• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/arch/unicore32/mm/mmu.c
3  *
4  * Code specific to PKUnity SoC and UniCore ISA
5  *
6  * Copyright (C) 2001-2010 GUAN Xue-tao
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/memblock.h>
19 #include <linux/fs.h>
20 #include <linux/bootmem.h>
21 #include <linux/io.h>
22 
23 #include <asm/cputype.h>
24 #include <asm/sections.h>
25 #include <asm/setup.h>
26 #include <asm/sizes.h>
27 #include <asm/tlb.h>
28 #include <asm/memblock.h>
29 
30 #include <mach/map.h>
31 
32 #include "mm.h"
33 
34 /*
35  * empty_zero_page is a special page that is used for
36  * zero-initialized data and COW.
37  */
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
40 
41 /*
42  * The pmd table for the upper-most set of pages.
43  */
44 pmd_t *top_pmd;
45 
46 pgprot_t pgprot_user;
47 EXPORT_SYMBOL(pgprot_user);
48 
49 pgprot_t pgprot_kernel;
50 EXPORT_SYMBOL(pgprot_kernel);
51 
noalign_setup(char * __unused)52 static int __init noalign_setup(char *__unused)
53 {
54 	cr_alignment &= ~CR_A;
55 	cr_no_alignment &= ~CR_A;
56 	set_cr(cr_alignment);
57 	return 1;
58 }
59 __setup("noalign", noalign_setup);
60 
adjust_cr(unsigned long mask,unsigned long set)61 void adjust_cr(unsigned long mask, unsigned long set)
62 {
63 	unsigned long flags;
64 
65 	mask &= ~CR_A;
66 
67 	set &= mask;
68 
69 	local_irq_save(flags);
70 
71 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
72 	cr_alignment = (cr_alignment & ~mask) | set;
73 
74 	set_cr((get_cr() & ~mask) | set);
75 
76 	local_irq_restore(flags);
77 }
78 
79 struct map_desc {
80 	unsigned long virtual;
81 	unsigned long pfn;
82 	unsigned long length;
83 	unsigned int type;
84 };
85 
86 #define PROT_PTE_DEVICE		(PTE_PRESENT | PTE_YOUNG |	\
87 				PTE_DIRTY | PTE_READ | PTE_WRITE)
88 #define PROT_SECT_DEVICE	(PMD_TYPE_SECT | PMD_PRESENT |	\
89 				PMD_SECT_READ | PMD_SECT_WRITE)
90 
91 static struct mem_type mem_types[] = {
92 	[MT_DEVICE] = {		  /* Strongly ordered */
93 		.prot_pte	= PROT_PTE_DEVICE,
94 		.prot_l1	= PMD_TYPE_TABLE | PMD_PRESENT,
95 		.prot_sect	= PROT_SECT_DEVICE,
96 	},
97 	/*
98 	 * MT_KUSER: pte for vecpage -- cacheable,
99 	 *       and sect for unigfx mmap -- noncacheable
100 	 */
101 	[MT_KUSER] = {
102 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
103 				PTE_CACHEABLE | PTE_READ | PTE_EXEC,
104 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
105 		.prot_sect = PROT_SECT_DEVICE,
106 	},
107 	[MT_HIGH_VECTORS] = {
108 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
109 				PTE_CACHEABLE | PTE_READ | PTE_WRITE |
110 				PTE_EXEC,
111 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
112 	},
113 	[MT_MEMORY] = {
114 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
115 				PTE_WRITE | PTE_EXEC,
116 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
117 		.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
118 				PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
119 	},
120 	[MT_ROM] = {
121 		.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
122 				PMD_SECT_READ,
123 	},
124 };
125 
get_mem_type(unsigned int type)126 const struct mem_type *get_mem_type(unsigned int type)
127 {
128 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
129 }
130 EXPORT_SYMBOL(get_mem_type);
131 
132 /*
133  * Adjust the PMD section entries according to the CPU in use.
134  */
build_mem_type_table(void)135 static void __init build_mem_type_table(void)
136 {
137 	pgprot_user   = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
138 	pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
139 				 PTE_DIRTY | PTE_READ | PTE_WRITE |
140 				 PTE_EXEC | PTE_CACHEABLE);
141 }
142 
143 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
144 
early_alloc(unsigned long sz)145 static void __init *early_alloc(unsigned long sz)
146 {
147 	void *ptr = __va(memblock_alloc(sz, sz));
148 	memset(ptr, 0, sz);
149 	return ptr;
150 }
151 
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)152 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
153 		unsigned long prot)
154 {
155 	if (pmd_none(*pmd)) {
156 		pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
157 		__pmd_populate(pmd, __pa(pte) | prot);
158 	}
159 	BUG_ON(pmd_bad(*pmd));
160 	return pte_offset_kernel(pmd, addr);
161 }
162 
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type)163 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
164 				  unsigned long end, unsigned long pfn,
165 				  const struct mem_type *type)
166 {
167 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
168 	do {
169 		set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
170 		pfn++;
171 	} while (pte++, addr += PAGE_SIZE, addr != end);
172 }
173 
alloc_init_section(pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long phys,const struct mem_type * type)174 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
175 				      unsigned long end, unsigned long phys,
176 				      const struct mem_type *type)
177 {
178 	pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
179 
180 	/*
181 	 * Try a section mapping - end, addr and phys must all be aligned
182 	 * to a section boundary.
183 	 */
184 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
185 		pmd_t *p = pmd;
186 
187 		do {
188 			set_pmd(pmd, __pmd(phys | type->prot_sect));
189 			phys += SECTION_SIZE;
190 		} while (pmd++, addr += SECTION_SIZE, addr != end);
191 
192 		flush_pmd_entry(p);
193 	} else {
194 		/*
195 		 * No need to loop; pte's aren't interested in the
196 		 * individual L1 entries.
197 		 */
198 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
199 	}
200 }
201 
202 /*
203  * Create the page directory entries and any necessary
204  * page tables for the mapping specified by `md'.  We
205  * are able to cope here with varying sizes and address
206  * offsets, and we take full advantage of sections.
207  */
create_mapping(struct map_desc * md)208 static void __init create_mapping(struct map_desc *md)
209 {
210 	unsigned long phys, addr, length, end;
211 	const struct mem_type *type;
212 	pgd_t *pgd;
213 
214 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
215 		printk(KERN_WARNING "BUG: not creating mapping for "
216 		       "0x%08llx at 0x%08lx in user region\n",
217 		       __pfn_to_phys((u64)md->pfn), md->virtual);
218 		return;
219 	}
220 
221 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
222 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
223 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
224 		       "overlaps vmalloc space\n",
225 		       __pfn_to_phys((u64)md->pfn), md->virtual);
226 	}
227 
228 	type = &mem_types[md->type];
229 
230 	addr = md->virtual & PAGE_MASK;
231 	phys = (unsigned long)__pfn_to_phys(md->pfn);
232 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
233 
234 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
235 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
236 		       "be mapped using pages, ignoring.\n",
237 		       __pfn_to_phys(md->pfn), addr);
238 		return;
239 	}
240 
241 	pgd = pgd_offset_k(addr);
242 	end = addr + length;
243 	do {
244 		unsigned long next = pgd_addr_end(addr, end);
245 
246 		alloc_init_section(pgd, addr, next, phys, type);
247 
248 		phys += next - addr;
249 		addr = next;
250 	} while (pgd++, addr != end);
251 }
252 
253 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
254 
255 /*
256  * vmalloc=size forces the vmalloc area to be exactly 'size'
257  * bytes. This can be used to increase (or decrease) the vmalloc
258  * area - the default is 128m.
259  */
early_vmalloc(char * arg)260 static int __init early_vmalloc(char *arg)
261 {
262 	unsigned long vmalloc_reserve = memparse(arg, NULL);
263 
264 	if (vmalloc_reserve < SZ_16M) {
265 		vmalloc_reserve = SZ_16M;
266 		printk(KERN_WARNING
267 			"vmalloc area too small, limiting to %luMB\n",
268 			vmalloc_reserve >> 20);
269 	}
270 
271 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
272 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
273 		printk(KERN_WARNING
274 			"vmalloc area is too big, limiting to %luMB\n",
275 			vmalloc_reserve >> 20);
276 	}
277 
278 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
279 	return 0;
280 }
281 early_param("vmalloc", early_vmalloc);
282 
283 static phys_addr_t lowmem_limit __initdata = SZ_1G;
284 
sanity_check_meminfo(void)285 static void __init sanity_check_meminfo(void)
286 {
287 	int i, j;
288 
289 	lowmem_limit = __pa(vmalloc_min - 1) + 1;
290 	memblock_set_current_limit(lowmem_limit);
291 
292 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
293 		struct membank *bank = &meminfo.bank[j];
294 		*bank = meminfo.bank[i];
295 		j++;
296 	}
297 	meminfo.nr_banks = j;
298 }
299 
prepare_page_table(void)300 static inline void prepare_page_table(void)
301 {
302 	unsigned long addr;
303 	phys_addr_t end;
304 
305 	/*
306 	 * Clear out all the mappings below the kernel image.
307 	 */
308 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
309 		pmd_clear(pmd_off_k(addr));
310 
311 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
312 		pmd_clear(pmd_off_k(addr));
313 
314 	/*
315 	 * Find the end of the first block of lowmem.
316 	 */
317 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
318 	if (end >= lowmem_limit)
319 		end = lowmem_limit;
320 
321 	/*
322 	 * Clear out all the kernel space mappings, except for the first
323 	 * memory bank, up to the end of the vmalloc region.
324 	 */
325 	for (addr = __phys_to_virt(end);
326 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
327 		pmd_clear(pmd_off_k(addr));
328 }
329 
330 /*
331  * Reserve the special regions of memory
332  */
uc32_mm_memblock_reserve(void)333 void __init uc32_mm_memblock_reserve(void)
334 {
335 	/*
336 	 * Reserve the page tables.  These are already in use,
337 	 * and can only be in node 0.
338 	 */
339 	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
340 }
341 
342 /*
343  * Set up device the mappings.  Since we clear out the page tables for all
344  * mappings above VMALLOC_END, we will remove any debug device mappings.
345  * This means you have to be careful how you debug this function, or any
346  * called function.  This means you can't use any function or debugging
347  * method which may touch any device, otherwise the kernel _will_ crash.
348  */
devicemaps_init(void)349 static void __init devicemaps_init(void)
350 {
351 	struct map_desc map;
352 	unsigned long addr;
353 	void *vectors;
354 
355 	/*
356 	 * Allocate the vector page early.
357 	 */
358 	vectors = early_alloc(PAGE_SIZE);
359 
360 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
361 		pmd_clear(pmd_off_k(addr));
362 
363 	/*
364 	 * Create a mapping for the machine vectors at the high-vectors
365 	 * location (0xffff0000).  If we aren't using high-vectors, also
366 	 * create a mapping at the low-vectors virtual address.
367 	 */
368 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
369 	map.virtual = VECTORS_BASE;
370 	map.length = PAGE_SIZE;
371 	map.type = MT_HIGH_VECTORS;
372 	create_mapping(&map);
373 
374 	/*
375 	 * Create a mapping for the kuser page at the special
376 	 * location (0xbfff0000) to the same vectors location.
377 	 */
378 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
379 	map.virtual = KUSER_VECPAGE_BASE;
380 	map.length = PAGE_SIZE;
381 	map.type = MT_KUSER;
382 	create_mapping(&map);
383 
384 	/*
385 	 * Finally flush the caches and tlb to ensure that we're in a
386 	 * consistent state wrt the writebuffer.  This also ensures that
387 	 * any write-allocated cache lines in the vector page are written
388 	 * back.  After this point, we can start to touch devices again.
389 	 */
390 	local_flush_tlb_all();
391 	flush_cache_all();
392 }
393 
map_lowmem(void)394 static void __init map_lowmem(void)
395 {
396 	struct memblock_region *reg;
397 
398 	/* Map all the lowmem memory banks. */
399 	for_each_memblock(memory, reg) {
400 		phys_addr_t start = reg->base;
401 		phys_addr_t end = start + reg->size;
402 		struct map_desc map;
403 
404 		if (end > lowmem_limit)
405 			end = lowmem_limit;
406 		if (start >= end)
407 			break;
408 
409 		map.pfn = __phys_to_pfn(start);
410 		map.virtual = __phys_to_virt(start);
411 		map.length = end - start;
412 		map.type = MT_MEMORY;
413 
414 		create_mapping(&map);
415 	}
416 }
417 
418 /*
419  * paging_init() sets up the page tables, initialises the zone memory
420  * maps, and sets up the zero page, bad page and bad page tables.
421  */
paging_init(void)422 void __init paging_init(void)
423 {
424 	void *zero_page;
425 
426 	build_mem_type_table();
427 	sanity_check_meminfo();
428 	prepare_page_table();
429 	map_lowmem();
430 	devicemaps_init();
431 
432 	top_pmd = pmd_off_k(0xffff0000);
433 
434 	/* allocate the zero page. */
435 	zero_page = early_alloc(PAGE_SIZE);
436 
437 	bootmem_init();
438 
439 	empty_zero_page = virt_to_page(zero_page);
440 	__flush_dcache_page(NULL, empty_zero_page);
441 }
442 
443 /*
444  * In order to soft-boot, we need to insert a 1:1 mapping in place of
445  * the user-mode pages.  This will then ensure that we have predictable
446  * results when turning the mmu off
447  */
setup_mm_for_reboot(void)448 void setup_mm_for_reboot(void)
449 {
450 	unsigned long base_pmdval;
451 	pgd_t *pgd;
452 	int i;
453 
454 	/*
455 	 * We need to access to user-mode page tables here. For kernel threads
456 	 * we don't have any user-mode mappings so we use the context that we
457 	 * "borrowed".
458 	 */
459 	pgd = current->active_mm->pgd;
460 
461 	base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
462 
463 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
464 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
465 		pmd_t *pmd;
466 
467 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
468 		set_pmd(pmd, __pmd(pmdval));
469 		flush_pmd_entry(pmd);
470 	}
471 
472 	local_flush_tlb_all();
473 }
474 
475 /*
476  * Take care of architecture specific things when placing a new PTE into
477  * a page table, or changing an existing PTE.  Basically, there are two
478  * things that we need to take care of:
479  *
480  *  1. If PG_dcache_clean is not set for the page, we need to ensure
481  *     that any cache entries for the kernels virtual memory
482  *     range are written back to the page.
483  *  2. If we have multiple shared mappings of the same space in
484  *     an object, we need to deal with the cache aliasing issues.
485  *
486  * Note that the pte lock will be held.
487  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)488 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
489 	pte_t *ptep)
490 {
491 	unsigned long pfn = pte_pfn(*ptep);
492 	struct address_space *mapping;
493 	struct page *page;
494 
495 	if (!pfn_valid(pfn))
496 		return;
497 
498 	/*
499 	 * The zero page is never written to, so never has any dirty
500 	 * cache lines, and therefore never needs to be flushed.
501 	 */
502 	page = pfn_to_page(pfn);
503 	if (page == ZERO_PAGE(0))
504 		return;
505 
506 	mapping = page_mapping(page);
507 	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
508 		__flush_dcache_page(mapping, page);
509 	if (mapping)
510 		if (vma->vm_flags & VM_EXEC)
511 			__flush_icache_all();
512 }
513