• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PowerPC64 SLB support.
3  *
4  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5  * Based on earlier code written by:
6  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7  *    Copyright (c) 2001 Dave Engebretsen
8  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27 
28 enum slb_index {
29 	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
30 	VMALLOC_INDEX	= 1, /* Kernel virtual map (0xd000000000000000) */
31 	KSTACK_INDEX	= 2, /* Kernel stack map */
32 };
33 
34 extern void slb_allocate_realmode(unsigned long ea);
35 extern void slb_allocate_user(unsigned long ea);
36 
slb_allocate(unsigned long ea)37 static void slb_allocate(unsigned long ea)
38 {
39 	/* Currently, we do real mode for all SLBs including user, but
40 	 * that will change if we bring back dynamic VSIDs
41 	 */
42 	slb_allocate_realmode(ea);
43 }
44 
45 #define slb_esid_mask(ssize)	\
46 	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
47 
mk_esid_data(unsigned long ea,int ssize,enum slb_index index)48 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
49 					 enum slb_index index)
50 {
51 	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
52 }
53 
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)54 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
55 					 unsigned long flags)
56 {
57 	return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
58 		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
59 }
60 
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)61 static inline void slb_shadow_update(unsigned long ea, int ssize,
62 				     unsigned long flags,
63 				     enum slb_index index)
64 {
65 	struct slb_shadow *p = get_slb_shadow();
66 
67 	/*
68 	 * Clear the ESID first so the entry is not valid while we are
69 	 * updating it.  No write barriers are needed here, provided
70 	 * we only update the current CPU's SLB shadow buffer.
71 	 */
72 	WRITE_ONCE(p->save_area[index].esid, 0);
73 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
74 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
75 }
76 
slb_shadow_clear(enum slb_index index)77 static inline void slb_shadow_clear(enum slb_index index)
78 {
79 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, 0);
80 }
81 
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)82 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
83 					unsigned long flags,
84 					enum slb_index index)
85 {
86 	/*
87 	 * Updating the shadow buffer before writing the SLB ensures
88 	 * we don't get a stale entry here if we get preempted by PHYP
89 	 * between these two statements.
90 	 */
91 	slb_shadow_update(ea, ssize, flags, index);
92 
93 	asm volatile("slbmte  %0,%1" :
94 		     : "r" (mk_vsid_data(ea, ssize, flags)),
95 		       "r" (mk_esid_data(ea, ssize, index))
96 		     : "memory" );
97 }
98 
__slb_flush_and_rebolt(void)99 static void __slb_flush_and_rebolt(void)
100 {
101 	/* If you change this make sure you change SLB_NUM_BOLTED
102 	 * and PR KVM appropriately too. */
103 	unsigned long linear_llp, vmalloc_llp, lflags, vflags;
104 	unsigned long ksp_esid_data, ksp_vsid_data;
105 
106 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
107 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
108 	lflags = SLB_VSID_KERNEL | linear_llp;
109 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
110 
111 	ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
112 	if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
113 		ksp_esid_data &= ~SLB_ESID_V;
114 		ksp_vsid_data = 0;
115 		slb_shadow_clear(KSTACK_INDEX);
116 	} else {
117 		/* Update stack entry; others don't change */
118 		slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
119 		ksp_vsid_data =
120 			be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
121 	}
122 
123 	/* We need to do this all in asm, so we're sure we don't touch
124 	 * the stack between the slbia and rebolting it. */
125 	asm volatile("isync\n"
126 		     "slbia\n"
127 		     /* Slot 1 - first VMALLOC segment */
128 		     "slbmte	%0,%1\n"
129 		     /* Slot 2 - kernel stack */
130 		     "slbmte	%2,%3\n"
131 		     "isync"
132 		     :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
133 		        "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
134 		        "r"(ksp_vsid_data),
135 		        "r"(ksp_esid_data)
136 		     : "memory");
137 }
138 
slb_flush_and_rebolt(void)139 void slb_flush_and_rebolt(void)
140 {
141 
142 	WARN_ON(!irqs_disabled());
143 
144 	/*
145 	 * We can't take a PMU exception in the following code, so hard
146 	 * disable interrupts.
147 	 */
148 	hard_irq_disable();
149 
150 	__slb_flush_and_rebolt();
151 	get_paca()->slb_cache_ptr = 0;
152 }
153 
slb_vmalloc_update(void)154 void slb_vmalloc_update(void)
155 {
156 	unsigned long vflags;
157 
158 	vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
159 	slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
160 	slb_flush_and_rebolt();
161 }
162 
163 /* Helper function to compare esids.  There are four cases to handle.
164  * 1. The system is not 1T segment size capable.  Use the GET_ESID compare.
165  * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
166  * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match.
167  * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
168  */
esids_match(unsigned long addr1,unsigned long addr2)169 static inline int esids_match(unsigned long addr1, unsigned long addr2)
170 {
171 	int esid_1t_count;
172 
173 	/* System is not 1T segment size capable. */
174 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
175 		return (GET_ESID(addr1) == GET_ESID(addr2));
176 
177 	esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
178 				((addr2 >> SID_SHIFT_1T) != 0));
179 
180 	/* both addresses are < 1T */
181 	if (esid_1t_count == 0)
182 		return (GET_ESID(addr1) == GET_ESID(addr2));
183 
184 	/* One address < 1T, the other > 1T.  Not a match */
185 	if (esid_1t_count == 1)
186 		return 0;
187 
188 	/* Both addresses are > 1T. */
189 	return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
190 }
191 
192 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)193 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
194 {
195 	unsigned long offset;
196 	unsigned long slbie_data = 0;
197 	unsigned long pc = KSTK_EIP(tsk);
198 	unsigned long stack = KSTK_ESP(tsk);
199 	unsigned long exec_base;
200 
201 	/*
202 	 * We need interrupts hard-disabled here, not just soft-disabled,
203 	 * so that a PMU interrupt can't occur, which might try to access
204 	 * user memory (to get a stack trace) and possible cause an SLB miss
205 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
206 	 */
207 	hard_irq_disable();
208 	offset = get_paca()->slb_cache_ptr;
209 	if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
210 	    offset <= SLB_CACHE_ENTRIES) {
211 		int i;
212 		asm volatile("isync" : : : "memory");
213 		for (i = 0; i < offset; i++) {
214 			slbie_data = (unsigned long)get_paca()->slb_cache[i]
215 				<< SID_SHIFT; /* EA */
216 			slbie_data |= user_segment_size(slbie_data)
217 				<< SLBIE_SSIZE_SHIFT;
218 			slbie_data |= SLBIE_C; /* C set for user addresses */
219 			asm volatile("slbie %0" : : "r" (slbie_data));
220 		}
221 		asm volatile("isync" : : : "memory");
222 	} else {
223 		__slb_flush_and_rebolt();
224 	}
225 
226 	/* Workaround POWER5 < DD2.1 issue */
227 	if (offset == 1 || offset > SLB_CACHE_ENTRIES)
228 		asm volatile("slbie %0" : : "r" (slbie_data));
229 
230 	get_paca()->slb_cache_ptr = 0;
231 	get_paca()->context = mm->context;
232 
233 	/*
234 	 * preload some userspace segments into the SLB.
235 	 * Almost all 32 and 64bit PowerPC executables are linked at
236 	 * 0x10000000 so it makes sense to preload this segment.
237 	 */
238 	exec_base = 0x10000000;
239 
240 	if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
241 	    is_kernel_addr(exec_base))
242 		return;
243 
244 	slb_allocate(pc);
245 
246 	if (!esids_match(pc, stack))
247 		slb_allocate(stack);
248 
249 	if (!esids_match(pc, exec_base) &&
250 	    !esids_match(stack, exec_base))
251 		slb_allocate(exec_base);
252 }
253 
patch_slb_encoding(unsigned int * insn_addr,unsigned int immed)254 static inline void patch_slb_encoding(unsigned int *insn_addr,
255 				      unsigned int immed)
256 {
257 
258 	/*
259 	 * This function patches either an li or a cmpldi instruction with
260 	 * a new immediate value. This relies on the fact that both li
261 	 * (which is actually addi) and cmpldi both take a 16-bit immediate
262 	 * value, and it is situated in the same location in the instruction,
263 	 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
264 	 * The signedness of the immediate operand differs between the two
265 	 * instructions however this code is only ever patching a small value,
266 	 * much less than 1 << 15, so we can get away with it.
267 	 * To patch the value we read the existing instruction, clear the
268 	 * immediate value, and or in our new value, then write the instruction
269 	 * back.
270 	 */
271 	unsigned int insn = (*insn_addr & 0xffff0000) | immed;
272 	patch_instruction(insn_addr, insn);
273 }
274 
275 extern u32 slb_miss_kernel_load_linear[];
276 extern u32 slb_miss_kernel_load_io[];
277 extern u32 slb_compare_rr_to_size[];
278 extern u32 slb_miss_kernel_load_vmemmap[];
279 
slb_set_size(u16 size)280 void slb_set_size(u16 size)
281 {
282 	if (mmu_slb_size == size)
283 		return;
284 
285 	mmu_slb_size = size;
286 	patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
287 }
288 
slb_initialize(void)289 void slb_initialize(void)
290 {
291 	unsigned long linear_llp, vmalloc_llp, io_llp;
292 	unsigned long lflags, vflags;
293 	static int slb_encoding_inited;
294 #ifdef CONFIG_SPARSEMEM_VMEMMAP
295 	unsigned long vmemmap_llp;
296 #endif
297 
298 	/* Prepare our SLB miss handler based on our page size */
299 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
300 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
301 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
302 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
303 #ifdef CONFIG_SPARSEMEM_VMEMMAP
304 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
305 #endif
306 	if (!slb_encoding_inited) {
307 		slb_encoding_inited = 1;
308 		patch_slb_encoding(slb_miss_kernel_load_linear,
309 				   SLB_VSID_KERNEL | linear_llp);
310 		patch_slb_encoding(slb_miss_kernel_load_io,
311 				   SLB_VSID_KERNEL | io_llp);
312 		patch_slb_encoding(slb_compare_rr_to_size,
313 				   mmu_slb_size);
314 
315 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
316 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
317 
318 #ifdef CONFIG_SPARSEMEM_VMEMMAP
319 		patch_slb_encoding(slb_miss_kernel_load_vmemmap,
320 				   SLB_VSID_KERNEL | vmemmap_llp);
321 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
322 #endif
323 	}
324 
325 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
326 
327 	lflags = SLB_VSID_KERNEL | linear_llp;
328 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
329 
330 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
331 	asm volatile("isync":::"memory");
332 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
333 	asm volatile("isync; slbia; isync":::"memory");
334 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
335 	create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
336 
337 	/* For the boot cpu, we're running on the stack in init_thread_union,
338 	 * which is in the first segment of the linear mapping, and also
339 	 * get_paca()->kstack hasn't been initialized yet.
340 	 * For secondary cpus, we need to bolt the kernel stack entry now.
341 	 */
342 	slb_shadow_clear(KSTACK_INDEX);
343 	if (raw_smp_processor_id() != boot_cpuid &&
344 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
345 		create_shadowed_slbe(get_paca()->kstack,
346 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
347 
348 	asm volatile("isync":::"memory");
349 }
350