• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * address space "slices" (meta-segments) support
3  *
4  * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
5  *
6  * Based on hugetlb implementation
7  *
8  * Copyright (C) 2003 David Gibson, IBM Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24 
25 #undef DEBUG
26 
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/export.h>
33 #include <linux/hugetlb.h>
34 #include <asm/mman.h>
35 #include <asm/mmu.h>
36 #include <asm/copro.h>
37 #include <asm/hugetlb.h>
38 
39 /* some sanity checks */
40 #if (PGTABLE_RANGE >> 43) > SLICE_MASK_SIZE
41 #error PGTABLE_RANGE exceeds slice_mask high_slices size
42 #endif
43 
44 static DEFINE_SPINLOCK(slice_convert_lock);
45 
46 
47 #ifdef DEBUG
48 int _slice_debug = 1;
49 
slice_print_mask(const char * label,struct slice_mask mask)50 static void slice_print_mask(const char *label, struct slice_mask mask)
51 {
52 	char	*p, buf[16 + 3 + 64 + 1];
53 	int	i;
54 
55 	if (!_slice_debug)
56 		return;
57 	p = buf;
58 	for (i = 0; i < SLICE_NUM_LOW; i++)
59 		*(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
60 	*(p++) = ' ';
61 	*(p++) = '-';
62 	*(p++) = ' ';
63 	for (i = 0; i < SLICE_NUM_HIGH; i++)
64 		*(p++) = (mask.high_slices & (1ul << i)) ? '1' : '0';
65 	*(p++) = 0;
66 
67 	printk(KERN_DEBUG "%s:%s\n", label, buf);
68 }
69 
70 #define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
71 
72 #else
73 
slice_print_mask(const char * label,struct slice_mask mask)74 static void slice_print_mask(const char *label, struct slice_mask mask) {}
75 #define slice_dbg(fmt...)
76 
77 #endif
78 
slice_range_to_mask(unsigned long start,unsigned long len)79 static struct slice_mask slice_range_to_mask(unsigned long start,
80 					     unsigned long len)
81 {
82 	unsigned long end = start + len - 1;
83 	struct slice_mask ret = { 0, 0 };
84 
85 	if (start < SLICE_LOW_TOP) {
86 		unsigned long mend = min(end, SLICE_LOW_TOP);
87 		unsigned long mstart = min(start, SLICE_LOW_TOP);
88 
89 		ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
90 			- (1u << GET_LOW_SLICE_INDEX(mstart));
91 	}
92 
93 	if ((start + len) > SLICE_LOW_TOP)
94 		ret.high_slices = (1ul << (GET_HIGH_SLICE_INDEX(end) + 1))
95 			- (1ul << GET_HIGH_SLICE_INDEX(start));
96 
97 	return ret;
98 }
99 
slice_area_is_free(struct mm_struct * mm,unsigned long addr,unsigned long len)100 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
101 			      unsigned long len)
102 {
103 	struct vm_area_struct *vma;
104 
105 	if ((mm->task_size - len) < addr)
106 		return 0;
107 	vma = find_vma(mm, addr);
108 	return (!vma || (addr + len) <= vm_start_gap(vma));
109 }
110 
slice_low_has_vma(struct mm_struct * mm,unsigned long slice)111 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
112 {
113 	return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
114 				   1ul << SLICE_LOW_SHIFT);
115 }
116 
slice_high_has_vma(struct mm_struct * mm,unsigned long slice)117 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
118 {
119 	unsigned long start = slice << SLICE_HIGH_SHIFT;
120 	unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
121 
122 	/* Hack, so that each addresses is controlled by exactly one
123 	 * of the high or low area bitmaps, the first high area starts
124 	 * at 4GB, not 0 */
125 	if (start == 0)
126 		start = SLICE_LOW_TOP;
127 
128 	return !slice_area_is_free(mm, start, end - start);
129 }
130 
slice_mask_for_free(struct mm_struct * mm)131 static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
132 {
133 	struct slice_mask ret = { 0, 0 };
134 	unsigned long i;
135 
136 	for (i = 0; i < SLICE_NUM_LOW; i++)
137 		if (!slice_low_has_vma(mm, i))
138 			ret.low_slices |= 1u << i;
139 
140 	if (mm->task_size <= SLICE_LOW_TOP)
141 		return ret;
142 
143 	for (i = 0; i < SLICE_NUM_HIGH; i++)
144 		if (!slice_high_has_vma(mm, i))
145 			ret.high_slices |= 1ul << i;
146 
147 	return ret;
148 }
149 
slice_mask_for_size(struct mm_struct * mm,int psize)150 static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
151 {
152 	unsigned char *hpsizes;
153 	int index, mask_index;
154 	struct slice_mask ret = { 0, 0 };
155 	unsigned long i;
156 	u64 lpsizes;
157 
158 	lpsizes = mm->context.low_slices_psize;
159 	for (i = 0; i < SLICE_NUM_LOW; i++)
160 		if (((lpsizes >> (i * 4)) & 0xf) == psize)
161 			ret.low_slices |= 1u << i;
162 
163 	hpsizes = mm->context.high_slices_psize;
164 	for (i = 0; i < SLICE_NUM_HIGH; i++) {
165 		mask_index = i & 0x1;
166 		index = i >> 1;
167 		if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize)
168 			ret.high_slices |= 1ul << i;
169 	}
170 
171 	return ret;
172 }
173 
slice_check_fit(struct slice_mask mask,struct slice_mask available)174 static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
175 {
176 	return (mask.low_slices & available.low_slices) == mask.low_slices &&
177 		(mask.high_slices & available.high_slices) == mask.high_slices;
178 }
179 
slice_flush_segments(void * parm)180 static void slice_flush_segments(void *parm)
181 {
182 	struct mm_struct *mm = parm;
183 	unsigned long flags;
184 
185 	if (mm != current->active_mm)
186 		return;
187 
188 	/* update the paca copy of the context struct */
189 	get_paca()->context = current->active_mm->context;
190 
191 	local_irq_save(flags);
192 	slb_flush_and_rebolt();
193 	local_irq_restore(flags);
194 }
195 
slice_convert(struct mm_struct * mm,struct slice_mask mask,int psize)196 static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
197 {
198 	int index, mask_index;
199 	/* Write the new slice psize bits */
200 	unsigned char *hpsizes;
201 	u64 lpsizes;
202 	unsigned long i, flags;
203 
204 	slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
205 	slice_print_mask(" mask", mask);
206 
207 	/* We need to use a spinlock here to protect against
208 	 * concurrent 64k -> 4k demotion ...
209 	 */
210 	spin_lock_irqsave(&slice_convert_lock, flags);
211 
212 	lpsizes = mm->context.low_slices_psize;
213 	for (i = 0; i < SLICE_NUM_LOW; i++)
214 		if (mask.low_slices & (1u << i))
215 			lpsizes = (lpsizes & ~(0xful << (i * 4))) |
216 				(((unsigned long)psize) << (i * 4));
217 
218 	/* Assign the value back */
219 	mm->context.low_slices_psize = lpsizes;
220 
221 	hpsizes = mm->context.high_slices_psize;
222 	for (i = 0; i < SLICE_NUM_HIGH; i++) {
223 		mask_index = i & 0x1;
224 		index = i >> 1;
225 		if (mask.high_slices & (1ul << i))
226 			hpsizes[index] = (hpsizes[index] &
227 					  ~(0xf << (mask_index * 4))) |
228 				(((unsigned long)psize) << (mask_index * 4));
229 	}
230 
231 	slice_dbg(" lsps=%lx, hsps=%lx\n",
232 		  mm->context.low_slices_psize,
233 		  mm->context.high_slices_psize);
234 
235 	spin_unlock_irqrestore(&slice_convert_lock, flags);
236 
237 	copro_flush_all_slbs(mm);
238 }
239 
240 /*
241  * Compute which slice addr is part of;
242  * set *boundary_addr to the start or end boundary of that slice
243  * (depending on 'end' parameter);
244  * return boolean indicating if the slice is marked as available in the
245  * 'available' slice_mark.
246  */
slice_scan_available(unsigned long addr,struct slice_mask available,int end,unsigned long * boundary_addr)247 static bool slice_scan_available(unsigned long addr,
248 				 struct slice_mask available,
249 				 int end,
250 				 unsigned long *boundary_addr)
251 {
252 	unsigned long slice;
253 	if (addr < SLICE_LOW_TOP) {
254 		slice = GET_LOW_SLICE_INDEX(addr);
255 		*boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
256 		return !!(available.low_slices & (1u << slice));
257 	} else {
258 		slice = GET_HIGH_SLICE_INDEX(addr);
259 		*boundary_addr = (slice + end) ?
260 			((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
261 		return !!(available.high_slices & (1ul << slice));
262 	}
263 }
264 
slice_find_area_bottomup(struct mm_struct * mm,unsigned long len,struct slice_mask available,int psize)265 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
266 					      unsigned long len,
267 					      struct slice_mask available,
268 					      int psize)
269 {
270 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
271 	unsigned long addr, found, next_end;
272 	struct vm_unmapped_area_info info;
273 
274 	info.flags = 0;
275 	info.length = len;
276 	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
277 	info.align_offset = 0;
278 
279 	addr = TASK_UNMAPPED_BASE;
280 	while (addr < TASK_SIZE) {
281 		info.low_limit = addr;
282 		if (!slice_scan_available(addr, available, 1, &addr))
283 			continue;
284 
285  next_slice:
286 		/*
287 		 * At this point [info.low_limit; addr) covers
288 		 * available slices only and ends at a slice boundary.
289 		 * Check if we need to reduce the range, or if we can
290 		 * extend it to cover the next available slice.
291 		 */
292 		if (addr >= TASK_SIZE)
293 			addr = TASK_SIZE;
294 		else if (slice_scan_available(addr, available, 1, &next_end)) {
295 			addr = next_end;
296 			goto next_slice;
297 		}
298 		info.high_limit = addr;
299 
300 		found = vm_unmapped_area(&info);
301 		if (!(found & ~PAGE_MASK))
302 			return found;
303 	}
304 
305 	return -ENOMEM;
306 }
307 
slice_find_area_topdown(struct mm_struct * mm,unsigned long len,struct slice_mask available,int psize)308 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
309 					     unsigned long len,
310 					     struct slice_mask available,
311 					     int psize)
312 {
313 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
314 	unsigned long addr, found, prev;
315 	struct vm_unmapped_area_info info;
316 
317 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
318 	info.length = len;
319 	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
320 	info.align_offset = 0;
321 
322 	addr = mm->mmap_base;
323 	while (addr > PAGE_SIZE) {
324 		info.high_limit = addr;
325 		if (!slice_scan_available(addr - 1, available, 0, &addr))
326 			continue;
327 
328  prev_slice:
329 		/*
330 		 * At this point [addr; info.high_limit) covers
331 		 * available slices only and starts at a slice boundary.
332 		 * Check if we need to reduce the range, or if we can
333 		 * extend it to cover the previous available slice.
334 		 */
335 		if (addr < PAGE_SIZE)
336 			addr = PAGE_SIZE;
337 		else if (slice_scan_available(addr - 1, available, 0, &prev)) {
338 			addr = prev;
339 			goto prev_slice;
340 		}
341 		info.low_limit = addr;
342 
343 		found = vm_unmapped_area(&info);
344 		if (!(found & ~PAGE_MASK))
345 			return found;
346 	}
347 
348 	/*
349 	 * A failed mmap() very likely causes application failure,
350 	 * so fall back to the bottom-up function here. This scenario
351 	 * can happen with large stack limits and large mmap()
352 	 * allocations.
353 	 */
354 	return slice_find_area_bottomup(mm, len, available, psize);
355 }
356 
357 
slice_find_area(struct mm_struct * mm,unsigned long len,struct slice_mask mask,int psize,int topdown)358 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
359 				     struct slice_mask mask, int psize,
360 				     int topdown)
361 {
362 	if (topdown)
363 		return slice_find_area_topdown(mm, len, mask, psize);
364 	else
365 		return slice_find_area_bottomup(mm, len, mask, psize);
366 }
367 
368 #define or_mask(dst, src)	do {			\
369 	(dst).low_slices |= (src).low_slices;		\
370 	(dst).high_slices |= (src).high_slices;		\
371 } while (0)
372 
373 #define andnot_mask(dst, src)	do {			\
374 	(dst).low_slices &= ~(src).low_slices;		\
375 	(dst).high_slices &= ~(src).high_slices;	\
376 } while (0)
377 
378 #ifdef CONFIG_PPC_64K_PAGES
379 #define MMU_PAGE_BASE	MMU_PAGE_64K
380 #else
381 #define MMU_PAGE_BASE	MMU_PAGE_4K
382 #endif
383 
slice_get_unmapped_area(unsigned long addr,unsigned long len,unsigned long flags,unsigned int psize,int topdown)384 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
385 				      unsigned long flags, unsigned int psize,
386 				      int topdown)
387 {
388 	struct slice_mask mask = {0, 0};
389 	struct slice_mask good_mask;
390 	struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
391 	struct slice_mask compat_mask = {0, 0};
392 	int fixed = (flags & MAP_FIXED);
393 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
394 	struct mm_struct *mm = current->mm;
395 	unsigned long newaddr;
396 
397 	/* Sanity checks */
398 	BUG_ON(mm->task_size == 0);
399 
400 	slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
401 	slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
402 		  addr, len, flags, topdown);
403 
404 	if (len > mm->task_size)
405 		return -ENOMEM;
406 	if (len & ((1ul << pshift) - 1))
407 		return -EINVAL;
408 	if (fixed && (addr & ((1ul << pshift) - 1)))
409 		return -EINVAL;
410 	if (fixed && addr > (mm->task_size - len))
411 		return -ENOMEM;
412 
413 	/* If hint, make sure it matches our alignment restrictions */
414 	if (!fixed && addr) {
415 		addr = _ALIGN_UP(addr, 1ul << pshift);
416 		slice_dbg(" aligned addr=%lx\n", addr);
417 		/* Ignore hint if it's too large or overlaps a VMA */
418 		if (addr > mm->task_size - len ||
419 		    !slice_area_is_free(mm, addr, len))
420 			addr = 0;
421 	}
422 
423 	/* First make up a "good" mask of slices that have the right size
424 	 * already
425 	 */
426 	good_mask = slice_mask_for_size(mm, psize);
427 	slice_print_mask(" good_mask", good_mask);
428 
429 	/*
430 	 * Here "good" means slices that are already the right page size,
431 	 * "compat" means slices that have a compatible page size (i.e.
432 	 * 4k in a 64k pagesize kernel), and "free" means slices without
433 	 * any VMAs.
434 	 *
435 	 * If MAP_FIXED:
436 	 *	check if fits in good | compat => OK
437 	 *	check if fits in good | compat | free => convert free
438 	 *	else bad
439 	 * If have hint:
440 	 *	check if hint fits in good => OK
441 	 *	check if hint fits in good | free => convert free
442 	 * Otherwise:
443 	 *	search in good, found => OK
444 	 *	search in good | free, found => convert free
445 	 *	search in good | compat | free, found => convert free.
446 	 */
447 
448 #ifdef CONFIG_PPC_64K_PAGES
449 	/* If we support combo pages, we can allow 64k pages in 4k slices */
450 	if (psize == MMU_PAGE_64K) {
451 		compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
452 		if (fixed)
453 			or_mask(good_mask, compat_mask);
454 	}
455 #endif
456 
457 	/* First check hint if it's valid or if we have MAP_FIXED */
458 	if (addr != 0 || fixed) {
459 		/* Build a mask for the requested range */
460 		mask = slice_range_to_mask(addr, len);
461 		slice_print_mask(" mask", mask);
462 
463 		/* Check if we fit in the good mask. If we do, we just return,
464 		 * nothing else to do
465 		 */
466 		if (slice_check_fit(mask, good_mask)) {
467 			slice_dbg(" fits good !\n");
468 			return addr;
469 		}
470 	} else {
471 		/* Now let's see if we can find something in the existing
472 		 * slices for that size
473 		 */
474 		newaddr = slice_find_area(mm, len, good_mask, psize, topdown);
475 		if (newaddr != -ENOMEM) {
476 			/* Found within the good mask, we don't have to setup,
477 			 * we thus return directly
478 			 */
479 			slice_dbg(" found area at 0x%lx\n", newaddr);
480 			return newaddr;
481 		}
482 	}
483 
484 	/* We don't fit in the good mask, check what other slices are
485 	 * empty and thus can be converted
486 	 */
487 	potential_mask = slice_mask_for_free(mm);
488 	or_mask(potential_mask, good_mask);
489 	slice_print_mask(" potential", potential_mask);
490 
491 	if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
492 		slice_dbg(" fits potential !\n");
493 		goto convert;
494 	}
495 
496 	/* If we have MAP_FIXED and failed the above steps, then error out */
497 	if (fixed)
498 		return -EBUSY;
499 
500 	slice_dbg(" search...\n");
501 
502 	/* If we had a hint that didn't work out, see if we can fit
503 	 * anywhere in the good area.
504 	 */
505 	if (addr) {
506 		addr = slice_find_area(mm, len, good_mask, psize, topdown);
507 		if (addr != -ENOMEM) {
508 			slice_dbg(" found area at 0x%lx\n", addr);
509 			return addr;
510 		}
511 	}
512 
513 	/* Now let's see if we can find something in the existing slices
514 	 * for that size plus free slices
515 	 */
516 	addr = slice_find_area(mm, len, potential_mask, psize, topdown);
517 
518 #ifdef CONFIG_PPC_64K_PAGES
519 	if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
520 		/* retry the search with 4k-page slices included */
521 		or_mask(potential_mask, compat_mask);
522 		addr = slice_find_area(mm, len, potential_mask, psize,
523 				       topdown);
524 	}
525 #endif
526 
527 	if (addr == -ENOMEM)
528 		return -ENOMEM;
529 
530 	mask = slice_range_to_mask(addr, len);
531 	slice_dbg(" found potential area at 0x%lx\n", addr);
532 	slice_print_mask(" mask", mask);
533 
534  convert:
535 	andnot_mask(mask, good_mask);
536 	andnot_mask(mask, compat_mask);
537 	if (mask.low_slices || mask.high_slices) {
538 		slice_convert(mm, mask, psize);
539 		if (psize > MMU_PAGE_BASE)
540 			on_each_cpu(slice_flush_segments, mm, 1);
541 	}
542 	return addr;
543 
544 }
545 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
546 
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)547 unsigned long arch_get_unmapped_area(struct file *filp,
548 				     unsigned long addr,
549 				     unsigned long len,
550 				     unsigned long pgoff,
551 				     unsigned long flags)
552 {
553 	return slice_get_unmapped_area(addr, len, flags,
554 				       current->mm->context.user_psize, 0);
555 }
556 
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)557 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
558 					     const unsigned long addr0,
559 					     const unsigned long len,
560 					     const unsigned long pgoff,
561 					     const unsigned long flags)
562 {
563 	return slice_get_unmapped_area(addr0, len, flags,
564 				       current->mm->context.user_psize, 1);
565 }
566 
get_slice_psize(struct mm_struct * mm,unsigned long addr)567 unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
568 {
569 	unsigned char *hpsizes;
570 	int index, mask_index;
571 
572 	if (addr < SLICE_LOW_TOP) {
573 		u64 lpsizes;
574 		lpsizes = mm->context.low_slices_psize;
575 		index = GET_LOW_SLICE_INDEX(addr);
576 		return (lpsizes >> (index * 4)) & 0xf;
577 	}
578 	hpsizes = mm->context.high_slices_psize;
579 	index = GET_HIGH_SLICE_INDEX(addr);
580 	mask_index = index & 0x1;
581 	return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf;
582 }
583 EXPORT_SYMBOL_GPL(get_slice_psize);
584 
585 /*
586  * This is called by hash_page when it needs to do a lazy conversion of
587  * an address space from real 64K pages to combo 4K pages (typically
588  * when hitting a non cacheable mapping on a processor or hypervisor
589  * that won't allow them for 64K pages).
590  *
591  * This is also called in init_new_context() to change back the user
592  * psize from whatever the parent context had it set to
593  * N.B. This may be called before mm->context.id has been set.
594  *
595  * This function will only change the content of the {low,high)_slice_psize
596  * masks, it will not flush SLBs as this shall be handled lazily by the
597  * caller.
598  */
slice_set_user_psize(struct mm_struct * mm,unsigned int psize)599 void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
600 {
601 	int index, mask_index;
602 	unsigned char *hpsizes;
603 	unsigned long flags, lpsizes;
604 	unsigned int old_psize;
605 	int i;
606 
607 	slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
608 
609 	spin_lock_irqsave(&slice_convert_lock, flags);
610 
611 	old_psize = mm->context.user_psize;
612 	slice_dbg(" old_psize=%d\n", old_psize);
613 	if (old_psize == psize)
614 		goto bail;
615 
616 	mm->context.user_psize = psize;
617 	wmb();
618 
619 	lpsizes = mm->context.low_slices_psize;
620 	for (i = 0; i < SLICE_NUM_LOW; i++)
621 		if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
622 			lpsizes = (lpsizes & ~(0xful << (i * 4))) |
623 				(((unsigned long)psize) << (i * 4));
624 	/* Assign the value back */
625 	mm->context.low_slices_psize = lpsizes;
626 
627 	hpsizes = mm->context.high_slices_psize;
628 	for (i = 0; i < SLICE_NUM_HIGH; i++) {
629 		mask_index = i & 0x1;
630 		index = i >> 1;
631 		if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize)
632 			hpsizes[index] = (hpsizes[index] &
633 					  ~(0xf << (mask_index * 4))) |
634 				(((unsigned long)psize) << (mask_index * 4));
635 	}
636 
637 
638 
639 
640 	slice_dbg(" lsps=%lx, hsps=%lx\n",
641 		  mm->context.low_slices_psize,
642 		  mm->context.high_slices_psize);
643 
644  bail:
645 	spin_unlock_irqrestore(&slice_convert_lock, flags);
646 }
647 
slice_set_range_psize(struct mm_struct * mm,unsigned long start,unsigned long len,unsigned int psize)648 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
649 			   unsigned long len, unsigned int psize)
650 {
651 	struct slice_mask mask = slice_range_to_mask(start, len);
652 
653 	slice_convert(mm, mask, psize);
654 }
655 
656 #ifdef CONFIG_HUGETLB_PAGE
657 /*
658  * is_hugepage_only_range() is used by generic code to verify whether
659  * a normal mmap mapping (non hugetlbfs) is valid on a given area.
660  *
661  * until the generic code provides a more generic hook and/or starts
662  * calling arch get_unmapped_area for MAP_FIXED (which our implementation
663  * here knows how to deal with), we hijack it to keep standard mappings
664  * away from us.
665  *
666  * because of that generic code limitation, MAP_FIXED mapping cannot
667  * "convert" back a slice with no VMAs to the standard page size, only
668  * get_unmapped_area() can. It would be possible to fix it here but I
669  * prefer working on fixing the generic code instead.
670  *
671  * WARNING: This will not work if hugetlbfs isn't enabled since the
672  * generic code will redefine that function as 0 in that. This is ok
673  * for now as we only use slices with hugetlbfs enabled. This should
674  * be fixed as the generic code gets fixed.
675  */
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)676 int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
677 			   unsigned long len)
678 {
679 	struct slice_mask mask, available;
680 	unsigned int psize = mm->context.user_psize;
681 
682 	mask = slice_range_to_mask(addr, len);
683 	available = slice_mask_for_size(mm, psize);
684 #ifdef CONFIG_PPC_64K_PAGES
685 	/* We need to account for 4k slices too */
686 	if (psize == MMU_PAGE_64K) {
687 		struct slice_mask compat_mask;
688 		compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
689 		or_mask(available, compat_mask);
690 	}
691 #endif
692 
693 #if 0 /* too verbose */
694 	slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
695 		 mm, addr, len);
696 	slice_print_mask(" mask", mask);
697 	slice_print_mask(" available", available);
698 #endif
699 	return !slice_check_fit(mask, available);
700 }
701 #endif
702