• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * apb_timer.c: Driver for Langwell APB timers
3  *
4  * (C) Copyright 2009 Intel Corporation
5  * Author: Jacob Pan (jacob.jun.pan@intel.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * Note:
13  * Langwell is the south complex of Intel Moorestown MID platform. There are
14  * eight external timers in total that can be used by the operating system.
15  * The timer information, such as frequency and addresses, is provided to the
16  * OS via SFI tables.
17  * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18  * individual redirection table entries (RTE).
19  * Unlike HPET, there is no master counter, therefore one of the timers are
20  * used as clocksource. The overall allocation looks like:
21  *  - timer 0 - NR_CPUs for per cpu timer
22  *  - one timer for clocksource
23  *  - one timer for watchdog driver.
24  * It is also worth notice that APB timer does not support true one-shot mode,
25  * free-running mode will be used here to emulate one-shot mode.
26  * APB timer can also be used as broadcast timer along with per cpu local APIC
27  * timer, but by default APB timer has higher rating than local APIC timers.
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/dw_apb_timer.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/slab.h>
35 #include <linux/pm.h>
36 #include <linux/sfi.h>
37 #include <linux/interrupt.h>
38 #include <linux/cpu.h>
39 #include <linux/irq.h>
40 
41 #include <asm/fixmap.h>
42 #include <asm/apb_timer.h>
43 #include <asm/intel-mid.h>
44 #include <asm/time.h>
45 
46 #define APBT_CLOCKEVENT_RATING		110
47 #define APBT_CLOCKSOURCE_RATING		250
48 
49 #define APBT_CLOCKEVENT0_NUM   (0)
50 #define APBT_CLOCKSOURCE_NUM   (2)
51 
52 static phys_addr_t apbt_address;
53 static int apb_timer_block_enabled;
54 static void __iomem *apbt_virt_address;
55 
56 /*
57  * Common DW APB timer info
58  */
59 static unsigned long apbt_freq;
60 
61 struct apbt_dev {
62 	struct dw_apb_clock_event_device	*timer;
63 	unsigned int				num;
64 	int					cpu;
65 	unsigned int				irq;
66 	char					name[10];
67 };
68 
69 static struct dw_apb_clocksource *clocksource_apbt;
70 
adev_virt_addr(struct apbt_dev * adev)71 static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
72 {
73 	return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
74 }
75 
76 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
77 
78 #ifdef CONFIG_SMP
79 static unsigned int apbt_num_timers_used;
80 #endif
81 
apbt_set_mapping(void)82 static inline void apbt_set_mapping(void)
83 {
84 	struct sfi_timer_table_entry *mtmr;
85 	int phy_cs_timer_id = 0;
86 
87 	if (apbt_virt_address) {
88 		pr_debug("APBT base already mapped\n");
89 		return;
90 	}
91 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
92 	if (mtmr == NULL) {
93 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
94 		       APBT_CLOCKEVENT0_NUM);
95 		return;
96 	}
97 	apbt_address = (phys_addr_t)mtmr->phys_addr;
98 	if (!apbt_address) {
99 		printk(KERN_WARNING "No timer base from SFI, use default\n");
100 		apbt_address = APBT_DEFAULT_BASE;
101 	}
102 	apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
103 	if (!apbt_virt_address) {
104 		pr_debug("Failed mapping APBT phy address at %lu\n",\
105 			 (unsigned long)apbt_address);
106 		goto panic_noapbt;
107 	}
108 	apbt_freq = mtmr->freq_hz;
109 	sfi_free_mtmr(mtmr);
110 
111 	/* Now figure out the physical timer id for clocksource device */
112 	mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
113 	if (mtmr == NULL)
114 		goto panic_noapbt;
115 
116 	/* Now figure out the physical timer id */
117 	pr_debug("Use timer %d for clocksource\n",
118 		 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
119 	phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
120 		APBTMRS_REG_SIZE;
121 
122 	clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
123 		"apbt0", apbt_virt_address + phy_cs_timer_id *
124 		APBTMRS_REG_SIZE, apbt_freq);
125 	return;
126 
127 panic_noapbt:
128 	panic("Failed to setup APB system timer\n");
129 
130 }
131 
apbt_clear_mapping(void)132 static inline void apbt_clear_mapping(void)
133 {
134 	iounmap(apbt_virt_address);
135 	apbt_virt_address = NULL;
136 }
137 
apbt_clockevent_register(void)138 static int __init apbt_clockevent_register(void)
139 {
140 	struct sfi_timer_table_entry *mtmr;
141 	struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev);
142 
143 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
144 	if (mtmr == NULL) {
145 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
146 		       APBT_CLOCKEVENT0_NUM);
147 		return -ENODEV;
148 	}
149 
150 	adev->num = smp_processor_id();
151 	adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
152 		intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ?
153 		APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
154 		adev_virt_addr(adev), 0, apbt_freq);
155 	/* Firmware does EOI handling for us. */
156 	adev->timer->eoi = NULL;
157 
158 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
159 		global_clock_event = &adev->timer->ced;
160 		printk(KERN_DEBUG "%s clockevent registered as global\n",
161 		       global_clock_event->name);
162 	}
163 
164 	dw_apb_clockevent_register(adev->timer);
165 
166 	sfi_free_mtmr(mtmr);
167 	return 0;
168 }
169 
170 #ifdef CONFIG_SMP
171 
apbt_setup_irq(struct apbt_dev * adev)172 static void apbt_setup_irq(struct apbt_dev *adev)
173 {
174 	irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
175 	irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
176 }
177 
178 /* Should be called with per cpu */
apbt_setup_secondary_clock(void)179 void apbt_setup_secondary_clock(void)
180 {
181 	struct apbt_dev *adev;
182 	int cpu;
183 
184 	/* Don't register boot CPU clockevent */
185 	cpu = smp_processor_id();
186 	if (!cpu)
187 		return;
188 
189 	adev = this_cpu_ptr(&cpu_apbt_dev);
190 	if (!adev->timer) {
191 		adev->timer = dw_apb_clockevent_init(cpu, adev->name,
192 			APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
193 			adev->irq, apbt_freq);
194 		adev->timer->eoi = NULL;
195 	} else {
196 		dw_apb_clockevent_resume(adev->timer);
197 	}
198 
199 	printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
200 	       cpu, adev->name, adev->cpu);
201 
202 	apbt_setup_irq(adev);
203 	dw_apb_clockevent_register(adev->timer);
204 
205 	return;
206 }
207 
208 /*
209  * this notify handler process CPU hotplug events. in case of S0i3, nonboot
210  * cpus are disabled/enabled frequently, for performance reasons, we keep the
211  * per cpu timer irq registered so that we do need to do free_irq/request_irq.
212  *
213  * TODO: it might be more reliable to directly disable percpu clockevent device
214  * without the notifier chain. currently, cpu 0 may get interrupts from other
215  * cpu timers during the offline process due to the ordering of notification.
216  * the extra interrupt is harmless.
217  */
apbt_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)218 static int apbt_cpuhp_notify(struct notifier_block *n,
219 			     unsigned long action, void *hcpu)
220 {
221 	unsigned long cpu = (unsigned long)hcpu;
222 	struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
223 
224 	switch (action & 0xf) {
225 	case CPU_DEAD:
226 		dw_apb_clockevent_pause(adev->timer);
227 		if (system_state == SYSTEM_RUNNING) {
228 			pr_debug("skipping APBT CPU %lu offline\n", cpu);
229 		} else {
230 			pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
231 			dw_apb_clockevent_stop(adev->timer);
232 		}
233 		break;
234 	default:
235 		pr_debug("APBT notified %lu, no action\n", action);
236 	}
237 	return NOTIFY_OK;
238 }
239 
apbt_late_init(void)240 static __init int apbt_late_init(void)
241 {
242 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ||
243 		!apb_timer_block_enabled)
244 		return 0;
245 	/* This notifier should be called after workqueue is ready */
246 	hotcpu_notifier(apbt_cpuhp_notify, -20);
247 	return 0;
248 }
249 fs_initcall(apbt_late_init);
250 #else
251 
apbt_setup_secondary_clock(void)252 void apbt_setup_secondary_clock(void) {}
253 
254 #endif /* CONFIG_SMP */
255 
apbt_clocksource_register(void)256 static int apbt_clocksource_register(void)
257 {
258 	u64 start, now;
259 	cycle_t t1;
260 
261 	/* Start the counter, use timer 2 as source, timer 0/1 for event */
262 	dw_apb_clocksource_start(clocksource_apbt);
263 
264 	/* Verify whether apbt counter works */
265 	t1 = dw_apb_clocksource_read(clocksource_apbt);
266 	start = rdtsc();
267 
268 	/*
269 	 * We don't know the TSC frequency yet, but waiting for
270 	 * 200000 TSC cycles is safe:
271 	 * 4 GHz == 50us
272 	 * 1 GHz == 200us
273 	 */
274 	do {
275 		rep_nop();
276 		now = rdtsc();
277 	} while ((now - start) < 200000UL);
278 
279 	/* APBT is the only always on clocksource, it has to work! */
280 	if (t1 == dw_apb_clocksource_read(clocksource_apbt))
281 		panic("APBT counter not counting. APBT disabled\n");
282 
283 	dw_apb_clocksource_register(clocksource_apbt);
284 
285 	return 0;
286 }
287 
288 /*
289  * Early setup the APBT timer, only use timer 0 for booting then switch to
290  * per CPU timer if possible.
291  * returns 1 if per cpu apbt is setup
292  * returns 0 if no per cpu apbt is chosen
293  * panic if set up failed, this is the only platform timer on Moorestown.
294  */
apbt_time_init(void)295 void __init apbt_time_init(void)
296 {
297 #ifdef CONFIG_SMP
298 	int i;
299 	struct sfi_timer_table_entry *p_mtmr;
300 	struct apbt_dev *adev;
301 #endif
302 
303 	if (apb_timer_block_enabled)
304 		return;
305 	apbt_set_mapping();
306 	if (!apbt_virt_address)
307 		goto out_noapbt;
308 	/*
309 	 * Read the frequency and check for a sane value, for ESL model
310 	 * we extend the possible clock range to allow time scaling.
311 	 */
312 
313 	if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
314 		pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
315 		goto out_noapbt;
316 	}
317 	if (apbt_clocksource_register()) {
318 		pr_debug("APBT has failed to register clocksource\n");
319 		goto out_noapbt;
320 	}
321 	if (!apbt_clockevent_register())
322 		apb_timer_block_enabled = 1;
323 	else {
324 		pr_debug("APBT has failed to register clockevent\n");
325 		goto out_noapbt;
326 	}
327 #ifdef CONFIG_SMP
328 	/* kernel cmdline disable apb timer, so we will use lapic timers */
329 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
330 		printk(KERN_INFO "apbt: disabled per cpu timer\n");
331 		return;
332 	}
333 	pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
334 	if (num_possible_cpus() <= sfi_mtimer_num)
335 		apbt_num_timers_used = num_possible_cpus();
336 	else
337 		apbt_num_timers_used = 1;
338 	pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
339 
340 	/* here we set up per CPU timer data structure */
341 	for (i = 0; i < apbt_num_timers_used; i++) {
342 		adev = &per_cpu(cpu_apbt_dev, i);
343 		adev->num = i;
344 		adev->cpu = i;
345 		p_mtmr = sfi_get_mtmr(i);
346 		if (p_mtmr)
347 			adev->irq = p_mtmr->irq;
348 		else
349 			printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
350 		snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
351 	}
352 #endif
353 
354 	return;
355 
356 out_noapbt:
357 	apbt_clear_mapping();
358 	apb_timer_block_enabled = 0;
359 	panic("failed to enable APB timer\n");
360 }
361 
362 /* called before apb_timer_enable, use early map */
apbt_quick_calibrate(void)363 unsigned long apbt_quick_calibrate(void)
364 {
365 	int i, scale;
366 	u64 old, new;
367 	cycle_t t1, t2;
368 	unsigned long khz = 0;
369 	u32 loop, shift;
370 
371 	apbt_set_mapping();
372 	dw_apb_clocksource_start(clocksource_apbt);
373 
374 	/* check if the timer can count down, otherwise return */
375 	old = dw_apb_clocksource_read(clocksource_apbt);
376 	i = 10000;
377 	while (--i) {
378 		if (old != dw_apb_clocksource_read(clocksource_apbt))
379 			break;
380 	}
381 	if (!i)
382 		goto failed;
383 
384 	/* count 16 ms */
385 	loop = (apbt_freq / 1000) << 4;
386 
387 	/* restart the timer to ensure it won't get to 0 in the calibration */
388 	dw_apb_clocksource_start(clocksource_apbt);
389 
390 	old = dw_apb_clocksource_read(clocksource_apbt);
391 	old += loop;
392 
393 	t1 = rdtsc();
394 
395 	do {
396 		new = dw_apb_clocksource_read(clocksource_apbt);
397 	} while (new < old);
398 
399 	t2 = rdtsc();
400 
401 	shift = 5;
402 	if (unlikely(loop >> shift == 0)) {
403 		printk(KERN_INFO
404 		       "APBT TSC calibration failed, not enough resolution\n");
405 		return 0;
406 	}
407 	scale = (int)div_u64((t2 - t1), loop >> shift);
408 	khz = (scale * (apbt_freq / 1000)) >> shift;
409 	printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
410 	return khz;
411 failed:
412 	return 0;
413 }
414