1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
53
54 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
55 #define POWERNV_IOMMU_MAX_LEVELS 5
56
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58
pe_level_printk(const struct pnv_ioda_pe * pe,const char * level,const char * fmt,...)59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60 const char *fmt, ...)
61 {
62 struct va_format vaf;
63 va_list args;
64 char pfix[32];
65
66 va_start(args, fmt);
67
68 vaf.fmt = fmt;
69 vaf.va = &args;
70
71 if (pe->flags & PNV_IODA_PE_DEV)
72 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74 sprintf(pfix, "%04x:%02x ",
75 pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77 else if (pe->flags & PNV_IODA_PE_VF)
78 sprintf(pfix, "%04x:%02x:%2x.%d",
79 pci_domain_nr(pe->parent_dev->bus),
80 (pe->rid & 0xff00) >> 8,
81 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83
84 printk("%spci %s: [PE# %.3d] %pV",
85 level, pfix, pe->pe_number, &vaf);
86
87 va_end(args);
88 }
89
90 #define pe_err(pe, fmt, ...) \
91 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...) \
93 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...) \
95 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98
iommu_setup(char * str)99 static int __init iommu_setup(char *str)
100 {
101 if (!str)
102 return -EINVAL;
103
104 while (*str) {
105 if (!strncmp(str, "nobypass", 8)) {
106 pnv_iommu_bypass_disabled = true;
107 pr_info("PowerNV: IOMMU bypass window disabled.\n");
108 break;
109 }
110 str += strcspn(str, ",");
111 if (*str == ',')
112 str++;
113 }
114
115 return 0;
116 }
117 early_param("iommu", iommu_setup);
118
119 /*
120 * stdcix is only supposed to be used in hypervisor real mode as per
121 * the architecture spec
122 */
__raw_rm_writeq(u64 val,volatile void __iomem * paddr)123 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
124 {
125 __asm__ __volatile__("stdcix %0,0,%1"
126 : : "r" (val), "r" (paddr) : "memory");
127 }
128
pnv_pci_is_mem_pref_64(unsigned long flags)129 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
130 {
131 return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
132 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
133 }
134
pnv_ioda_reserve_pe(struct pnv_phb * phb,int pe_no)135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
138 pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 __func__, pe_no, phb->hose->global_number);
140 return;
141 }
142
143 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144 pr_debug("%s: PE %d was reserved on PHB#%x\n",
145 __func__, pe_no, phb->hose->global_number);
146
147 phb->ioda.pe_array[pe_no].phb = phb;
148 phb->ioda.pe_array[pe_no].pe_number = pe_no;
149 }
150
pnv_ioda_alloc_pe(struct pnv_phb * phb)151 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
152 {
153 unsigned long pe;
154
155 do {
156 pe = find_next_zero_bit(phb->ioda.pe_alloc,
157 phb->ioda.total_pe, 0);
158 if (pe >= phb->ioda.total_pe)
159 return IODA_INVALID_PE;
160 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
161
162 phb->ioda.pe_array[pe].phb = phb;
163 phb->ioda.pe_array[pe].pe_number = pe;
164 return pe;
165 }
166
pnv_ioda_free_pe(struct pnv_phb * phb,int pe)167 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
168 {
169 WARN_ON(phb->ioda.pe_array[pe].pdev);
170
171 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
172 clear_bit(pe, phb->ioda.pe_alloc);
173 }
174
175 /* The default M64 BAR is shared by all PEs */
pnv_ioda2_init_m64(struct pnv_phb * phb)176 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
177 {
178 const char *desc;
179 struct resource *r;
180 s64 rc;
181
182 /* Configure the default M64 BAR */
183 rc = opal_pci_set_phb_mem_window(phb->opal_id,
184 OPAL_M64_WINDOW_TYPE,
185 phb->ioda.m64_bar_idx,
186 phb->ioda.m64_base,
187 0, /* unused */
188 phb->ioda.m64_size);
189 if (rc != OPAL_SUCCESS) {
190 desc = "configuring";
191 goto fail;
192 }
193
194 /* Enable the default M64 BAR */
195 rc = opal_pci_phb_mmio_enable(phb->opal_id,
196 OPAL_M64_WINDOW_TYPE,
197 phb->ioda.m64_bar_idx,
198 OPAL_ENABLE_M64_SPLIT);
199 if (rc != OPAL_SUCCESS) {
200 desc = "enabling";
201 goto fail;
202 }
203
204 /* Mark the M64 BAR assigned */
205 set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
206
207 /*
208 * Strip off the segment used by the reserved PE, which is
209 * expected to be 0 or last one of PE capabicity.
210 */
211 r = &phb->hose->mem_resources[1];
212 if (phb->ioda.reserved_pe == 0)
213 r->start += phb->ioda.m64_segsize;
214 else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
215 r->end -= phb->ioda.m64_segsize;
216 else
217 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
218 phb->ioda.reserved_pe);
219
220 return 0;
221
222 fail:
223 pr_warn(" Failure %lld %s M64 BAR#%d\n",
224 rc, desc, phb->ioda.m64_bar_idx);
225 opal_pci_phb_mmio_enable(phb->opal_id,
226 OPAL_M64_WINDOW_TYPE,
227 phb->ioda.m64_bar_idx,
228 OPAL_DISABLE_M64);
229 return -EIO;
230 }
231
pnv_ioda2_reserve_dev_m64_pe(struct pci_dev * pdev,unsigned long * pe_bitmap)232 static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
233 unsigned long *pe_bitmap)
234 {
235 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
236 struct pnv_phb *phb = hose->private_data;
237 struct resource *r;
238 resource_size_t base, sgsz, start, end;
239 int segno, i;
240
241 base = phb->ioda.m64_base;
242 sgsz = phb->ioda.m64_segsize;
243 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
244 r = &pdev->resource[i];
245 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
246 continue;
247
248 start = _ALIGN_DOWN(r->start - base, sgsz);
249 end = _ALIGN_UP(r->end - base, sgsz);
250 for (segno = start / sgsz; segno < end / sgsz; segno++) {
251 if (pe_bitmap)
252 set_bit(segno, pe_bitmap);
253 else
254 pnv_ioda_reserve_pe(phb, segno);
255 }
256 }
257 }
258
pnv_ioda2_reserve_m64_pe(struct pci_bus * bus,unsigned long * pe_bitmap,bool all)259 static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
260 unsigned long *pe_bitmap,
261 bool all)
262 {
263 struct pci_dev *pdev;
264
265 list_for_each_entry(pdev, &bus->devices, bus_list) {
266 pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
267
268 if (all && pdev->subordinate)
269 pnv_ioda2_reserve_m64_pe(pdev->subordinate,
270 pe_bitmap, all);
271 }
272 }
273
pnv_ioda2_pick_m64_pe(struct pci_bus * bus,bool all)274 static int pnv_ioda2_pick_m64_pe(struct pci_bus *bus, bool all)
275 {
276 struct pci_controller *hose = pci_bus_to_host(bus);
277 struct pnv_phb *phb = hose->private_data;
278 struct pnv_ioda_pe *master_pe, *pe;
279 unsigned long size, *pe_alloc;
280 int i;
281
282 /* Root bus shouldn't use M64 */
283 if (pci_is_root_bus(bus))
284 return IODA_INVALID_PE;
285
286 /* Allocate bitmap */
287 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
288 pe_alloc = kzalloc(size, GFP_KERNEL);
289 if (!pe_alloc) {
290 pr_warn("%s: Out of memory !\n",
291 __func__);
292 return IODA_INVALID_PE;
293 }
294
295 /* Figure out reserved PE numbers by the PE */
296 pnv_ioda2_reserve_m64_pe(bus, pe_alloc, all);
297
298 /*
299 * the current bus might not own M64 window and that's all
300 * contributed by its child buses. For the case, we needn't
301 * pick M64 dependent PE#.
302 */
303 if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
304 kfree(pe_alloc);
305 return IODA_INVALID_PE;
306 }
307
308 /*
309 * Figure out the master PE and put all slave PEs to master
310 * PE's list to form compound PE.
311 */
312 master_pe = NULL;
313 i = -1;
314 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
315 phb->ioda.total_pe) {
316 pe = &phb->ioda.pe_array[i];
317
318 if (!master_pe) {
319 pe->flags |= PNV_IODA_PE_MASTER;
320 INIT_LIST_HEAD(&pe->slaves);
321 master_pe = pe;
322 } else {
323 pe->flags |= PNV_IODA_PE_SLAVE;
324 pe->master = master_pe;
325 list_add_tail(&pe->list, &master_pe->slaves);
326 }
327 }
328
329 kfree(pe_alloc);
330 return master_pe->pe_number;
331 }
332
pnv_ioda_parse_m64_window(struct pnv_phb * phb)333 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
334 {
335 struct pci_controller *hose = phb->hose;
336 struct device_node *dn = hose->dn;
337 struct resource *res;
338 const u32 *r;
339 u64 pci_addr;
340
341 /* FIXME: Support M64 for P7IOC */
342 if (phb->type != PNV_PHB_IODA2) {
343 pr_info(" Not support M64 window\n");
344 return;
345 }
346
347 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
348 pr_info(" Firmware too old to support M64 window\n");
349 return;
350 }
351
352 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
353 if (!r) {
354 pr_info(" No <ibm,opal-m64-window> on %s\n",
355 dn->full_name);
356 return;
357 }
358
359 res = &hose->mem_resources[1];
360 res->start = of_translate_address(dn, r + 2);
361 res->end = res->start + of_read_number(r + 4, 2) - 1;
362 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
363 pci_addr = of_read_number(r, 2);
364 hose->mem_offset[1] = res->start - pci_addr;
365
366 phb->ioda.m64_size = resource_size(res);
367 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
368 phb->ioda.m64_base = pci_addr;
369
370 pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
371 res->start, res->end, pci_addr);
372
373 /* Use last M64 BAR to cover M64 window */
374 phb->ioda.m64_bar_idx = 15;
375 phb->init_m64 = pnv_ioda2_init_m64;
376 phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
377 phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
378 }
379
pnv_ioda_freeze_pe(struct pnv_phb * phb,int pe_no)380 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
381 {
382 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
383 struct pnv_ioda_pe *slave;
384 s64 rc;
385
386 /* Fetch master PE */
387 if (pe->flags & PNV_IODA_PE_SLAVE) {
388 pe = pe->master;
389 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
390 return;
391
392 pe_no = pe->pe_number;
393 }
394
395 /* Freeze master PE */
396 rc = opal_pci_eeh_freeze_set(phb->opal_id,
397 pe_no,
398 OPAL_EEH_ACTION_SET_FREEZE_ALL);
399 if (rc != OPAL_SUCCESS) {
400 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
401 __func__, rc, phb->hose->global_number, pe_no);
402 return;
403 }
404
405 /* Freeze slave PEs */
406 if (!(pe->flags & PNV_IODA_PE_MASTER))
407 return;
408
409 list_for_each_entry(slave, &pe->slaves, list) {
410 rc = opal_pci_eeh_freeze_set(phb->opal_id,
411 slave->pe_number,
412 OPAL_EEH_ACTION_SET_FREEZE_ALL);
413 if (rc != OPAL_SUCCESS)
414 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
415 __func__, rc, phb->hose->global_number,
416 slave->pe_number);
417 }
418 }
419
pnv_ioda_unfreeze_pe(struct pnv_phb * phb,int pe_no,int opt)420 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
421 {
422 struct pnv_ioda_pe *pe, *slave;
423 s64 rc;
424
425 /* Find master PE */
426 pe = &phb->ioda.pe_array[pe_no];
427 if (pe->flags & PNV_IODA_PE_SLAVE) {
428 pe = pe->master;
429 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
430 pe_no = pe->pe_number;
431 }
432
433 /* Clear frozen state for master PE */
434 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
435 if (rc != OPAL_SUCCESS) {
436 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
437 __func__, rc, opt, phb->hose->global_number, pe_no);
438 return -EIO;
439 }
440
441 if (!(pe->flags & PNV_IODA_PE_MASTER))
442 return 0;
443
444 /* Clear frozen state for slave PEs */
445 list_for_each_entry(slave, &pe->slaves, list) {
446 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
447 slave->pe_number,
448 opt);
449 if (rc != OPAL_SUCCESS) {
450 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
451 __func__, rc, opt, phb->hose->global_number,
452 slave->pe_number);
453 return -EIO;
454 }
455 }
456
457 return 0;
458 }
459
pnv_ioda_get_pe_state(struct pnv_phb * phb,int pe_no)460 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
461 {
462 struct pnv_ioda_pe *slave, *pe;
463 u8 fstate, state;
464 __be16 pcierr;
465 s64 rc;
466
467 /* Sanity check on PE number */
468 if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
469 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
470
471 /*
472 * Fetch the master PE and the PE instance might be
473 * not initialized yet.
474 */
475 pe = &phb->ioda.pe_array[pe_no];
476 if (pe->flags & PNV_IODA_PE_SLAVE) {
477 pe = pe->master;
478 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
479 pe_no = pe->pe_number;
480 }
481
482 /* Check the master PE */
483 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
484 &state, &pcierr, NULL);
485 if (rc != OPAL_SUCCESS) {
486 pr_warn("%s: Failure %lld getting "
487 "PHB#%x-PE#%x state\n",
488 __func__, rc,
489 phb->hose->global_number, pe_no);
490 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
491 }
492
493 /* Check the slave PE */
494 if (!(pe->flags & PNV_IODA_PE_MASTER))
495 return state;
496
497 list_for_each_entry(slave, &pe->slaves, list) {
498 rc = opal_pci_eeh_freeze_status(phb->opal_id,
499 slave->pe_number,
500 &fstate,
501 &pcierr,
502 NULL);
503 if (rc != OPAL_SUCCESS) {
504 pr_warn("%s: Failure %lld getting "
505 "PHB#%x-PE#%x state\n",
506 __func__, rc,
507 phb->hose->global_number, slave->pe_number);
508 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
509 }
510
511 /*
512 * Override the result based on the ascending
513 * priority.
514 */
515 if (fstate > state)
516 state = fstate;
517 }
518
519 return state;
520 }
521
522 /* Currently those 2 are only used when MSIs are enabled, this will change
523 * but in the meantime, we need to protect them to avoid warnings
524 */
525 #ifdef CONFIG_PCI_MSI
pnv_ioda_get_pe(struct pci_dev * dev)526 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
527 {
528 struct pci_controller *hose = pci_bus_to_host(dev->bus);
529 struct pnv_phb *phb = hose->private_data;
530 struct pci_dn *pdn = pci_get_pdn(dev);
531
532 if (!pdn)
533 return NULL;
534 if (pdn->pe_number == IODA_INVALID_PE)
535 return NULL;
536 return &phb->ioda.pe_array[pdn->pe_number];
537 }
538 #endif /* CONFIG_PCI_MSI */
539
pnv_ioda_set_one_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * parent,struct pnv_ioda_pe * child,bool is_add)540 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
541 struct pnv_ioda_pe *parent,
542 struct pnv_ioda_pe *child,
543 bool is_add)
544 {
545 const char *desc = is_add ? "adding" : "removing";
546 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
547 OPAL_REMOVE_PE_FROM_DOMAIN;
548 struct pnv_ioda_pe *slave;
549 long rc;
550
551 /* Parent PE affects child PE */
552 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
553 child->pe_number, op);
554 if (rc != OPAL_SUCCESS) {
555 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
556 rc, desc);
557 return -ENXIO;
558 }
559
560 if (!(child->flags & PNV_IODA_PE_MASTER))
561 return 0;
562
563 /* Compound case: parent PE affects slave PEs */
564 list_for_each_entry(slave, &child->slaves, list) {
565 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
566 slave->pe_number, op);
567 if (rc != OPAL_SUCCESS) {
568 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
569 rc, desc);
570 return -ENXIO;
571 }
572 }
573
574 return 0;
575 }
576
pnv_ioda_set_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,bool is_add)577 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
578 struct pnv_ioda_pe *pe,
579 bool is_add)
580 {
581 struct pnv_ioda_pe *slave;
582 struct pci_dev *pdev = NULL;
583 int ret;
584
585 /*
586 * Clear PE frozen state. If it's master PE, we need
587 * clear slave PE frozen state as well.
588 */
589 if (is_add) {
590 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
591 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
592 if (pe->flags & PNV_IODA_PE_MASTER) {
593 list_for_each_entry(slave, &pe->slaves, list)
594 opal_pci_eeh_freeze_clear(phb->opal_id,
595 slave->pe_number,
596 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
597 }
598 }
599
600 /*
601 * Associate PE in PELT. We need add the PE into the
602 * corresponding PELT-V as well. Otherwise, the error
603 * originated from the PE might contribute to other
604 * PEs.
605 */
606 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
607 if (ret)
608 return ret;
609
610 /* For compound PEs, any one affects all of them */
611 if (pe->flags & PNV_IODA_PE_MASTER) {
612 list_for_each_entry(slave, &pe->slaves, list) {
613 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
614 if (ret)
615 return ret;
616 }
617 }
618
619 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
620 pdev = pe->pbus->self;
621 else if (pe->flags & PNV_IODA_PE_DEV)
622 pdev = pe->pdev->bus->self;
623 #ifdef CONFIG_PCI_IOV
624 else if (pe->flags & PNV_IODA_PE_VF)
625 pdev = pe->parent_dev;
626 #endif /* CONFIG_PCI_IOV */
627 while (pdev) {
628 struct pci_dn *pdn = pci_get_pdn(pdev);
629 struct pnv_ioda_pe *parent;
630
631 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
632 parent = &phb->ioda.pe_array[pdn->pe_number];
633 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
634 if (ret)
635 return ret;
636 }
637
638 pdev = pdev->bus->self;
639 }
640
641 return 0;
642 }
643
644 #ifdef CONFIG_PCI_IOV
pnv_ioda_deconfigure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)645 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
646 {
647 struct pci_dev *parent;
648 uint8_t bcomp, dcomp, fcomp;
649 int64_t rc;
650 long rid_end, rid;
651
652 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
653 if (pe->pbus) {
654 int count;
655
656 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
657 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
658 parent = pe->pbus->self;
659 if (pe->flags & PNV_IODA_PE_BUS_ALL)
660 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
661 else
662 count = 1;
663
664 switch(count) {
665 case 1: bcomp = OpalPciBusAll; break;
666 case 2: bcomp = OpalPciBus7Bits; break;
667 case 4: bcomp = OpalPciBus6Bits; break;
668 case 8: bcomp = OpalPciBus5Bits; break;
669 case 16: bcomp = OpalPciBus4Bits; break;
670 case 32: bcomp = OpalPciBus3Bits; break;
671 default:
672 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
673 count);
674 /* Do an exact match only */
675 bcomp = OpalPciBusAll;
676 }
677 rid_end = pe->rid + (count << 8);
678 } else {
679 if (pe->flags & PNV_IODA_PE_VF)
680 parent = pe->parent_dev;
681 else
682 parent = pe->pdev->bus->self;
683 bcomp = OpalPciBusAll;
684 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
685 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
686 rid_end = pe->rid + 1;
687 }
688
689 /* Clear the reverse map */
690 for (rid = pe->rid; rid < rid_end; rid++)
691 phb->ioda.pe_rmap[rid] = 0;
692
693 /* Release from all parents PELT-V */
694 while (parent) {
695 struct pci_dn *pdn = pci_get_pdn(parent);
696 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
697 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
698 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
699 /* XXX What to do in case of error ? */
700 }
701 parent = parent->bus->self;
702 }
703
704 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
705 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
706
707 /* Disassociate PE in PELT */
708 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
709 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
710 if (rc)
711 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
712 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
713 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
714 if (rc)
715 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
716
717 pe->pbus = NULL;
718 pe->pdev = NULL;
719 pe->parent_dev = NULL;
720
721 return 0;
722 }
723 #endif /* CONFIG_PCI_IOV */
724
pnv_ioda_configure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)725 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
726 {
727 struct pci_dev *parent;
728 uint8_t bcomp, dcomp, fcomp;
729 long rc, rid_end, rid;
730
731 /* Bus validation ? */
732 if (pe->pbus) {
733 int count;
734
735 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
736 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
737 parent = pe->pbus->self;
738 if (pe->flags & PNV_IODA_PE_BUS_ALL)
739 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
740 else
741 count = 1;
742
743 switch(count) {
744 case 1: bcomp = OpalPciBusAll; break;
745 case 2: bcomp = OpalPciBus7Bits; break;
746 case 4: bcomp = OpalPciBus6Bits; break;
747 case 8: bcomp = OpalPciBus5Bits; break;
748 case 16: bcomp = OpalPciBus4Bits; break;
749 case 32: bcomp = OpalPciBus3Bits; break;
750 default:
751 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
752 count);
753 /* Do an exact match only */
754 bcomp = OpalPciBusAll;
755 }
756 rid_end = pe->rid + (count << 8);
757 } else {
758 #ifdef CONFIG_PCI_IOV
759 if (pe->flags & PNV_IODA_PE_VF)
760 parent = pe->parent_dev;
761 else
762 #endif /* CONFIG_PCI_IOV */
763 parent = pe->pdev->bus->self;
764 bcomp = OpalPciBusAll;
765 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
766 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
767 rid_end = pe->rid + 1;
768 }
769
770 /*
771 * Associate PE in PELT. We need add the PE into the
772 * corresponding PELT-V as well. Otherwise, the error
773 * originated from the PE might contribute to other
774 * PEs.
775 */
776 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
777 bcomp, dcomp, fcomp, OPAL_MAP_PE);
778 if (rc) {
779 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
780 return -ENXIO;
781 }
782
783 /* Configure PELTV */
784 pnv_ioda_set_peltv(phb, pe, true);
785
786 /* Setup reverse map */
787 for (rid = pe->rid; rid < rid_end; rid++)
788 phb->ioda.pe_rmap[rid] = pe->pe_number;
789
790 /* Setup one MVTs on IODA1 */
791 if (phb->type != PNV_PHB_IODA1) {
792 pe->mve_number = 0;
793 goto out;
794 }
795
796 pe->mve_number = pe->pe_number;
797 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
798 if (rc != OPAL_SUCCESS) {
799 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
800 rc, pe->mve_number);
801 pe->mve_number = -1;
802 } else {
803 rc = opal_pci_set_mve_enable(phb->opal_id,
804 pe->mve_number, OPAL_ENABLE_MVE);
805 if (rc) {
806 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
807 rc, pe->mve_number);
808 pe->mve_number = -1;
809 }
810 }
811
812 out:
813 return 0;
814 }
815
pnv_ioda_link_pe_by_weight(struct pnv_phb * phb,struct pnv_ioda_pe * pe)816 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
817 struct pnv_ioda_pe *pe)
818 {
819 struct pnv_ioda_pe *lpe;
820
821 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
822 if (lpe->dma_weight < pe->dma_weight) {
823 list_add_tail(&pe->dma_link, &lpe->dma_link);
824 return;
825 }
826 }
827 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
828 }
829
pnv_ioda_dma_weight(struct pci_dev * dev)830 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
831 {
832 /* This is quite simplistic. The "base" weight of a device
833 * is 10. 0 means no DMA is to be accounted for it.
834 */
835
836 /* If it's a bridge, no DMA */
837 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
838 return 0;
839
840 /* Reduce the weight of slow USB controllers */
841 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
842 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
843 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
844 return 3;
845
846 /* Increase the weight of RAID (includes Obsidian) */
847 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
848 return 15;
849
850 /* Default */
851 return 10;
852 }
853
854 #ifdef CONFIG_PCI_IOV
pnv_pci_vf_resource_shift(struct pci_dev * dev,int offset)855 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
856 {
857 struct pci_dn *pdn = pci_get_pdn(dev);
858 int i;
859 struct resource *res, res2;
860 resource_size_t size;
861 u16 num_vfs;
862
863 if (!dev->is_physfn)
864 return -EINVAL;
865
866 /*
867 * "offset" is in VFs. The M64 windows are sized so that when they
868 * are segmented, each segment is the same size as the IOV BAR.
869 * Each segment is in a separate PE, and the high order bits of the
870 * address are the PE number. Therefore, each VF's BAR is in a
871 * separate PE, and changing the IOV BAR start address changes the
872 * range of PEs the VFs are in.
873 */
874 num_vfs = pdn->num_vfs;
875 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
876 res = &dev->resource[i + PCI_IOV_RESOURCES];
877 if (!res->flags || !res->parent)
878 continue;
879
880 if (!pnv_pci_is_mem_pref_64(res->flags))
881 continue;
882
883 /*
884 * The actual IOV BAR range is determined by the start address
885 * and the actual size for num_vfs VFs BAR. This check is to
886 * make sure that after shifting, the range will not overlap
887 * with another device.
888 */
889 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
890 res2.flags = res->flags;
891 res2.start = res->start + (size * offset);
892 res2.end = res2.start + (size * num_vfs) - 1;
893
894 if (res2.end > res->end) {
895 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
896 i, &res2, res, num_vfs, offset);
897 return -EBUSY;
898 }
899 }
900
901 /*
902 * After doing so, there would be a "hole" in the /proc/iomem when
903 * offset is a positive value. It looks like the device return some
904 * mmio back to the system, which actually no one could use it.
905 */
906 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
907 res = &dev->resource[i + PCI_IOV_RESOURCES];
908 if (!res->flags || !res->parent)
909 continue;
910
911 if (!pnv_pci_is_mem_pref_64(res->flags))
912 continue;
913
914 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
915 res2 = *res;
916 res->start += size * offset;
917
918 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
919 i, &res2, res, (offset > 0) ? "En" : "Dis",
920 num_vfs, offset);
921 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
922 }
923 return 0;
924 }
925 #endif /* CONFIG_PCI_IOV */
926
927 #if 0
928 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
929 {
930 struct pci_controller *hose = pci_bus_to_host(dev->bus);
931 struct pnv_phb *phb = hose->private_data;
932 struct pci_dn *pdn = pci_get_pdn(dev);
933 struct pnv_ioda_pe *pe;
934 int pe_num;
935
936 if (!pdn) {
937 pr_err("%s: Device tree node not associated properly\n",
938 pci_name(dev));
939 return NULL;
940 }
941 if (pdn->pe_number != IODA_INVALID_PE)
942 return NULL;
943
944 /* PE#0 has been pre-set */
945 if (dev->bus->number == 0)
946 pe_num = 0;
947 else
948 pe_num = pnv_ioda_alloc_pe(phb);
949 if (pe_num == IODA_INVALID_PE) {
950 pr_warning("%s: Not enough PE# available, disabling device\n",
951 pci_name(dev));
952 return NULL;
953 }
954
955 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
956 * pointer in the PE data structure, both should be destroyed at the
957 * same time. However, this needs to be looked at more closely again
958 * once we actually start removing things (Hotplug, SR-IOV, ...)
959 *
960 * At some point we want to remove the PDN completely anyways
961 */
962 pe = &phb->ioda.pe_array[pe_num];
963 pci_dev_get(dev);
964 pdn->pcidev = dev;
965 pdn->pe_number = pe_num;
966 pe->pdev = dev;
967 pe->pbus = NULL;
968 pe->tce32_seg = -1;
969 pe->mve_number = -1;
970 pe->rid = dev->bus->number << 8 | pdn->devfn;
971
972 pe_info(pe, "Associated device to PE\n");
973
974 if (pnv_ioda_configure_pe(phb, pe)) {
975 /* XXX What do we do here ? */
976 if (pe_num)
977 pnv_ioda_free_pe(phb, pe_num);
978 pdn->pe_number = IODA_INVALID_PE;
979 pe->pdev = NULL;
980 pci_dev_put(dev);
981 return NULL;
982 }
983
984 /* Assign a DMA weight to the device */
985 pe->dma_weight = pnv_ioda_dma_weight(dev);
986 if (pe->dma_weight != 0) {
987 phb->ioda.dma_weight += pe->dma_weight;
988 phb->ioda.dma_pe_count++;
989 }
990
991 /* Link the PE */
992 pnv_ioda_link_pe_by_weight(phb, pe);
993
994 return pe;
995 }
996 #endif /* Useful for SRIOV case */
997
pnv_ioda_setup_same_PE(struct pci_bus * bus,struct pnv_ioda_pe * pe)998 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
999 {
1000 struct pci_dev *dev;
1001
1002 list_for_each_entry(dev, &bus->devices, bus_list) {
1003 struct pci_dn *pdn = pci_get_pdn(dev);
1004
1005 if (pdn == NULL) {
1006 pr_warn("%s: No device node associated with device !\n",
1007 pci_name(dev));
1008 continue;
1009 }
1010 pdn->pe_number = pe->pe_number;
1011 pe->dma_weight += pnv_ioda_dma_weight(dev);
1012 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1013 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1014 }
1015 }
1016
1017 /*
1018 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1019 * single PCI bus. Another one that contains the primary PCI bus and its
1020 * subordinate PCI devices and buses. The second type of PE is normally
1021 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1022 */
pnv_ioda_setup_bus_PE(struct pci_bus * bus,bool all)1023 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1024 {
1025 struct pci_controller *hose = pci_bus_to_host(bus);
1026 struct pnv_phb *phb = hose->private_data;
1027 struct pnv_ioda_pe *pe;
1028 int pe_num = IODA_INVALID_PE;
1029
1030 /* Check if PE is determined by M64 */
1031 if (phb->pick_m64_pe)
1032 pe_num = phb->pick_m64_pe(bus, all);
1033
1034 /* The PE number isn't pinned by M64 */
1035 if (pe_num == IODA_INVALID_PE)
1036 pe_num = pnv_ioda_alloc_pe(phb);
1037
1038 if (pe_num == IODA_INVALID_PE) {
1039 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1040 __func__, pci_domain_nr(bus), bus->number);
1041 return;
1042 }
1043
1044 pe = &phb->ioda.pe_array[pe_num];
1045 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1046 pe->pbus = bus;
1047 pe->pdev = NULL;
1048 pe->tce32_seg = -1;
1049 pe->mve_number = -1;
1050 pe->rid = bus->busn_res.start << 8;
1051 pe->dma_weight = 0;
1052
1053 if (all)
1054 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1055 bus->busn_res.start, bus->busn_res.end, pe_num);
1056 else
1057 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1058 bus->busn_res.start, pe_num);
1059
1060 if (pnv_ioda_configure_pe(phb, pe)) {
1061 /* XXX What do we do here ? */
1062 if (pe_num)
1063 pnv_ioda_free_pe(phb, pe_num);
1064 pe->pbus = NULL;
1065 return;
1066 }
1067
1068 /* Associate it with all child devices */
1069 pnv_ioda_setup_same_PE(bus, pe);
1070
1071 /* Put PE to the list */
1072 list_add_tail(&pe->list, &phb->ioda.pe_list);
1073
1074 /* Account for one DMA PE if at least one DMA capable device exist
1075 * below the bridge
1076 */
1077 if (pe->dma_weight != 0) {
1078 phb->ioda.dma_weight += pe->dma_weight;
1079 phb->ioda.dma_pe_count++;
1080 }
1081
1082 /* Link the PE */
1083 pnv_ioda_link_pe_by_weight(phb, pe);
1084 }
1085
pnv_ioda_setup_PEs(struct pci_bus * bus)1086 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1087 {
1088 struct pci_dev *dev;
1089
1090 pnv_ioda_setup_bus_PE(bus, false);
1091
1092 list_for_each_entry(dev, &bus->devices, bus_list) {
1093 if (dev->subordinate) {
1094 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1095 pnv_ioda_setup_bus_PE(dev->subordinate, true);
1096 else
1097 pnv_ioda_setup_PEs(dev->subordinate);
1098 }
1099 }
1100 }
1101
1102 /*
1103 * Configure PEs so that the downstream PCI buses and devices
1104 * could have their associated PE#. Unfortunately, we didn't
1105 * figure out the way to identify the PLX bridge yet. So we
1106 * simply put the PCI bus and the subordinate behind the root
1107 * port to PE# here. The game rule here is expected to be changed
1108 * as soon as we can detected PLX bridge correctly.
1109 */
pnv_pci_ioda_setup_PEs(void)1110 static void pnv_pci_ioda_setup_PEs(void)
1111 {
1112 struct pci_controller *hose, *tmp;
1113 struct pnv_phb *phb;
1114
1115 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1116 phb = hose->private_data;
1117
1118 /* M64 layout might affect PE allocation */
1119 if (phb->reserve_m64_pe)
1120 phb->reserve_m64_pe(hose->bus, NULL, true);
1121
1122 pnv_ioda_setup_PEs(hose->bus);
1123 }
1124 }
1125
1126 #ifdef CONFIG_PCI_IOV
pnv_pci_vf_release_m64(struct pci_dev * pdev)1127 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1128 {
1129 struct pci_bus *bus;
1130 struct pci_controller *hose;
1131 struct pnv_phb *phb;
1132 struct pci_dn *pdn;
1133 int i, j;
1134
1135 bus = pdev->bus;
1136 hose = pci_bus_to_host(bus);
1137 phb = hose->private_data;
1138 pdn = pci_get_pdn(pdev);
1139
1140 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1141 for (j = 0; j < M64_PER_IOV; j++) {
1142 if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1143 continue;
1144 opal_pci_phb_mmio_enable(phb->opal_id,
1145 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1146 clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1147 pdn->m64_wins[i][j] = IODA_INVALID_M64;
1148 }
1149
1150 return 0;
1151 }
1152
pnv_pci_vf_assign_m64(struct pci_dev * pdev,u16 num_vfs)1153 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1154 {
1155 struct pci_bus *bus;
1156 struct pci_controller *hose;
1157 struct pnv_phb *phb;
1158 struct pci_dn *pdn;
1159 unsigned int win;
1160 struct resource *res;
1161 int i, j;
1162 int64_t rc;
1163 int total_vfs;
1164 resource_size_t size, start;
1165 int pe_num;
1166 int vf_groups;
1167 int vf_per_group;
1168
1169 bus = pdev->bus;
1170 hose = pci_bus_to_host(bus);
1171 phb = hose->private_data;
1172 pdn = pci_get_pdn(pdev);
1173 total_vfs = pci_sriov_get_totalvfs(pdev);
1174
1175 /* Initialize the m64_wins to IODA_INVALID_M64 */
1176 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1177 for (j = 0; j < M64_PER_IOV; j++)
1178 pdn->m64_wins[i][j] = IODA_INVALID_M64;
1179
1180 if (pdn->m64_per_iov == M64_PER_IOV) {
1181 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1182 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1183 roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1184 } else {
1185 vf_groups = 1;
1186 vf_per_group = 1;
1187 }
1188
1189 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1190 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1191 if (!res->flags || !res->parent)
1192 continue;
1193
1194 if (!pnv_pci_is_mem_pref_64(res->flags))
1195 continue;
1196
1197 for (j = 0; j < vf_groups; j++) {
1198 do {
1199 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1200 phb->ioda.m64_bar_idx + 1, 0);
1201
1202 if (win >= phb->ioda.m64_bar_idx + 1)
1203 goto m64_failed;
1204 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1205
1206 pdn->m64_wins[i][j] = win;
1207
1208 if (pdn->m64_per_iov == M64_PER_IOV) {
1209 size = pci_iov_resource_size(pdev,
1210 PCI_IOV_RESOURCES + i);
1211 size = size * vf_per_group;
1212 start = res->start + size * j;
1213 } else {
1214 size = resource_size(res);
1215 start = res->start;
1216 }
1217
1218 /* Map the M64 here */
1219 if (pdn->m64_per_iov == M64_PER_IOV) {
1220 pe_num = pdn->offset + j;
1221 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1222 pe_num, OPAL_M64_WINDOW_TYPE,
1223 pdn->m64_wins[i][j], 0);
1224 }
1225
1226 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1227 OPAL_M64_WINDOW_TYPE,
1228 pdn->m64_wins[i][j],
1229 start,
1230 0, /* unused */
1231 size);
1232
1233
1234 if (rc != OPAL_SUCCESS) {
1235 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1236 win, rc);
1237 goto m64_failed;
1238 }
1239
1240 if (pdn->m64_per_iov == M64_PER_IOV)
1241 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1242 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1243 else
1244 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1245 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1246
1247 if (rc != OPAL_SUCCESS) {
1248 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1249 win, rc);
1250 goto m64_failed;
1251 }
1252 }
1253 }
1254 return 0;
1255
1256 m64_failed:
1257 pnv_pci_vf_release_m64(pdev);
1258 return -EBUSY;
1259 }
1260
1261 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1262 int num);
1263 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1264
pnv_pci_ioda2_release_dma_pe(struct pci_dev * dev,struct pnv_ioda_pe * pe)1265 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1266 {
1267 struct iommu_table *tbl;
1268 int64_t rc;
1269
1270 tbl = pe->table_group.tables[0];
1271 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1272 if (rc)
1273 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1274
1275 pnv_pci_ioda2_set_bypass(pe, false);
1276 if (pe->table_group.group) {
1277 iommu_group_put(pe->table_group.group);
1278 BUG_ON(pe->table_group.group);
1279 }
1280 pnv_pci_ioda2_table_free_pages(tbl);
1281 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1282 }
1283
pnv_ioda_release_vf_PE(struct pci_dev * pdev,u16 num_vfs)1284 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1285 {
1286 struct pci_bus *bus;
1287 struct pci_controller *hose;
1288 struct pnv_phb *phb;
1289 struct pnv_ioda_pe *pe, *pe_n;
1290 struct pci_dn *pdn;
1291 u16 vf_index;
1292 int64_t rc;
1293
1294 bus = pdev->bus;
1295 hose = pci_bus_to_host(bus);
1296 phb = hose->private_data;
1297 pdn = pci_get_pdn(pdev);
1298
1299 if (!pdev->is_physfn)
1300 return;
1301
1302 if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1303 int vf_group;
1304 int vf_per_group;
1305 int vf_index1;
1306
1307 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1308
1309 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1310 for (vf_index = vf_group * vf_per_group;
1311 vf_index < (vf_group + 1) * vf_per_group &&
1312 vf_index < num_vfs;
1313 vf_index++)
1314 for (vf_index1 = vf_group * vf_per_group;
1315 vf_index1 < (vf_group + 1) * vf_per_group &&
1316 vf_index1 < num_vfs;
1317 vf_index1++){
1318
1319 rc = opal_pci_set_peltv(phb->opal_id,
1320 pdn->offset + vf_index,
1321 pdn->offset + vf_index1,
1322 OPAL_REMOVE_PE_FROM_DOMAIN);
1323
1324 if (rc)
1325 dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1326 __func__,
1327 pdn->offset + vf_index1, rc);
1328 }
1329 }
1330
1331 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1332 if (pe->parent_dev != pdev)
1333 continue;
1334
1335 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1336
1337 /* Remove from list */
1338 mutex_lock(&phb->ioda.pe_list_mutex);
1339 list_del(&pe->list);
1340 mutex_unlock(&phb->ioda.pe_list_mutex);
1341
1342 pnv_ioda_deconfigure_pe(phb, pe);
1343
1344 pnv_ioda_free_pe(phb, pe->pe_number);
1345 }
1346 }
1347
pnv_pci_sriov_disable(struct pci_dev * pdev)1348 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1349 {
1350 struct pci_bus *bus;
1351 struct pci_controller *hose;
1352 struct pnv_phb *phb;
1353 struct pci_dn *pdn;
1354 struct pci_sriov *iov;
1355 u16 num_vfs;
1356
1357 bus = pdev->bus;
1358 hose = pci_bus_to_host(bus);
1359 phb = hose->private_data;
1360 pdn = pci_get_pdn(pdev);
1361 iov = pdev->sriov;
1362 num_vfs = pdn->num_vfs;
1363
1364 /* Release VF PEs */
1365 pnv_ioda_release_vf_PE(pdev, num_vfs);
1366
1367 if (phb->type == PNV_PHB_IODA2) {
1368 if (pdn->m64_per_iov == 1)
1369 pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1370
1371 /* Release M64 windows */
1372 pnv_pci_vf_release_m64(pdev);
1373
1374 /* Release PE numbers */
1375 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1376 pdn->offset = 0;
1377 }
1378 }
1379
1380 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1381 struct pnv_ioda_pe *pe);
pnv_ioda_setup_vf_PE(struct pci_dev * pdev,u16 num_vfs)1382 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1383 {
1384 struct pci_bus *bus;
1385 struct pci_controller *hose;
1386 struct pnv_phb *phb;
1387 struct pnv_ioda_pe *pe;
1388 int pe_num;
1389 u16 vf_index;
1390 struct pci_dn *pdn;
1391 int64_t rc;
1392
1393 bus = pdev->bus;
1394 hose = pci_bus_to_host(bus);
1395 phb = hose->private_data;
1396 pdn = pci_get_pdn(pdev);
1397
1398 if (!pdev->is_physfn)
1399 return;
1400
1401 /* Reserve PE for each VF */
1402 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1403 pe_num = pdn->offset + vf_index;
1404
1405 pe = &phb->ioda.pe_array[pe_num];
1406 pe->pe_number = pe_num;
1407 pe->phb = phb;
1408 pe->flags = PNV_IODA_PE_VF;
1409 pe->pbus = NULL;
1410 pe->parent_dev = pdev;
1411 pe->tce32_seg = -1;
1412 pe->mve_number = -1;
1413 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1414 pci_iov_virtfn_devfn(pdev, vf_index);
1415
1416 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1417 hose->global_number, pdev->bus->number,
1418 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1419 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1420
1421 if (pnv_ioda_configure_pe(phb, pe)) {
1422 /* XXX What do we do here ? */
1423 if (pe_num)
1424 pnv_ioda_free_pe(phb, pe_num);
1425 pe->pdev = NULL;
1426 continue;
1427 }
1428
1429 /* Put PE to the list */
1430 mutex_lock(&phb->ioda.pe_list_mutex);
1431 list_add_tail(&pe->list, &phb->ioda.pe_list);
1432 mutex_unlock(&phb->ioda.pe_list_mutex);
1433
1434 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1435 }
1436
1437 if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1438 int vf_group;
1439 int vf_per_group;
1440 int vf_index1;
1441
1442 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1443
1444 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1445 for (vf_index = vf_group * vf_per_group;
1446 vf_index < (vf_group + 1) * vf_per_group &&
1447 vf_index < num_vfs;
1448 vf_index++) {
1449 for (vf_index1 = vf_group * vf_per_group;
1450 vf_index1 < (vf_group + 1) * vf_per_group &&
1451 vf_index1 < num_vfs;
1452 vf_index1++) {
1453
1454 rc = opal_pci_set_peltv(phb->opal_id,
1455 pdn->offset + vf_index,
1456 pdn->offset + vf_index1,
1457 OPAL_ADD_PE_TO_DOMAIN);
1458
1459 if (rc)
1460 dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1461 __func__,
1462 pdn->offset + vf_index1, rc);
1463 }
1464 }
1465 }
1466 }
1467 }
1468
pnv_pci_sriov_enable(struct pci_dev * pdev,u16 num_vfs)1469 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1470 {
1471 struct pci_bus *bus;
1472 struct pci_controller *hose;
1473 struct pnv_phb *phb;
1474 struct pci_dn *pdn;
1475 int ret;
1476
1477 bus = pdev->bus;
1478 hose = pci_bus_to_host(bus);
1479 phb = hose->private_data;
1480 pdn = pci_get_pdn(pdev);
1481
1482 if (phb->type == PNV_PHB_IODA2) {
1483 /* Calculate available PE for required VFs */
1484 mutex_lock(&phb->ioda.pe_alloc_mutex);
1485 pdn->offset = bitmap_find_next_zero_area(
1486 phb->ioda.pe_alloc, phb->ioda.total_pe,
1487 0, num_vfs, 0);
1488 if (pdn->offset >= phb->ioda.total_pe) {
1489 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1490 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1491 pdn->offset = 0;
1492 return -EBUSY;
1493 }
1494 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1495 pdn->num_vfs = num_vfs;
1496 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1497
1498 /* Assign M64 window accordingly */
1499 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1500 if (ret) {
1501 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1502 goto m64_failed;
1503 }
1504
1505 /*
1506 * When using one M64 BAR to map one IOV BAR, we need to shift
1507 * the IOV BAR according to the PE# allocated to the VFs.
1508 * Otherwise, the PE# for the VF will conflict with others.
1509 */
1510 if (pdn->m64_per_iov == 1) {
1511 ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1512 if (ret)
1513 goto m64_failed;
1514 }
1515 }
1516
1517 /* Setup VF PEs */
1518 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1519
1520 return 0;
1521
1522 m64_failed:
1523 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1524 pdn->offset = 0;
1525
1526 return ret;
1527 }
1528
pcibios_sriov_disable(struct pci_dev * pdev)1529 int pcibios_sriov_disable(struct pci_dev *pdev)
1530 {
1531 pnv_pci_sriov_disable(pdev);
1532
1533 /* Release PCI data */
1534 remove_dev_pci_data(pdev);
1535 return 0;
1536 }
1537
pcibios_sriov_enable(struct pci_dev * pdev,u16 num_vfs)1538 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1539 {
1540 /* Allocate PCI data */
1541 add_dev_pci_data(pdev);
1542
1543 pnv_pci_sriov_enable(pdev, num_vfs);
1544 return 0;
1545 }
1546 #endif /* CONFIG_PCI_IOV */
1547
pnv_pci_ioda_dma_dev_setup(struct pnv_phb * phb,struct pci_dev * pdev)1548 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1549 {
1550 struct pci_dn *pdn = pci_get_pdn(pdev);
1551 struct pnv_ioda_pe *pe;
1552
1553 /*
1554 * The function can be called while the PE#
1555 * hasn't been assigned. Do nothing for the
1556 * case.
1557 */
1558 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1559 return;
1560
1561 pe = &phb->ioda.pe_array[pdn->pe_number];
1562 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1563 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1564 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1565 /*
1566 * Note: iommu_add_device() will fail here as
1567 * for physical PE: the device is already added by now;
1568 * for virtual PE: sysfs entries are not ready yet and
1569 * tce_iommu_bus_notifier will add the device to a group later.
1570 */
1571 }
1572
pnv_pci_ioda_dma_set_mask(struct pci_dev * pdev,u64 dma_mask)1573 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1574 {
1575 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1576 struct pnv_phb *phb = hose->private_data;
1577 struct pci_dn *pdn = pci_get_pdn(pdev);
1578 struct pnv_ioda_pe *pe;
1579 uint64_t top;
1580 bool bypass = false;
1581
1582 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1583 return -ENODEV;;
1584
1585 pe = &phb->ioda.pe_array[pdn->pe_number];
1586 if (pe->tce_bypass_enabled) {
1587 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1588 bypass = (dma_mask >= top);
1589 }
1590
1591 if (bypass) {
1592 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1593 set_dma_ops(&pdev->dev, &dma_direct_ops);
1594 } else {
1595 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1596 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1597 }
1598 *pdev->dev.dma_mask = dma_mask;
1599 return 0;
1600 }
1601
pnv_pci_ioda_dma_get_required_mask(struct pci_dev * pdev)1602 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1603 {
1604 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1605 struct pnv_phb *phb = hose->private_data;
1606 struct pci_dn *pdn = pci_get_pdn(pdev);
1607 struct pnv_ioda_pe *pe;
1608 u64 end, mask;
1609
1610 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1611 return 0;
1612
1613 pe = &phb->ioda.pe_array[pdn->pe_number];
1614 if (!pe->tce_bypass_enabled)
1615 return __dma_get_required_mask(&pdev->dev);
1616
1617
1618 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1619 mask = 1ULL << (fls64(end) - 1);
1620 mask += mask - 1;
1621
1622 return mask;
1623 }
1624
pnv_ioda_setup_bus_dma(struct pnv_ioda_pe * pe,struct pci_bus * bus)1625 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1626 struct pci_bus *bus)
1627 {
1628 struct pci_dev *dev;
1629
1630 list_for_each_entry(dev, &bus->devices, bus_list) {
1631 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1632 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1633 iommu_add_device(&dev->dev);
1634
1635 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1636 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1637 }
1638 }
1639
pnv_pci_ioda1_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages,bool rm)1640 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1641 unsigned long index, unsigned long npages, bool rm)
1642 {
1643 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1644 &tbl->it_group_list, struct iommu_table_group_link,
1645 next);
1646 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1647 struct pnv_ioda_pe, table_group);
1648 __be64 __iomem *invalidate = rm ?
1649 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1650 pe->phb->ioda.tce_inval_reg;
1651 unsigned long start, end, inc;
1652 const unsigned shift = tbl->it_page_shift;
1653
1654 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1655 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1656 npages - 1);
1657
1658 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1659 if (tbl->it_busno) {
1660 start <<= shift;
1661 end <<= shift;
1662 inc = 128ull << shift;
1663 start |= tbl->it_busno;
1664 end |= tbl->it_busno;
1665 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1666 /* p7ioc-style invalidation, 2 TCEs per write */
1667 start |= (1ull << 63);
1668 end |= (1ull << 63);
1669 inc = 16;
1670 } else {
1671 /* Default (older HW) */
1672 inc = 128;
1673 }
1674
1675 end |= inc - 1; /* round up end to be different than start */
1676
1677 mb(); /* Ensure above stores are visible */
1678 while (start <= end) {
1679 if (rm)
1680 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1681 else
1682 __raw_writeq(cpu_to_be64(start), invalidate);
1683 start += inc;
1684 }
1685
1686 /*
1687 * The iommu layer will do another mb() for us on build()
1688 * and we don't care on free()
1689 */
1690 }
1691
pnv_ioda1_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,struct dma_attrs * attrs)1692 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1693 long npages, unsigned long uaddr,
1694 enum dma_data_direction direction,
1695 struct dma_attrs *attrs)
1696 {
1697 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1698 attrs);
1699
1700 if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1701 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1702
1703 return ret;
1704 }
1705
1706 #ifdef CONFIG_IOMMU_API
pnv_ioda1_tce_xchg(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)1707 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1708 unsigned long *hpa, enum dma_data_direction *direction)
1709 {
1710 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1711
1712 if (!ret && (tbl->it_type &
1713 (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1714 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1715
1716 return ret;
1717 }
1718 #endif
1719
pnv_ioda1_tce_free(struct iommu_table * tbl,long index,long npages)1720 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1721 long npages)
1722 {
1723 pnv_tce_free(tbl, index, npages);
1724
1725 if (tbl->it_type & TCE_PCI_SWINV_FREE)
1726 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1727 }
1728
1729 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1730 .set = pnv_ioda1_tce_build,
1731 #ifdef CONFIG_IOMMU_API
1732 .exchange = pnv_ioda1_tce_xchg,
1733 #endif
1734 .clear = pnv_ioda1_tce_free,
1735 .get = pnv_tce_get,
1736 };
1737
pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe * pe)1738 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1739 {
1740 /* 01xb - invalidate TCEs that match the specified PE# */
1741 unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1742 struct pnv_phb *phb = pe->phb;
1743
1744 if (!phb->ioda.tce_inval_reg)
1745 return;
1746
1747 mb(); /* Ensure above stores are visible */
1748 __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1749 }
1750
pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number,bool rm,__be64 __iomem * invalidate,unsigned shift,unsigned long index,unsigned long npages)1751 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1752 __be64 __iomem *invalidate, unsigned shift,
1753 unsigned long index, unsigned long npages)
1754 {
1755 unsigned long start, end, inc;
1756
1757 /* We'll invalidate DMA address in PE scope */
1758 start = 0x2ull << 60;
1759 start |= (pe_number & 0xFF);
1760 end = start;
1761
1762 /* Figure out the start, end and step */
1763 start |= (index << shift);
1764 end |= ((index + npages - 1) << shift);
1765 inc = (0x1ull << shift);
1766 mb();
1767
1768 while (start <= end) {
1769 if (rm)
1770 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1771 else
1772 __raw_writeq(cpu_to_be64(start), invalidate);
1773 start += inc;
1774 }
1775 }
1776
pnv_pci_ioda2_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages,bool rm)1777 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1778 unsigned long index, unsigned long npages, bool rm)
1779 {
1780 struct iommu_table_group_link *tgl;
1781
1782 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1783 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1784 struct pnv_ioda_pe, table_group);
1785 __be64 __iomem *invalidate = rm ?
1786 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1787 pe->phb->ioda.tce_inval_reg;
1788
1789 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1790 invalidate, tbl->it_page_shift,
1791 index, npages);
1792 }
1793 }
1794
pnv_ioda2_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,struct dma_attrs * attrs)1795 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1796 long npages, unsigned long uaddr,
1797 enum dma_data_direction direction,
1798 struct dma_attrs *attrs)
1799 {
1800 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1801 attrs);
1802
1803 if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1804 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1805
1806 return ret;
1807 }
1808
1809 #ifdef CONFIG_IOMMU_API
pnv_ioda2_tce_xchg(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)1810 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1811 unsigned long *hpa, enum dma_data_direction *direction)
1812 {
1813 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1814
1815 if (!ret && (tbl->it_type &
1816 (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1817 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1818
1819 return ret;
1820 }
1821 #endif
1822
pnv_ioda2_tce_free(struct iommu_table * tbl,long index,long npages)1823 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1824 long npages)
1825 {
1826 pnv_tce_free(tbl, index, npages);
1827
1828 if (tbl->it_type & TCE_PCI_SWINV_FREE)
1829 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1830 }
1831
pnv_ioda2_table_free(struct iommu_table * tbl)1832 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1833 {
1834 pnv_pci_ioda2_table_free_pages(tbl);
1835 iommu_free_table(tbl, "pnv");
1836 }
1837
1838 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1839 .set = pnv_ioda2_tce_build,
1840 #ifdef CONFIG_IOMMU_API
1841 .exchange = pnv_ioda2_tce_xchg,
1842 #endif
1843 .clear = pnv_ioda2_tce_free,
1844 .get = pnv_tce_get,
1845 .free = pnv_ioda2_table_free,
1846 };
1847
pnv_pci_ioda_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe,unsigned int base,unsigned int segs)1848 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1849 struct pnv_ioda_pe *pe, unsigned int base,
1850 unsigned int segs)
1851 {
1852
1853 struct page *tce_mem = NULL;
1854 struct iommu_table *tbl;
1855 unsigned int i;
1856 int64_t rc;
1857 void *addr;
1858
1859 /* XXX FIXME: Handle 64-bit only DMA devices */
1860 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1861 /* XXX FIXME: Allocate multi-level tables on PHB3 */
1862
1863 /* We shouldn't already have a 32-bit DMA associated */
1864 if (WARN_ON(pe->tce32_seg >= 0))
1865 return;
1866
1867 tbl = pnv_pci_table_alloc(phb->hose->node);
1868 iommu_register_group(&pe->table_group, phb->hose->global_number,
1869 pe->pe_number);
1870 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1871
1872 /* Grab a 32-bit TCE table */
1873 pe->tce32_seg = base;
1874 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1875 (base << 28), ((base + segs) << 28) - 1);
1876
1877 /* XXX Currently, we allocate one big contiguous table for the
1878 * TCEs. We only really need one chunk per 256M of TCE space
1879 * (ie per segment) but that's an optimization for later, it
1880 * requires some added smarts with our get/put_tce implementation
1881 */
1882 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1883 get_order(TCE32_TABLE_SIZE * segs));
1884 if (!tce_mem) {
1885 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1886 goto fail;
1887 }
1888 addr = page_address(tce_mem);
1889 memset(addr, 0, TCE32_TABLE_SIZE * segs);
1890
1891 /* Configure HW */
1892 for (i = 0; i < segs; i++) {
1893 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1894 pe->pe_number,
1895 base + i, 1,
1896 __pa(addr) + TCE32_TABLE_SIZE * i,
1897 TCE32_TABLE_SIZE, 0x1000);
1898 if (rc) {
1899 pe_err(pe, " Failed to configure 32-bit TCE table,"
1900 " err %ld\n", rc);
1901 goto fail;
1902 }
1903 }
1904
1905 /* Setup linux iommu table */
1906 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1907 base << 28, IOMMU_PAGE_SHIFT_4K);
1908
1909 /* OPAL variant of P7IOC SW invalidated TCEs */
1910 if (phb->ioda.tce_inval_reg)
1911 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1912 TCE_PCI_SWINV_FREE |
1913 TCE_PCI_SWINV_PAIR);
1914
1915 tbl->it_ops = &pnv_ioda1_iommu_ops;
1916 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1917 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1918 iommu_init_table(tbl, phb->hose->node);
1919
1920 if (pe->flags & PNV_IODA_PE_DEV) {
1921 /*
1922 * Setting table base here only for carrying iommu_group
1923 * further down to let iommu_add_device() do the job.
1924 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1925 */
1926 set_iommu_table_base(&pe->pdev->dev, tbl);
1927 iommu_add_device(&pe->pdev->dev);
1928 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1929 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1930
1931 return;
1932 fail:
1933 /* XXX Failure: Try to fallback to 64-bit only ? */
1934 if (pe->tce32_seg >= 0)
1935 pe->tce32_seg = -1;
1936 if (tce_mem)
1937 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1938 if (tbl) {
1939 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1940 iommu_free_table(tbl, "pnv");
1941 }
1942 }
1943
pnv_pci_ioda2_set_window(struct iommu_table_group * table_group,int num,struct iommu_table * tbl)1944 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1945 int num, struct iommu_table *tbl)
1946 {
1947 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1948 table_group);
1949 struct pnv_phb *phb = pe->phb;
1950 int64_t rc;
1951 const unsigned long size = tbl->it_indirect_levels ?
1952 tbl->it_level_size : tbl->it_size;
1953 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1954 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1955
1956 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
1957 start_addr, start_addr + win_size - 1,
1958 IOMMU_PAGE_SIZE(tbl));
1959
1960 /*
1961 * Map TCE table through TVT. The TVE index is the PE number
1962 * shifted by 1 bit for 32-bits DMA space.
1963 */
1964 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1965 pe->pe_number,
1966 (pe->pe_number << 1) + num,
1967 tbl->it_indirect_levels + 1,
1968 __pa(tbl->it_base),
1969 size << 3,
1970 IOMMU_PAGE_SIZE(tbl));
1971 if (rc) {
1972 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
1973 return rc;
1974 }
1975
1976 pnv_pci_link_table_and_group(phb->hose->node, num,
1977 tbl, &pe->table_group);
1978 pnv_pci_ioda2_tce_invalidate_entire(pe);
1979
1980 return 0;
1981 }
1982
pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe * pe,bool enable)1983 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1984 {
1985 uint16_t window_id = (pe->pe_number << 1 ) + 1;
1986 int64_t rc;
1987
1988 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1989 if (enable) {
1990 phys_addr_t top = memblock_end_of_DRAM();
1991
1992 top = roundup_pow_of_two(top);
1993 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1994 pe->pe_number,
1995 window_id,
1996 pe->tce_bypass_base,
1997 top);
1998 } else {
1999 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2000 pe->pe_number,
2001 window_id,
2002 pe->tce_bypass_base,
2003 0);
2004 }
2005 if (rc)
2006 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2007 else
2008 pe->tce_bypass_enabled = enable;
2009 }
2010
2011 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2012 __u32 page_shift, __u64 window_size, __u32 levels,
2013 struct iommu_table *tbl);
2014
pnv_pci_ioda2_create_table(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,struct iommu_table ** ptbl)2015 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2016 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2017 struct iommu_table **ptbl)
2018 {
2019 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2020 table_group);
2021 int nid = pe->phb->hose->node;
2022 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2023 long ret;
2024 struct iommu_table *tbl;
2025
2026 tbl = pnv_pci_table_alloc(nid);
2027 if (!tbl)
2028 return -ENOMEM;
2029
2030 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2031 bus_offset, page_shift, window_size,
2032 levels, tbl);
2033 if (ret) {
2034 iommu_free_table(tbl, "pnv");
2035 return ret;
2036 }
2037
2038 tbl->it_ops = &pnv_ioda2_iommu_ops;
2039 if (pe->phb->ioda.tce_inval_reg)
2040 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2041
2042 *ptbl = tbl;
2043
2044 return 0;
2045 }
2046
pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe * pe)2047 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2048 {
2049 struct iommu_table *tbl = NULL;
2050 long rc;
2051
2052 /*
2053 * crashkernel= specifies the kdump kernel's maximum memory at
2054 * some offset and there is no guaranteed the result is a power
2055 * of 2, which will cause errors later.
2056 */
2057 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2058
2059 /*
2060 * In memory constrained environments, e.g. kdump kernel, the
2061 * DMA window can be larger than available memory, which will
2062 * cause errors later.
2063 */
2064 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2065
2066 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2067 IOMMU_PAGE_SHIFT_4K,
2068 window_size,
2069 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2070 if (rc) {
2071 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2072 rc);
2073 return rc;
2074 }
2075
2076 iommu_init_table(tbl, pe->phb->hose->node);
2077
2078 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2079 if (rc) {
2080 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2081 rc);
2082 pnv_ioda2_table_free(tbl);
2083 return rc;
2084 }
2085
2086 if (!pnv_iommu_bypass_disabled)
2087 pnv_pci_ioda2_set_bypass(pe, true);
2088
2089 /* OPAL variant of PHB3 invalidated TCEs */
2090 if (pe->phb->ioda.tce_inval_reg)
2091 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2092
2093 /*
2094 * Setting table base here only for carrying iommu_group
2095 * further down to let iommu_add_device() do the job.
2096 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2097 */
2098 if (pe->flags & PNV_IODA_PE_DEV)
2099 set_iommu_table_base(&pe->pdev->dev, tbl);
2100
2101 return 0;
2102 }
2103
2104 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
pnv_pci_ioda2_unset_window(struct iommu_table_group * table_group,int num)2105 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2106 int num)
2107 {
2108 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2109 table_group);
2110 struct pnv_phb *phb = pe->phb;
2111 long ret;
2112
2113 pe_info(pe, "Removing DMA window #%d\n", num);
2114
2115 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2116 (pe->pe_number << 1) + num,
2117 0/* levels */, 0/* table address */,
2118 0/* table size */, 0/* page size */);
2119 if (ret)
2120 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2121 else
2122 pnv_pci_ioda2_tce_invalidate_entire(pe);
2123
2124 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2125
2126 return ret;
2127 }
2128 #endif
2129
2130 #ifdef CONFIG_IOMMU_API
pnv_pci_ioda2_get_table_size(__u32 page_shift,__u64 window_size,__u32 levels)2131 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2132 __u64 window_size, __u32 levels)
2133 {
2134 unsigned long bytes = 0;
2135 const unsigned window_shift = ilog2(window_size);
2136 unsigned entries_shift = window_shift - page_shift;
2137 unsigned table_shift = entries_shift + 3;
2138 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2139 unsigned long direct_table_size;
2140
2141 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2142 (window_size > memory_hotplug_max()) ||
2143 !is_power_of_2(window_size))
2144 return 0;
2145
2146 /* Calculate a direct table size from window_size and levels */
2147 entries_shift = (entries_shift + levels - 1) / levels;
2148 table_shift = entries_shift + 3;
2149 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2150 direct_table_size = 1UL << table_shift;
2151
2152 for ( ; levels; --levels) {
2153 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2154
2155 tce_table_size /= direct_table_size;
2156 tce_table_size <<= 3;
2157 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2158 }
2159
2160 return bytes;
2161 }
2162
pnv_ioda2_take_ownership(struct iommu_table_group * table_group)2163 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2164 {
2165 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2166 table_group);
2167 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2168 struct iommu_table *tbl = pe->table_group.tables[0];
2169
2170 pnv_pci_ioda2_set_bypass(pe, false);
2171 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2172 pnv_ioda2_table_free(tbl);
2173 }
2174
pnv_ioda2_release_ownership(struct iommu_table_group * table_group)2175 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2176 {
2177 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2178 table_group);
2179
2180 pnv_pci_ioda2_setup_default_config(pe);
2181 }
2182
2183 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2184 .get_table_size = pnv_pci_ioda2_get_table_size,
2185 .create_table = pnv_pci_ioda2_create_table,
2186 .set_window = pnv_pci_ioda2_set_window,
2187 .unset_window = pnv_pci_ioda2_unset_window,
2188 .take_ownership = pnv_ioda2_take_ownership,
2189 .release_ownership = pnv_ioda2_release_ownership,
2190 };
2191 #endif
2192
pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb * phb)2193 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2194 {
2195 const __be64 *swinvp;
2196
2197 /* OPAL variant of PHB3 invalidated TCEs */
2198 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2199 if (!swinvp)
2200 return;
2201
2202 phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2203 phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2204 }
2205
pnv_pci_ioda2_table_do_alloc_pages(int nid,unsigned shift,unsigned levels,unsigned long limit,unsigned long * current_offset,unsigned long * total_allocated)2206 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2207 unsigned levels, unsigned long limit,
2208 unsigned long *current_offset, unsigned long *total_allocated)
2209 {
2210 struct page *tce_mem = NULL;
2211 __be64 *addr, *tmp;
2212 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2213 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2214 unsigned entries = 1UL << (shift - 3);
2215 long i;
2216
2217 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2218 if (!tce_mem) {
2219 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2220 return NULL;
2221 }
2222 addr = page_address(tce_mem);
2223 memset(addr, 0, allocated);
2224 *total_allocated += allocated;
2225
2226 --levels;
2227 if (!levels) {
2228 *current_offset += allocated;
2229 return addr;
2230 }
2231
2232 for (i = 0; i < entries; ++i) {
2233 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2234 levels, limit, current_offset, total_allocated);
2235 if (!tmp)
2236 break;
2237
2238 addr[i] = cpu_to_be64(__pa(tmp) |
2239 TCE_PCI_READ | TCE_PCI_WRITE);
2240
2241 if (*current_offset >= limit)
2242 break;
2243 }
2244
2245 return addr;
2246 }
2247
2248 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2249 unsigned long size, unsigned level);
2250
pnv_pci_ioda2_table_alloc_pages(int nid,__u64 bus_offset,__u32 page_shift,__u64 window_size,__u32 levels,struct iommu_table * tbl)2251 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2252 __u32 page_shift, __u64 window_size, __u32 levels,
2253 struct iommu_table *tbl)
2254 {
2255 void *addr;
2256 unsigned long offset = 0, level_shift, total_allocated = 0;
2257 const unsigned window_shift = ilog2(window_size);
2258 unsigned entries_shift = window_shift - page_shift;
2259 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2260 const unsigned long tce_table_size = 1UL << table_shift;
2261
2262 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2263 return -EINVAL;
2264
2265 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2266 return -EINVAL;
2267
2268 /* Adjust direct table size from window_size and levels */
2269 entries_shift = (entries_shift + levels - 1) / levels;
2270 level_shift = entries_shift + 3;
2271 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2272
2273 if ((level_shift - 3) * levels + page_shift >= 55)
2274 return -EINVAL;
2275
2276 /* Allocate TCE table */
2277 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2278 levels, tce_table_size, &offset, &total_allocated);
2279
2280 /* addr==NULL means that the first level allocation failed */
2281 if (!addr)
2282 return -ENOMEM;
2283
2284 /*
2285 * First level was allocated but some lower level failed as
2286 * we did not allocate as much as we wanted,
2287 * release partially allocated table.
2288 */
2289 if (offset < tce_table_size) {
2290 pnv_pci_ioda2_table_do_free_pages(addr,
2291 1ULL << (level_shift - 3), levels - 1);
2292 return -ENOMEM;
2293 }
2294
2295 /* Setup linux iommu table */
2296 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2297 page_shift);
2298 tbl->it_level_size = 1ULL << (level_shift - 3);
2299 tbl->it_indirect_levels = levels - 1;
2300 tbl->it_allocated_size = total_allocated;
2301
2302 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2303 window_size, tce_table_size, bus_offset);
2304
2305 return 0;
2306 }
2307
pnv_pci_ioda2_table_do_free_pages(__be64 * addr,unsigned long size,unsigned level)2308 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2309 unsigned long size, unsigned level)
2310 {
2311 const unsigned long addr_ul = (unsigned long) addr &
2312 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2313
2314 if (level) {
2315 long i;
2316 u64 *tmp = (u64 *) addr_ul;
2317
2318 for (i = 0; i < size; ++i) {
2319 unsigned long hpa = be64_to_cpu(tmp[i]);
2320
2321 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2322 continue;
2323
2324 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2325 level - 1);
2326 }
2327 }
2328
2329 free_pages(addr_ul, get_order(size << 3));
2330 }
2331
pnv_pci_ioda2_table_free_pages(struct iommu_table * tbl)2332 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2333 {
2334 const unsigned long size = tbl->it_indirect_levels ?
2335 tbl->it_level_size : tbl->it_size;
2336
2337 if (!tbl->it_size)
2338 return;
2339
2340 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2341 tbl->it_indirect_levels);
2342 }
2343
pnv_pci_ioda2_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)2344 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2345 struct pnv_ioda_pe *pe)
2346 {
2347 int64_t rc;
2348
2349 /* We shouldn't already have a 32-bit DMA associated */
2350 if (WARN_ON(pe->tce32_seg >= 0))
2351 return;
2352
2353 /* TVE #1 is selected by PCI address bit 59 */
2354 pe->tce_bypass_base = 1ull << 59;
2355
2356 iommu_register_group(&pe->table_group, phb->hose->global_number,
2357 pe->pe_number);
2358
2359 /* The PE will reserve all possible 32-bits space */
2360 pe->tce32_seg = 0;
2361 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2362 phb->ioda.m32_pci_base);
2363
2364 /* Setup linux iommu table */
2365 pe->table_group.tce32_start = 0;
2366 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2367 pe->table_group.max_dynamic_windows_supported =
2368 IOMMU_TABLE_GROUP_MAX_TABLES;
2369 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2370 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2371 #ifdef CONFIG_IOMMU_API
2372 pe->table_group.ops = &pnv_pci_ioda2_ops;
2373 #endif
2374
2375 rc = pnv_pci_ioda2_setup_default_config(pe);
2376 if (rc) {
2377 if (pe->tce32_seg >= 0)
2378 pe->tce32_seg = -1;
2379 return;
2380 }
2381
2382 if (pe->flags & PNV_IODA_PE_DEV)
2383 iommu_add_device(&pe->pdev->dev);
2384 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2385 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2386 }
2387
pnv_ioda_setup_dma(struct pnv_phb * phb)2388 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2389 {
2390 struct pci_controller *hose = phb->hose;
2391 unsigned int residual, remaining, segs, tw, base;
2392 struct pnv_ioda_pe *pe;
2393
2394 /* If we have more PE# than segments available, hand out one
2395 * per PE until we run out and let the rest fail. If not,
2396 * then we assign at least one segment per PE, plus more based
2397 * on the amount of devices under that PE
2398 */
2399 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2400 residual = 0;
2401 else
2402 residual = phb->ioda.tce32_count -
2403 phb->ioda.dma_pe_count;
2404
2405 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2406 hose->global_number, phb->ioda.tce32_count);
2407 pr_info("PCI: %d PE# for a total weight of %d\n",
2408 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2409
2410 pnv_pci_ioda_setup_opal_tce_kill(phb);
2411
2412 /* Walk our PE list and configure their DMA segments, hand them
2413 * out one base segment plus any residual segments based on
2414 * weight
2415 */
2416 remaining = phb->ioda.tce32_count;
2417 tw = phb->ioda.dma_weight;
2418 base = 0;
2419 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2420 if (!pe->dma_weight)
2421 continue;
2422 if (!remaining) {
2423 pe_warn(pe, "No DMA32 resources available\n");
2424 continue;
2425 }
2426 segs = 1;
2427 if (residual) {
2428 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
2429 if (segs > remaining)
2430 segs = remaining;
2431 }
2432
2433 /*
2434 * For IODA2 compliant PHB3, we needn't care about the weight.
2435 * The all available 32-bits DMA space will be assigned to
2436 * the specific PE.
2437 */
2438 if (phb->type == PNV_PHB_IODA1) {
2439 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2440 pe->dma_weight, segs);
2441 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2442 } else {
2443 pe_info(pe, "Assign DMA32 space\n");
2444 segs = 0;
2445 pnv_pci_ioda2_setup_dma_pe(phb, pe);
2446 }
2447
2448 remaining -= segs;
2449 base += segs;
2450 }
2451 }
2452
2453 #ifdef CONFIG_PCI_MSI
pnv_ioda2_msi_eoi(struct irq_data * d)2454 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2455 {
2456 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2457 struct irq_chip *chip = irq_data_get_irq_chip(d);
2458 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2459 ioda.irq_chip);
2460 int64_t rc;
2461
2462 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2463 WARN_ON_ONCE(rc);
2464
2465 icp_native_eoi(d);
2466 }
2467
2468
set_msi_irq_chip(struct pnv_phb * phb,unsigned int virq)2469 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2470 {
2471 struct irq_data *idata;
2472 struct irq_chip *ichip;
2473
2474 if (phb->type != PNV_PHB_IODA2)
2475 return;
2476
2477 if (!phb->ioda.irq_chip_init) {
2478 /*
2479 * First time we setup an MSI IRQ, we need to setup the
2480 * corresponding IRQ chip to route correctly.
2481 */
2482 idata = irq_get_irq_data(virq);
2483 ichip = irq_data_get_irq_chip(idata);
2484 phb->ioda.irq_chip_init = 1;
2485 phb->ioda.irq_chip = *ichip;
2486 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2487 }
2488 irq_set_chip(virq, &phb->ioda.irq_chip);
2489 }
2490
2491 #ifdef CONFIG_CXL_BASE
2492
pnv_pci_get_phb_node(struct pci_dev * dev)2493 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2494 {
2495 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2496
2497 return of_node_get(hose->dn);
2498 }
2499 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2500
pnv_phb_to_cxl_mode(struct pci_dev * dev,uint64_t mode)2501 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2502 {
2503 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2504 struct pnv_phb *phb = hose->private_data;
2505 struct pnv_ioda_pe *pe;
2506 int rc;
2507
2508 pe = pnv_ioda_get_pe(dev);
2509 if (!pe)
2510 return -ENODEV;
2511
2512 pe_info(pe, "Switching PHB to CXL\n");
2513
2514 rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2515 if (rc)
2516 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2517
2518 return rc;
2519 }
2520 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2521
2522 /* Find PHB for cxl dev and allocate MSI hwirqs?
2523 * Returns the absolute hardware IRQ number
2524 */
pnv_cxl_alloc_hwirqs(struct pci_dev * dev,int num)2525 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2526 {
2527 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2528 struct pnv_phb *phb = hose->private_data;
2529 int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2530
2531 if (hwirq < 0) {
2532 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2533 return -ENOSPC;
2534 }
2535
2536 return phb->msi_base + hwirq;
2537 }
2538 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2539
pnv_cxl_release_hwirqs(struct pci_dev * dev,int hwirq,int num)2540 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2541 {
2542 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2543 struct pnv_phb *phb = hose->private_data;
2544
2545 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2546 }
2547 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2548
pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges * irqs,struct pci_dev * dev)2549 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2550 struct pci_dev *dev)
2551 {
2552 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2553 struct pnv_phb *phb = hose->private_data;
2554 int i, hwirq;
2555
2556 for (i = 1; i < CXL_IRQ_RANGES; i++) {
2557 if (!irqs->range[i])
2558 continue;
2559 pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n",
2560 i, irqs->offset[i],
2561 irqs->range[i]);
2562 hwirq = irqs->offset[i] - phb->msi_base;
2563 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2564 irqs->range[i]);
2565 }
2566 }
2567 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2568
pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges * irqs,struct pci_dev * dev,int num)2569 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2570 struct pci_dev *dev, int num)
2571 {
2572 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2573 struct pnv_phb *phb = hose->private_data;
2574 int i, hwirq, try;
2575
2576 memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2577
2578 /* 0 is reserved for the multiplexed PSL DSI interrupt */
2579 for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2580 try = num;
2581 while (try) {
2582 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2583 if (hwirq >= 0)
2584 break;
2585 try /= 2;
2586 }
2587 if (!try)
2588 goto fail;
2589
2590 irqs->offset[i] = phb->msi_base + hwirq;
2591 irqs->range[i] = try;
2592 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n",
2593 i, irqs->offset[i], irqs->range[i]);
2594 num -= try;
2595 }
2596 if (num)
2597 goto fail;
2598
2599 return 0;
2600 fail:
2601 pnv_cxl_release_hwirq_ranges(irqs, dev);
2602 return -ENOSPC;
2603 }
2604 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2605
pnv_cxl_get_irq_count(struct pci_dev * dev)2606 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2607 {
2608 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2609 struct pnv_phb *phb = hose->private_data;
2610
2611 return phb->msi_bmp.irq_count;
2612 }
2613 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2614
pnv_cxl_ioda_msi_setup(struct pci_dev * dev,unsigned int hwirq,unsigned int virq)2615 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2616 unsigned int virq)
2617 {
2618 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2619 struct pnv_phb *phb = hose->private_data;
2620 unsigned int xive_num = hwirq - phb->msi_base;
2621 struct pnv_ioda_pe *pe;
2622 int rc;
2623
2624 if (!(pe = pnv_ioda_get_pe(dev)))
2625 return -ENODEV;
2626
2627 /* Assign XIVE to PE */
2628 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2629 if (rc) {
2630 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2631 "hwirq 0x%x XIVE 0x%x PE\n",
2632 pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2633 return -EIO;
2634 }
2635 set_msi_irq_chip(phb, virq);
2636
2637 return 0;
2638 }
2639 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2640 #endif
2641
pnv_pci_ioda_msi_setup(struct pnv_phb * phb,struct pci_dev * dev,unsigned int hwirq,unsigned int virq,unsigned int is_64,struct msi_msg * msg)2642 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2643 unsigned int hwirq, unsigned int virq,
2644 unsigned int is_64, struct msi_msg *msg)
2645 {
2646 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2647 unsigned int xive_num = hwirq - phb->msi_base;
2648 __be32 data;
2649 int rc;
2650
2651 /* No PE assigned ? bail out ... no MSI for you ! */
2652 if (pe == NULL)
2653 return -ENXIO;
2654
2655 /* Check if we have an MVE */
2656 if (pe->mve_number < 0)
2657 return -ENXIO;
2658
2659 /* Force 32-bit MSI on some broken devices */
2660 if (dev->no_64bit_msi)
2661 is_64 = 0;
2662
2663 /* Assign XIVE to PE */
2664 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2665 if (rc) {
2666 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2667 pci_name(dev), rc, xive_num);
2668 return -EIO;
2669 }
2670
2671 if (is_64) {
2672 __be64 addr64;
2673
2674 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2675 &addr64, &data);
2676 if (rc) {
2677 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2678 pci_name(dev), rc);
2679 return -EIO;
2680 }
2681 msg->address_hi = be64_to_cpu(addr64) >> 32;
2682 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2683 } else {
2684 __be32 addr32;
2685
2686 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2687 &addr32, &data);
2688 if (rc) {
2689 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2690 pci_name(dev), rc);
2691 return -EIO;
2692 }
2693 msg->address_hi = 0;
2694 msg->address_lo = be32_to_cpu(addr32);
2695 }
2696 msg->data = be32_to_cpu(data);
2697
2698 set_msi_irq_chip(phb, virq);
2699
2700 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2701 " address=%x_%08x data=%x PE# %d\n",
2702 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2703 msg->address_hi, msg->address_lo, data, pe->pe_number);
2704
2705 return 0;
2706 }
2707
pnv_pci_init_ioda_msis(struct pnv_phb * phb)2708 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2709 {
2710 unsigned int count;
2711 const __be32 *prop = of_get_property(phb->hose->dn,
2712 "ibm,opal-msi-ranges", NULL);
2713 if (!prop) {
2714 /* BML Fallback */
2715 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2716 }
2717 if (!prop)
2718 return;
2719
2720 phb->msi_base = be32_to_cpup(prop);
2721 count = be32_to_cpup(prop + 1);
2722 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2723 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2724 phb->hose->global_number);
2725 return;
2726 }
2727
2728 phb->msi_setup = pnv_pci_ioda_msi_setup;
2729 phb->msi32_support = 1;
2730 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2731 count, phb->msi_base);
2732 }
2733 #else
pnv_pci_init_ioda_msis(struct pnv_phb * phb)2734 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2735 #endif /* CONFIG_PCI_MSI */
2736
2737 #ifdef CONFIG_PCI_IOV
pnv_pci_ioda_fixup_iov_resources(struct pci_dev * pdev)2738 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2739 {
2740 struct pci_controller *hose;
2741 struct pnv_phb *phb;
2742 struct resource *res;
2743 int i;
2744 resource_size_t size;
2745 struct pci_dn *pdn;
2746 int mul, total_vfs;
2747
2748 if (!pdev->is_physfn || pdev->is_added)
2749 return;
2750
2751 hose = pci_bus_to_host(pdev->bus);
2752 phb = hose->private_data;
2753
2754 pdn = pci_get_pdn(pdev);
2755 pdn->vfs_expanded = 0;
2756
2757 total_vfs = pci_sriov_get_totalvfs(pdev);
2758 pdn->m64_per_iov = 1;
2759 mul = phb->ioda.total_pe;
2760
2761 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2762 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2763 if (!res->flags || res->parent)
2764 continue;
2765 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2766 dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2767 i, res);
2768 continue;
2769 }
2770
2771 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2772
2773 /* bigger than 64M */
2774 if (size > (1 << 26)) {
2775 dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2776 i, res);
2777 pdn->m64_per_iov = M64_PER_IOV;
2778 mul = roundup_pow_of_two(total_vfs);
2779 break;
2780 }
2781 }
2782
2783 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2784 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2785 if (!res->flags || res->parent)
2786 continue;
2787 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2788 dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2789 i, res);
2790 continue;
2791 }
2792
2793 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2794 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2795 res->end = res->start + size * mul - 1;
2796 dev_dbg(&pdev->dev, " %pR\n", res);
2797 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2798 i, res, mul);
2799 }
2800 pdn->vfs_expanded = mul;
2801 }
2802 #endif /* CONFIG_PCI_IOV */
2803
2804 /*
2805 * This function is supposed to be called on basis of PE from top
2806 * to bottom style. So the the I/O or MMIO segment assigned to
2807 * parent PE could be overrided by its child PEs if necessary.
2808 */
pnv_ioda_setup_pe_seg(struct pci_controller * hose,struct pnv_ioda_pe * pe)2809 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2810 struct pnv_ioda_pe *pe)
2811 {
2812 struct pnv_phb *phb = hose->private_data;
2813 struct pci_bus_region region;
2814 struct resource *res;
2815 int i, index;
2816 int rc;
2817
2818 /*
2819 * NOTE: We only care PCI bus based PE for now. For PCI
2820 * device based PE, for example SRIOV sensitive VF should
2821 * be figured out later.
2822 */
2823 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2824
2825 pci_bus_for_each_resource(pe->pbus, res, i) {
2826 if (!res || !res->flags ||
2827 res->start > res->end)
2828 continue;
2829
2830 if (res->flags & IORESOURCE_IO) {
2831 region.start = res->start - phb->ioda.io_pci_base;
2832 region.end = res->end - phb->ioda.io_pci_base;
2833 index = region.start / phb->ioda.io_segsize;
2834
2835 while (index < phb->ioda.total_pe &&
2836 region.start <= region.end) {
2837 phb->ioda.io_segmap[index] = pe->pe_number;
2838 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2839 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2840 if (rc != OPAL_SUCCESS) {
2841 pr_err("%s: OPAL error %d when mapping IO "
2842 "segment #%d to PE#%d\n",
2843 __func__, rc, index, pe->pe_number);
2844 break;
2845 }
2846
2847 region.start += phb->ioda.io_segsize;
2848 index++;
2849 }
2850 } else if ((res->flags & IORESOURCE_MEM) &&
2851 !pnv_pci_is_mem_pref_64(res->flags)) {
2852 region.start = res->start -
2853 hose->mem_offset[0] -
2854 phb->ioda.m32_pci_base;
2855 region.end = res->end -
2856 hose->mem_offset[0] -
2857 phb->ioda.m32_pci_base;
2858 index = region.start / phb->ioda.m32_segsize;
2859
2860 while (index < phb->ioda.total_pe &&
2861 region.start <= region.end) {
2862 phb->ioda.m32_segmap[index] = pe->pe_number;
2863 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2864 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2865 if (rc != OPAL_SUCCESS) {
2866 pr_err("%s: OPAL error %d when mapping M32 "
2867 "segment#%d to PE#%d",
2868 __func__, rc, index, pe->pe_number);
2869 break;
2870 }
2871
2872 region.start += phb->ioda.m32_segsize;
2873 index++;
2874 }
2875 }
2876 }
2877 }
2878
pnv_pci_ioda_setup_seg(void)2879 static void pnv_pci_ioda_setup_seg(void)
2880 {
2881 struct pci_controller *tmp, *hose;
2882 struct pnv_phb *phb;
2883 struct pnv_ioda_pe *pe;
2884
2885 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2886 phb = hose->private_data;
2887 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2888 pnv_ioda_setup_pe_seg(hose, pe);
2889 }
2890 }
2891 }
2892
pnv_pci_ioda_setup_DMA(void)2893 static void pnv_pci_ioda_setup_DMA(void)
2894 {
2895 struct pci_controller *hose, *tmp;
2896 struct pnv_phb *phb;
2897
2898 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2899 pnv_ioda_setup_dma(hose->private_data);
2900
2901 /* Mark the PHB initialization done */
2902 phb = hose->private_data;
2903 phb->initialized = 1;
2904 }
2905 }
2906
pnv_pci_ioda_create_dbgfs(void)2907 static void pnv_pci_ioda_create_dbgfs(void)
2908 {
2909 #ifdef CONFIG_DEBUG_FS
2910 struct pci_controller *hose, *tmp;
2911 struct pnv_phb *phb;
2912 char name[16];
2913
2914 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2915 phb = hose->private_data;
2916
2917 sprintf(name, "PCI%04x", hose->global_number);
2918 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2919 if (!phb->dbgfs)
2920 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2921 __func__, hose->global_number);
2922 }
2923 #endif /* CONFIG_DEBUG_FS */
2924 }
2925
pnv_pci_ioda_fixup(void)2926 static void pnv_pci_ioda_fixup(void)
2927 {
2928 pnv_pci_ioda_setup_PEs();
2929 pnv_pci_ioda_setup_seg();
2930 pnv_pci_ioda_setup_DMA();
2931
2932 pnv_pci_ioda_create_dbgfs();
2933
2934 #ifdef CONFIG_EEH
2935 eeh_init();
2936 eeh_addr_cache_build();
2937 #endif
2938 }
2939
2940 /*
2941 * Returns the alignment for I/O or memory windows for P2P
2942 * bridges. That actually depends on how PEs are segmented.
2943 * For now, we return I/O or M32 segment size for PE sensitive
2944 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2945 * 1MiB for memory) will be returned.
2946 *
2947 * The current PCI bus might be put into one PE, which was
2948 * create against the parent PCI bridge. For that case, we
2949 * needn't enlarge the alignment so that we can save some
2950 * resources.
2951 */
pnv_pci_window_alignment(struct pci_bus * bus,unsigned long type)2952 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2953 unsigned long type)
2954 {
2955 struct pci_dev *bridge;
2956 struct pci_controller *hose = pci_bus_to_host(bus);
2957 struct pnv_phb *phb = hose->private_data;
2958 int num_pci_bridges = 0;
2959
2960 bridge = bus->self;
2961 while (bridge) {
2962 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2963 num_pci_bridges++;
2964 if (num_pci_bridges >= 2)
2965 return 1;
2966 }
2967
2968 bridge = bridge->bus->self;
2969 }
2970
2971 /* We fail back to M32 if M64 isn't supported */
2972 if (phb->ioda.m64_segsize &&
2973 pnv_pci_is_mem_pref_64(type))
2974 return phb->ioda.m64_segsize;
2975 if (type & IORESOURCE_MEM)
2976 return phb->ioda.m32_segsize;
2977
2978 return phb->ioda.io_segsize;
2979 }
2980
2981 #ifdef CONFIG_PCI_IOV
pnv_pci_iov_resource_alignment(struct pci_dev * pdev,int resno)2982 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2983 int resno)
2984 {
2985 struct pci_dn *pdn = pci_get_pdn(pdev);
2986 resource_size_t align, iov_align;
2987
2988 iov_align = resource_size(&pdev->resource[resno]);
2989 if (iov_align)
2990 return iov_align;
2991
2992 align = pci_iov_resource_size(pdev, resno);
2993 if (pdn->vfs_expanded)
2994 return pdn->vfs_expanded * align;
2995
2996 return align;
2997 }
2998 #endif /* CONFIG_PCI_IOV */
2999
3000 /* Prevent enabling devices for which we couldn't properly
3001 * assign a PE
3002 */
pnv_pci_enable_device_hook(struct pci_dev * dev)3003 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3004 {
3005 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3006 struct pnv_phb *phb = hose->private_data;
3007 struct pci_dn *pdn;
3008
3009 /* The function is probably called while the PEs have
3010 * not be created yet. For example, resource reassignment
3011 * during PCI probe period. We just skip the check if
3012 * PEs isn't ready.
3013 */
3014 if (!phb->initialized)
3015 return true;
3016
3017 pdn = pci_get_pdn(dev);
3018 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3019 return false;
3020
3021 return true;
3022 }
3023
pnv_ioda_bdfn_to_pe(struct pnv_phb * phb,struct pci_bus * bus,u32 devfn)3024 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
3025 u32 devfn)
3026 {
3027 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
3028 }
3029
pnv_pci_ioda_shutdown(struct pci_controller * hose)3030 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3031 {
3032 struct pnv_phb *phb = hose->private_data;
3033
3034 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3035 OPAL_ASSERT_RESET);
3036 }
3037
3038 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3039 .dma_dev_setup = pnv_pci_dma_dev_setup,
3040 .dma_bus_setup = pnv_pci_dma_bus_setup,
3041 #ifdef CONFIG_PCI_MSI
3042 .setup_msi_irqs = pnv_setup_msi_irqs,
3043 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3044 #endif
3045 .enable_device_hook = pnv_pci_enable_device_hook,
3046 .window_alignment = pnv_pci_window_alignment,
3047 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3048 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3049 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3050 .shutdown = pnv_pci_ioda_shutdown,
3051 };
3052
pnv_pci_init_ioda_phb(struct device_node * np,u64 hub_id,int ioda_type)3053 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3054 u64 hub_id, int ioda_type)
3055 {
3056 struct pci_controller *hose;
3057 struct pnv_phb *phb;
3058 unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3059 const __be64 *prop64;
3060 const __be32 *prop32;
3061 int len;
3062 u64 phb_id;
3063 void *aux;
3064 long rc;
3065
3066 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3067
3068 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3069 if (!prop64) {
3070 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3071 return;
3072 }
3073 phb_id = be64_to_cpup(prop64);
3074 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3075
3076 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3077
3078 /* Allocate PCI controller */
3079 phb->hose = hose = pcibios_alloc_controller(np);
3080 if (!phb->hose) {
3081 pr_err(" Can't allocate PCI controller for %s\n",
3082 np->full_name);
3083 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3084 return;
3085 }
3086
3087 spin_lock_init(&phb->lock);
3088 prop32 = of_get_property(np, "bus-range", &len);
3089 if (prop32 && len == 8) {
3090 hose->first_busno = be32_to_cpu(prop32[0]);
3091 hose->last_busno = be32_to_cpu(prop32[1]);
3092 } else {
3093 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
3094 hose->first_busno = 0;
3095 hose->last_busno = 0xff;
3096 }
3097 hose->private_data = phb;
3098 phb->hub_id = hub_id;
3099 phb->opal_id = phb_id;
3100 phb->type = ioda_type;
3101 mutex_init(&phb->ioda.pe_alloc_mutex);
3102
3103 /* Detect specific models for error handling */
3104 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3105 phb->model = PNV_PHB_MODEL_P7IOC;
3106 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3107 phb->model = PNV_PHB_MODEL_PHB3;
3108 else
3109 phb->model = PNV_PHB_MODEL_UNKNOWN;
3110
3111 /* Parse 32-bit and IO ranges (if any) */
3112 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3113
3114 /* Get registers */
3115 phb->regs = of_iomap(np, 0);
3116 if (phb->regs == NULL)
3117 pr_err(" Failed to map registers !\n");
3118
3119 /* Initialize more IODA stuff */
3120 phb->ioda.total_pe = 1;
3121 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3122 if (prop32)
3123 phb->ioda.total_pe = be32_to_cpup(prop32);
3124 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3125 if (prop32)
3126 phb->ioda.reserved_pe = be32_to_cpup(prop32);
3127
3128 /* Parse 64-bit MMIO range */
3129 pnv_ioda_parse_m64_window(phb);
3130
3131 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3132 /* FW Has already off top 64k of M32 space (MSI space) */
3133 phb->ioda.m32_size += 0x10000;
3134
3135 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3136 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3137 phb->ioda.io_size = hose->pci_io_size;
3138 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
3139 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3140
3141 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3142 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
3143 m32map_off = size;
3144 size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
3145 if (phb->type == PNV_PHB_IODA1) {
3146 iomap_off = size;
3147 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
3148 }
3149 pemap_off = size;
3150 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
3151 aux = memblock_virt_alloc(size, 0);
3152 phb->ioda.pe_alloc = aux;
3153 phb->ioda.m32_segmap = aux + m32map_off;
3154 if (phb->type == PNV_PHB_IODA1)
3155 phb->ioda.io_segmap = aux + iomap_off;
3156 phb->ioda.pe_array = aux + pemap_off;
3157 set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
3158
3159 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3160 INIT_LIST_HEAD(&phb->ioda.pe_list);
3161 mutex_init(&phb->ioda.pe_list_mutex);
3162
3163 /* Calculate how many 32-bit TCE segments we have */
3164 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3165
3166 #if 0 /* We should really do that ... */
3167 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3168 window_type,
3169 window_num,
3170 starting_real_address,
3171 starting_pci_address,
3172 segment_size);
3173 #endif
3174
3175 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3176 phb->ioda.total_pe, phb->ioda.reserved_pe,
3177 phb->ioda.m32_size, phb->ioda.m32_segsize);
3178 if (phb->ioda.m64_size)
3179 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3180 phb->ioda.m64_size, phb->ioda.m64_segsize);
3181 if (phb->ioda.io_size)
3182 pr_info(" IO: 0x%x [segment=0x%x]\n",
3183 phb->ioda.io_size, phb->ioda.io_segsize);
3184
3185
3186 phb->hose->ops = &pnv_pci_ops;
3187 phb->get_pe_state = pnv_ioda_get_pe_state;
3188 phb->freeze_pe = pnv_ioda_freeze_pe;
3189 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3190
3191 /* Setup RID -> PE mapping function */
3192 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
3193
3194 /* Setup TCEs */
3195 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3196
3197 /* Setup MSI support */
3198 pnv_pci_init_ioda_msis(phb);
3199
3200 /*
3201 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3202 * to let the PCI core do resource assignment. It's supposed
3203 * that the PCI core will do correct I/O and MMIO alignment
3204 * for the P2P bridge bars so that each PCI bus (excluding
3205 * the child P2P bridges) can form individual PE.
3206 */
3207 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3208 hose->controller_ops = pnv_pci_ioda_controller_ops;
3209
3210 #ifdef CONFIG_PCI_IOV
3211 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3212 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3213 #endif
3214
3215 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3216
3217 /* Reset IODA tables to a clean state */
3218 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3219 if (rc)
3220 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
3221
3222 /* If we're running in kdump kerenl, the previous kerenl never
3223 * shutdown PCI devices correctly. We already got IODA table
3224 * cleaned out. So we have to issue PHB reset to stop all PCI
3225 * transactions from previous kerenl.
3226 */
3227 if (is_kdump_kernel()) {
3228 pr_info(" Issue PHB reset ...\n");
3229 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3230 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3231 }
3232
3233 /* Remove M64 resource if we can't configure it successfully */
3234 if (!phb->init_m64 || phb->init_m64(phb))
3235 hose->mem_resources[1].flags = 0;
3236 }
3237
pnv_pci_init_ioda2_phb(struct device_node * np)3238 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3239 {
3240 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3241 }
3242
pnv_pci_init_ioda_hub(struct device_node * np)3243 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3244 {
3245 struct device_node *phbn;
3246 const __be64 *prop64;
3247 u64 hub_id;
3248
3249 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3250
3251 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3252 if (!prop64) {
3253 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3254 return;
3255 }
3256 hub_id = be64_to_cpup(prop64);
3257 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3258
3259 /* Count child PHBs */
3260 for_each_child_of_node(np, phbn) {
3261 /* Look for IODA1 PHBs */
3262 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3263 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3264 }
3265 }
3266