• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23 
24 #define BHRB_MAX_ENTRIES	32
25 #define BHRB_TARGET		0x0000000000000002
26 #define BHRB_PREDICTION		0x0000000000000001
27 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28 
29 struct cpu_hw_events {
30 	int n_events;
31 	int n_percpu;
32 	int disabled;
33 	int n_added;
34 	int n_limited;
35 	u8  pmcs_enabled;
36 	struct perf_event *event[MAX_HWEVENTS];
37 	u64 events[MAX_HWEVENTS];
38 	unsigned int flags[MAX_HWEVENTS];
39 	/*
40 	 * The order of the MMCR array is:
41 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
43 	 */
44 	unsigned long mmcr[4];
45 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 
51 	unsigned int txn_flags;
52 	int n_txn_start;
53 
54 	/* BHRB bits */
55 	u64				bhrb_filter;	/* BHRB HW branch filter */
56 	unsigned int			bhrb_users;
57 	void				*bhrb_context;
58 	struct	perf_branch_stack	bhrb_stack;
59 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60 };
61 
62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63 
64 static struct power_pmu *ppmu;
65 
66 /*
67  * Normally, to ignore kernel events we set the FCS (freeze counters
68  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69  * hypervisor bit set in the MSR, or if we are running on a processor
70  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71  * then we need to use the FCHV bit to ignore kernel events.
72  */
73 static unsigned int freeze_events_kernel = MMCR0_FCS;
74 
75 /*
76  * 32-bit doesn't have MMCRA but does have an MMCR2,
77  * and a few other names are different.
78  */
79 #ifdef CONFIG_PPC32
80 
81 #define MMCR0_FCHV		0
82 #define MMCR0_PMCjCE		MMCR0_PMCnCE
83 #define MMCR0_FC56		0
84 #define MMCR0_PMAO		0
85 #define MMCR0_EBE		0
86 #define MMCR0_BHRBA		0
87 #define MMCR0_PMCC		0
88 #define MMCR0_PMCC_U6		0
89 
90 #define SPRN_MMCRA		SPRN_MMCR2
91 #define MMCRA_SAMPLE_ENABLE	0
92 
perf_ip_adjust(struct pt_regs * regs)93 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
94 {
95 	return 0;
96 }
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)97 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)98 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
99 {
100 	return 0;
101 }
perf_read_regs(struct pt_regs * regs)102 static inline void perf_read_regs(struct pt_regs *regs)
103 {
104 	regs->result = 0;
105 }
perf_intr_is_nmi(struct pt_regs * regs)106 static inline int perf_intr_is_nmi(struct pt_regs *regs)
107 {
108 	return 0;
109 }
110 
siar_valid(struct pt_regs * regs)111 static inline int siar_valid(struct pt_regs *regs)
112 {
113 	return 1;
114 }
115 
is_ebb_event(struct perf_event * event)116 static bool is_ebb_event(struct perf_event *event) { return false; }
ebb_event_check(struct perf_event * event)117 static int ebb_event_check(struct perf_event *event) { return 0; }
ebb_event_add(struct perf_event * event)118 static void ebb_event_add(struct perf_event *event) { }
ebb_switch_out(unsigned long mmcr0)119 static void ebb_switch_out(unsigned long mmcr0) { }
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)120 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
121 {
122 	return cpuhw->mmcr[0];
123 }
124 
power_pmu_bhrb_enable(struct perf_event * event)125 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
power_pmu_bhrb_disable(struct perf_event * event)126 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
power_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)127 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
power_pmu_bhrb_read(struct cpu_hw_events * cpuhw)128 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
pmao_restore_workaround(bool ebb)129 static void pmao_restore_workaround(bool ebb) { }
130 #endif /* CONFIG_PPC32 */
131 
regs_use_siar(struct pt_regs * regs)132 static bool regs_use_siar(struct pt_regs *regs)
133 {
134 	/*
135 	 * When we take a performance monitor exception the regs are setup
136 	 * using perf_read_regs() which overloads some fields, in particular
137 	 * regs->result to tell us whether to use SIAR.
138 	 *
139 	 * However if the regs are from another exception, eg. a syscall, then
140 	 * they have not been setup using perf_read_regs() and so regs->result
141 	 * is something random.
142 	 */
143 	return ((TRAP(regs) == 0xf00) && regs->result);
144 }
145 
146 /*
147  * Things that are specific to 64-bit implementations.
148  */
149 #ifdef CONFIG_PPC64
150 
perf_ip_adjust(struct pt_regs * regs)151 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
152 {
153 	unsigned long mmcra = regs->dsisr;
154 
155 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
156 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
157 		if (slot > 1)
158 			return 4 * (slot - 1);
159 	}
160 
161 	return 0;
162 }
163 
164 /*
165  * The user wants a data address recorded.
166  * If we're not doing instruction sampling, give them the SDAR
167  * (sampled data address).  If we are doing instruction sampling, then
168  * only give them the SDAR if it corresponds to the instruction
169  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
170  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
171  */
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)172 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
173 {
174 	unsigned long mmcra = regs->dsisr;
175 	bool sdar_valid;
176 
177 	if (ppmu->flags & PPMU_HAS_SIER)
178 		sdar_valid = regs->dar & SIER_SDAR_VALID;
179 	else {
180 		unsigned long sdsync;
181 
182 		if (ppmu->flags & PPMU_SIAR_VALID)
183 			sdsync = POWER7P_MMCRA_SDAR_VALID;
184 		else if (ppmu->flags & PPMU_ALT_SIPR)
185 			sdsync = POWER6_MMCRA_SDSYNC;
186 		else
187 			sdsync = MMCRA_SDSYNC;
188 
189 		sdar_valid = mmcra & sdsync;
190 	}
191 
192 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
193 		*addrp = mfspr(SPRN_SDAR);
194 }
195 
regs_sihv(struct pt_regs * regs)196 static bool regs_sihv(struct pt_regs *regs)
197 {
198 	unsigned long sihv = MMCRA_SIHV;
199 
200 	if (ppmu->flags & PPMU_HAS_SIER)
201 		return !!(regs->dar & SIER_SIHV);
202 
203 	if (ppmu->flags & PPMU_ALT_SIPR)
204 		sihv = POWER6_MMCRA_SIHV;
205 
206 	return !!(regs->dsisr & sihv);
207 }
208 
regs_sipr(struct pt_regs * regs)209 static bool regs_sipr(struct pt_regs *regs)
210 {
211 	unsigned long sipr = MMCRA_SIPR;
212 
213 	if (ppmu->flags & PPMU_HAS_SIER)
214 		return !!(regs->dar & SIER_SIPR);
215 
216 	if (ppmu->flags & PPMU_ALT_SIPR)
217 		sipr = POWER6_MMCRA_SIPR;
218 
219 	return !!(regs->dsisr & sipr);
220 }
221 
perf_flags_from_msr(struct pt_regs * regs)222 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
223 {
224 	if (regs->msr & MSR_PR)
225 		return PERF_RECORD_MISC_USER;
226 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
227 		return PERF_RECORD_MISC_HYPERVISOR;
228 	return PERF_RECORD_MISC_KERNEL;
229 }
230 
perf_get_misc_flags(struct pt_regs * regs)231 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
232 {
233 	bool use_siar = regs_use_siar(regs);
234 
235 	if (!use_siar)
236 		return perf_flags_from_msr(regs);
237 
238 	/*
239 	 * If we don't have flags in MMCRA, rather than using
240 	 * the MSR, we intuit the flags from the address in
241 	 * SIAR which should give slightly more reliable
242 	 * results
243 	 */
244 	if (ppmu->flags & PPMU_NO_SIPR) {
245 		unsigned long siar = mfspr(SPRN_SIAR);
246 		if (siar >= PAGE_OFFSET)
247 			return PERF_RECORD_MISC_KERNEL;
248 		return PERF_RECORD_MISC_USER;
249 	}
250 
251 	/* PR has priority over HV, so order below is important */
252 	if (regs_sipr(regs))
253 		return PERF_RECORD_MISC_USER;
254 
255 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
256 		return PERF_RECORD_MISC_HYPERVISOR;
257 
258 	return PERF_RECORD_MISC_KERNEL;
259 }
260 
261 /*
262  * Overload regs->dsisr to store MMCRA so we only need to read it once
263  * on each interrupt.
264  * Overload regs->dar to store SIER if we have it.
265  * Overload regs->result to specify whether we should use the MSR (result
266  * is zero) or the SIAR (result is non zero).
267  */
perf_read_regs(struct pt_regs * regs)268 static inline void perf_read_regs(struct pt_regs *regs)
269 {
270 	unsigned long mmcra = mfspr(SPRN_MMCRA);
271 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
272 	int use_siar;
273 
274 	regs->dsisr = mmcra;
275 
276 	if (ppmu->flags & PPMU_HAS_SIER)
277 		regs->dar = mfspr(SPRN_SIER);
278 
279 	/*
280 	 * If this isn't a PMU exception (eg a software event) the SIAR is
281 	 * not valid. Use pt_regs.
282 	 *
283 	 * If it is a marked event use the SIAR.
284 	 *
285 	 * If the PMU doesn't update the SIAR for non marked events use
286 	 * pt_regs.
287 	 *
288 	 * If the PMU has HV/PR flags then check to see if they
289 	 * place the exception in userspace. If so, use pt_regs. In
290 	 * continuous sampling mode the SIAR and the PMU exception are
291 	 * not synchronised, so they may be many instructions apart.
292 	 * This can result in confusing backtraces. We still want
293 	 * hypervisor samples as well as samples in the kernel with
294 	 * interrupts off hence the userspace check.
295 	 */
296 	if (TRAP(regs) != 0xf00)
297 		use_siar = 0;
298 	else if (marked)
299 		use_siar = 1;
300 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
301 		use_siar = 0;
302 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
303 		use_siar = 0;
304 	else
305 		use_siar = 1;
306 
307 	regs->result = use_siar;
308 }
309 
310 /*
311  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
312  * it as an NMI.
313  */
perf_intr_is_nmi(struct pt_regs * regs)314 static inline int perf_intr_is_nmi(struct pt_regs *regs)
315 {
316 	return !regs->softe;
317 }
318 
319 /*
320  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
321  * must be sampled only if the SIAR-valid bit is set.
322  *
323  * For unmarked instructions and for processors that don't have the SIAR-Valid
324  * bit, assume that SIAR is valid.
325  */
siar_valid(struct pt_regs * regs)326 static inline int siar_valid(struct pt_regs *regs)
327 {
328 	unsigned long mmcra = regs->dsisr;
329 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
330 
331 	if (marked) {
332 		if (ppmu->flags & PPMU_HAS_SIER)
333 			return regs->dar & SIER_SIAR_VALID;
334 
335 		if (ppmu->flags & PPMU_SIAR_VALID)
336 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
337 	}
338 
339 	return 1;
340 }
341 
342 
343 /* Reset all possible BHRB entries */
power_pmu_bhrb_reset(void)344 static void power_pmu_bhrb_reset(void)
345 {
346 	asm volatile(PPC_CLRBHRB);
347 }
348 
power_pmu_bhrb_enable(struct perf_event * event)349 static void power_pmu_bhrb_enable(struct perf_event *event)
350 {
351 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
352 
353 	if (!ppmu->bhrb_nr)
354 		return;
355 
356 	/* Clear BHRB if we changed task context to avoid data leaks */
357 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
358 		power_pmu_bhrb_reset();
359 		cpuhw->bhrb_context = event->ctx;
360 	}
361 	cpuhw->bhrb_users++;
362 	perf_sched_cb_inc(event->ctx->pmu);
363 }
364 
power_pmu_bhrb_disable(struct perf_event * event)365 static void power_pmu_bhrb_disable(struct perf_event *event)
366 {
367 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
368 
369 	if (!ppmu->bhrb_nr)
370 		return;
371 
372 	WARN_ON_ONCE(!cpuhw->bhrb_users);
373 	cpuhw->bhrb_users--;
374 	perf_sched_cb_dec(event->ctx->pmu);
375 
376 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
377 		/* BHRB cannot be turned off when other
378 		 * events are active on the PMU.
379 		 */
380 
381 		/* avoid stale pointer */
382 		cpuhw->bhrb_context = NULL;
383 	}
384 }
385 
386 /* Called from ctxsw to prevent one process's branch entries to
387  * mingle with the other process's entries during context switch.
388  */
power_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)389 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
390 {
391 	if (!ppmu->bhrb_nr)
392 		return;
393 
394 	if (sched_in)
395 		power_pmu_bhrb_reset();
396 }
397 /* Calculate the to address for a branch */
power_pmu_bhrb_to(u64 addr)398 static __u64 power_pmu_bhrb_to(u64 addr)
399 {
400 	unsigned int instr;
401 	int ret;
402 	__u64 target;
403 
404 	if (is_kernel_addr(addr)) {
405 		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
406 			return 0;
407 
408 		return branch_target(&instr);
409 	}
410 
411 	/* Userspace: need copy instruction here then translate it */
412 	pagefault_disable();
413 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
414 	if (ret) {
415 		pagefault_enable();
416 		return 0;
417 	}
418 	pagefault_enable();
419 
420 	target = branch_target(&instr);
421 	if ((!target) || (instr & BRANCH_ABSOLUTE))
422 		return target;
423 
424 	/* Translate relative branch target from kernel to user address */
425 	return target - (unsigned long)&instr + addr;
426 }
427 
428 /* Processing BHRB entries */
power_pmu_bhrb_read(struct cpu_hw_events * cpuhw)429 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
430 {
431 	u64 val;
432 	u64 addr;
433 	int r_index, u_index, pred;
434 
435 	r_index = 0;
436 	u_index = 0;
437 	while (r_index < ppmu->bhrb_nr) {
438 		/* Assembly read function */
439 		val = read_bhrb(r_index++);
440 		if (!val)
441 			/* Terminal marker: End of valid BHRB entries */
442 			break;
443 		else {
444 			addr = val & BHRB_EA;
445 			pred = val & BHRB_PREDICTION;
446 
447 			if (!addr)
448 				/* invalid entry */
449 				continue;
450 
451 			/*
452 			 * BHRB rolling buffer could very much contain the kernel
453 			 * addresses at this point. Check the privileges before
454 			 * exporting it to userspace (avoid exposure of regions
455 			 * where we could have speculative execution)
456 			 */
457 			if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
458 				is_kernel_addr(addr))
459 				continue;
460 
461 			/* Branches are read most recent first (ie. mfbhrb 0 is
462 			 * the most recent branch).
463 			 * There are two types of valid entries:
464 			 * 1) a target entry which is the to address of a
465 			 *    computed goto like a blr,bctr,btar.  The next
466 			 *    entry read from the bhrb will be branch
467 			 *    corresponding to this target (ie. the actual
468 			 *    blr/bctr/btar instruction).
469 			 * 2) a from address which is an actual branch.  If a
470 			 *    target entry proceeds this, then this is the
471 			 *    matching branch for that target.  If this is not
472 			 *    following a target entry, then this is a branch
473 			 *    where the target is given as an immediate field
474 			 *    in the instruction (ie. an i or b form branch).
475 			 *    In this case we need to read the instruction from
476 			 *    memory to determine the target/to address.
477 			 */
478 
479 			if (val & BHRB_TARGET) {
480 				/* Target branches use two entries
481 				 * (ie. computed gotos/XL form)
482 				 */
483 				cpuhw->bhrb_entries[u_index].to = addr;
484 				cpuhw->bhrb_entries[u_index].mispred = pred;
485 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
486 
487 				/* Get from address in next entry */
488 				val = read_bhrb(r_index++);
489 				addr = val & BHRB_EA;
490 				if (val & BHRB_TARGET) {
491 					/* Shouldn't have two targets in a
492 					   row.. Reset index and try again */
493 					r_index--;
494 					addr = 0;
495 				}
496 				cpuhw->bhrb_entries[u_index].from = addr;
497 			} else {
498 				/* Branches to immediate field
499 				   (ie I or B form) */
500 				cpuhw->bhrb_entries[u_index].from = addr;
501 				cpuhw->bhrb_entries[u_index].to =
502 					power_pmu_bhrb_to(addr);
503 				cpuhw->bhrb_entries[u_index].mispred = pred;
504 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
505 			}
506 			u_index++;
507 
508 		}
509 	}
510 	cpuhw->bhrb_stack.nr = u_index;
511 	return;
512 }
513 
is_ebb_event(struct perf_event * event)514 static bool is_ebb_event(struct perf_event *event)
515 {
516 	/*
517 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
518 	 * check that the PMU supports EBB, meaning those that don't can still
519 	 * use bit 63 of the event code for something else if they wish.
520 	 */
521 	return (ppmu->flags & PPMU_ARCH_207S) &&
522 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
523 }
524 
ebb_event_check(struct perf_event * event)525 static int ebb_event_check(struct perf_event *event)
526 {
527 	struct perf_event *leader = event->group_leader;
528 
529 	/* Event and group leader must agree on EBB */
530 	if (is_ebb_event(leader) != is_ebb_event(event))
531 		return -EINVAL;
532 
533 	if (is_ebb_event(event)) {
534 		if (!(event->attach_state & PERF_ATTACH_TASK))
535 			return -EINVAL;
536 
537 		if (!leader->attr.pinned || !leader->attr.exclusive)
538 			return -EINVAL;
539 
540 		if (event->attr.freq ||
541 		    event->attr.inherit ||
542 		    event->attr.sample_type ||
543 		    event->attr.sample_period ||
544 		    event->attr.enable_on_exec)
545 			return -EINVAL;
546 	}
547 
548 	return 0;
549 }
550 
ebb_event_add(struct perf_event * event)551 static void ebb_event_add(struct perf_event *event)
552 {
553 	if (!is_ebb_event(event) || current->thread.used_ebb)
554 		return;
555 
556 	/*
557 	 * IFF this is the first time we've added an EBB event, set
558 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
559 	 * userspace. We need this so that we can context switch while
560 	 * userspace is in the EBB handler (where PMXE is 0).
561 	 */
562 	current->thread.used_ebb = 1;
563 	current->thread.mmcr0 |= MMCR0_PMXE;
564 }
565 
ebb_switch_out(unsigned long mmcr0)566 static void ebb_switch_out(unsigned long mmcr0)
567 {
568 	if (!(mmcr0 & MMCR0_EBE))
569 		return;
570 
571 	current->thread.siar  = mfspr(SPRN_SIAR);
572 	current->thread.sier  = mfspr(SPRN_SIER);
573 	current->thread.sdar  = mfspr(SPRN_SDAR);
574 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
575 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
576 }
577 
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)578 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
579 {
580 	unsigned long mmcr0 = cpuhw->mmcr[0];
581 
582 	if (!ebb)
583 		goto out;
584 
585 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
586 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
587 
588 	/*
589 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
590 	 * with pmao_restore_workaround() because we may add PMAO but we never
591 	 * clear it here.
592 	 */
593 	mmcr0 |= current->thread.mmcr0;
594 
595 	/*
596 	 * Be careful not to set PMXE if userspace had it cleared. This is also
597 	 * compatible with pmao_restore_workaround() because it has already
598 	 * cleared PMXE and we leave PMAO alone.
599 	 */
600 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
601 		mmcr0 &= ~MMCR0_PMXE;
602 
603 	mtspr(SPRN_SIAR, current->thread.siar);
604 	mtspr(SPRN_SIER, current->thread.sier);
605 	mtspr(SPRN_SDAR, current->thread.sdar);
606 
607 	/*
608 	 * Merge the kernel & user values of MMCR2. The semantics we implement
609 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
610 	 * but not clear bits. If a task wants to be able to clear bits, ie.
611 	 * unfreeze counters, it should not set exclude_xxx in its events and
612 	 * instead manage the MMCR2 entirely by itself.
613 	 */
614 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
615 out:
616 	return mmcr0;
617 }
618 
pmao_restore_workaround(bool ebb)619 static void pmao_restore_workaround(bool ebb)
620 {
621 	unsigned pmcs[6];
622 
623 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
624 		return;
625 
626 	/*
627 	 * On POWER8E there is a hardware defect which affects the PMU context
628 	 * switch logic, ie. power_pmu_disable/enable().
629 	 *
630 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
631 	 * by the hardware. Sometime later the actual PMU exception is
632 	 * delivered.
633 	 *
634 	 * If we context switch, or simply disable/enable, the PMU prior to the
635 	 * exception arriving, the exception will be lost when we clear PMAO.
636 	 *
637 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
638 	 * set, and this _should_ generate an exception. However because of the
639 	 * defect no exception is generated when we write PMAO, and we get
640 	 * stuck with no counters counting but no exception delivered.
641 	 *
642 	 * The workaround is to detect this case and tweak the hardware to
643 	 * create another pending PMU exception.
644 	 *
645 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
646 	 * enabling the PMU. That causes a new exception to be generated in the
647 	 * chip, but we don't take it yet because we have interrupts hard
648 	 * disabled. We then write back the PMU state as we want it to be seen
649 	 * by the exception handler. When we reenable interrupts the exception
650 	 * handler will be called and see the correct state.
651 	 *
652 	 * The logic is the same for EBB, except that the exception is gated by
653 	 * us having interrupts hard disabled as well as the fact that we are
654 	 * not in userspace. The exception is finally delivered when we return
655 	 * to userspace.
656 	 */
657 
658 	/* Only if PMAO is set and PMAO_SYNC is clear */
659 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
660 		return;
661 
662 	/* If we're doing EBB, only if BESCR[GE] is set */
663 	if (ebb && !(current->thread.bescr & BESCR_GE))
664 		return;
665 
666 	/*
667 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
668 	 * enable to actually prevent the PMU exception from firing.
669 	 */
670 	hard_irq_disable();
671 
672 	/*
673 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
674 	 * Using read/write_pmc() in a for loop adds 12 function calls and
675 	 * almost doubles our code size.
676 	 */
677 	pmcs[0] = mfspr(SPRN_PMC1);
678 	pmcs[1] = mfspr(SPRN_PMC2);
679 	pmcs[2] = mfspr(SPRN_PMC3);
680 	pmcs[3] = mfspr(SPRN_PMC4);
681 	pmcs[4] = mfspr(SPRN_PMC5);
682 	pmcs[5] = mfspr(SPRN_PMC6);
683 
684 	/* Ensure all freeze bits are unset */
685 	mtspr(SPRN_MMCR2, 0);
686 
687 	/* Set up PMC6 to overflow in one cycle */
688 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
689 
690 	/* Enable exceptions and unfreeze PMC6 */
691 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
692 
693 	/* Now we need to refreeze and restore the PMCs */
694 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
695 
696 	mtspr(SPRN_PMC1, pmcs[0]);
697 	mtspr(SPRN_PMC2, pmcs[1]);
698 	mtspr(SPRN_PMC3, pmcs[2]);
699 	mtspr(SPRN_PMC4, pmcs[3]);
700 	mtspr(SPRN_PMC5, pmcs[4]);
701 	mtspr(SPRN_PMC6, pmcs[5]);
702 }
703 #endif /* CONFIG_PPC64 */
704 
705 static void perf_event_interrupt(struct pt_regs *regs);
706 
707 /*
708  * Read one performance monitor counter (PMC).
709  */
read_pmc(int idx)710 static unsigned long read_pmc(int idx)
711 {
712 	unsigned long val;
713 
714 	switch (idx) {
715 	case 1:
716 		val = mfspr(SPRN_PMC1);
717 		break;
718 	case 2:
719 		val = mfspr(SPRN_PMC2);
720 		break;
721 	case 3:
722 		val = mfspr(SPRN_PMC3);
723 		break;
724 	case 4:
725 		val = mfspr(SPRN_PMC4);
726 		break;
727 	case 5:
728 		val = mfspr(SPRN_PMC5);
729 		break;
730 	case 6:
731 		val = mfspr(SPRN_PMC6);
732 		break;
733 #ifdef CONFIG_PPC64
734 	case 7:
735 		val = mfspr(SPRN_PMC7);
736 		break;
737 	case 8:
738 		val = mfspr(SPRN_PMC8);
739 		break;
740 #endif /* CONFIG_PPC64 */
741 	default:
742 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
743 		val = 0;
744 	}
745 	return val;
746 }
747 
748 /*
749  * Write one PMC.
750  */
write_pmc(int idx,unsigned long val)751 static void write_pmc(int idx, unsigned long val)
752 {
753 	switch (idx) {
754 	case 1:
755 		mtspr(SPRN_PMC1, val);
756 		break;
757 	case 2:
758 		mtspr(SPRN_PMC2, val);
759 		break;
760 	case 3:
761 		mtspr(SPRN_PMC3, val);
762 		break;
763 	case 4:
764 		mtspr(SPRN_PMC4, val);
765 		break;
766 	case 5:
767 		mtspr(SPRN_PMC5, val);
768 		break;
769 	case 6:
770 		mtspr(SPRN_PMC6, val);
771 		break;
772 #ifdef CONFIG_PPC64
773 	case 7:
774 		mtspr(SPRN_PMC7, val);
775 		break;
776 	case 8:
777 		mtspr(SPRN_PMC8, val);
778 		break;
779 #endif /* CONFIG_PPC64 */
780 	default:
781 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
782 	}
783 }
784 
785 /* Called from sysrq_handle_showregs() */
perf_event_print_debug(void)786 void perf_event_print_debug(void)
787 {
788 	unsigned long sdar, sier, flags;
789 	u32 pmcs[MAX_HWEVENTS];
790 	int i;
791 
792 	if (!ppmu->n_counter)
793 		return;
794 
795 	local_irq_save(flags);
796 
797 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
798 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
799 
800 	for (i = 0; i < ppmu->n_counter; i++)
801 		pmcs[i] = read_pmc(i + 1);
802 
803 	for (; i < MAX_HWEVENTS; i++)
804 		pmcs[i] = 0xdeadbeef;
805 
806 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
807 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
808 
809 	if (ppmu->n_counter > 4)
810 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
811 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
812 
813 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
814 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
815 
816 	sdar = sier = 0;
817 #ifdef CONFIG_PPC64
818 	sdar = mfspr(SPRN_SDAR);
819 
820 	if (ppmu->flags & PPMU_HAS_SIER)
821 		sier = mfspr(SPRN_SIER);
822 
823 	if (ppmu->flags & PPMU_ARCH_207S) {
824 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
825 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
826 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
827 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
828 	}
829 #endif
830 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
831 		mfspr(SPRN_SIAR), sdar, sier);
832 
833 	local_irq_restore(flags);
834 }
835 
836 /*
837  * Check if a set of events can all go on the PMU at once.
838  * If they can't, this will look at alternative codes for the events
839  * and see if any combination of alternative codes is feasible.
840  * The feasible set is returned in event_id[].
841  */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev)842 static int power_check_constraints(struct cpu_hw_events *cpuhw,
843 				   u64 event_id[], unsigned int cflags[],
844 				   int n_ev)
845 {
846 	unsigned long mask, value, nv;
847 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
848 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
849 	int i, j;
850 	unsigned long addf = ppmu->add_fields;
851 	unsigned long tadd = ppmu->test_adder;
852 
853 	if (n_ev > ppmu->n_counter)
854 		return -1;
855 
856 	/* First see if the events will go on as-is */
857 	for (i = 0; i < n_ev; ++i) {
858 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
859 		    && !ppmu->limited_pmc_event(event_id[i])) {
860 			ppmu->get_alternatives(event_id[i], cflags[i],
861 					       cpuhw->alternatives[i]);
862 			event_id[i] = cpuhw->alternatives[i][0];
863 		}
864 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
865 					 &cpuhw->avalues[i][0]))
866 			return -1;
867 	}
868 	value = mask = 0;
869 	for (i = 0; i < n_ev; ++i) {
870 		nv = (value | cpuhw->avalues[i][0]) +
871 			(value & cpuhw->avalues[i][0] & addf);
872 		if ((((nv + tadd) ^ value) & mask) != 0 ||
873 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
874 		     cpuhw->amasks[i][0]) != 0)
875 			break;
876 		value = nv;
877 		mask |= cpuhw->amasks[i][0];
878 	}
879 	if (i == n_ev)
880 		return 0;	/* all OK */
881 
882 	/* doesn't work, gather alternatives... */
883 	if (!ppmu->get_alternatives)
884 		return -1;
885 	for (i = 0; i < n_ev; ++i) {
886 		choice[i] = 0;
887 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
888 						  cpuhw->alternatives[i]);
889 		for (j = 1; j < n_alt[i]; ++j)
890 			ppmu->get_constraint(cpuhw->alternatives[i][j],
891 					     &cpuhw->amasks[i][j],
892 					     &cpuhw->avalues[i][j]);
893 	}
894 
895 	/* enumerate all possibilities and see if any will work */
896 	i = 0;
897 	j = -1;
898 	value = mask = nv = 0;
899 	while (i < n_ev) {
900 		if (j >= 0) {
901 			/* we're backtracking, restore context */
902 			value = svalues[i];
903 			mask = smasks[i];
904 			j = choice[i];
905 		}
906 		/*
907 		 * See if any alternative k for event_id i,
908 		 * where k > j, will satisfy the constraints.
909 		 */
910 		while (++j < n_alt[i]) {
911 			nv = (value | cpuhw->avalues[i][j]) +
912 				(value & cpuhw->avalues[i][j] & addf);
913 			if ((((nv + tadd) ^ value) & mask) == 0 &&
914 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
915 			     & cpuhw->amasks[i][j]) == 0)
916 				break;
917 		}
918 		if (j >= n_alt[i]) {
919 			/*
920 			 * No feasible alternative, backtrack
921 			 * to event_id i-1 and continue enumerating its
922 			 * alternatives from where we got up to.
923 			 */
924 			if (--i < 0)
925 				return -1;
926 		} else {
927 			/*
928 			 * Found a feasible alternative for event_id i,
929 			 * remember where we got up to with this event_id,
930 			 * go on to the next event_id, and start with
931 			 * the first alternative for it.
932 			 */
933 			choice[i] = j;
934 			svalues[i] = value;
935 			smasks[i] = mask;
936 			value = nv;
937 			mask |= cpuhw->amasks[i][j];
938 			++i;
939 			j = -1;
940 		}
941 	}
942 
943 	/* OK, we have a feasible combination, tell the caller the solution */
944 	for (i = 0; i < n_ev; ++i)
945 		event_id[i] = cpuhw->alternatives[i][choice[i]];
946 	return 0;
947 }
948 
949 /*
950  * Check if newly-added events have consistent settings for
951  * exclude_{user,kernel,hv} with each other and any previously
952  * added events.
953  */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)954 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
955 			  int n_prev, int n_new)
956 {
957 	int eu = 0, ek = 0, eh = 0;
958 	int i, n, first;
959 	struct perf_event *event;
960 
961 	/*
962 	 * If the PMU we're on supports per event exclude settings then we
963 	 * don't need to do any of this logic. NB. This assumes no PMU has both
964 	 * per event exclude and limited PMCs.
965 	 */
966 	if (ppmu->flags & PPMU_ARCH_207S)
967 		return 0;
968 
969 	n = n_prev + n_new;
970 	if (n <= 1)
971 		return 0;
972 
973 	first = 1;
974 	for (i = 0; i < n; ++i) {
975 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
976 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
977 			continue;
978 		}
979 		event = ctrs[i];
980 		if (first) {
981 			eu = event->attr.exclude_user;
982 			ek = event->attr.exclude_kernel;
983 			eh = event->attr.exclude_hv;
984 			first = 0;
985 		} else if (event->attr.exclude_user != eu ||
986 			   event->attr.exclude_kernel != ek ||
987 			   event->attr.exclude_hv != eh) {
988 			return -EAGAIN;
989 		}
990 	}
991 
992 	if (eu || ek || eh)
993 		for (i = 0; i < n; ++i)
994 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
995 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
996 
997 	return 0;
998 }
999 
check_and_compute_delta(u64 prev,u64 val)1000 static u64 check_and_compute_delta(u64 prev, u64 val)
1001 {
1002 	u64 delta = (val - prev) & 0xfffffffful;
1003 
1004 	/*
1005 	 * POWER7 can roll back counter values, if the new value is smaller
1006 	 * than the previous value it will cause the delta and the counter to
1007 	 * have bogus values unless we rolled a counter over.  If a coutner is
1008 	 * rolled back, it will be smaller, but within 256, which is the maximum
1009 	 * number of events to rollback at once.  If we dectect a rollback
1010 	 * return 0.  This can lead to a small lack of precision in the
1011 	 * counters.
1012 	 */
1013 	if (prev > val && (prev - val) < 256)
1014 		delta = 0;
1015 
1016 	return delta;
1017 }
1018 
power_pmu_read(struct perf_event * event)1019 static void power_pmu_read(struct perf_event *event)
1020 {
1021 	s64 val, delta, prev;
1022 
1023 	if (event->hw.state & PERF_HES_STOPPED)
1024 		return;
1025 
1026 	if (!event->hw.idx)
1027 		return;
1028 
1029 	if (is_ebb_event(event)) {
1030 		val = read_pmc(event->hw.idx);
1031 		local64_set(&event->hw.prev_count, val);
1032 		return;
1033 	}
1034 
1035 	/*
1036 	 * Performance monitor interrupts come even when interrupts
1037 	 * are soft-disabled, as long as interrupts are hard-enabled.
1038 	 * Therefore we treat them like NMIs.
1039 	 */
1040 	do {
1041 		prev = local64_read(&event->hw.prev_count);
1042 		barrier();
1043 		val = read_pmc(event->hw.idx);
1044 		delta = check_and_compute_delta(prev, val);
1045 		if (!delta)
1046 			return;
1047 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1048 
1049 	local64_add(delta, &event->count);
1050 
1051 	/*
1052 	 * A number of places program the PMC with (0x80000000 - period_left).
1053 	 * We never want period_left to be less than 1 because we will program
1054 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1055 	 * roll around to 0 before taking an exception. We have seen this
1056 	 * on POWER8.
1057 	 *
1058 	 * To fix this, clamp the minimum value of period_left to 1.
1059 	 */
1060 	do {
1061 		prev = local64_read(&event->hw.period_left);
1062 		val = prev - delta;
1063 		if (val < 1)
1064 			val = 1;
1065 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1066 }
1067 
1068 /*
1069  * On some machines, PMC5 and PMC6 can't be written, don't respect
1070  * the freeze conditions, and don't generate interrupts.  This tells
1071  * us if `event' is using such a PMC.
1072  */
is_limited_pmc(int pmcnum)1073 static int is_limited_pmc(int pmcnum)
1074 {
1075 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1076 		&& (pmcnum == 5 || pmcnum == 6);
1077 }
1078 
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1079 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1080 				    unsigned long pmc5, unsigned long pmc6)
1081 {
1082 	struct perf_event *event;
1083 	u64 val, prev, delta;
1084 	int i;
1085 
1086 	for (i = 0; i < cpuhw->n_limited; ++i) {
1087 		event = cpuhw->limited_counter[i];
1088 		if (!event->hw.idx)
1089 			continue;
1090 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1091 		prev = local64_read(&event->hw.prev_count);
1092 		event->hw.idx = 0;
1093 		delta = check_and_compute_delta(prev, val);
1094 		if (delta)
1095 			local64_add(delta, &event->count);
1096 	}
1097 }
1098 
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1099 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1100 				  unsigned long pmc5, unsigned long pmc6)
1101 {
1102 	struct perf_event *event;
1103 	u64 val, prev;
1104 	int i;
1105 
1106 	for (i = 0; i < cpuhw->n_limited; ++i) {
1107 		event = cpuhw->limited_counter[i];
1108 		event->hw.idx = cpuhw->limited_hwidx[i];
1109 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1110 		prev = local64_read(&event->hw.prev_count);
1111 		if (check_and_compute_delta(prev, val))
1112 			local64_set(&event->hw.prev_count, val);
1113 		perf_event_update_userpage(event);
1114 	}
1115 }
1116 
1117 /*
1118  * Since limited events don't respect the freeze conditions, we
1119  * have to read them immediately after freezing or unfreezing the
1120  * other events.  We try to keep the values from the limited
1121  * events as consistent as possible by keeping the delay (in
1122  * cycles and instructions) between freezing/unfreezing and reading
1123  * the limited events as small and consistent as possible.
1124  * Therefore, if any limited events are in use, we read them
1125  * both, and always in the same order, to minimize variability,
1126  * and do it inside the same asm that writes MMCR0.
1127  */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)1128 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1129 {
1130 	unsigned long pmc5, pmc6;
1131 
1132 	if (!cpuhw->n_limited) {
1133 		mtspr(SPRN_MMCR0, mmcr0);
1134 		return;
1135 	}
1136 
1137 	/*
1138 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1139 	 * To ensure we don't get a performance monitor interrupt
1140 	 * between writing MMCR0 and freezing/thawing the limited
1141 	 * events, we first write MMCR0 with the event overflow
1142 	 * interrupt enable bits turned off.
1143 	 */
1144 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1145 		     : "=&r" (pmc5), "=&r" (pmc6)
1146 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1147 		       "i" (SPRN_MMCR0),
1148 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1149 
1150 	if (mmcr0 & MMCR0_FC)
1151 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1152 	else
1153 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1154 
1155 	/*
1156 	 * Write the full MMCR0 including the event overflow interrupt
1157 	 * enable bits, if necessary.
1158 	 */
1159 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1160 		mtspr(SPRN_MMCR0, mmcr0);
1161 }
1162 
1163 /*
1164  * Disable all events to prevent PMU interrupts and to allow
1165  * events to be added or removed.
1166  */
power_pmu_disable(struct pmu * pmu)1167 static void power_pmu_disable(struct pmu *pmu)
1168 {
1169 	struct cpu_hw_events *cpuhw;
1170 	unsigned long flags, mmcr0, val;
1171 
1172 	if (!ppmu)
1173 		return;
1174 	local_irq_save(flags);
1175 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1176 
1177 	if (!cpuhw->disabled) {
1178 		/*
1179 		 * Check if we ever enabled the PMU on this cpu.
1180 		 */
1181 		if (!cpuhw->pmcs_enabled) {
1182 			ppc_enable_pmcs();
1183 			cpuhw->pmcs_enabled = 1;
1184 		}
1185 
1186 		/*
1187 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1188 		 */
1189 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1190 		val |= MMCR0_FC;
1191 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1192 			 MMCR0_FC56);
1193 
1194 		/*
1195 		 * The barrier is to make sure the mtspr has been
1196 		 * executed and the PMU has frozen the events etc.
1197 		 * before we return.
1198 		 */
1199 		write_mmcr0(cpuhw, val);
1200 		mb();
1201 		isync();
1202 
1203 		/*
1204 		 * Disable instruction sampling if it was enabled
1205 		 */
1206 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1207 			mtspr(SPRN_MMCRA,
1208 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1209 			mb();
1210 			isync();
1211 		}
1212 
1213 		cpuhw->disabled = 1;
1214 		cpuhw->n_added = 0;
1215 
1216 		ebb_switch_out(mmcr0);
1217 
1218 #ifdef CONFIG_PPC64
1219 		/*
1220 		 * These are readable by userspace, may contain kernel
1221 		 * addresses and are not switched by context switch, so clear
1222 		 * them now to avoid leaking anything to userspace in general
1223 		 * including to another process.
1224 		 */
1225 		if (ppmu->flags & PPMU_ARCH_207S) {
1226 			mtspr(SPRN_SDAR, 0);
1227 			mtspr(SPRN_SIAR, 0);
1228 		}
1229 #endif
1230 	}
1231 
1232 	local_irq_restore(flags);
1233 }
1234 
1235 /*
1236  * Re-enable all events if disable == 0.
1237  * If we were previously disabled and events were added, then
1238  * put the new config on the PMU.
1239  */
power_pmu_enable(struct pmu * pmu)1240 static void power_pmu_enable(struct pmu *pmu)
1241 {
1242 	struct perf_event *event;
1243 	struct cpu_hw_events *cpuhw;
1244 	unsigned long flags;
1245 	long i;
1246 	unsigned long val, mmcr0;
1247 	s64 left;
1248 	unsigned int hwc_index[MAX_HWEVENTS];
1249 	int n_lim;
1250 	int idx;
1251 	bool ebb;
1252 
1253 	if (!ppmu)
1254 		return;
1255 	local_irq_save(flags);
1256 
1257 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1258 	if (!cpuhw->disabled)
1259 		goto out;
1260 
1261 	if (cpuhw->n_events == 0) {
1262 		ppc_set_pmu_inuse(0);
1263 		goto out;
1264 	}
1265 
1266 	cpuhw->disabled = 0;
1267 
1268 	/*
1269 	 * EBB requires an exclusive group and all events must have the EBB
1270 	 * flag set, or not set, so we can just check a single event. Also we
1271 	 * know we have at least one event.
1272 	 */
1273 	ebb = is_ebb_event(cpuhw->event[0]);
1274 
1275 	/*
1276 	 * If we didn't change anything, or only removed events,
1277 	 * no need to recalculate MMCR* settings and reset the PMCs.
1278 	 * Just reenable the PMU with the current MMCR* settings
1279 	 * (possibly updated for removal of events).
1280 	 */
1281 	if (!cpuhw->n_added) {
1282 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1283 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1284 		goto out_enable;
1285 	}
1286 
1287 	/*
1288 	 * Clear all MMCR settings and recompute them for the new set of events.
1289 	 */
1290 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1291 
1292 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1293 			       cpuhw->mmcr, cpuhw->event)) {
1294 		/* shouldn't ever get here */
1295 		printk(KERN_ERR "oops compute_mmcr failed\n");
1296 		goto out;
1297 	}
1298 
1299 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1300 		/*
1301 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1302 		 * bits for the first event. We have already checked that all
1303 		 * events have the same value for these bits as the first event.
1304 		 */
1305 		event = cpuhw->event[0];
1306 		if (event->attr.exclude_user)
1307 			cpuhw->mmcr[0] |= MMCR0_FCP;
1308 		if (event->attr.exclude_kernel)
1309 			cpuhw->mmcr[0] |= freeze_events_kernel;
1310 		if (event->attr.exclude_hv)
1311 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1312 	}
1313 
1314 	/*
1315 	 * Write the new configuration to MMCR* with the freeze
1316 	 * bit set and set the hardware events to their initial values.
1317 	 * Then unfreeze the events.
1318 	 */
1319 	ppc_set_pmu_inuse(1);
1320 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1321 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1322 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1323 				| MMCR0_FC);
1324 	if (ppmu->flags & PPMU_ARCH_207S)
1325 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1326 
1327 	/*
1328 	 * Read off any pre-existing events that need to move
1329 	 * to another PMC.
1330 	 */
1331 	for (i = 0; i < cpuhw->n_events; ++i) {
1332 		event = cpuhw->event[i];
1333 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1334 			power_pmu_read(event);
1335 			write_pmc(event->hw.idx, 0);
1336 			event->hw.idx = 0;
1337 		}
1338 	}
1339 
1340 	/*
1341 	 * Initialize the PMCs for all the new and moved events.
1342 	 */
1343 	cpuhw->n_limited = n_lim = 0;
1344 	for (i = 0; i < cpuhw->n_events; ++i) {
1345 		event = cpuhw->event[i];
1346 		if (event->hw.idx)
1347 			continue;
1348 		idx = hwc_index[i] + 1;
1349 		if (is_limited_pmc(idx)) {
1350 			cpuhw->limited_counter[n_lim] = event;
1351 			cpuhw->limited_hwidx[n_lim] = idx;
1352 			++n_lim;
1353 			continue;
1354 		}
1355 
1356 		if (ebb)
1357 			val = local64_read(&event->hw.prev_count);
1358 		else {
1359 			val = 0;
1360 			if (event->hw.sample_period) {
1361 				left = local64_read(&event->hw.period_left);
1362 				if (left < 0x80000000L)
1363 					val = 0x80000000L - left;
1364 			}
1365 			local64_set(&event->hw.prev_count, val);
1366 		}
1367 
1368 		event->hw.idx = idx;
1369 		if (event->hw.state & PERF_HES_STOPPED)
1370 			val = 0;
1371 		write_pmc(idx, val);
1372 
1373 		perf_event_update_userpage(event);
1374 	}
1375 	cpuhw->n_limited = n_lim;
1376 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1377 
1378  out_enable:
1379 	pmao_restore_workaround(ebb);
1380 
1381 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1382 
1383 	mb();
1384 	if (cpuhw->bhrb_users)
1385 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1386 
1387 	write_mmcr0(cpuhw, mmcr0);
1388 
1389 	/*
1390 	 * Enable instruction sampling if necessary
1391 	 */
1392 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1393 		mb();
1394 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1395 	}
1396 
1397  out:
1398 
1399 	local_irq_restore(flags);
1400 }
1401 
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)1402 static int collect_events(struct perf_event *group, int max_count,
1403 			  struct perf_event *ctrs[], u64 *events,
1404 			  unsigned int *flags)
1405 {
1406 	int n = 0;
1407 	struct perf_event *event;
1408 
1409 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1410 		if (n >= max_count)
1411 			return -1;
1412 		ctrs[n] = group;
1413 		flags[n] = group->hw.event_base;
1414 		events[n++] = group->hw.config;
1415 	}
1416 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1417 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1418 		    event->state != PERF_EVENT_STATE_OFF) {
1419 			if (n >= max_count)
1420 				return -1;
1421 			ctrs[n] = event;
1422 			flags[n] = event->hw.event_base;
1423 			events[n++] = event->hw.config;
1424 		}
1425 	}
1426 	return n;
1427 }
1428 
1429 /*
1430  * Add a event to the PMU.
1431  * If all events are not already frozen, then we disable and
1432  * re-enable the PMU in order to get hw_perf_enable to do the
1433  * actual work of reconfiguring the PMU.
1434  */
power_pmu_add(struct perf_event * event,int ef_flags)1435 static int power_pmu_add(struct perf_event *event, int ef_flags)
1436 {
1437 	struct cpu_hw_events *cpuhw;
1438 	unsigned long flags;
1439 	int n0;
1440 	int ret = -EAGAIN;
1441 
1442 	local_irq_save(flags);
1443 	perf_pmu_disable(event->pmu);
1444 
1445 	/*
1446 	 * Add the event to the list (if there is room)
1447 	 * and check whether the total set is still feasible.
1448 	 */
1449 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1450 	n0 = cpuhw->n_events;
1451 	if (n0 >= ppmu->n_counter)
1452 		goto out;
1453 	cpuhw->event[n0] = event;
1454 	cpuhw->events[n0] = event->hw.config;
1455 	cpuhw->flags[n0] = event->hw.event_base;
1456 
1457 	/*
1458 	 * This event may have been disabled/stopped in record_and_restart()
1459 	 * because we exceeded the ->event_limit. If re-starting the event,
1460 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1461 	 * notification is re-enabled.
1462 	 */
1463 	if (!(ef_flags & PERF_EF_START))
1464 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1465 	else
1466 		event->hw.state = 0;
1467 
1468 	/*
1469 	 * If group events scheduling transaction was started,
1470 	 * skip the schedulability test here, it will be performed
1471 	 * at commit time(->commit_txn) as a whole
1472 	 */
1473 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1474 		goto nocheck;
1475 
1476 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1477 		goto out;
1478 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1479 		goto out;
1480 	event->hw.config = cpuhw->events[n0];
1481 
1482 nocheck:
1483 	ebb_event_add(event);
1484 
1485 	++cpuhw->n_events;
1486 	++cpuhw->n_added;
1487 
1488 	ret = 0;
1489  out:
1490 	if (has_branch_stack(event)) {
1491 		power_pmu_bhrb_enable(event);
1492 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1493 					event->attr.branch_sample_type);
1494 	}
1495 
1496 	perf_pmu_enable(event->pmu);
1497 	local_irq_restore(flags);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * Remove a event from the PMU.
1503  */
power_pmu_del(struct perf_event * event,int ef_flags)1504 static void power_pmu_del(struct perf_event *event, int ef_flags)
1505 {
1506 	struct cpu_hw_events *cpuhw;
1507 	long i;
1508 	unsigned long flags;
1509 
1510 	local_irq_save(flags);
1511 	perf_pmu_disable(event->pmu);
1512 
1513 	power_pmu_read(event);
1514 
1515 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1516 	for (i = 0; i < cpuhw->n_events; ++i) {
1517 		if (event == cpuhw->event[i]) {
1518 			while (++i < cpuhw->n_events) {
1519 				cpuhw->event[i-1] = cpuhw->event[i];
1520 				cpuhw->events[i-1] = cpuhw->events[i];
1521 				cpuhw->flags[i-1] = cpuhw->flags[i];
1522 			}
1523 			--cpuhw->n_events;
1524 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1525 			if (event->hw.idx) {
1526 				write_pmc(event->hw.idx, 0);
1527 				event->hw.idx = 0;
1528 			}
1529 			perf_event_update_userpage(event);
1530 			break;
1531 		}
1532 	}
1533 	for (i = 0; i < cpuhw->n_limited; ++i)
1534 		if (event == cpuhw->limited_counter[i])
1535 			break;
1536 	if (i < cpuhw->n_limited) {
1537 		while (++i < cpuhw->n_limited) {
1538 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1539 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1540 		}
1541 		--cpuhw->n_limited;
1542 	}
1543 	if (cpuhw->n_events == 0) {
1544 		/* disable exceptions if no events are running */
1545 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1546 	}
1547 
1548 	if (has_branch_stack(event))
1549 		power_pmu_bhrb_disable(event);
1550 
1551 	perf_pmu_enable(event->pmu);
1552 	local_irq_restore(flags);
1553 }
1554 
1555 /*
1556  * POWER-PMU does not support disabling individual counters, hence
1557  * program their cycle counter to their max value and ignore the interrupts.
1558  */
1559 
power_pmu_start(struct perf_event * event,int ef_flags)1560 static void power_pmu_start(struct perf_event *event, int ef_flags)
1561 {
1562 	unsigned long flags;
1563 	s64 left;
1564 	unsigned long val;
1565 
1566 	if (!event->hw.idx || !event->hw.sample_period)
1567 		return;
1568 
1569 	if (!(event->hw.state & PERF_HES_STOPPED))
1570 		return;
1571 
1572 	if (ef_flags & PERF_EF_RELOAD)
1573 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1574 
1575 	local_irq_save(flags);
1576 	perf_pmu_disable(event->pmu);
1577 
1578 	event->hw.state = 0;
1579 	left = local64_read(&event->hw.period_left);
1580 
1581 	val = 0;
1582 	if (left < 0x80000000L)
1583 		val = 0x80000000L - left;
1584 
1585 	write_pmc(event->hw.idx, val);
1586 
1587 	perf_event_update_userpage(event);
1588 	perf_pmu_enable(event->pmu);
1589 	local_irq_restore(flags);
1590 }
1591 
power_pmu_stop(struct perf_event * event,int ef_flags)1592 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1593 {
1594 	unsigned long flags;
1595 
1596 	if (!event->hw.idx || !event->hw.sample_period)
1597 		return;
1598 
1599 	if (event->hw.state & PERF_HES_STOPPED)
1600 		return;
1601 
1602 	local_irq_save(flags);
1603 	perf_pmu_disable(event->pmu);
1604 
1605 	power_pmu_read(event);
1606 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1607 	write_pmc(event->hw.idx, 0);
1608 
1609 	perf_event_update_userpage(event);
1610 	perf_pmu_enable(event->pmu);
1611 	local_irq_restore(flags);
1612 }
1613 
1614 /*
1615  * Start group events scheduling transaction
1616  * Set the flag to make pmu::enable() not perform the
1617  * schedulability test, it will be performed at commit time
1618  *
1619  * We only support PERF_PMU_TXN_ADD transactions. Save the
1620  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1621  * transactions.
1622  */
power_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1623 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1624 {
1625 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1626 
1627 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1628 
1629 	cpuhw->txn_flags = txn_flags;
1630 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1631 		return;
1632 
1633 	perf_pmu_disable(pmu);
1634 	cpuhw->n_txn_start = cpuhw->n_events;
1635 }
1636 
1637 /*
1638  * Stop group events scheduling transaction
1639  * Clear the flag and pmu::enable() will perform the
1640  * schedulability test.
1641  */
power_pmu_cancel_txn(struct pmu * pmu)1642 static void power_pmu_cancel_txn(struct pmu *pmu)
1643 {
1644 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1645 	unsigned int txn_flags;
1646 
1647 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1648 
1649 	txn_flags = cpuhw->txn_flags;
1650 	cpuhw->txn_flags = 0;
1651 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1652 		return;
1653 
1654 	perf_pmu_enable(pmu);
1655 }
1656 
1657 /*
1658  * Commit group events scheduling transaction
1659  * Perform the group schedulability test as a whole
1660  * Return 0 if success
1661  */
power_pmu_commit_txn(struct pmu * pmu)1662 static int power_pmu_commit_txn(struct pmu *pmu)
1663 {
1664 	struct cpu_hw_events *cpuhw;
1665 	long i, n;
1666 
1667 	if (!ppmu)
1668 		return -EAGAIN;
1669 
1670 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1671 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1672 
1673 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1674 		cpuhw->txn_flags = 0;
1675 		return 0;
1676 	}
1677 
1678 	n = cpuhw->n_events;
1679 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1680 		return -EAGAIN;
1681 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1682 	if (i < 0)
1683 		return -EAGAIN;
1684 
1685 	for (i = cpuhw->n_txn_start; i < n; ++i)
1686 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1687 
1688 	cpuhw->txn_flags = 0;
1689 	perf_pmu_enable(pmu);
1690 	return 0;
1691 }
1692 
1693 /*
1694  * Return 1 if we might be able to put event on a limited PMC,
1695  * or 0 if not.
1696  * A event can only go on a limited PMC if it counts something
1697  * that a limited PMC can count, doesn't require interrupts, and
1698  * doesn't exclude any processor mode.
1699  */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)1700 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1701 				 unsigned int flags)
1702 {
1703 	int n;
1704 	u64 alt[MAX_EVENT_ALTERNATIVES];
1705 
1706 	if (event->attr.exclude_user
1707 	    || event->attr.exclude_kernel
1708 	    || event->attr.exclude_hv
1709 	    || event->attr.sample_period)
1710 		return 0;
1711 
1712 	if (ppmu->limited_pmc_event(ev))
1713 		return 1;
1714 
1715 	/*
1716 	 * The requested event_id isn't on a limited PMC already;
1717 	 * see if any alternative code goes on a limited PMC.
1718 	 */
1719 	if (!ppmu->get_alternatives)
1720 		return 0;
1721 
1722 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1723 	n = ppmu->get_alternatives(ev, flags, alt);
1724 
1725 	return n > 0;
1726 }
1727 
1728 /*
1729  * Find an alternative event_id that goes on a normal PMC, if possible,
1730  * and return the event_id code, or 0 if there is no such alternative.
1731  * (Note: event_id code 0 is "don't count" on all machines.)
1732  */
normal_pmc_alternative(u64 ev,unsigned long flags)1733 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1734 {
1735 	u64 alt[MAX_EVENT_ALTERNATIVES];
1736 	int n;
1737 
1738 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1739 	n = ppmu->get_alternatives(ev, flags, alt);
1740 	if (!n)
1741 		return 0;
1742 	return alt[0];
1743 }
1744 
1745 /* Number of perf_events counting hardware events */
1746 static atomic_t num_events;
1747 /* Used to avoid races in calling reserve/release_pmc_hardware */
1748 static DEFINE_MUTEX(pmc_reserve_mutex);
1749 
1750 /*
1751  * Release the PMU if this is the last perf_event.
1752  */
hw_perf_event_destroy(struct perf_event * event)1753 static void hw_perf_event_destroy(struct perf_event *event)
1754 {
1755 	if (!atomic_add_unless(&num_events, -1, 1)) {
1756 		mutex_lock(&pmc_reserve_mutex);
1757 		if (atomic_dec_return(&num_events) == 0)
1758 			release_pmc_hardware();
1759 		mutex_unlock(&pmc_reserve_mutex);
1760 	}
1761 }
1762 
1763 /*
1764  * Translate a generic cache event_id config to a raw event_id code.
1765  */
hw_perf_cache_event(u64 config,u64 * eventp)1766 static int hw_perf_cache_event(u64 config, u64 *eventp)
1767 {
1768 	unsigned long type, op, result;
1769 	int ev;
1770 
1771 	if (!ppmu->cache_events)
1772 		return -EINVAL;
1773 
1774 	/* unpack config */
1775 	type = config & 0xff;
1776 	op = (config >> 8) & 0xff;
1777 	result = (config >> 16) & 0xff;
1778 
1779 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1780 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1781 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1782 		return -EINVAL;
1783 
1784 	ev = (*ppmu->cache_events)[type][op][result];
1785 	if (ev == 0)
1786 		return -EOPNOTSUPP;
1787 	if (ev == -1)
1788 		return -EINVAL;
1789 	*eventp = ev;
1790 	return 0;
1791 }
1792 
power_pmu_event_init(struct perf_event * event)1793 static int power_pmu_event_init(struct perf_event *event)
1794 {
1795 	u64 ev;
1796 	unsigned long flags;
1797 	struct perf_event *ctrs[MAX_HWEVENTS];
1798 	u64 events[MAX_HWEVENTS];
1799 	unsigned int cflags[MAX_HWEVENTS];
1800 	int n;
1801 	int err;
1802 	struct cpu_hw_events *cpuhw;
1803 
1804 	if (!ppmu)
1805 		return -ENOENT;
1806 
1807 	if (has_branch_stack(event)) {
1808 	        /* PMU has BHRB enabled */
1809 		if (!(ppmu->flags & PPMU_ARCH_207S))
1810 			return -EOPNOTSUPP;
1811 	}
1812 
1813 	switch (event->attr.type) {
1814 	case PERF_TYPE_HARDWARE:
1815 		ev = event->attr.config;
1816 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1817 			return -EOPNOTSUPP;
1818 		ev = ppmu->generic_events[ev];
1819 		break;
1820 	case PERF_TYPE_HW_CACHE:
1821 		err = hw_perf_cache_event(event->attr.config, &ev);
1822 		if (err)
1823 			return err;
1824 		break;
1825 	case PERF_TYPE_RAW:
1826 		ev = event->attr.config;
1827 		break;
1828 	default:
1829 		return -ENOENT;
1830 	}
1831 
1832 	event->hw.config_base = ev;
1833 	event->hw.idx = 0;
1834 
1835 	/*
1836 	 * If we are not running on a hypervisor, force the
1837 	 * exclude_hv bit to 0 so that we don't care what
1838 	 * the user set it to.
1839 	 */
1840 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1841 		event->attr.exclude_hv = 0;
1842 
1843 	/*
1844 	 * If this is a per-task event, then we can use
1845 	 * PM_RUN_* events interchangeably with their non RUN_*
1846 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1847 	 * XXX we should check if the task is an idle task.
1848 	 */
1849 	flags = 0;
1850 	if (event->attach_state & PERF_ATTACH_TASK)
1851 		flags |= PPMU_ONLY_COUNT_RUN;
1852 
1853 	/*
1854 	 * If this machine has limited events, check whether this
1855 	 * event_id could go on a limited event.
1856 	 */
1857 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1858 		if (can_go_on_limited_pmc(event, ev, flags)) {
1859 			flags |= PPMU_LIMITED_PMC_OK;
1860 		} else if (ppmu->limited_pmc_event(ev)) {
1861 			/*
1862 			 * The requested event_id is on a limited PMC,
1863 			 * but we can't use a limited PMC; see if any
1864 			 * alternative goes on a normal PMC.
1865 			 */
1866 			ev = normal_pmc_alternative(ev, flags);
1867 			if (!ev)
1868 				return -EINVAL;
1869 		}
1870 	}
1871 
1872 	/* Extra checks for EBB */
1873 	err = ebb_event_check(event);
1874 	if (err)
1875 		return err;
1876 
1877 	/*
1878 	 * If this is in a group, check if it can go on with all the
1879 	 * other hardware events in the group.  We assume the event
1880 	 * hasn't been linked into its leader's sibling list at this point.
1881 	 */
1882 	n = 0;
1883 	if (event->group_leader != event) {
1884 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1885 				   ctrs, events, cflags);
1886 		if (n < 0)
1887 			return -EINVAL;
1888 	}
1889 	events[n] = ev;
1890 	ctrs[n] = event;
1891 	cflags[n] = flags;
1892 	if (check_excludes(ctrs, cflags, n, 1))
1893 		return -EINVAL;
1894 
1895 	cpuhw = &get_cpu_var(cpu_hw_events);
1896 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1897 
1898 	if (has_branch_stack(event)) {
1899 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1900 					event->attr.branch_sample_type);
1901 
1902 		if (cpuhw->bhrb_filter == -1) {
1903 			put_cpu_var(cpu_hw_events);
1904 			return -EOPNOTSUPP;
1905 		}
1906 	}
1907 
1908 	put_cpu_var(cpu_hw_events);
1909 	if (err)
1910 		return -EINVAL;
1911 
1912 	event->hw.config = events[n];
1913 	event->hw.event_base = cflags[n];
1914 	event->hw.last_period = event->hw.sample_period;
1915 	local64_set(&event->hw.period_left, event->hw.last_period);
1916 
1917 	/*
1918 	 * For EBB events we just context switch the PMC value, we don't do any
1919 	 * of the sample_period logic. We use hw.prev_count for this.
1920 	 */
1921 	if (is_ebb_event(event))
1922 		local64_set(&event->hw.prev_count, 0);
1923 
1924 	/*
1925 	 * See if we need to reserve the PMU.
1926 	 * If no events are currently in use, then we have to take a
1927 	 * mutex to ensure that we don't race with another task doing
1928 	 * reserve_pmc_hardware or release_pmc_hardware.
1929 	 */
1930 	err = 0;
1931 	if (!atomic_inc_not_zero(&num_events)) {
1932 		mutex_lock(&pmc_reserve_mutex);
1933 		if (atomic_read(&num_events) == 0 &&
1934 		    reserve_pmc_hardware(perf_event_interrupt))
1935 			err = -EBUSY;
1936 		else
1937 			atomic_inc(&num_events);
1938 		mutex_unlock(&pmc_reserve_mutex);
1939 	}
1940 	event->destroy = hw_perf_event_destroy;
1941 
1942 	return err;
1943 }
1944 
power_pmu_event_idx(struct perf_event * event)1945 static int power_pmu_event_idx(struct perf_event *event)
1946 {
1947 	return event->hw.idx;
1948 }
1949 
power_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1950 ssize_t power_events_sysfs_show(struct device *dev,
1951 				struct device_attribute *attr, char *page)
1952 {
1953 	struct perf_pmu_events_attr *pmu_attr;
1954 
1955 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1956 
1957 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1958 }
1959 
1960 static struct pmu power_pmu = {
1961 	.pmu_enable	= power_pmu_enable,
1962 	.pmu_disable	= power_pmu_disable,
1963 	.event_init	= power_pmu_event_init,
1964 	.add		= power_pmu_add,
1965 	.del		= power_pmu_del,
1966 	.start		= power_pmu_start,
1967 	.stop		= power_pmu_stop,
1968 	.read		= power_pmu_read,
1969 	.start_txn	= power_pmu_start_txn,
1970 	.cancel_txn	= power_pmu_cancel_txn,
1971 	.commit_txn	= power_pmu_commit_txn,
1972 	.event_idx	= power_pmu_event_idx,
1973 	.sched_task	= power_pmu_sched_task,
1974 };
1975 
1976 /*
1977  * A counter has overflowed; update its count and record
1978  * things if requested.  Note that interrupts are hard-disabled
1979  * here so there is no possibility of being interrupted.
1980  */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)1981 static void record_and_restart(struct perf_event *event, unsigned long val,
1982 			       struct pt_regs *regs)
1983 {
1984 	u64 period = event->hw.sample_period;
1985 	s64 prev, delta, left;
1986 	int record = 0;
1987 
1988 	if (event->hw.state & PERF_HES_STOPPED) {
1989 		write_pmc(event->hw.idx, 0);
1990 		return;
1991 	}
1992 
1993 	/* we don't have to worry about interrupts here */
1994 	prev = local64_read(&event->hw.prev_count);
1995 	delta = check_and_compute_delta(prev, val);
1996 	local64_add(delta, &event->count);
1997 
1998 	/*
1999 	 * See if the total period for this event has expired,
2000 	 * and update for the next period.
2001 	 */
2002 	val = 0;
2003 	left = local64_read(&event->hw.period_left) - delta;
2004 	if (delta == 0)
2005 		left++;
2006 	if (period) {
2007 		if (left <= 0) {
2008 			left += period;
2009 			if (left <= 0)
2010 				left = period;
2011 
2012 			/*
2013 			 * If address is not requested in the sample via
2014 			 * PERF_SAMPLE_IP, just record that sample irrespective
2015 			 * of SIAR valid check.
2016 			 */
2017 			if (event->attr.sample_type & PERF_SAMPLE_IP)
2018 				record = siar_valid(regs);
2019 			else
2020 				record = 1;
2021 
2022 			event->hw.last_period = event->hw.sample_period;
2023 		}
2024 		if (left < 0x80000000LL)
2025 			val = 0x80000000LL - left;
2026 	}
2027 
2028 	write_pmc(event->hw.idx, val);
2029 	local64_set(&event->hw.prev_count, val);
2030 	local64_set(&event->hw.period_left, left);
2031 	perf_event_update_userpage(event);
2032 
2033 	/*
2034 	 * Due to hardware limitation, sometimes SIAR could sample a kernel
2035 	 * address even when freeze on supervisor state (kernel) is set in
2036 	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2037 	 * these cases.
2038 	 */
2039 	if (event->attr.exclude_kernel &&
2040 	    (event->attr.sample_type & PERF_SAMPLE_IP) &&
2041 	    is_kernel_addr(mfspr(SPRN_SIAR)))
2042 		record = 0;
2043 
2044 	/*
2045 	 * Finally record data if requested.
2046 	 */
2047 	if (record) {
2048 		struct perf_sample_data data;
2049 
2050 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2051 
2052 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
2053 			perf_get_data_addr(regs, &data.addr);
2054 
2055 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2056 			struct cpu_hw_events *cpuhw;
2057 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2058 			power_pmu_bhrb_read(cpuhw);
2059 			data.br_stack = &cpuhw->bhrb_stack;
2060 		}
2061 
2062 		if (perf_event_overflow(event, &data, regs))
2063 			power_pmu_stop(event, 0);
2064 	}
2065 }
2066 
2067 /*
2068  * Called from generic code to get the misc flags (i.e. processor mode)
2069  * for an event_id.
2070  */
perf_misc_flags(struct pt_regs * regs)2071 unsigned long perf_misc_flags(struct pt_regs *regs)
2072 {
2073 	u32 flags = perf_get_misc_flags(regs);
2074 
2075 	if (flags)
2076 		return flags;
2077 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2078 		PERF_RECORD_MISC_KERNEL;
2079 }
2080 
2081 /*
2082  * Called from generic code to get the instruction pointer
2083  * for an event_id.
2084  */
perf_instruction_pointer(struct pt_regs * regs)2085 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2086 {
2087 	bool use_siar = regs_use_siar(regs);
2088 
2089 	if (use_siar && siar_valid(regs))
2090 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2091 	else if (use_siar)
2092 		return 0;		// no valid instruction pointer
2093 	else
2094 		return regs->nip;
2095 }
2096 
pmc_overflow_power7(unsigned long val)2097 static bool pmc_overflow_power7(unsigned long val)
2098 {
2099 	/*
2100 	 * Events on POWER7 can roll back if a speculative event doesn't
2101 	 * eventually complete. Unfortunately in some rare cases they will
2102 	 * raise a performance monitor exception. We need to catch this to
2103 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2104 	 * cycles from overflow.
2105 	 *
2106 	 * We only do this if the first pass fails to find any overflowing
2107 	 * PMCs because a user might set a period of less than 256 and we
2108 	 * don't want to mistakenly reset them.
2109 	 */
2110 	if ((0x80000000 - val) <= 256)
2111 		return true;
2112 
2113 	return false;
2114 }
2115 
pmc_overflow(unsigned long val)2116 static bool pmc_overflow(unsigned long val)
2117 {
2118 	if ((int)val < 0)
2119 		return true;
2120 
2121 	return false;
2122 }
2123 
2124 /*
2125  * Performance monitor interrupt stuff
2126  */
perf_event_interrupt(struct pt_regs * regs)2127 static void perf_event_interrupt(struct pt_regs *regs)
2128 {
2129 	int i, j;
2130 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2131 	struct perf_event *event;
2132 	unsigned long val[8];
2133 	int found, active;
2134 	int nmi;
2135 
2136 	if (cpuhw->n_limited)
2137 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2138 					mfspr(SPRN_PMC6));
2139 
2140 	perf_read_regs(regs);
2141 
2142 	nmi = perf_intr_is_nmi(regs);
2143 	if (nmi)
2144 		nmi_enter();
2145 	else
2146 		irq_enter();
2147 
2148 	/* Read all the PMCs since we'll need them a bunch of times */
2149 	for (i = 0; i < ppmu->n_counter; ++i)
2150 		val[i] = read_pmc(i + 1);
2151 
2152 	/* Try to find what caused the IRQ */
2153 	found = 0;
2154 	for (i = 0; i < ppmu->n_counter; ++i) {
2155 		if (!pmc_overflow(val[i]))
2156 			continue;
2157 		if (is_limited_pmc(i + 1))
2158 			continue; /* these won't generate IRQs */
2159 		/*
2160 		 * We've found one that's overflowed.  For active
2161 		 * counters we need to log this.  For inactive
2162 		 * counters, we need to reset it anyway
2163 		 */
2164 		found = 1;
2165 		active = 0;
2166 		for (j = 0; j < cpuhw->n_events; ++j) {
2167 			event = cpuhw->event[j];
2168 			if (event->hw.idx == (i + 1)) {
2169 				active = 1;
2170 				record_and_restart(event, val[i], regs);
2171 				break;
2172 			}
2173 		}
2174 		if (!active)
2175 			/* reset non active counters that have overflowed */
2176 			write_pmc(i + 1, 0);
2177 	}
2178 	if (!found && pvr_version_is(PVR_POWER7)) {
2179 		/* check active counters for special buggy p7 overflow */
2180 		for (i = 0; i < cpuhw->n_events; ++i) {
2181 			event = cpuhw->event[i];
2182 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2183 				continue;
2184 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2185 				/* event has overflowed in a buggy way*/
2186 				found = 1;
2187 				record_and_restart(event,
2188 						   val[event->hw.idx - 1],
2189 						   regs);
2190 			}
2191 		}
2192 	}
2193 	if (!found && !nmi && printk_ratelimit())
2194 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2195 
2196 	/*
2197 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2198 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2199 	 * and thus allow interrupts to occur again.
2200 	 * XXX might want to use MSR.PM to keep the events frozen until
2201 	 * we get back out of this interrupt.
2202 	 */
2203 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2204 
2205 	if (nmi)
2206 		nmi_exit();
2207 	else
2208 		irq_exit();
2209 }
2210 
power_pmu_setup(int cpu)2211 static void power_pmu_setup(int cpu)
2212 {
2213 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2214 
2215 	if (!ppmu)
2216 		return;
2217 	memset(cpuhw, 0, sizeof(*cpuhw));
2218 	cpuhw->mmcr[0] = MMCR0_FC;
2219 }
2220 
2221 static int
power_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)2222 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2223 {
2224 	unsigned int cpu = (long)hcpu;
2225 
2226 	switch (action & ~CPU_TASKS_FROZEN) {
2227 	case CPU_UP_PREPARE:
2228 		power_pmu_setup(cpu);
2229 		break;
2230 
2231 	default:
2232 		break;
2233 	}
2234 
2235 	return NOTIFY_OK;
2236 }
2237 
register_power_pmu(struct power_pmu * pmu)2238 int register_power_pmu(struct power_pmu *pmu)
2239 {
2240 	if (ppmu)
2241 		return -EBUSY;		/* something's already registered */
2242 
2243 	ppmu = pmu;
2244 	pr_info("%s performance monitor hardware support registered\n",
2245 		pmu->name);
2246 
2247 	power_pmu.attr_groups = ppmu->attr_groups;
2248 
2249 #ifdef MSR_HV
2250 	/*
2251 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2252 	 */
2253 	if (mfmsr() & MSR_HV)
2254 		freeze_events_kernel = MMCR0_FCHV;
2255 #endif /* CONFIG_PPC64 */
2256 
2257 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2258 	perf_cpu_notifier(power_pmu_notifier);
2259 
2260 	return 0;
2261 }
2262