• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/switch_to.h>
38 #include <asm/facility.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/tlbflush.h>
43 #include <asm/vtimer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/vdso.h>
47 #include <asm/debug.h>
48 #include <asm/os_info.h>
49 #include <asm/sigp.h>
50 #include <asm/idle.h>
51 #include "entry.h"
52 
53 enum {
54 	ec_schedule = 0,
55 	ec_call_function_single,
56 	ec_stop_cpu,
57 };
58 
59 enum {
60 	CPU_STATE_STANDBY,
61 	CPU_STATE_CONFIGURED,
62 };
63 
64 static DEFINE_PER_CPU(struct cpu *, cpu_device);
65 
66 struct pcpu {
67 	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
68 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
69 	signed char state;		/* physical cpu state */
70 	signed char polarization;	/* physical polarization */
71 	u16 address;			/* physical cpu address */
72 };
73 
74 static u8 boot_core_type;
75 static struct pcpu pcpu_devices[NR_CPUS];
76 
77 unsigned int smp_cpu_mt_shift;
78 EXPORT_SYMBOL(smp_cpu_mt_shift);
79 
80 unsigned int smp_cpu_mtid;
81 EXPORT_SYMBOL(smp_cpu_mtid);
82 
83 static unsigned int smp_max_threads __initdata = -1U;
84 
early_nosmt(char * s)85 static int __init early_nosmt(char *s)
86 {
87 	smp_max_threads = 1;
88 	return 0;
89 }
90 early_param("nosmt", early_nosmt);
91 
early_smt(char * s)92 static int __init early_smt(char *s)
93 {
94 	get_option(&s, &smp_max_threads);
95 	return 0;
96 }
97 early_param("smt", early_smt);
98 
99 /*
100  * The smp_cpu_state_mutex must be held when changing the state or polarization
101  * member of a pcpu data structure within the pcpu_devices arreay.
102  */
103 DEFINE_MUTEX(smp_cpu_state_mutex);
104 
105 /*
106  * Signal processor helper functions.
107  */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm,u32 * status)108 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
109 				    u32 *status)
110 {
111 	int cc;
112 
113 	while (1) {
114 		cc = __pcpu_sigp(addr, order, parm, NULL);
115 		if (cc != SIGP_CC_BUSY)
116 			return cc;
117 		cpu_relax();
118 	}
119 }
120 
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)121 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
122 {
123 	int cc, retry;
124 
125 	for (retry = 0; ; retry++) {
126 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
127 		if (cc != SIGP_CC_BUSY)
128 			break;
129 		if (retry >= 3)
130 			udelay(10);
131 	}
132 	return cc;
133 }
134 
pcpu_stopped(struct pcpu * pcpu)135 static inline int pcpu_stopped(struct pcpu *pcpu)
136 {
137 	u32 uninitialized_var(status);
138 
139 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
140 			0, &status) != SIGP_CC_STATUS_STORED)
141 		return 0;
142 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
143 }
144 
pcpu_running(struct pcpu * pcpu)145 static inline int pcpu_running(struct pcpu *pcpu)
146 {
147 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
148 			0, NULL) != SIGP_CC_STATUS_STORED)
149 		return 1;
150 	/* Status stored condition code is equivalent to cpu not running. */
151 	return 0;
152 }
153 
154 /*
155  * Find struct pcpu by cpu address.
156  */
pcpu_find_address(const struct cpumask * mask,u16 address)157 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
158 {
159 	int cpu;
160 
161 	for_each_cpu(cpu, mask)
162 		if (pcpu_devices[cpu].address == address)
163 			return pcpu_devices + cpu;
164 	return NULL;
165 }
166 
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)167 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
168 {
169 	int order;
170 
171 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
172 		return;
173 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
174 	pcpu_sigp_retry(pcpu, order, 0);
175 }
176 
177 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
178 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
179 
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)180 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
181 {
182 	unsigned long async_stack, panic_stack;
183 	struct _lowcore *lc;
184 
185 	if (pcpu != &pcpu_devices[0]) {
186 		pcpu->lowcore =	(struct _lowcore *)
187 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
188 		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
189 		panic_stack = __get_free_page(GFP_KERNEL);
190 		if (!pcpu->lowcore || !panic_stack || !async_stack)
191 			goto out;
192 	} else {
193 		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
194 		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
195 	}
196 	lc = pcpu->lowcore;
197 	memcpy(lc, &S390_lowcore, 512);
198 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
199 	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
200 	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
201 	lc->cpu_nr = cpu;
202 	lc->spinlock_lockval = arch_spin_lockval(cpu);
203 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
204 	if (MACHINE_HAS_VX)
205 		lc->vector_save_area_addr =
206 			(unsigned long) &lc->vector_save_area;
207 	if (vdso_alloc_per_cpu(lc))
208 		goto out;
209 	lowcore_ptr[cpu] = lc;
210 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
211 	return 0;
212 out:
213 	if (pcpu != &pcpu_devices[0]) {
214 		free_page(panic_stack);
215 		free_pages(async_stack, ASYNC_ORDER);
216 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
217 	}
218 	return -ENOMEM;
219 }
220 
221 #ifdef CONFIG_HOTPLUG_CPU
222 
pcpu_free_lowcore(struct pcpu * pcpu)223 static void pcpu_free_lowcore(struct pcpu *pcpu)
224 {
225 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
226 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
227 	vdso_free_per_cpu(pcpu->lowcore);
228 	if (pcpu == &pcpu_devices[0])
229 		return;
230 	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
231 	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
232 	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
233 }
234 
235 #endif /* CONFIG_HOTPLUG_CPU */
236 
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)237 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
238 {
239 	struct _lowcore *lc = pcpu->lowcore;
240 
241 	if (MACHINE_HAS_TLB_LC)
242 		cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
243 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
244 	atomic_inc(&init_mm.context.attach_count);
245 	lc->cpu_nr = cpu;
246 	lc->spinlock_lockval = arch_spin_lockval(cpu);
247 	lc->percpu_offset = __per_cpu_offset[cpu];
248 	lc->kernel_asce = S390_lowcore.kernel_asce;
249 	lc->machine_flags = S390_lowcore.machine_flags;
250 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
251 	__ctl_store(lc->cregs_save_area, 0, 15);
252 	save_access_regs((unsigned int *) lc->access_regs_save_area);
253 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
254 	       sizeof(lc->stfle_fac_list));
255 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
256 	       sizeof(lc->alt_stfle_fac_list));
257 }
258 
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)259 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
260 {
261 	struct _lowcore *lc = pcpu->lowcore;
262 	struct thread_info *ti = task_thread_info(tsk);
263 
264 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
265 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
266 	lc->thread_info = (unsigned long) task_thread_info(tsk);
267 	lc->current_task = (unsigned long) tsk;
268 	lc->lpp = LPP_MAGIC;
269 	lc->current_pid = tsk->pid;
270 	lc->user_timer = ti->user_timer;
271 	lc->system_timer = ti->system_timer;
272 	lc->steal_timer = 0;
273 }
274 
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)275 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
276 {
277 	struct _lowcore *lc = pcpu->lowcore;
278 
279 	lc->restart_stack = lc->kernel_stack;
280 	lc->restart_fn = (unsigned long) func;
281 	lc->restart_data = (unsigned long) data;
282 	lc->restart_source = -1UL;
283 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
284 }
285 
286 /*
287  * Call function via PSW restart on pcpu and stop the current cpu.
288  */
pcpu_delegate(struct pcpu * pcpu,void (* func)(void *),void * data,unsigned long stack)289 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
290 			  void *data, unsigned long stack)
291 {
292 	struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
293 	unsigned long source_cpu = stap();
294 
295 	__load_psw_mask(PSW_KERNEL_BITS);
296 	if (pcpu->address == source_cpu)
297 		func(data);	/* should not return */
298 	/* Stop target cpu (if func returns this stops the current cpu). */
299 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
300 	/* Restart func on the target cpu and stop the current cpu. */
301 	mem_assign_absolute(lc->restart_stack, stack);
302 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
303 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
304 	mem_assign_absolute(lc->restart_source, source_cpu);
305 	__bpon();
306 	asm volatile(
307 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
308 		"	brc	2,0b	# busy, try again\n"
309 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
310 		"	brc	2,1b	# busy, try again\n"
311 		: : "d" (pcpu->address), "d" (source_cpu),
312 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
313 		: "0", "1", "cc");
314 	for (;;) ;
315 }
316 
317 /*
318  * Enable additional logical cpus for multi-threading.
319  */
pcpu_set_smt(unsigned int mtid)320 static int pcpu_set_smt(unsigned int mtid)
321 {
322 	register unsigned long reg1 asm ("1") = (unsigned long) mtid;
323 	int cc;
324 
325 	if (smp_cpu_mtid == mtid)
326 		return 0;
327 	asm volatile(
328 		"	sigp	%1,0,%2	# sigp set multi-threading\n"
329 		"	ipm	%0\n"
330 		"	srl	%0,28\n"
331 		: "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
332 		: "cc");
333 	if (cc == 0) {
334 		smp_cpu_mtid = mtid;
335 		smp_cpu_mt_shift = 0;
336 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
337 			smp_cpu_mt_shift++;
338 		pcpu_devices[0].address = stap();
339 	}
340 	return cc;
341 }
342 
343 /*
344  * Call function on an online CPU.
345  */
smp_call_online_cpu(void (* func)(void *),void * data)346 void smp_call_online_cpu(void (*func)(void *), void *data)
347 {
348 	struct pcpu *pcpu;
349 
350 	/* Use the current cpu if it is online. */
351 	pcpu = pcpu_find_address(cpu_online_mask, stap());
352 	if (!pcpu)
353 		/* Use the first online cpu. */
354 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
355 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
356 }
357 
358 /*
359  * Call function on the ipl CPU.
360  */
smp_call_ipl_cpu(void (* func)(void *),void * data)361 void smp_call_ipl_cpu(void (*func)(void *), void *data)
362 {
363 	struct _lowcore *lc = pcpu_devices->lowcore;
364 
365 	if (pcpu_devices[0].address == stap())
366 		lc = &S390_lowcore;
367 
368 	pcpu_delegate(&pcpu_devices[0], func, data,
369 		      lc->panic_stack - PANIC_FRAME_OFFSET + PAGE_SIZE);
370 }
371 
smp_find_processor_id(u16 address)372 int smp_find_processor_id(u16 address)
373 {
374 	int cpu;
375 
376 	for_each_present_cpu(cpu)
377 		if (pcpu_devices[cpu].address == address)
378 			return cpu;
379 	return -1;
380 }
381 
smp_vcpu_scheduled(int cpu)382 int smp_vcpu_scheduled(int cpu)
383 {
384 	return pcpu_running(pcpu_devices + cpu);
385 }
386 
smp_yield_cpu(int cpu)387 void smp_yield_cpu(int cpu)
388 {
389 	if (MACHINE_HAS_DIAG9C) {
390 		diag_stat_inc_norecursion(DIAG_STAT_X09C);
391 		asm volatile("diag %0,0,0x9c"
392 			     : : "d" (pcpu_devices[cpu].address));
393 	} else if (MACHINE_HAS_DIAG44) {
394 		diag_stat_inc_norecursion(DIAG_STAT_X044);
395 		asm volatile("diag 0,0,0x44");
396 	}
397 }
398 
399 /*
400  * Send cpus emergency shutdown signal. This gives the cpus the
401  * opportunity to complete outstanding interrupts.
402  */
smp_emergency_stop(cpumask_t * cpumask)403 static void smp_emergency_stop(cpumask_t *cpumask)
404 {
405 	u64 end;
406 	int cpu;
407 
408 	end = get_tod_clock() + (1000000UL << 12);
409 	for_each_cpu(cpu, cpumask) {
410 		struct pcpu *pcpu = pcpu_devices + cpu;
411 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
412 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
413 				   0, NULL) == SIGP_CC_BUSY &&
414 		       get_tod_clock() < end)
415 			cpu_relax();
416 	}
417 	while (get_tod_clock() < end) {
418 		for_each_cpu(cpu, cpumask)
419 			if (pcpu_stopped(pcpu_devices + cpu))
420 				cpumask_clear_cpu(cpu, cpumask);
421 		if (cpumask_empty(cpumask))
422 			break;
423 		cpu_relax();
424 	}
425 }
426 
427 /*
428  * Stop all cpus but the current one.
429  */
smp_send_stop(void)430 void smp_send_stop(void)
431 {
432 	cpumask_t cpumask;
433 	int cpu;
434 
435 	/* Disable all interrupts/machine checks */
436 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
437 	trace_hardirqs_off();
438 
439 	debug_set_critical();
440 	cpumask_copy(&cpumask, cpu_online_mask);
441 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
442 
443 	if (oops_in_progress)
444 		smp_emergency_stop(&cpumask);
445 
446 	/* stop all processors */
447 	for_each_cpu(cpu, &cpumask) {
448 		struct pcpu *pcpu = pcpu_devices + cpu;
449 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
450 		while (!pcpu_stopped(pcpu))
451 			cpu_relax();
452 	}
453 }
454 
455 /*
456  * This is the main routine where commands issued by other
457  * cpus are handled.
458  */
smp_handle_ext_call(void)459 static void smp_handle_ext_call(void)
460 {
461 	unsigned long bits;
462 
463 	/* handle bit signal external calls */
464 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
465 	if (test_bit(ec_stop_cpu, &bits))
466 		smp_stop_cpu();
467 	if (test_bit(ec_schedule, &bits))
468 		scheduler_ipi();
469 	if (test_bit(ec_call_function_single, &bits))
470 		generic_smp_call_function_single_interrupt();
471 }
472 
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)473 static void do_ext_call_interrupt(struct ext_code ext_code,
474 				  unsigned int param32, unsigned long param64)
475 {
476 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
477 	smp_handle_ext_call();
478 }
479 
arch_send_call_function_ipi_mask(const struct cpumask * mask)480 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
481 {
482 	int cpu;
483 
484 	for_each_cpu(cpu, mask)
485 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
486 }
487 
arch_send_call_function_single_ipi(int cpu)488 void arch_send_call_function_single_ipi(int cpu)
489 {
490 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
491 }
492 
493 /*
494  * this function sends a 'reschedule' IPI to another CPU.
495  * it goes straight through and wastes no time serializing
496  * anything. Worst case is that we lose a reschedule ...
497  */
smp_send_reschedule(int cpu)498 void smp_send_reschedule(int cpu)
499 {
500 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
501 }
502 
503 /*
504  * parameter area for the set/clear control bit callbacks
505  */
506 struct ec_creg_mask_parms {
507 	unsigned long orval;
508 	unsigned long andval;
509 	int cr;
510 };
511 
512 /*
513  * callback for setting/clearing control bits
514  */
smp_ctl_bit_callback(void * info)515 static void smp_ctl_bit_callback(void *info)
516 {
517 	struct ec_creg_mask_parms *pp = info;
518 	unsigned long cregs[16];
519 
520 	__ctl_store(cregs, 0, 15);
521 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
522 	__ctl_load(cregs, 0, 15);
523 }
524 
525 /*
526  * Set a bit in a control register of all cpus
527  */
smp_ctl_set_bit(int cr,int bit)528 void smp_ctl_set_bit(int cr, int bit)
529 {
530 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
531 
532 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
533 }
534 EXPORT_SYMBOL(smp_ctl_set_bit);
535 
536 /*
537  * Clear a bit in a control register of all cpus
538  */
smp_ctl_clear_bit(int cr,int bit)539 void smp_ctl_clear_bit(int cr, int bit)
540 {
541 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
542 
543 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
544 }
545 EXPORT_SYMBOL(smp_ctl_clear_bit);
546 
547 #ifdef CONFIG_CRASH_DUMP
548 
__smp_store_cpu_state(struct save_area_ext * sa_ext,u16 address,int is_boot_cpu)549 static void __init __smp_store_cpu_state(struct save_area_ext *sa_ext,
550 					 u16 address, int is_boot_cpu)
551 {
552 	void *lc = (void *)(unsigned long) store_prefix();
553 	unsigned long vx_sa;
554 
555 	if (is_boot_cpu) {
556 		/* Copy the registers of the boot CPU. */
557 		copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
558 				 SAVE_AREA_BASE - PAGE_SIZE, 0);
559 		if (MACHINE_HAS_VX)
560 			save_vx_regs_safe(sa_ext->vx_regs);
561 		return;
562 	}
563 	/* Get the registers of a non-boot cpu. */
564 	__pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
565 	memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
566 	if (!MACHINE_HAS_VX)
567 		return;
568 	/* Get the VX registers */
569 	vx_sa = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
570 	if (!vx_sa)
571 		panic("could not allocate memory for VX save area\n");
572 	__pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
573 	memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
574 	memblock_free(vx_sa, PAGE_SIZE);
575 }
576 
smp_store_status(int cpu)577 int smp_store_status(int cpu)
578 {
579 	unsigned long vx_sa;
580 	struct pcpu *pcpu;
581 
582 	pcpu = pcpu_devices + cpu;
583 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
584 			      0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
585 		return -EIO;
586 	if (!MACHINE_HAS_VX)
587 		return 0;
588 	vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
589 	__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
590 			  vx_sa, NULL);
591 	return 0;
592 }
593 
594 #endif /* CONFIG_CRASH_DUMP */
595 
596 /*
597  * Collect CPU state of the previous, crashed system.
598  * There are four cases:
599  * 1) standard zfcp dump
600  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
601  *    The state for all CPUs except the boot CPU needs to be collected
602  *    with sigp stop-and-store-status. The boot CPU state is located in
603  *    the absolute lowcore of the memory stored in the HSA. The zcore code
604  *    will allocate the save area and copy the boot CPU state from the HSA.
605  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
606  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
607  *    The state for all CPUs except the boot CPU needs to be collected
608  *    with sigp stop-and-store-status. The firmware or the boot-loader
609  *    stored the registers of the boot CPU in the absolute lowcore in the
610  *    memory of the old system.
611  * 3) kdump and the old kernel did not store the CPU state,
612  *    or stand-alone kdump for DASD
613  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
614  *    The state for all CPUs except the boot CPU needs to be collected
615  *    with sigp stop-and-store-status. The kexec code or the boot-loader
616  *    stored the registers of the boot CPU in the memory of the old system.
617  * 4) kdump and the old kernel stored the CPU state
618  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
619  *    The state of all CPUs is stored in ELF sections in the memory of the
620  *    old system. The ELF sections are picked up by the crash_dump code
621  *    via elfcorehdr_addr.
622  */
smp_save_dump_cpus(void)623 void __init smp_save_dump_cpus(void)
624 {
625 #ifdef CONFIG_CRASH_DUMP
626 	int addr, cpu, boot_cpu_addr, max_cpu_addr;
627 	struct save_area_ext *sa_ext;
628 	bool is_boot_cpu;
629 
630 	if (is_kdump_kernel())
631 		/* Previous system stored the CPU states. Nothing to do. */
632 		return;
633 	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
634 		/* No previous system present, normal boot. */
635 		return;
636 	/* Set multi-threading state to the previous system. */
637 	pcpu_set_smt(sclp.mtid_prev);
638 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
639 	for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
640 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
641 		    SIGP_CC_NOT_OPERATIONAL)
642 			continue;
643 		cpu += 1;
644 	}
645 	dump_save_areas.areas = (void *)memblock_alloc(sizeof(void *) * cpu, 8);
646 	dump_save_areas.count = cpu;
647 	boot_cpu_addr = stap();
648 	for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
649 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
650 		    SIGP_CC_NOT_OPERATIONAL)
651 			continue;
652 		sa_ext = (void *) memblock_alloc(sizeof(*sa_ext), 8);
653 		dump_save_areas.areas[cpu] = sa_ext;
654 		if (!sa_ext)
655 			panic("could not allocate memory for save area\n");
656 		is_boot_cpu = (addr == boot_cpu_addr);
657 		cpu += 1;
658 		if (is_boot_cpu && !OLDMEM_BASE)
659 			/* Skip boot CPU for standard zfcp dump. */
660 			continue;
661 		/* Get state for this CPU. */
662 		__smp_store_cpu_state(sa_ext, addr, is_boot_cpu);
663 	}
664 	diag308_reset();
665 	pcpu_set_smt(0);
666 #endif /* CONFIG_CRASH_DUMP */
667 }
668 
smp_cpu_set_polarization(int cpu,int val)669 void smp_cpu_set_polarization(int cpu, int val)
670 {
671 	pcpu_devices[cpu].polarization = val;
672 }
673 
smp_cpu_get_polarization(int cpu)674 int smp_cpu_get_polarization(int cpu)
675 {
676 	return pcpu_devices[cpu].polarization;
677 }
678 
smp_get_core_info(void)679 static struct sclp_core_info *smp_get_core_info(void)
680 {
681 	static int use_sigp_detection;
682 	struct sclp_core_info *info;
683 	int address;
684 
685 	info = kzalloc(sizeof(*info), GFP_KERNEL);
686 	if (info && (use_sigp_detection || sclp_get_core_info(info))) {
687 		use_sigp_detection = 1;
688 		for (address = 0;
689 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
690 		     address += (1U << smp_cpu_mt_shift)) {
691 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
692 			    SIGP_CC_NOT_OPERATIONAL)
693 				continue;
694 			info->core[info->configured].core_id =
695 				address >> smp_cpu_mt_shift;
696 			info->configured++;
697 		}
698 		info->combined = info->configured;
699 	}
700 	return info;
701 }
702 
703 static int smp_add_present_cpu(int cpu);
704 
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)705 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
706 			bool configured, bool early)
707 {
708 	struct pcpu *pcpu;
709 	int cpu, nr, i;
710 	u16 address;
711 
712 	nr = 0;
713 	if (sclp.has_core_type && core->type != boot_core_type)
714 		return nr;
715 	cpu = cpumask_first(avail);
716 	address = core->core_id << smp_cpu_mt_shift;
717 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
718 		if (pcpu_find_address(cpu_present_mask, address + i))
719 			continue;
720 		pcpu = pcpu_devices + cpu;
721 		pcpu->address = address + i;
722 		if (configured)
723 			pcpu->state = CPU_STATE_CONFIGURED;
724 		else
725 			pcpu->state = CPU_STATE_STANDBY;
726 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
727 		set_cpu_present(cpu, true);
728 		if (!early && smp_add_present_cpu(cpu) != 0)
729 			set_cpu_present(cpu, false);
730 		else
731 			nr++;
732 		cpumask_clear_cpu(cpu, avail);
733 		cpu = cpumask_next(cpu, avail);
734 	}
735 	return nr;
736 }
737 
__smp_rescan_cpus(struct sclp_core_info * info,bool early)738 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
739 {
740 	struct sclp_core_entry *core;
741 	static cpumask_t avail;
742 	bool configured;
743 	u16 core_id;
744 	int nr, i;
745 
746 	nr = 0;
747 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
748 	/*
749 	 * Add IPL core first (which got logical CPU number 0) to make sure
750 	 * that all SMT threads get subsequent logical CPU numbers.
751 	 */
752 	if (early) {
753 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
754 		for (i = 0; i < info->configured; i++) {
755 			core = &info->core[i];
756 			if (core->core_id == core_id) {
757 				nr += smp_add_core(core, &avail, true, early);
758 				break;
759 			}
760 		}
761 	}
762 	for (i = 0; i < info->combined; i++) {
763 		configured = i < info->configured;
764 		nr += smp_add_core(&info->core[i], &avail, configured, early);
765 	}
766 	return nr;
767 }
768 
smp_detect_cpus(void)769 static void __init smp_detect_cpus(void)
770 {
771 	unsigned int cpu, mtid, c_cpus, s_cpus;
772 	struct sclp_core_info *info;
773 	u16 address;
774 
775 	/* Get CPU information */
776 	info = smp_get_core_info();
777 	if (!info)
778 		panic("smp_detect_cpus failed to allocate memory\n");
779 
780 	/* Find boot CPU type */
781 	if (sclp.has_core_type) {
782 		address = stap();
783 		for (cpu = 0; cpu < info->combined; cpu++)
784 			if (info->core[cpu].core_id == address) {
785 				/* The boot cpu dictates the cpu type. */
786 				boot_core_type = info->core[cpu].type;
787 				break;
788 			}
789 		if (cpu >= info->combined)
790 			panic("Could not find boot CPU type");
791 	}
792 
793 	/* Set multi-threading state for the current system */
794 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
795 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
796 	pcpu_set_smt(mtid);
797 
798 	/* Print number of CPUs */
799 	c_cpus = s_cpus = 0;
800 	for (cpu = 0; cpu < info->combined; cpu++) {
801 		if (sclp.has_core_type &&
802 		    info->core[cpu].type != boot_core_type)
803 			continue;
804 		if (cpu < info->configured)
805 			c_cpus += smp_cpu_mtid + 1;
806 		else
807 			s_cpus += smp_cpu_mtid + 1;
808 	}
809 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
810 
811 	/* Add CPUs present at boot */
812 	get_online_cpus();
813 	__smp_rescan_cpus(info, true);
814 	put_online_cpus();
815 	kfree(info);
816 }
817 
818 /*
819  *	Activate a secondary processor.
820  */
smp_start_secondary(void * cpuvoid)821 static void smp_start_secondary(void *cpuvoid)
822 {
823 	S390_lowcore.last_update_clock = get_tod_clock();
824 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
825 	S390_lowcore.restart_fn = (unsigned long) do_restart;
826 	S390_lowcore.restart_data = 0;
827 	S390_lowcore.restart_source = -1UL;
828 	restore_access_regs(S390_lowcore.access_regs_save_area);
829 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
830 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
831 	cpu_init();
832 	preempt_disable();
833 	init_cpu_timer();
834 	vtime_init();
835 	pfault_init();
836 	notify_cpu_starting(smp_processor_id());
837 	set_cpu_online(smp_processor_id(), true);
838 	inc_irq_stat(CPU_RST);
839 	local_irq_enable();
840 	cpu_startup_entry(CPUHP_ONLINE);
841 }
842 
843 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)844 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
845 {
846 	struct pcpu *pcpu;
847 	int base, i, rc;
848 
849 	pcpu = pcpu_devices + cpu;
850 	if (pcpu->state != CPU_STATE_CONFIGURED)
851 		return -EIO;
852 	base = cpu - (cpu % (smp_cpu_mtid + 1));
853 	for (i = 0; i <= smp_cpu_mtid; i++) {
854 		if (base + i < nr_cpu_ids)
855 			if (cpu_online(base + i))
856 				break;
857 	}
858 	/*
859 	 * If this is the first CPU of the core to get online
860 	 * do an initial CPU reset.
861 	 */
862 	if (i > smp_cpu_mtid &&
863 	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
864 	    SIGP_CC_ORDER_CODE_ACCEPTED)
865 		return -EIO;
866 
867 	rc = pcpu_alloc_lowcore(pcpu, cpu);
868 	if (rc)
869 		return rc;
870 	pcpu_prepare_secondary(pcpu, cpu);
871 	pcpu_attach_task(pcpu, tidle);
872 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
873 	/* Wait until cpu puts itself in the online & active maps */
874 	while (!cpu_online(cpu) || !cpu_active(cpu))
875 		cpu_relax();
876 	return 0;
877 }
878 
879 static unsigned int setup_possible_cpus __initdata;
880 
_setup_possible_cpus(char * s)881 static int __init _setup_possible_cpus(char *s)
882 {
883 	get_option(&s, &setup_possible_cpus);
884 	return 0;
885 }
886 early_param("possible_cpus", _setup_possible_cpus);
887 
888 #ifdef CONFIG_HOTPLUG_CPU
889 
__cpu_disable(void)890 int __cpu_disable(void)
891 {
892 	unsigned long cregs[16];
893 
894 	/* Handle possible pending IPIs */
895 	smp_handle_ext_call();
896 	set_cpu_online(smp_processor_id(), false);
897 	/* Disable pseudo page faults on this cpu. */
898 	pfault_fini();
899 	/* Disable interrupt sources via control register. */
900 	__ctl_store(cregs, 0, 15);
901 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
902 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
903 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
904 	__ctl_load(cregs, 0, 15);
905 	clear_cpu_flag(CIF_NOHZ_DELAY);
906 	return 0;
907 }
908 
__cpu_die(unsigned int cpu)909 void __cpu_die(unsigned int cpu)
910 {
911 	struct pcpu *pcpu;
912 
913 	/* Wait until target cpu is down */
914 	pcpu = pcpu_devices + cpu;
915 	while (!pcpu_stopped(pcpu))
916 		cpu_relax();
917 	pcpu_free_lowcore(pcpu);
918 	atomic_dec(&init_mm.context.attach_count);
919 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
920 	if (MACHINE_HAS_TLB_LC)
921 		cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
922 }
923 
cpu_die(void)924 void __noreturn cpu_die(void)
925 {
926 	idle_task_exit();
927 	__bpon();
928 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
929 	for (;;) ;
930 }
931 
932 #endif /* CONFIG_HOTPLUG_CPU */
933 
smp_fill_possible_mask(void)934 void __init smp_fill_possible_mask(void)
935 {
936 	unsigned int possible, sclp_max, cpu;
937 
938 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
939 	sclp_max = min(smp_max_threads, sclp_max);
940 	sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
941 	possible = setup_possible_cpus ?: nr_cpu_ids;
942 	possible = min(possible, sclp_max);
943 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
944 		set_cpu_possible(cpu, true);
945 }
946 
smp_prepare_cpus(unsigned int max_cpus)947 void __init smp_prepare_cpus(unsigned int max_cpus)
948 {
949 	/* request the 0x1201 emergency signal external interrupt */
950 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
951 		panic("Couldn't request external interrupt 0x1201");
952 	/* request the 0x1202 external call external interrupt */
953 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
954 		panic("Couldn't request external interrupt 0x1202");
955 	smp_detect_cpus();
956 }
957 
smp_prepare_boot_cpu(void)958 void __init smp_prepare_boot_cpu(void)
959 {
960 	struct pcpu *pcpu = pcpu_devices;
961 
962 	pcpu->state = CPU_STATE_CONFIGURED;
963 	pcpu->address = stap();
964 	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
965 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
966 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
967 	set_cpu_present(0, true);
968 	set_cpu_online(0, true);
969 }
970 
smp_cpus_done(unsigned int max_cpus)971 void __init smp_cpus_done(unsigned int max_cpus)
972 {
973 }
974 
smp_setup_processor_id(void)975 void __init smp_setup_processor_id(void)
976 {
977 	S390_lowcore.cpu_nr = 0;
978 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
979 }
980 
981 /*
982  * the frequency of the profiling timer can be changed
983  * by writing a multiplier value into /proc/profile.
984  *
985  * usually you want to run this on all CPUs ;)
986  */
setup_profiling_timer(unsigned int multiplier)987 int setup_profiling_timer(unsigned int multiplier)
988 {
989 	return 0;
990 }
991 
992 #ifdef CONFIG_HOTPLUG_CPU
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)993 static ssize_t cpu_configure_show(struct device *dev,
994 				  struct device_attribute *attr, char *buf)
995 {
996 	ssize_t count;
997 
998 	mutex_lock(&smp_cpu_state_mutex);
999 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1000 	mutex_unlock(&smp_cpu_state_mutex);
1001 	return count;
1002 }
1003 
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1004 static ssize_t cpu_configure_store(struct device *dev,
1005 				   struct device_attribute *attr,
1006 				   const char *buf, size_t count)
1007 {
1008 	struct pcpu *pcpu;
1009 	int cpu, val, rc, i;
1010 	char delim;
1011 
1012 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1013 		return -EINVAL;
1014 	if (val != 0 && val != 1)
1015 		return -EINVAL;
1016 	get_online_cpus();
1017 	mutex_lock(&smp_cpu_state_mutex);
1018 	rc = -EBUSY;
1019 	/* disallow configuration changes of online cpus and cpu 0 */
1020 	cpu = dev->id;
1021 	cpu -= cpu % (smp_cpu_mtid + 1);
1022 	if (cpu == 0)
1023 		goto out;
1024 	for (i = 0; i <= smp_cpu_mtid; i++)
1025 		if (cpu_online(cpu + i))
1026 			goto out;
1027 	pcpu = pcpu_devices + cpu;
1028 	rc = 0;
1029 	switch (val) {
1030 	case 0:
1031 		if (pcpu->state != CPU_STATE_CONFIGURED)
1032 			break;
1033 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1034 		if (rc)
1035 			break;
1036 		for (i = 0; i <= smp_cpu_mtid; i++) {
1037 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1038 				continue;
1039 			pcpu[i].state = CPU_STATE_STANDBY;
1040 			smp_cpu_set_polarization(cpu + i,
1041 						 POLARIZATION_UNKNOWN);
1042 		}
1043 		topology_expect_change();
1044 		break;
1045 	case 1:
1046 		if (pcpu->state != CPU_STATE_STANDBY)
1047 			break;
1048 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1049 		if (rc)
1050 			break;
1051 		for (i = 0; i <= smp_cpu_mtid; i++) {
1052 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1053 				continue;
1054 			pcpu[i].state = CPU_STATE_CONFIGURED;
1055 			smp_cpu_set_polarization(cpu + i,
1056 						 POLARIZATION_UNKNOWN);
1057 		}
1058 		topology_expect_change();
1059 		break;
1060 	default:
1061 		break;
1062 	}
1063 out:
1064 	mutex_unlock(&smp_cpu_state_mutex);
1065 	put_online_cpus();
1066 	return rc ? rc : count;
1067 }
1068 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1069 #endif /* CONFIG_HOTPLUG_CPU */
1070 
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1071 static ssize_t show_cpu_address(struct device *dev,
1072 				struct device_attribute *attr, char *buf)
1073 {
1074 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1075 }
1076 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1077 
1078 static struct attribute *cpu_common_attrs[] = {
1079 #ifdef CONFIG_HOTPLUG_CPU
1080 	&dev_attr_configure.attr,
1081 #endif
1082 	&dev_attr_address.attr,
1083 	NULL,
1084 };
1085 
1086 static struct attribute_group cpu_common_attr_group = {
1087 	.attrs = cpu_common_attrs,
1088 };
1089 
1090 static struct attribute *cpu_online_attrs[] = {
1091 	&dev_attr_idle_count.attr,
1092 	&dev_attr_idle_time_us.attr,
1093 	NULL,
1094 };
1095 
1096 static struct attribute_group cpu_online_attr_group = {
1097 	.attrs = cpu_online_attrs,
1098 };
1099 
smp_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1100 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1101 			  void *hcpu)
1102 {
1103 	unsigned int cpu = (unsigned int)(long)hcpu;
1104 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1105 	int err = 0;
1106 
1107 	switch (action & ~CPU_TASKS_FROZEN) {
1108 	case CPU_ONLINE:
1109 		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1110 		break;
1111 	case CPU_DEAD:
1112 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1113 		break;
1114 	}
1115 	return notifier_from_errno(err);
1116 }
1117 
smp_add_present_cpu(int cpu)1118 static int smp_add_present_cpu(int cpu)
1119 {
1120 	struct device *s;
1121 	struct cpu *c;
1122 	int rc;
1123 
1124 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1125 	if (!c)
1126 		return -ENOMEM;
1127 	per_cpu(cpu_device, cpu) = c;
1128 	s = &c->dev;
1129 	c->hotpluggable = 1;
1130 	rc = register_cpu(c, cpu);
1131 	if (rc)
1132 		goto out;
1133 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1134 	if (rc)
1135 		goto out_cpu;
1136 	if (cpu_online(cpu)) {
1137 		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1138 		if (rc)
1139 			goto out_online;
1140 	}
1141 	rc = topology_cpu_init(c);
1142 	if (rc)
1143 		goto out_topology;
1144 	return 0;
1145 
1146 out_topology:
1147 	if (cpu_online(cpu))
1148 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1149 out_online:
1150 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1151 out_cpu:
1152 #ifdef CONFIG_HOTPLUG_CPU
1153 	unregister_cpu(c);
1154 #endif
1155 out:
1156 	return rc;
1157 }
1158 
1159 #ifdef CONFIG_HOTPLUG_CPU
1160 
smp_rescan_cpus(void)1161 int __ref smp_rescan_cpus(void)
1162 {
1163 	struct sclp_core_info *info;
1164 	int nr;
1165 
1166 	info = smp_get_core_info();
1167 	if (!info)
1168 		return -ENOMEM;
1169 	get_online_cpus();
1170 	mutex_lock(&smp_cpu_state_mutex);
1171 	nr = __smp_rescan_cpus(info, false);
1172 	mutex_unlock(&smp_cpu_state_mutex);
1173 	put_online_cpus();
1174 	kfree(info);
1175 	if (nr)
1176 		topology_schedule_update();
1177 	return 0;
1178 }
1179 
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1180 static ssize_t __ref rescan_store(struct device *dev,
1181 				  struct device_attribute *attr,
1182 				  const char *buf,
1183 				  size_t count)
1184 {
1185 	int rc;
1186 
1187 	rc = lock_device_hotplug_sysfs();
1188 	if (rc)
1189 		return rc;
1190 	rc = smp_rescan_cpus();
1191 	unlock_device_hotplug();
1192 	return rc ? rc : count;
1193 }
1194 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1195 #endif /* CONFIG_HOTPLUG_CPU */
1196 
s390_smp_init(void)1197 static int __init s390_smp_init(void)
1198 {
1199 	int cpu, rc = 0;
1200 
1201 #ifdef CONFIG_HOTPLUG_CPU
1202 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1203 	if (rc)
1204 		return rc;
1205 #endif
1206 	cpu_notifier_register_begin();
1207 	for_each_present_cpu(cpu) {
1208 		rc = smp_add_present_cpu(cpu);
1209 		if (rc)
1210 			goto out;
1211 	}
1212 
1213 	__hotcpu_notifier(smp_cpu_notify, 0);
1214 
1215 out:
1216 	cpu_notifier_register_done();
1217 	return rc;
1218 }
1219 subsys_initcall(s390_smp_init);
1220