1 /*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #ifndef _GXIO_DMA_QUEUE_H_
16 #define _GXIO_DMA_QUEUE_H_
17
18 /*
19 * DMA queue management APIs shared between TRIO and mPIPE.
20 */
21
22 #include <gxio/common.h>
23
24 /* The credit counter lives in the high 32 bits. */
25 #define DMA_QUEUE_CREDIT_SHIFT 32
26
27 /*
28 * State object that tracks a DMA queue's head and tail indices, as
29 * well as the number of commands posted and completed. The
30 * structure is accessed via a thread-safe, lock-free algorithm.
31 */
32 typedef struct {
33 /*
34 * Address of a MPIPE_EDMA_POST_REGION_VAL_t,
35 * TRIO_PUSH_DMA_REGION_VAL_t, or TRIO_PULL_DMA_REGION_VAL_t
36 * register. These register have identical encodings and provide
37 * information about how many commands have been processed.
38 */
39 void *post_region_addr;
40
41 /*
42 * A lazily-updated count of how many edescs the hardware has
43 * completed.
44 */
45 uint64_t hw_complete_count __attribute__ ((aligned(64)));
46
47 /*
48 * High 32 bits are a count of available egress command credits,
49 * low 24 bits are the next egress "slot".
50 */
51 int64_t credits_and_next_index;
52
53 } __gxio_dma_queue_t;
54
55 /* Initialize a dma queue. */
56 extern void __gxio_dma_queue_init(__gxio_dma_queue_t *dma_queue,
57 void *post_region_addr,
58 unsigned int num_entries);
59
60 /*
61 * Update the "credits_and_next_index" and "hw_complete_count" fields
62 * based on pending hardware completions. Note that some other thread
63 * may have already done this and, importantly, may still be in the
64 * process of updating "credits_and_next_index".
65 */
66 extern void __gxio_dma_queue_update_credits(__gxio_dma_queue_t *dma_queue);
67
68 /* Wait for credits to become available. */
69 extern int64_t __gxio_dma_queue_wait_for_credits(__gxio_dma_queue_t *dma_queue,
70 int64_t modifier);
71
72 /* Reserve slots in the queue, optionally waiting for slots to become
73 * available, and optionally returning a "completion_slot" suitable for
74 * direct comparison to "hw_complete_count".
75 */
__gxio_dma_queue_reserve(__gxio_dma_queue_t * dma_queue,unsigned int num,bool wait,bool completion)76 static inline int64_t __gxio_dma_queue_reserve(__gxio_dma_queue_t *dma_queue,
77 unsigned int num, bool wait,
78 bool completion)
79 {
80 uint64_t slot;
81
82 /*
83 * Try to reserve 'num' egress command slots. We do this by
84 * constructing a constant that subtracts N credits and adds N to
85 * the index, and using fetchaddgez to only apply it if the credits
86 * count doesn't go negative.
87 */
88 int64_t modifier = (((int64_t)(-num)) << DMA_QUEUE_CREDIT_SHIFT) | num;
89 int64_t old =
90 __insn_fetchaddgez(&dma_queue->credits_and_next_index,
91 modifier);
92
93 if (unlikely(old + modifier < 0)) {
94 /*
95 * We're out of credits. Try once to get more by checking for
96 * completed egress commands. If that fails, wait or fail.
97 */
98 __gxio_dma_queue_update_credits(dma_queue);
99 old = __insn_fetchaddgez(&dma_queue->credits_and_next_index,
100 modifier);
101 if (old + modifier < 0) {
102 if (wait)
103 old = __gxio_dma_queue_wait_for_credits
104 (dma_queue, modifier);
105 else
106 return GXIO_ERR_DMA_CREDITS;
107 }
108 }
109
110 /* The bottom 24 bits of old encode the "slot". */
111 slot = (old & 0xffffff);
112
113 if (completion) {
114 /*
115 * A "completion_slot" is a "slot" which can be compared to
116 * "hw_complete_count" at any time in the future. To convert
117 * "slot" into a "completion_slot", we access "hw_complete_count"
118 * once (knowing that we have reserved a slot, and thus, it will
119 * be "basically" accurate), and combine its high 40 bits with
120 * the 24 bit "slot", and handle "wrapping" by adding "1 << 24"
121 * if the result is LESS than "hw_complete_count".
122 */
123 uint64_t complete;
124 complete = ACCESS_ONCE(dma_queue->hw_complete_count);
125 slot |= (complete & 0xffffffffff000000);
126 if (slot < complete)
127 slot += 0x1000000;
128 }
129
130 /*
131 * If any of our slots mod 256 were equivalent to 0, go ahead and
132 * collect some egress credits, and update "hw_complete_count", and
133 * make sure the index doesn't overflow into the credits.
134 */
135 if (unlikely(((old + num) & 0xff) < num)) {
136 __gxio_dma_queue_update_credits(dma_queue);
137
138 /* Make sure the index doesn't overflow into the credits. */
139 #ifdef __BIG_ENDIAN__
140 *(((uint8_t *)&dma_queue->credits_and_next_index) + 4) = 0;
141 #else
142 *(((uint8_t *)&dma_queue->credits_and_next_index) + 3) = 0;
143 #endif
144 }
145
146 return slot;
147 }
148
149 /* Non-inlinable "__gxio_dma_queue_reserve(..., true)". */
150 extern int64_t __gxio_dma_queue_reserve_aux(__gxio_dma_queue_t *dma_queue,
151 unsigned int num, int wait);
152
153 /* Check whether a particular "completion slot" has completed.
154 *
155 * Note that this function requires a "completion slot", and thus
156 * cannot be used with the result of any "reserve_fast" function.
157 */
158 extern int __gxio_dma_queue_is_complete(__gxio_dma_queue_t *dma_queue,
159 int64_t completion_slot, int update);
160
161 #endif /* !_GXIO_DMA_QUEUE_H_ */
162