
893 printk(KERN_DEBUG "Node %d Memory:", node);
894
895 count = 0;
896
897 for (i = 0; i < memblock_end_of_DRAM();
898 i += (1 << SECTION_SIZE_BITS)) {
899 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
900 if (count == 0)
901 printk(" 0x%lx", i);
902 ++count;
903 } else {
904 if (count > 0)
905 printk("-0x%lx", i);
906 count = 0;
907 }
908 }
909
910 if (count > 0)
911 printk("-0x%lx", i);
912 printk("\n");
913 }
914 }
915
916 static struct notifier_block ppc64_numa_nb = {
917 .notifier_call = cpu_numa_callback,
918 .priority = 1 /* Must run before sched domains notifier. */
919 };
920
921 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)922 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
923 {
924 u64 spanned_pages = end_pfn - start_pfn;
925 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
926 u64 nd_pa;
927 void *nd;
928 int tnid;
929
930 if (spanned_pages)
931 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
932 nid, start_pfn << PAGE_SHIFT,
933 (end_pfn << PAGE_SHIFT) - 1);
934 else
935 pr_info("Initmem setup node %d\n", nid);
936
937 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
938 nd = __va(nd_pa);
939
940 /* report and initialize */
941 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
942 nd_pa, nd_pa + nd_size - 1);
943 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
944 if (tnid != nid)
945 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
946
947 node_data[nid] = nd;
948 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
949 NODE_DATA(nid)->node_id = nid;
950 NODE_DATA(nid)->node_start_pfn = start_pfn;
951 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
952 }
953
find_possible_nodes(void)954 static void __init find_possible_nodes(void)
955 {
956 struct device_node *rtas;
957 u32 numnodes, i;
958
959 if (min_common_depth <= 0)
960 return;
961
962 rtas = of_find_node_by_path("/rtas");
963 if (!rtas)
964 return;
965
966 if (of_property_read_u32_index(rtas,
967 "ibm,max-associativity-domains",
968 min_common_depth, &numnodes))
969 goto out;
970
971 for (i = 0; i < numnodes; i++) {
972 if (!node_possible(i))
973 node_set(i, node_possible_map);
974 }
975
976 out:
977 of_node_put(rtas);
978 }
979
initmem_init(void)980 void __init initmem_init(void)
981 {
982 int nid, cpu;
983
984 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
985 max_pfn = max_low_pfn;
986
987 if (parse_numa_properties())
988 setup_nonnuma();
989 else
990 dump_numa_memory_topology();
991
992 memblock_dump_all();
993
994 /*
995 * Modify the set of possible NUMA nodes to reflect information
996 * available about the set of online nodes, and the set of nodes
997 * that we expect to make use of for this platform's affinity
998 * calculations.
999 */
1000 nodes_and(node_possible_map, node_possible_map, node_online_map);
1001
1002 find_possible_nodes();
1003
1004 for_each_online_node(nid) {
1005 unsigned long start_pfn, end_pfn;
1006
1007 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1008 setup_node_data(nid, start_pfn, end_pfn);
1009 sparse_memory_present_with_active_regions(nid);
1010 }
1011
1012 sparse_init();
1013
1014 setup_node_to_cpumask_map();
1015
1016 reset_numa_cpu_lookup_table();
1017 register_cpu_notifier(&ppc64_numa_nb);
1018 /*
1019 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1020 * even before we online them, so that we can use cpu_to_{node,mem}
1021 * early in boot, cf. smp_prepare_cpus().
1022 */
1023 for_each_present_cpu(cpu) {
1024 numa_setup_cpu((unsigned long)cpu);
1025 }
1026 }
1027
early_numa(char * p)1028 static int __init early_numa(char *p)
1029 {
1030 if (!p)
1031 return 0;
1032
1033 if (strstr(p, "off"))
1034 numa_enabled = 0;
1035
1036 if (strstr(p, "debug"))
1037 numa_debug = 1;
1038
1039 p = strstr(p, "fake=");
1040 if (p)
1041 cmdline = p + strlen("fake=");
1042
1043 return 0;
1044 }
1045 early_param("numa", early_numa);
1046
1047 static bool topology_updates_enabled = true;
1048
early_topology_updates(char * p)1049 static int __init early_topology_updates(char *p)
1050 {
1051 if (!p)
1052 return 0;
1053
1054 if (!strcmp(p, "off")) {
1055 pr_info("Disabling topology updates\n");
1056 topology_updates_enabled = false;
1057 }
1058
1059 return 0;
1060 }
1061 early_param("topology_updates", early_topology_updates);
1062
1063 #ifdef CONFIG_MEMORY_HOTPLUG
1064 /*
1065 * Find the node associated with a hot added memory section for
1066 * memory represented in the device tree by the property
1067 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1068 */
hot_add_drconf_scn_to_nid(struct device_node * memory,unsigned long scn_addr)1069 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1070 unsigned long scn_addr)
1071 {
1072 const __be32 *dm;
1073 unsigned int drconf_cell_cnt, rc;
1074 unsigned long lmb_size;
1075 struct assoc_arrays aa;
1076 int nid = -1;
1077
1078 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1079 if (!drconf_cell_cnt)
1080 return -1;
1081
1082 lmb_size = of_get_lmb_size(memory);
1083 if (!lmb_size)
1084 return -1;
1085
1086 rc = of_get_assoc_arrays(memory, &aa);
1087 if (rc)
1088 return -1;
1089
1090 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1091 struct of_drconf_cell drmem;
1092
1093 read_drconf_cell(&drmem, &dm);
1094
1095 /* skip this block if it is reserved or not assigned to
1096 * this partition */
1097 if ((drmem.flags & DRCONF_MEM_RESERVED)
1098 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1099 continue;
1100
1101 if ((scn_addr < drmem.base_addr)
1102 || (scn_addr >= (drmem.base_addr + lmb_size)))
1103 continue;
1104
1105 nid = of_drconf_to_nid_single(&drmem, &aa);
1106 break;
1107 }
1108
1109 return nid;
1110 }
1111
1112 /*
1113 * Find the node associated with a hot added memory section for memory
1114 * represented in the device tree as a node (i.e. memory@XXXX) for
1115 * each memblock.
1116 */
hot_add_node_scn_to_nid(unsigned long scn_addr)1117 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1118 {
1119 struct device_node *memory;
1120 int nid = -1;
1121
1122 for_each_node_by_type(memory, "memory") {
1123 unsigned long start, size;
1124 int ranges;
1125 const __be32 *memcell_buf;
1126 unsigned int len;
1127
1128 memcell_buf = of_get_property(memory, "reg", &len);
1129 if (!memcell_buf || len <= 0)
1130 continue;
1131
1132 /* ranges in cell */
1133 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1134
1135 while (ranges--) {
1136 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1137 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1138
1139 if ((scn_addr < start) || (scn_addr >= (start + size)))
1140 continue;
1141
1142 nid = of_node_to_nid_single(memory);
1143 break;
1144 }
1145
1146 if (nid >= 0)
1147 break;
1148 }
1149
1150 of_node_put(memory);
1151
1152 return nid;
1153 }
1154
1155 /*
1156 * Find the node associated with a hot added memory section. Section
1157 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1158 * sections are fully contained within a single MEMBLOCK.
1159 */
hot_add_scn_to_nid(unsigned long scn_addr)1160 int hot_add_scn_to_nid(unsigned long scn_addr)
1161 {
1162 struct device_node *memory = NULL;
1163 int nid, found = 0;
1164
1165 if (!numa_enabled || (min_common_depth < 0))
1166 return first_online_node;
1167
1168 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1169 if (memory) {
1170 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1171 of_node_put(memory);
1172 } else {
1173 nid = hot_add_node_scn_to_nid(scn_addr);
1174 }
1175
1176 if (nid < 0 || !node_online(nid))
1177 nid = first_online_node;
1178
1179 if (NODE_DATA(nid)->node_spanned_pages)
1180 return nid;
1181
1182 for_each_online_node(nid) {
1183 if (NODE_DATA(nid)->node_spanned_pages) {
1184 found = 1;
1185 break;
1186 }
1187 }
1188
1189 BUG_ON(!found);
1190 return nid;
1191 }
1192
hot_add_drconf_memory_max(void)1193 static u64 hot_add_drconf_memory_max(void)
1194 {
1195 struct device_node *memory = NULL;
1196 unsigned int drconf_cell_cnt = 0;
1197 u64 lmb_size = 0;
1198 const __be32 *dm = NULL;
1199
1200 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1201 if (memory) {
1202 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1203 lmb_size = of_get_lmb_size(memory);
1204 of_node_put(memory);
1205 }
1206 return lmb_size * drconf_cell_cnt;
1207 }
1208
1209 /*
1210 * memory_hotplug_max - return max address of memory that may be added
1211 *
1212 * This is currently only used on systems that support drconfig memory
1213 * hotplug.
1214 */
memory_hotplug_max(void)1215 u64 memory_hotplug_max(void)
1216 {
1217 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1218 }
1219 #endif /* CONFIG_MEMORY_HOTPLUG */
1220
1221 /* Virtual Processor Home Node (VPHN) support */
1222 #ifdef CONFIG_PPC_SPLPAR
1223
1224 #include "vphn.h"
1225
1226 struct topology_update_data {
1227 struct topology_update_data *next;
1228 unsigned int cpu;
1229 int old_nid;
1230 int new_nid;
1231 };
1232
1233 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1234 static cpumask_t cpu_associativity_changes_mask;
1235 static int vphn_enabled;
1236 static int prrn_enabled;
1237 static void reset_topology_timer(void);
1238
1239 /*
1240 * Store the current values of the associativity change counters in the
1241 * hypervisor.
1242 */
setup_cpu_associativity_change_counters(void)1243 static void setup_cpu_associativity_change_counters(void)
1244 {
1245 int cpu;
1246
1247 /* The VPHN feature supports a maximum of 8 reference points */
1248 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1249
1250 for_each_possible_cpu(cpu) {
1251 int i;
1252 u8 *counts = vphn_cpu_change_counts[cpu];
1253 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1254
1255 for (i = 0; i < distance_ref_points_depth; i++)
1256 counts[i] = hypervisor_counts[i];
1257 }
1258 }
1259
1260 /*
1261 * The hypervisor maintains a set of 8 associativity change counters in
1262 * the VPA of each cpu that correspond to the associativity levels in the
1263 * ibm,associativity-reference-points property. When an associativity
1264 * level changes, the corresponding counter is incremented.
1265 *
1266 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1267 * node associativity levels have changed.
1268 *
1269 * Returns the number of cpus with unhandled associativity changes.
1270 */
update_cpu_associativity_changes_mask(void)1271 static int update_cpu_associativity_changes_mask(void)
1272 {
1273 int cpu;
1274 cpumask_t *changes = &cpu_associativity_changes_mask;
1275
1276 for_each_possible_cpu(cpu) {
1277 int i, changed = 0;
1278 u8 *counts = vphn_cpu_change_counts[cpu];
1279 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1280
1281 for (i = 0; i < distance_ref_points_depth; i++) {
1282 if (hypervisor_counts[i] != counts[i]) {
1283 counts[i] = hypervisor_counts[i];
1284 changed = 1;
1285 }
1286 }
1287 if (changed) {
1288 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1289 cpu = cpu_last_thread_sibling(cpu);
1290 }
1291 }
1292
1293 return cpumask_weight(changes);
1294 }
1295
1296 /*
1297 * Retrieve the new associativity information for a virtual processor's
1298 * home node.
1299 */
hcall_vphn(unsigned long cpu,__be32 * associativity)1300 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1301 {
1302 long rc;
1303 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1304 u64 flags = 1;
1305 int hwcpu = get_hard_smp_processor_id(cpu);
1306
1307 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1308 vphn_unpack_associativity(retbuf, associativity);
1309
1310 return rc;
1311 }
1312
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1313 static long vphn_get_associativity(unsigned long cpu,
1314 __be32 *associativity)
1315 {
1316 long rc;
1317
1318 rc = hcall_vphn(cpu, associativity);
1319
1320 switch (rc) {
1321 case H_FUNCTION:
1322 printk_once(KERN_INFO
1323 "VPHN is not supported. Disabling polling...\n");
1324 stop_topology_update();
1325 break;
1326 case H_HARDWARE:
1327 printk(KERN_ERR
1328 "hcall_vphn() experienced a hardware fault "
1329 "preventing VPHN. Disabling polling...\n");
1330 stop_topology_update();
1331 }
1332
1333 return rc;
1334 }
1335
find_and_online_cpu_nid(int cpu)1336 static inline int find_and_online_cpu_nid(int cpu)
1337 {
1338 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1339 int new_nid;
1340
1341 /* Use associativity from first thread for all siblings */
1342 vphn_get_associativity(cpu, associativity);
1343 new_nid = associativity_to_nid(associativity);
1344 if (new_nid < 0 || !node_possible(new_nid))
1345 new_nid = first_online_node;
1346
1347 if (NODE_DATA(new_nid) == NULL) {
1348 #ifdef CONFIG_MEMORY_HOTPLUG
1349 /*
1350 * Need to ensure that NODE_DATA is initialized for a node from
1351 * available memory (see memblock_alloc_try_nid). If unable to
1352 * init the node, then default to nearest node that has memory
1353 * installed.
1354 */
1355 if (try_online_node(new_nid))
1356 new_nid = first_online_node;
1357 #else
1358 /*
1359 * Default to using the nearest node that has memory installed.
1360 * Otherwise, it would be necessary to patch the kernel MM code
1361 * to deal with more memoryless-node error conditions.
1362 */
1363 new_nid = first_online_node;
1364 #endif
1365 }
1366
1367 return new_nid;
1368 }
1369
1370 /*
1371 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1372 * characteristics change. This function doesn't perform any locking and is
1373 * only safe to call from stop_machine().
1374 */
update_cpu_topology(void * data)1375 static int update_cpu_topology(void *data)
1376 {
1377 struct topology_update_data *update;
1378 unsigned long cpu;
1379
1380 if (!data)
1381 return -EINVAL;
1382
1383 cpu = smp_processor_id();
1384
1385 for (update = data; update; update = update->next) {
1386 int new_nid = update->new_nid;
1387 if (cpu != update->cpu)
1388 continue;
1389
1390 unmap_cpu_from_node(cpu);
1391 map_cpu_to_node(cpu, new_nid);
1392 set_cpu_numa_node(cpu, new_nid);
1393 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1394 vdso_getcpu_init();
1395 }
1396
1397 return 0;
1398 }
1399
update_lookup_table(void * data)1400 static int update_lookup_table(void *data)
1401 {
1402 struct topology_update_data *update;
1403
1404 if (!data)
1405 return -EINVAL;
1406
1407 /*
1408 * Upon topology update, the numa-cpu lookup table needs to be updated
1409 * for all threads in the core, including offline CPUs, to ensure that
1410 * future hotplug operations respect the cpu-to-node associativity
1411 * properly.
1412 */
1413 for (update = data; update; update = update->next) {
1414 int nid, base, j;
1415
1416 nid = update->new_nid;
1417 base = cpu_first_thread_sibling(update->cpu);
1418
1419 for (j = 0; j < threads_per_core; j++) {
1420 update_numa_cpu_lookup_table(base + j, nid);
1421 }
1422 }
1423
1424 return 0;
1425 }
1426
1427 /*
1428 * Update the node maps and sysfs entries for each cpu whose home node
1429 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1430 */
arch_update_cpu_topology(void)1431 int arch_update_cpu_topology(void)
1432 {
1433 unsigned int cpu, sibling, changed = 0;
1434 struct topology_update_data *updates, *ud;
1435 cpumask_t updated_cpus;
1436 struct device *dev;
1437 int weight, new_nid, i = 0;
1438
1439 if (!prrn_enabled && !vphn_enabled)
1440 return 0;
1441
1442 weight = cpumask_weight(&cpu_associativity_changes_mask);
1443 if (!weight)
1444 return 0;
1445
1446 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1447 if (!updates)
1448 return 0;
1449
1450 cpumask_clear(&updated_cpus);
1451
1452 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1453 /*
1454 * If siblings aren't flagged for changes, updates list
1455 * will be too short. Skip on this update and set for next
1456 * update.
1457 */
1458 if (!cpumask_subset(cpu_sibling_mask(cpu),
1459 &cpu_associativity_changes_mask)) {
1460 pr_info("Sibling bits not set for associativity "
1461 "change, cpu%d\n", cpu);
1462 cpumask_or(&cpu_associativity_changes_mask,
1463 &cpu_associativity_changes_mask,
1464 cpu_sibling_mask(cpu));
1465 cpu = cpu_last_thread_sibling(cpu);
1466 continue;
1467 }
1468
1469 new_nid = find_and_online_cpu_nid(cpu);
1470
1471 if (new_nid == numa_cpu_lookup_table[cpu]) {
1472 cpumask_andnot(&cpu_associativity_changes_mask,
1473 &cpu_associativity_changes_mask,
1474 cpu_sibling_mask(cpu));
1475 cpu = cpu_last_thread_sibling(cpu);
1476 continue;
1477 }
1478
1479 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1480 ud = &updates[i++];
1481 ud->cpu = sibling;
1482 ud->new_nid = new_nid;
1483 ud->old_nid = numa_cpu_lookup_table[sibling];
1484 cpumask_set_cpu(sibling, &updated_cpus);
1485 if (i < weight)
1486 ud->next = &updates[i];
1487 }
1488 cpu = cpu_last_thread_sibling(cpu);
1489 }
1490
1491 pr_debug("Topology update for the following CPUs:\n");
1492 if (cpumask_weight(&updated_cpus)) {
1493 for (ud = &updates[0]; ud; ud = ud->next) {
1494 pr_debug("cpu %d moving from node %d "
1495 "to %d\n", ud->cpu,
1496 ud->old_nid, ud->new_nid);
1497 }
1498 }
1499
1500 /*
1501 * In cases where we have nothing to update (because the updates list
1502 * is too short or because the new topology is same as the old one),
1503 * skip invoking update_cpu_topology() via stop-machine(). This is
1504 * necessary (and not just a fast-path optimization) since stop-machine
1505 * can end up electing a random CPU to run update_cpu_topology(), and
1506 * thus trick us into setting up incorrect cpu-node mappings (since
1507 * 'updates' is kzalloc()'ed).
1508 *
1509 * And for the similar reason, we will skip all the following updating.
1510 */
1511 if (!cpumask_weight(&updated_cpus))
1512 goto out;
1513
1514 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1515
1516 /*
1517 * Update the numa-cpu lookup table with the new mappings, even for
1518 * offline CPUs. It is best to perform this update from the stop-
1519 * machine context.
1520 */
1521 stop_machine(update_lookup_table, &updates[0],
1522 cpumask_of(raw_smp_processor_id()));
1523
1524 for (ud = &updates[0]; ud; ud = ud->next) {
1525 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1526 register_cpu_under_node(ud->cpu, ud->new_nid);
1527
1528 dev = get_cpu_device(ud->cpu);
1529 if (dev)
1530 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1531 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1532 changed = 1;
1533 }
1534
1535 out:
1536 kfree(updates);
1537 return changed;
1538 }
1539
topology_work_fn(struct work_struct * work)1540 static void topology_work_fn(struct work_struct *work)
1541 {
1542 rebuild_sched_domains();
1543 }
1544 static DECLARE_WORK(topology_work, topology_work_fn);
1545
topology_schedule_update(void)1546 static void topology_schedule_update(void)
1547 {
1548 schedule_work(&topology_work);
1549 }
1550
topology_timer_fn(unsigned long ignored)1551 static void topology_timer_fn(unsigned long ignored)
1552 {
1553 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1554 topology_schedule_update();
1555 else if (vphn_enabled) {
1556 if (update_cpu_associativity_changes_mask() > 0)
1557 topology_schedule_update();
1558 reset_topology_timer();
1559 }
1560 }
1561 static struct timer_list topology_timer =
1562 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1563
reset_topology_timer(void)1564 static void reset_topology_timer(void)
1565 {
1566 topology_timer.data = 0;
1567 topology_timer.expires = jiffies + 60 * HZ;
1568 mod_timer(&topology_timer, topology_timer.expires);
1569 }
1570
1571 #ifdef CONFIG_SMP
1572
stage_topology_update(int core_id)1573 static void stage_topology_update(int core_id)
1574 {
1575 cpumask_or(&cpu_associativity_changes_mask,
1576 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1577 reset_topology_timer();
1578 }
1579
dt_update_callback(struct notifier_block * nb,unsigned long action,void * data)1580 static int dt_update_callback(struct notifier_block *nb,
1581 unsigned long action, void *data)
1582 {
1583 struct of_reconfig_data *update = data;
1584 int rc = NOTIFY_DONE;
1585
1586 switch (action) {
1587 case OF_RECONFIG_UPDATE_PROPERTY:
1588 if (!of_prop_cmp(update->dn->type, "cpu") &&
1589 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1590 u32 core_id;
1591 of_property_read_u32(update->dn, "reg", &core_id);
1592 stage_topology_update(core_id);
1593 rc = NOTIFY_OK;
1594 }
1595 break;
1596 }
1597
1598 return rc;
1599 }
1600
1601 static struct notifier_block dt_update_nb = {
1602 .notifier_call = dt_update_callback,
1603 };
1604
1605 #endif
1606
1607 /*
1608 * Start polling for associativity changes.
1609 */
start_topology_update(void)1610 int start_topology_update(void)
1611 {
1612 int rc = 0;
1613
1614 if (!topology_updates_enabled)
1615 return 0;
1616
1617 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1618 if (!prrn_enabled) {
1619 prrn_enabled = 1;
1620 vphn_enabled = 0;
1621 #ifdef CONFIG_SMP
1622 rc = of_reconfig_notifier_register(&dt_update_nb);
1623 #endif
1624 }
1625 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1626 lppaca_shared_proc(get_lppaca())) {
1627 if (!vphn_enabled) {
1628 prrn_enabled = 0;
1629 vphn_enabled = 1;
1630 setup_cpu_associativity_change_counters();
1631 init_timer_deferrable(&topology_timer);
1632 reset_topology_timer();
1633 }
1634 }
1635
1636 return rc;
1637 }
1638
1639 /*
1640 * Disable polling for VPHN associativity changes.
1641 */
stop_topology_update(void)1642 int stop_topology_update(void)
1643 {
1644 int rc = 0;
1645
1646 if (!topology_updates_enabled)
1647 return 0;
1648
1649 if (prrn_enabled) {
1650 prrn_enabled = 0;
1651 #ifdef CONFIG_SMP
1652 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1653 #endif
1654 } else if (vphn_enabled) {
1655 vphn_enabled = 0;
1656 rc = del_timer_sync(&topology_timer);
1657 }
1658
1659 return rc;
1660 }
1661
prrn_is_enabled(void)1662 int prrn_is_enabled(void)
1663 {
1664 return prrn_enabled;
1665 }
1666
topology_read(struct seq_file * file,void * v)1667 static int topology_read(struct seq_file *file, void *v)
1668 {
1669 if (vphn_enabled || prrn_enabled)
1670 seq_puts(file, "on\n");
1671 else
1672 seq_puts(file, "off\n");
1673
1674 return 0;
1675 }
1676
topology_open(struct inode * inode,struct file * file)1677 static int topology_open(struct inode *inode, struct file *file)
1678 {
1679 return single_open(file, topology_read, NULL);
1680 }
1681
topology_write(struct file * file,const char __user * buf,size_t count,loff_t * off)1682 static ssize_t topology_write(struct file *file, const char __user *buf,
1683 size_t count, loff_t *off)
1684 {
1685 char kbuf[4]; /* "on" or "off" plus null. */
1686 int read_len;
1687
1688 read_len = count < 3 ? count : 3;
1689 if (copy_from_user(kbuf, buf, read_len))
1690 return -EINVAL;
1691
1692 kbuf[read_len] = '\0';
1693
1694 if (!strncmp(kbuf, "on", 2)) {
1695 topology_updates_enabled = true;
1696 start_topology_update();
1697 } else if (!strncmp(kbuf, "off", 3)) {
1698 stop_topology_update();
1699 topology_updates_enabled = false;
1700 } else
1701 return -EINVAL;
1702
1703 return count;
1704 }
1705
1706 static const struct file_operations topology_ops = {
1707 .read = seq_read,
1708 .write = topology_write,
1709 .open = topology_open,
1710 .release = single_release
1711 };
1712
topology_update_init(void)1713 static int topology_update_init(void)
1714 {
1715 start_topology_update();
1716
1717 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1718 return -ENOMEM;
1719
1720 return 0;
1721 }
1722 device_initcall(topology_update_init);
1723 #endif /* CONFIG_PPC_SPLPAR */
1724