• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29 
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40 
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55 
56 #include "cpumap.h"
57 #include "kernel.h"
58 
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62 
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
65 
66 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
67 EXPORT_SYMBOL(cpu_core_map);
68 EXPORT_SYMBOL(cpu_core_sib_map);
69 
70 static cpumask_t smp_commenced_mask;
71 
smp_info(struct seq_file * m)72 void smp_info(struct seq_file *m)
73 {
74 	int i;
75 
76 	seq_printf(m, "State:\n");
77 	for_each_online_cpu(i)
78 		seq_printf(m, "CPU%d:\t\tonline\n", i);
79 }
80 
smp_bogo(struct seq_file * m)81 void smp_bogo(struct seq_file *m)
82 {
83 	int i;
84 
85 	for_each_online_cpu(i)
86 		seq_printf(m,
87 			   "Cpu%dClkTck\t: %016lx\n",
88 			   i, cpu_data(i).clock_tick);
89 }
90 
91 extern void setup_sparc64_timer(void);
92 
93 static volatile unsigned long callin_flag = 0;
94 
smp_callin(void)95 void smp_callin(void)
96 {
97 	int cpuid = hard_smp_processor_id();
98 
99 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
100 
101 	if (tlb_type == hypervisor)
102 		sun4v_ktsb_register();
103 
104 	__flush_tlb_all();
105 
106 	setup_sparc64_timer();
107 
108 	if (cheetah_pcache_forced_on)
109 		cheetah_enable_pcache();
110 
111 	callin_flag = 1;
112 	__asm__ __volatile__("membar #Sync\n\t"
113 			     "flush  %%g6" : : : "memory");
114 
115 	/* Clear this or we will die instantly when we
116 	 * schedule back to this idler...
117 	 */
118 	current_thread_info()->new_child = 0;
119 
120 	/* Attach to the address space of init_task. */
121 	atomic_inc(&init_mm.mm_count);
122 	current->active_mm = &init_mm;
123 
124 	/* inform the notifiers about the new cpu */
125 	notify_cpu_starting(cpuid);
126 
127 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
128 		rmb();
129 
130 	set_cpu_online(cpuid, true);
131 
132 	/* idle thread is expected to have preempt disabled */
133 	preempt_disable();
134 
135 	local_irq_enable();
136 
137 	cpu_startup_entry(CPUHP_ONLINE);
138 }
139 
cpu_panic(void)140 void cpu_panic(void)
141 {
142 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
143 	panic("SMP bolixed\n");
144 }
145 
146 /* This tick register synchronization scheme is taken entirely from
147  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
148  *
149  * The only change I've made is to rework it so that the master
150  * initiates the synchonization instead of the slave. -DaveM
151  */
152 
153 #define MASTER	0
154 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
155 
156 #define NUM_ROUNDS	64	/* magic value */
157 #define NUM_ITERS	5	/* likewise */
158 
159 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
160 static unsigned long go[SLAVE + 1];
161 
162 #define DEBUG_TICK_SYNC	0
163 
get_delta(long * rt,long * master)164 static inline long get_delta (long *rt, long *master)
165 {
166 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
167 	unsigned long tcenter, t0, t1, tm;
168 	unsigned long i;
169 
170 	for (i = 0; i < NUM_ITERS; i++) {
171 		t0 = tick_ops->get_tick();
172 		go[MASTER] = 1;
173 		membar_safe("#StoreLoad");
174 		while (!(tm = go[SLAVE]))
175 			rmb();
176 		go[SLAVE] = 0;
177 		wmb();
178 		t1 = tick_ops->get_tick();
179 
180 		if (t1 - t0 < best_t1 - best_t0)
181 			best_t0 = t0, best_t1 = t1, best_tm = tm;
182 	}
183 
184 	*rt = best_t1 - best_t0;
185 	*master = best_tm - best_t0;
186 
187 	/* average best_t0 and best_t1 without overflow: */
188 	tcenter = (best_t0/2 + best_t1/2);
189 	if (best_t0 % 2 + best_t1 % 2 == 2)
190 		tcenter++;
191 	return tcenter - best_tm;
192 }
193 
smp_synchronize_tick_client(void)194 void smp_synchronize_tick_client(void)
195 {
196 	long i, delta, adj, adjust_latency = 0, done = 0;
197 	unsigned long flags, rt, master_time_stamp;
198 #if DEBUG_TICK_SYNC
199 	struct {
200 		long rt;	/* roundtrip time */
201 		long master;	/* master's timestamp */
202 		long diff;	/* difference between midpoint and master's timestamp */
203 		long lat;	/* estimate of itc adjustment latency */
204 	} t[NUM_ROUNDS];
205 #endif
206 
207 	go[MASTER] = 1;
208 
209 	while (go[MASTER])
210 		rmb();
211 
212 	local_irq_save(flags);
213 	{
214 		for (i = 0; i < NUM_ROUNDS; i++) {
215 			delta = get_delta(&rt, &master_time_stamp);
216 			if (delta == 0)
217 				done = 1;	/* let's lock on to this... */
218 
219 			if (!done) {
220 				if (i > 0) {
221 					adjust_latency += -delta;
222 					adj = -delta + adjust_latency/4;
223 				} else
224 					adj = -delta;
225 
226 				tick_ops->add_tick(adj);
227 			}
228 #if DEBUG_TICK_SYNC
229 			t[i].rt = rt;
230 			t[i].master = master_time_stamp;
231 			t[i].diff = delta;
232 			t[i].lat = adjust_latency/4;
233 #endif
234 		}
235 	}
236 	local_irq_restore(flags);
237 
238 #if DEBUG_TICK_SYNC
239 	for (i = 0; i < NUM_ROUNDS; i++)
240 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
241 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
242 #endif
243 
244 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
245 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
246 	       smp_processor_id(), delta, rt);
247 }
248 
249 static void smp_start_sync_tick_client(int cpu);
250 
smp_synchronize_one_tick(int cpu)251 static void smp_synchronize_one_tick(int cpu)
252 {
253 	unsigned long flags, i;
254 
255 	go[MASTER] = 0;
256 
257 	smp_start_sync_tick_client(cpu);
258 
259 	/* wait for client to be ready */
260 	while (!go[MASTER])
261 		rmb();
262 
263 	/* now let the client proceed into his loop */
264 	go[MASTER] = 0;
265 	membar_safe("#StoreLoad");
266 
267 	raw_spin_lock_irqsave(&itc_sync_lock, flags);
268 	{
269 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
270 			while (!go[MASTER])
271 				rmb();
272 			go[MASTER] = 0;
273 			wmb();
274 			go[SLAVE] = tick_ops->get_tick();
275 			membar_safe("#StoreLoad");
276 		}
277 	}
278 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
279 }
280 
281 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
ldom_startcpu_cpuid(unsigned int cpu,unsigned long thread_reg,void ** descrp)282 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
283 				void **descrp)
284 {
285 	extern unsigned long sparc64_ttable_tl0;
286 	extern unsigned long kern_locked_tte_data;
287 	struct hvtramp_descr *hdesc;
288 	unsigned long trampoline_ra;
289 	struct trap_per_cpu *tb;
290 	u64 tte_vaddr, tte_data;
291 	unsigned long hv_err;
292 	int i;
293 
294 	hdesc = kzalloc(sizeof(*hdesc) +
295 			(sizeof(struct hvtramp_mapping) *
296 			 num_kernel_image_mappings - 1),
297 			GFP_KERNEL);
298 	if (!hdesc) {
299 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300 		       "hvtramp_descr.\n");
301 		return;
302 	}
303 	*descrp = hdesc;
304 
305 	hdesc->cpu = cpu;
306 	hdesc->num_mappings = num_kernel_image_mappings;
307 
308 	tb = &trap_block[cpu];
309 
310 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312 
313 	hdesc->thread_reg = thread_reg;
314 
315 	tte_vaddr = (unsigned long) KERNBASE;
316 	tte_data = kern_locked_tte_data;
317 
318 	for (i = 0; i < hdesc->num_mappings; i++) {
319 		hdesc->maps[i].vaddr = tte_vaddr;
320 		hdesc->maps[i].tte   = tte_data;
321 		tte_vaddr += 0x400000;
322 		tte_data  += 0x400000;
323 	}
324 
325 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326 
327 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 				 __pa(hdesc));
330 	if (hv_err)
331 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 		       "gives error %lu\n", hv_err);
333 }
334 #endif
335 
336 extern unsigned long sparc64_cpu_startup;
337 
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339  * 32-bits (I think) so to be safe we have it read the pointer
340  * contained here so we work on >4GB machines. -DaveM
341  */
342 static struct thread_info *cpu_new_thread = NULL;
343 
smp_boot_one_cpu(unsigned int cpu,struct task_struct * idle)344 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
345 {
346 	unsigned long entry =
347 		(unsigned long)(&sparc64_cpu_startup);
348 	unsigned long cookie =
349 		(unsigned long)(&cpu_new_thread);
350 	void *descr = NULL;
351 	int timeout, ret;
352 
353 	callin_flag = 0;
354 	cpu_new_thread = task_thread_info(idle);
355 
356 	if (tlb_type == hypervisor) {
357 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
358 		if (ldom_domaining_enabled)
359 			ldom_startcpu_cpuid(cpu,
360 					    (unsigned long) cpu_new_thread,
361 					    &descr);
362 		else
363 #endif
364 			prom_startcpu_cpuid(cpu, entry, cookie);
365 	} else {
366 		struct device_node *dp = of_find_node_by_cpuid(cpu);
367 
368 		prom_startcpu(dp->phandle, entry, cookie);
369 	}
370 
371 	for (timeout = 0; timeout < 50000; timeout++) {
372 		if (callin_flag)
373 			break;
374 		udelay(100);
375 	}
376 
377 	if (callin_flag) {
378 		ret = 0;
379 	} else {
380 		printk("Processor %d is stuck.\n", cpu);
381 		ret = -ENODEV;
382 	}
383 	cpu_new_thread = NULL;
384 
385 	kfree(descr);
386 
387 	return ret;
388 }
389 
spitfire_xcall_helper(u64 data0,u64 data1,u64 data2,u64 pstate,unsigned long cpu)390 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
391 {
392 	u64 result, target;
393 	int stuck, tmp;
394 
395 	if (this_is_starfire) {
396 		/* map to real upaid */
397 		cpu = (((cpu & 0x3c) << 1) |
398 			((cpu & 0x40) >> 4) |
399 			(cpu & 0x3));
400 	}
401 
402 	target = (cpu << 14) | 0x70;
403 again:
404 	/* Ok, this is the real Spitfire Errata #54.
405 	 * One must read back from a UDB internal register
406 	 * after writes to the UDB interrupt dispatch, but
407 	 * before the membar Sync for that write.
408 	 * So we use the high UDB control register (ASI 0x7f,
409 	 * ADDR 0x20) for the dummy read. -DaveM
410 	 */
411 	tmp = 0x40;
412 	__asm__ __volatile__(
413 	"wrpr	%1, %2, %%pstate\n\t"
414 	"stxa	%4, [%0] %3\n\t"
415 	"stxa	%5, [%0+%8] %3\n\t"
416 	"add	%0, %8, %0\n\t"
417 	"stxa	%6, [%0+%8] %3\n\t"
418 	"membar	#Sync\n\t"
419 	"stxa	%%g0, [%7] %3\n\t"
420 	"membar	#Sync\n\t"
421 	"mov	0x20, %%g1\n\t"
422 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
423 	"membar	#Sync"
424 	: "=r" (tmp)
425 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
426 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
427 	  "r" (0x10), "0" (tmp)
428         : "g1");
429 
430 	/* NOTE: PSTATE_IE is still clear. */
431 	stuck = 100000;
432 	do {
433 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
434 			: "=r" (result)
435 			: "i" (ASI_INTR_DISPATCH_STAT));
436 		if (result == 0) {
437 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
438 					     : : "r" (pstate));
439 			return;
440 		}
441 		stuck -= 1;
442 		if (stuck == 0)
443 			break;
444 	} while (result & 0x1);
445 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 			     : : "r" (pstate));
447 	if (stuck == 0) {
448 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
449 		       smp_processor_id(), result);
450 	} else {
451 		udelay(2);
452 		goto again;
453 	}
454 }
455 
spitfire_xcall_deliver(struct trap_per_cpu * tb,int cnt)456 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
457 {
458 	u64 *mondo, data0, data1, data2;
459 	u16 *cpu_list;
460 	u64 pstate;
461 	int i;
462 
463 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
464 	cpu_list = __va(tb->cpu_list_pa);
465 	mondo = __va(tb->cpu_mondo_block_pa);
466 	data0 = mondo[0];
467 	data1 = mondo[1];
468 	data2 = mondo[2];
469 	for (i = 0; i < cnt; i++)
470 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
471 }
472 
473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474  * packet, but we have no use for that.  However we do take advantage of
475  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476  */
cheetah_xcall_deliver(struct trap_per_cpu * tb,int cnt)477 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
478 {
479 	int nack_busy_id, is_jbus, need_more;
480 	u64 *mondo, pstate, ver, busy_mask;
481 	u16 *cpu_list;
482 
483 	cpu_list = __va(tb->cpu_list_pa);
484 	mondo = __va(tb->cpu_mondo_block_pa);
485 
486 	/* Unfortunately, someone at Sun had the brilliant idea to make the
487 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
488 	 * derivative processor.
489 	 */
490 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
491 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
492 		   (ver >> 32) == __SERRANO_ID);
493 
494 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
495 
496 retry:
497 	need_more = 0;
498 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
499 			     : : "r" (pstate), "i" (PSTATE_IE));
500 
501 	/* Setup the dispatch data registers. */
502 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
503 			     "stxa	%1, [%4] %6\n\t"
504 			     "stxa	%2, [%5] %6\n\t"
505 			     "membar	#Sync\n\t"
506 			     : /* no outputs */
507 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
508 			       "r" (0x40), "r" (0x50), "r" (0x60),
509 			       "i" (ASI_INTR_W));
510 
511 	nack_busy_id = 0;
512 	busy_mask = 0;
513 	{
514 		int i;
515 
516 		for (i = 0; i < cnt; i++) {
517 			u64 target, nr;
518 
519 			nr = cpu_list[i];
520 			if (nr == 0xffff)
521 				continue;
522 
523 			target = (nr << 14) | 0x70;
524 			if (is_jbus) {
525 				busy_mask |= (0x1UL << (nr * 2));
526 			} else {
527 				target |= (nack_busy_id << 24);
528 				busy_mask |= (0x1UL <<
529 					      (nack_busy_id * 2));
530 			}
531 			__asm__ __volatile__(
532 				"stxa	%%g0, [%0] %1\n\t"
533 				"membar	#Sync\n\t"
534 				: /* no outputs */
535 				: "r" (target), "i" (ASI_INTR_W));
536 			nack_busy_id++;
537 			if (nack_busy_id == 32) {
538 				need_more = 1;
539 				break;
540 			}
541 		}
542 	}
543 
544 	/* Now, poll for completion. */
545 	{
546 		u64 dispatch_stat, nack_mask;
547 		long stuck;
548 
549 		stuck = 100000 * nack_busy_id;
550 		nack_mask = busy_mask << 1;
551 		do {
552 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
553 					     : "=r" (dispatch_stat)
554 					     : "i" (ASI_INTR_DISPATCH_STAT));
555 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
556 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
557 						     : : "r" (pstate));
558 				if (unlikely(need_more)) {
559 					int i, this_cnt = 0;
560 					for (i = 0; i < cnt; i++) {
561 						if (cpu_list[i] == 0xffff)
562 							continue;
563 						cpu_list[i] = 0xffff;
564 						this_cnt++;
565 						if (this_cnt == 32)
566 							break;
567 					}
568 					goto retry;
569 				}
570 				return;
571 			}
572 			if (!--stuck)
573 				break;
574 		} while (dispatch_stat & busy_mask);
575 
576 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
577 				     : : "r" (pstate));
578 
579 		if (dispatch_stat & busy_mask) {
580 			/* Busy bits will not clear, continue instead
581 			 * of freezing up on this cpu.
582 			 */
583 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
584 			       smp_processor_id(), dispatch_stat);
585 		} else {
586 			int i, this_busy_nack = 0;
587 
588 			/* Delay some random time with interrupts enabled
589 			 * to prevent deadlock.
590 			 */
591 			udelay(2 * nack_busy_id);
592 
593 			/* Clear out the mask bits for cpus which did not
594 			 * NACK us.
595 			 */
596 			for (i = 0; i < cnt; i++) {
597 				u64 check_mask, nr;
598 
599 				nr = cpu_list[i];
600 				if (nr == 0xffff)
601 					continue;
602 
603 				if (is_jbus)
604 					check_mask = (0x2UL << (2*nr));
605 				else
606 					check_mask = (0x2UL <<
607 						      this_busy_nack);
608 				if ((dispatch_stat & check_mask) == 0)
609 					cpu_list[i] = 0xffff;
610 				this_busy_nack += 2;
611 				if (this_busy_nack == 64)
612 					break;
613 			}
614 
615 			goto retry;
616 		}
617 	}
618 }
619 
620 #define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
621 #define	MONDO_USEC_WAIT_MIN		2
622 #define	MONDO_USEC_WAIT_MAX		100
623 #define	MONDO_RETRY_LIMIT		500000
624 
625 /* Multi-cpu list version.
626  *
627  * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
628  * Sometimes not all cpus receive the mondo, requiring us to re-send
629  * the mondo until all cpus have received, or cpus are truly stuck
630  * unable to receive mondo, and we timeout.
631  * Occasionally a target cpu strand is borrowed briefly by hypervisor to
632  * perform guest service, such as PCIe error handling. Consider the
633  * service time, 1 second overall wait is reasonable for 1 cpu.
634  * Here two in-between mondo check wait time are defined: 2 usec for
635  * single cpu quick turn around and up to 100usec for large cpu count.
636  * Deliver mondo to large number of cpus could take longer, we adjusts
637  * the retry count as long as target cpus are making forward progress.
638  */
hypervisor_xcall_deliver(struct trap_per_cpu * tb,int cnt)639 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
640 {
641 	int this_cpu, tot_cpus, prev_sent, i, rem;
642 	int usec_wait, retries, tot_retries;
643 	u16 first_cpu = 0xffff;
644 	unsigned long xc_rcvd = 0;
645 	unsigned long status;
646 	int ecpuerror_id = 0;
647 	int enocpu_id = 0;
648 	u16 *cpu_list;
649 	u16 cpu;
650 
651 	this_cpu = smp_processor_id();
652 	cpu_list = __va(tb->cpu_list_pa);
653 	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
654 	if (usec_wait > MONDO_USEC_WAIT_MAX)
655 		usec_wait = MONDO_USEC_WAIT_MAX;
656 	retries = tot_retries = 0;
657 	tot_cpus = cnt;
658 	prev_sent = 0;
659 
660 	do {
661 		int n_sent, mondo_delivered, target_cpu_busy;
662 
663 		status = sun4v_cpu_mondo_send(cnt,
664 					      tb->cpu_list_pa,
665 					      tb->cpu_mondo_block_pa);
666 
667 		/* HV_EOK means all cpus received the xcall, we're done.  */
668 		if (likely(status == HV_EOK))
669 			goto xcall_done;
670 
671 		/* If not these non-fatal errors, panic */
672 		if (unlikely((status != HV_EWOULDBLOCK) &&
673 			(status != HV_ECPUERROR) &&
674 			(status != HV_ENOCPU)))
675 			goto fatal_errors;
676 
677 		/* First, see if we made any forward progress.
678 		 *
679 		 * Go through the cpu_list, count the target cpus that have
680 		 * received our mondo (n_sent), and those that did not (rem).
681 		 * Re-pack cpu_list with the cpus remain to be retried in the
682 		 * front - this simplifies tracking the truly stalled cpus.
683 		 *
684 		 * The hypervisor indicates successful sends by setting
685 		 * cpu list entries to the value 0xffff.
686 		 *
687 		 * EWOULDBLOCK means some target cpus did not receive the
688 		 * mondo and retry usually helps.
689 		 *
690 		 * ECPUERROR means at least one target cpu is in error state,
691 		 * it's usually safe to skip the faulty cpu and retry.
692 		 *
693 		 * ENOCPU means one of the target cpu doesn't belong to the
694 		 * domain, perhaps offlined which is unexpected, but not
695 		 * fatal and it's okay to skip the offlined cpu.
696 		 */
697 		rem = 0;
698 		n_sent = 0;
699 		for (i = 0; i < cnt; i++) {
700 			cpu = cpu_list[i];
701 			if (likely(cpu == 0xffff)) {
702 				n_sent++;
703 			} else if ((status == HV_ECPUERROR) &&
704 				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
705 				ecpuerror_id = cpu + 1;
706 			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
707 				enocpu_id = cpu + 1;
708 			} else {
709 				cpu_list[rem++] = cpu;
710 			}
711 		}
712 
713 		/* No cpu remained, we're done. */
714 		if (rem == 0)
715 			break;
716 
717 		/* Otherwise, update the cpu count for retry. */
718 		cnt = rem;
719 
720 		/* Record the overall number of mondos received by the
721 		 * first of the remaining cpus.
722 		 */
723 		if (first_cpu != cpu_list[0]) {
724 			first_cpu = cpu_list[0];
725 			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
726 		}
727 
728 		/* Was any mondo delivered successfully? */
729 		mondo_delivered = (n_sent > prev_sent);
730 		prev_sent = n_sent;
731 
732 		/* or, was any target cpu busy processing other mondos? */
733 		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
734 		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
735 
736 		/* Retry count is for no progress. If we're making progress,
737 		 * reset the retry count.
738 		 */
739 		if (likely(mondo_delivered || target_cpu_busy)) {
740 			tot_retries += retries;
741 			retries = 0;
742 		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
743 			goto fatal_mondo_timeout;
744 		}
745 
746 		/* Delay a little bit to let other cpus catch up on
747 		 * their cpu mondo queue work.
748 		 */
749 		if (!mondo_delivered)
750 			udelay(usec_wait);
751 
752 		retries++;
753 	} while (1);
754 
755 xcall_done:
756 	if (unlikely(ecpuerror_id > 0)) {
757 		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
758 		       this_cpu, ecpuerror_id - 1);
759 	} else if (unlikely(enocpu_id > 0)) {
760 		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
761 		       this_cpu, enocpu_id - 1);
762 	}
763 	return;
764 
765 fatal_errors:
766 	/* fatal errors include bad alignment, etc */
767 	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
768 	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
769 	panic("Unexpected SUN4V mondo error %lu\n", status);
770 
771 fatal_mondo_timeout:
772 	/* some cpus being non-responsive to the cpu mondo */
773 	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
774 	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
775 	panic("SUN4V mondo timeout panic\n");
776 }
777 
778 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
779 
xcall_deliver(u64 data0,u64 data1,u64 data2,const cpumask_t * mask)780 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
781 {
782 	struct trap_per_cpu *tb;
783 	int this_cpu, i, cnt;
784 	unsigned long flags;
785 	u16 *cpu_list;
786 	u64 *mondo;
787 
788 	/* We have to do this whole thing with interrupts fully disabled.
789 	 * Otherwise if we send an xcall from interrupt context it will
790 	 * corrupt both our mondo block and cpu list state.
791 	 *
792 	 * One consequence of this is that we cannot use timeout mechanisms
793 	 * that depend upon interrupts being delivered locally.  So, for
794 	 * example, we cannot sample jiffies and expect it to advance.
795 	 *
796 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
797 	 */
798 	local_irq_save(flags);
799 
800 	this_cpu = smp_processor_id();
801 	tb = &trap_block[this_cpu];
802 
803 	mondo = __va(tb->cpu_mondo_block_pa);
804 	mondo[0] = data0;
805 	mondo[1] = data1;
806 	mondo[2] = data2;
807 	wmb();
808 
809 	cpu_list = __va(tb->cpu_list_pa);
810 
811 	/* Setup the initial cpu list.  */
812 	cnt = 0;
813 	for_each_cpu(i, mask) {
814 		if (i == this_cpu || !cpu_online(i))
815 			continue;
816 		cpu_list[cnt++] = i;
817 	}
818 
819 	if (cnt)
820 		xcall_deliver_impl(tb, cnt);
821 
822 	local_irq_restore(flags);
823 }
824 
825 /* Send cross call to all processors mentioned in MASK_P
826  * except self.  Really, there are only two cases currently,
827  * "cpu_online_mask" and "mm_cpumask(mm)".
828  */
smp_cross_call_masked(unsigned long * func,u32 ctx,u64 data1,u64 data2,const cpumask_t * mask)829 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
830 {
831 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
832 
833 	xcall_deliver(data0, data1, data2, mask);
834 }
835 
836 /* Send cross call to all processors except self. */
smp_cross_call(unsigned long * func,u32 ctx,u64 data1,u64 data2)837 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
838 {
839 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
840 }
841 
842 extern unsigned long xcall_sync_tick;
843 
smp_start_sync_tick_client(int cpu)844 static void smp_start_sync_tick_client(int cpu)
845 {
846 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
847 		      cpumask_of(cpu));
848 }
849 
850 extern unsigned long xcall_call_function;
851 
arch_send_call_function_ipi_mask(const struct cpumask * mask)852 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
853 {
854 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
855 }
856 
857 extern unsigned long xcall_call_function_single;
858 
arch_send_call_function_single_ipi(int cpu)859 void arch_send_call_function_single_ipi(int cpu)
860 {
861 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
862 		      cpumask_of(cpu));
863 }
864 
smp_call_function_client(int irq,struct pt_regs * regs)865 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
866 {
867 	clear_softint(1 << irq);
868 	irq_enter();
869 	generic_smp_call_function_interrupt();
870 	irq_exit();
871 }
872 
smp_call_function_single_client(int irq,struct pt_regs * regs)873 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
874 {
875 	clear_softint(1 << irq);
876 	irq_enter();
877 	generic_smp_call_function_single_interrupt();
878 	irq_exit();
879 }
880 
tsb_sync(void * info)881 static void tsb_sync(void *info)
882 {
883 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
884 	struct mm_struct *mm = info;
885 
886 	/* It is not valid to test "current->active_mm == mm" here.
887 	 *
888 	 * The value of "current" is not changed atomically with
889 	 * switch_mm().  But that's OK, we just need to check the
890 	 * current cpu's trap block PGD physical address.
891 	 */
892 	if (tp->pgd_paddr == __pa(mm->pgd))
893 		tsb_context_switch(mm);
894 }
895 
smp_tsb_sync(struct mm_struct * mm)896 void smp_tsb_sync(struct mm_struct *mm)
897 {
898 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
899 }
900 
901 extern unsigned long xcall_flush_tlb_mm;
902 extern unsigned long xcall_flush_tlb_page;
903 extern unsigned long xcall_flush_tlb_kernel_range;
904 extern unsigned long xcall_fetch_glob_regs;
905 extern unsigned long xcall_fetch_glob_pmu;
906 extern unsigned long xcall_fetch_glob_pmu_n4;
907 extern unsigned long xcall_receive_signal;
908 extern unsigned long xcall_new_mmu_context_version;
909 #ifdef CONFIG_KGDB
910 extern unsigned long xcall_kgdb_capture;
911 #endif
912 
913 #ifdef DCACHE_ALIASING_POSSIBLE
914 extern unsigned long xcall_flush_dcache_page_cheetah;
915 #endif
916 extern unsigned long xcall_flush_dcache_page_spitfire;
917 
__local_flush_dcache_page(struct page * page)918 static inline void __local_flush_dcache_page(struct page *page)
919 {
920 #ifdef DCACHE_ALIASING_POSSIBLE
921 	__flush_dcache_page(page_address(page),
922 			    ((tlb_type == spitfire) &&
923 			     page_mapping(page) != NULL));
924 #else
925 	if (page_mapping(page) != NULL &&
926 	    tlb_type == spitfire)
927 		__flush_icache_page(__pa(page_address(page)));
928 #endif
929 }
930 
smp_flush_dcache_page_impl(struct page * page,int cpu)931 void smp_flush_dcache_page_impl(struct page *page, int cpu)
932 {
933 	int this_cpu;
934 
935 	if (tlb_type == hypervisor)
936 		return;
937 
938 #ifdef CONFIG_DEBUG_DCFLUSH
939 	atomic_inc(&dcpage_flushes);
940 #endif
941 
942 	this_cpu = get_cpu();
943 
944 	if (cpu == this_cpu) {
945 		__local_flush_dcache_page(page);
946 	} else if (cpu_online(cpu)) {
947 		void *pg_addr = page_address(page);
948 		u64 data0 = 0;
949 
950 		if (tlb_type == spitfire) {
951 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
952 			if (page_mapping(page) != NULL)
953 				data0 |= ((u64)1 << 32);
954 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
955 #ifdef DCACHE_ALIASING_POSSIBLE
956 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
957 #endif
958 		}
959 		if (data0) {
960 			xcall_deliver(data0, __pa(pg_addr),
961 				      (u64) pg_addr, cpumask_of(cpu));
962 #ifdef CONFIG_DEBUG_DCFLUSH
963 			atomic_inc(&dcpage_flushes_xcall);
964 #endif
965 		}
966 	}
967 
968 	put_cpu();
969 }
970 
flush_dcache_page_all(struct mm_struct * mm,struct page * page)971 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
972 {
973 	void *pg_addr;
974 	u64 data0;
975 
976 	if (tlb_type == hypervisor)
977 		return;
978 
979 	preempt_disable();
980 
981 #ifdef CONFIG_DEBUG_DCFLUSH
982 	atomic_inc(&dcpage_flushes);
983 #endif
984 	data0 = 0;
985 	pg_addr = page_address(page);
986 	if (tlb_type == spitfire) {
987 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
988 		if (page_mapping(page) != NULL)
989 			data0 |= ((u64)1 << 32);
990 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
991 #ifdef DCACHE_ALIASING_POSSIBLE
992 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
993 #endif
994 	}
995 	if (data0) {
996 		xcall_deliver(data0, __pa(pg_addr),
997 			      (u64) pg_addr, cpu_online_mask);
998 #ifdef CONFIG_DEBUG_DCFLUSH
999 		atomic_inc(&dcpage_flushes_xcall);
1000 #endif
1001 	}
1002 	__local_flush_dcache_page(page);
1003 
1004 	preempt_enable();
1005 }
1006 
1007 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(unsigned long flags)1008 void kgdb_roundup_cpus(unsigned long flags)
1009 {
1010 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1011 }
1012 #endif
1013 
smp_fetch_global_regs(void)1014 void smp_fetch_global_regs(void)
1015 {
1016 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1017 }
1018 
smp_fetch_global_pmu(void)1019 void smp_fetch_global_pmu(void)
1020 {
1021 	if (tlb_type == hypervisor &&
1022 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1023 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1024 	else
1025 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1026 }
1027 
1028 /* We know that the window frames of the user have been flushed
1029  * to the stack before we get here because all callers of us
1030  * are flush_tlb_*() routines, and these run after flush_cache_*()
1031  * which performs the flushw.
1032  *
1033  * mm->cpu_vm_mask is a bit mask of which cpus an address
1034  * space has (potentially) executed on, this is the heuristic
1035  * we use to limit cross calls.
1036  */
1037 
1038 /* This currently is only used by the hugetlb arch pre-fault
1039  * hook on UltraSPARC-III+ and later when changing the pagesize
1040  * bits of the context register for an address space.
1041  */
smp_flush_tlb_mm(struct mm_struct * mm)1042 void smp_flush_tlb_mm(struct mm_struct *mm)
1043 {
1044 	u32 ctx = CTX_HWBITS(mm->context);
1045 
1046 	get_cpu();
1047 
1048 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1049 			      ctx, 0, 0,
1050 			      mm_cpumask(mm));
1051 
1052 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1053 
1054 	put_cpu();
1055 }
1056 
1057 struct tlb_pending_info {
1058 	unsigned long ctx;
1059 	unsigned long nr;
1060 	unsigned long *vaddrs;
1061 };
1062 
tlb_pending_func(void * info)1063 static void tlb_pending_func(void *info)
1064 {
1065 	struct tlb_pending_info *t = info;
1066 
1067 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1068 }
1069 
smp_flush_tlb_pending(struct mm_struct * mm,unsigned long nr,unsigned long * vaddrs)1070 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1071 {
1072 	u32 ctx = CTX_HWBITS(mm->context);
1073 	struct tlb_pending_info info;
1074 
1075 	get_cpu();
1076 
1077 	info.ctx = ctx;
1078 	info.nr = nr;
1079 	info.vaddrs = vaddrs;
1080 
1081 	smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1082 			       &info, 1);
1083 
1084 	__flush_tlb_pending(ctx, nr, vaddrs);
1085 
1086 	put_cpu();
1087 }
1088 
smp_flush_tlb_page(struct mm_struct * mm,unsigned long vaddr)1089 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1090 {
1091 	unsigned long context = CTX_HWBITS(mm->context);
1092 
1093 	get_cpu();
1094 
1095 	smp_cross_call_masked(&xcall_flush_tlb_page,
1096 			      context, vaddr, 0,
1097 			      mm_cpumask(mm));
1098 
1099 	__flush_tlb_page(context, vaddr);
1100 
1101 	put_cpu();
1102 }
1103 
smp_flush_tlb_kernel_range(unsigned long start,unsigned long end)1104 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1105 {
1106 	start &= PAGE_MASK;
1107 	end    = PAGE_ALIGN(end);
1108 	if (start != end) {
1109 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1110 			       0, start, end);
1111 
1112 		__flush_tlb_kernel_range(start, end);
1113 	}
1114 }
1115 
1116 /* CPU capture. */
1117 /* #define CAPTURE_DEBUG */
1118 extern unsigned long xcall_capture;
1119 
1120 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1121 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1122 static unsigned long penguins_are_doing_time;
1123 
smp_capture(void)1124 void smp_capture(void)
1125 {
1126 	int result = atomic_add_return(1, &smp_capture_depth);
1127 
1128 	if (result == 1) {
1129 		int ncpus = num_online_cpus();
1130 
1131 #ifdef CAPTURE_DEBUG
1132 		printk("CPU[%d]: Sending penguins to jail...",
1133 		       smp_processor_id());
1134 #endif
1135 		penguins_are_doing_time = 1;
1136 		atomic_inc(&smp_capture_registry);
1137 		smp_cross_call(&xcall_capture, 0, 0, 0);
1138 		while (atomic_read(&smp_capture_registry) != ncpus)
1139 			rmb();
1140 #ifdef CAPTURE_DEBUG
1141 		printk("done\n");
1142 #endif
1143 	}
1144 }
1145 
smp_release(void)1146 void smp_release(void)
1147 {
1148 	if (atomic_dec_and_test(&smp_capture_depth)) {
1149 #ifdef CAPTURE_DEBUG
1150 		printk("CPU[%d]: Giving pardon to "
1151 		       "imprisoned penguins\n",
1152 		       smp_processor_id());
1153 #endif
1154 		penguins_are_doing_time = 0;
1155 		membar_safe("#StoreLoad");
1156 		atomic_dec(&smp_capture_registry);
1157 	}
1158 }
1159 
1160 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1161  * set, so they can service tlb flush xcalls...
1162  */
1163 extern void prom_world(int);
1164 
smp_penguin_jailcell(int irq,struct pt_regs * regs)1165 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1166 {
1167 	clear_softint(1 << irq);
1168 
1169 	preempt_disable();
1170 
1171 	__asm__ __volatile__("flushw");
1172 	prom_world(1);
1173 	atomic_inc(&smp_capture_registry);
1174 	membar_safe("#StoreLoad");
1175 	while (penguins_are_doing_time)
1176 		rmb();
1177 	atomic_dec(&smp_capture_registry);
1178 	prom_world(0);
1179 
1180 	preempt_enable();
1181 }
1182 
1183 /* /proc/profile writes can call this, don't __init it please. */
setup_profiling_timer(unsigned int multiplier)1184 int setup_profiling_timer(unsigned int multiplier)
1185 {
1186 	return -EINVAL;
1187 }
1188 
smp_prepare_cpus(unsigned int max_cpus)1189 void __init smp_prepare_cpus(unsigned int max_cpus)
1190 {
1191 }
1192 
smp_prepare_boot_cpu(void)1193 void smp_prepare_boot_cpu(void)
1194 {
1195 }
1196 
smp_setup_processor_id(void)1197 void __init smp_setup_processor_id(void)
1198 {
1199 	if (tlb_type == spitfire)
1200 		xcall_deliver_impl = spitfire_xcall_deliver;
1201 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1202 		xcall_deliver_impl = cheetah_xcall_deliver;
1203 	else
1204 		xcall_deliver_impl = hypervisor_xcall_deliver;
1205 }
1206 
smp_fill_in_sib_core_maps(void)1207 void smp_fill_in_sib_core_maps(void)
1208 {
1209 	unsigned int i;
1210 
1211 	for_each_present_cpu(i) {
1212 		unsigned int j;
1213 
1214 		cpumask_clear(&cpu_core_map[i]);
1215 		if (cpu_data(i).core_id == 0) {
1216 			cpumask_set_cpu(i, &cpu_core_map[i]);
1217 			continue;
1218 		}
1219 
1220 		for_each_present_cpu(j) {
1221 			if (cpu_data(i).core_id ==
1222 			    cpu_data(j).core_id)
1223 				cpumask_set_cpu(j, &cpu_core_map[i]);
1224 		}
1225 	}
1226 
1227 	for_each_present_cpu(i)  {
1228 		unsigned int j;
1229 
1230 		for_each_present_cpu(j)  {
1231 			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1232 				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1233 		}
1234 	}
1235 
1236 	for_each_present_cpu(i) {
1237 		unsigned int j;
1238 
1239 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1240 		if (cpu_data(i).proc_id == -1) {
1241 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1242 			continue;
1243 		}
1244 
1245 		for_each_present_cpu(j) {
1246 			if (cpu_data(i).proc_id ==
1247 			    cpu_data(j).proc_id)
1248 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1249 		}
1250 	}
1251 }
1252 
__cpu_up(unsigned int cpu,struct task_struct * tidle)1253 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1254 {
1255 	int ret = smp_boot_one_cpu(cpu, tidle);
1256 
1257 	if (!ret) {
1258 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1259 		while (!cpu_online(cpu))
1260 			mb();
1261 		if (!cpu_online(cpu)) {
1262 			ret = -ENODEV;
1263 		} else {
1264 			/* On SUN4V, writes to %tick and %stick are
1265 			 * not allowed.
1266 			 */
1267 			if (tlb_type != hypervisor)
1268 				smp_synchronize_one_tick(cpu);
1269 		}
1270 	}
1271 	return ret;
1272 }
1273 
1274 #ifdef CONFIG_HOTPLUG_CPU
cpu_play_dead(void)1275 void cpu_play_dead(void)
1276 {
1277 	int cpu = smp_processor_id();
1278 	unsigned long pstate;
1279 
1280 	idle_task_exit();
1281 
1282 	if (tlb_type == hypervisor) {
1283 		struct trap_per_cpu *tb = &trap_block[cpu];
1284 
1285 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1286 				tb->cpu_mondo_pa, 0);
1287 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1288 				tb->dev_mondo_pa, 0);
1289 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1290 				tb->resum_mondo_pa, 0);
1291 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1292 				tb->nonresum_mondo_pa, 0);
1293 	}
1294 
1295 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1296 	membar_safe("#Sync");
1297 
1298 	local_irq_disable();
1299 
1300 	__asm__ __volatile__(
1301 		"rdpr	%%pstate, %0\n\t"
1302 		"wrpr	%0, %1, %%pstate"
1303 		: "=r" (pstate)
1304 		: "i" (PSTATE_IE));
1305 
1306 	while (1)
1307 		barrier();
1308 }
1309 
__cpu_disable(void)1310 int __cpu_disable(void)
1311 {
1312 	int cpu = smp_processor_id();
1313 	cpuinfo_sparc *c;
1314 	int i;
1315 
1316 	for_each_cpu(i, &cpu_core_map[cpu])
1317 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1318 	cpumask_clear(&cpu_core_map[cpu]);
1319 
1320 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1321 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1322 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1323 
1324 	c = &cpu_data(cpu);
1325 
1326 	c->core_id = 0;
1327 	c->proc_id = -1;
1328 
1329 	smp_wmb();
1330 
1331 	/* Make sure no interrupts point to this cpu.  */
1332 	fixup_irqs();
1333 
1334 	local_irq_enable();
1335 	mdelay(1);
1336 	local_irq_disable();
1337 
1338 	set_cpu_online(cpu, false);
1339 
1340 	cpu_map_rebuild();
1341 
1342 	return 0;
1343 }
1344 
__cpu_die(unsigned int cpu)1345 void __cpu_die(unsigned int cpu)
1346 {
1347 	int i;
1348 
1349 	for (i = 0; i < 100; i++) {
1350 		smp_rmb();
1351 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1352 			break;
1353 		msleep(100);
1354 	}
1355 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1356 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1357 	} else {
1358 #if defined(CONFIG_SUN_LDOMS)
1359 		unsigned long hv_err;
1360 		int limit = 100;
1361 
1362 		do {
1363 			hv_err = sun4v_cpu_stop(cpu);
1364 			if (hv_err == HV_EOK) {
1365 				set_cpu_present(cpu, false);
1366 				break;
1367 			}
1368 		} while (--limit > 0);
1369 		if (limit <= 0) {
1370 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1371 			       hv_err);
1372 		}
1373 #endif
1374 	}
1375 }
1376 #endif
1377 
smp_cpus_done(unsigned int max_cpus)1378 void __init smp_cpus_done(unsigned int max_cpus)
1379 {
1380 }
1381 
smp_send_reschedule(int cpu)1382 void smp_send_reschedule(int cpu)
1383 {
1384 	if (cpu == smp_processor_id()) {
1385 		WARN_ON_ONCE(preemptible());
1386 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1387 	} else {
1388 		xcall_deliver((u64) &xcall_receive_signal,
1389 			      0, 0, cpumask_of(cpu));
1390 	}
1391 }
1392 
smp_receive_signal_client(int irq,struct pt_regs * regs)1393 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1394 {
1395 	clear_softint(1 << irq);
1396 	scheduler_ipi();
1397 }
1398 
stop_this_cpu(void * dummy)1399 static void stop_this_cpu(void *dummy)
1400 {
1401 	prom_stopself();
1402 }
1403 
smp_send_stop(void)1404 void smp_send_stop(void)
1405 {
1406 	int cpu;
1407 
1408 	if (tlb_type == hypervisor) {
1409 		int this_cpu = smp_processor_id();
1410 #ifdef CONFIG_SERIAL_SUNHV
1411 		sunhv_migrate_hvcons_irq(this_cpu);
1412 #endif
1413 		for_each_online_cpu(cpu) {
1414 			if (cpu == this_cpu)
1415 				continue;
1416 #ifdef CONFIG_SUN_LDOMS
1417 			if (ldom_domaining_enabled) {
1418 				unsigned long hv_err;
1419 				hv_err = sun4v_cpu_stop(cpu);
1420 				if (hv_err)
1421 					printk(KERN_ERR "sun4v_cpu_stop() "
1422 					       "failed err=%lu\n", hv_err);
1423 			} else
1424 #endif
1425 				prom_stopcpu_cpuid(cpu);
1426 		}
1427 	} else
1428 		smp_call_function(stop_this_cpu, NULL, 0);
1429 }
1430 
1431 /**
1432  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1433  * @cpu: cpu to allocate for
1434  * @size: size allocation in bytes
1435  * @align: alignment
1436  *
1437  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1438  * does the right thing for NUMA regardless of the current
1439  * configuration.
1440  *
1441  * RETURNS:
1442  * Pointer to the allocated area on success, NULL on failure.
1443  */
pcpu_alloc_bootmem(unsigned int cpu,size_t size,size_t align)1444 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1445 					size_t align)
1446 {
1447 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1448 #ifdef CONFIG_NEED_MULTIPLE_NODES
1449 	int node = cpu_to_node(cpu);
1450 	void *ptr;
1451 
1452 	if (!node_online(node) || !NODE_DATA(node)) {
1453 		ptr = __alloc_bootmem(size, align, goal);
1454 		pr_info("cpu %d has no node %d or node-local memory\n",
1455 			cpu, node);
1456 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1457 			 cpu, size, __pa(ptr));
1458 	} else {
1459 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1460 					   size, align, goal);
1461 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1462 			 "%016lx\n", cpu, size, node, __pa(ptr));
1463 	}
1464 	return ptr;
1465 #else
1466 	return __alloc_bootmem(size, align, goal);
1467 #endif
1468 }
1469 
pcpu_free_bootmem(void * ptr,size_t size)1470 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1471 {
1472 	free_bootmem(__pa(ptr), size);
1473 }
1474 
pcpu_cpu_distance(unsigned int from,unsigned int to)1475 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1476 {
1477 	if (cpu_to_node(from) == cpu_to_node(to))
1478 		return LOCAL_DISTANCE;
1479 	else
1480 		return REMOTE_DISTANCE;
1481 }
1482 
pcpu_populate_pte(unsigned long addr)1483 static void __init pcpu_populate_pte(unsigned long addr)
1484 {
1485 	pgd_t *pgd = pgd_offset_k(addr);
1486 	pud_t *pud;
1487 	pmd_t *pmd;
1488 
1489 	if (pgd_none(*pgd)) {
1490 		pud_t *new;
1491 
1492 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1493 		pgd_populate(&init_mm, pgd, new);
1494 	}
1495 
1496 	pud = pud_offset(pgd, addr);
1497 	if (pud_none(*pud)) {
1498 		pmd_t *new;
1499 
1500 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1501 		pud_populate(&init_mm, pud, new);
1502 	}
1503 
1504 	pmd = pmd_offset(pud, addr);
1505 	if (!pmd_present(*pmd)) {
1506 		pte_t *new;
1507 
1508 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1509 		pmd_populate_kernel(&init_mm, pmd, new);
1510 	}
1511 }
1512 
setup_per_cpu_areas(void)1513 void __init setup_per_cpu_areas(void)
1514 {
1515 	unsigned long delta;
1516 	unsigned int cpu;
1517 	int rc = -EINVAL;
1518 
1519 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1520 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1521 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1522 					    pcpu_cpu_distance,
1523 					    pcpu_alloc_bootmem,
1524 					    pcpu_free_bootmem);
1525 		if (rc)
1526 			pr_warning("PERCPU: %s allocator failed (%d), "
1527 				   "falling back to page size\n",
1528 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1529 	}
1530 	if (rc < 0)
1531 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1532 					   pcpu_alloc_bootmem,
1533 					   pcpu_free_bootmem,
1534 					   pcpu_populate_pte);
1535 	if (rc < 0)
1536 		panic("cannot initialize percpu area (err=%d)", rc);
1537 
1538 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1539 	for_each_possible_cpu(cpu)
1540 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1541 
1542 	/* Setup %g5 for the boot cpu.  */
1543 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1544 
1545 	of_fill_in_cpu_data();
1546 	if (tlb_type == hypervisor)
1547 		mdesc_fill_in_cpu_data(cpu_all_mask);
1548 }
1549