1 /*
2 * apb_timer.c: Driver for Langwell APB timers
3 *
4 * (C) Copyright 2009 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * Note:
13 * Langwell is the south complex of Intel Moorestown MID platform. There are
14 * eight external timers in total that can be used by the operating system.
15 * The timer information, such as frequency and addresses, is provided to the
16 * OS via SFI tables.
17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18 * individual redirection table entries (RTE).
19 * Unlike HPET, there is no master counter, therefore one of the timers are
20 * used as clocksource. The overall allocation looks like:
21 * - timer 0 - NR_CPUs for per cpu timer
22 * - one timer for clocksource
23 * - one timer for watchdog driver.
24 * It is also worth notice that APB timer does not support true one-shot mode,
25 * free-running mode will be used here to emulate one-shot mode.
26 * APB timer can also be used as broadcast timer along with per cpu local APIC
27 * timer, but by default APB timer has higher rating than local APIC timers.
28 */
29
30 #include <linux/delay.h>
31 #include <linux/dw_apb_timer.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/slab.h>
35 #include <linux/pm.h>
36 #include <linux/sfi.h>
37 #include <linux/interrupt.h>
38 #include <linux/cpu.h>
39 #include <linux/irq.h>
40
41 #include <asm/fixmap.h>
42 #include <asm/apb_timer.h>
43 #include <asm/intel-mid.h>
44 #include <asm/time.h>
45
46 #define APBT_CLOCKEVENT_RATING 110
47 #define APBT_CLOCKSOURCE_RATING 250
48
49 #define APBT_CLOCKEVENT0_NUM (0)
50 #define APBT_CLOCKSOURCE_NUM (2)
51
52 static phys_addr_t apbt_address;
53 static int apb_timer_block_enabled;
54 static void __iomem *apbt_virt_address;
55
56 /*
57 * Common DW APB timer info
58 */
59 static unsigned long apbt_freq;
60
61 struct apbt_dev {
62 struct dw_apb_clock_event_device *timer;
63 unsigned int num;
64 int cpu;
65 unsigned int irq;
66 char name[10];
67 };
68
69 static struct dw_apb_clocksource *clocksource_apbt;
70
adev_virt_addr(struct apbt_dev * adev)71 static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
72 {
73 return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
74 }
75
76 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
77
78 #ifdef CONFIG_SMP
79 static unsigned int apbt_num_timers_used;
80 #endif
81
apbt_set_mapping(void)82 static inline void apbt_set_mapping(void)
83 {
84 struct sfi_timer_table_entry *mtmr;
85 int phy_cs_timer_id = 0;
86
87 if (apbt_virt_address) {
88 pr_debug("APBT base already mapped\n");
89 return;
90 }
91 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
92 if (mtmr == NULL) {
93 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
94 APBT_CLOCKEVENT0_NUM);
95 return;
96 }
97 apbt_address = (phys_addr_t)mtmr->phys_addr;
98 if (!apbt_address) {
99 printk(KERN_WARNING "No timer base from SFI, use default\n");
100 apbt_address = APBT_DEFAULT_BASE;
101 }
102 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
103 if (!apbt_virt_address) {
104 pr_debug("Failed mapping APBT phy address at %lu\n",\
105 (unsigned long)apbt_address);
106 goto panic_noapbt;
107 }
108 apbt_freq = mtmr->freq_hz;
109 sfi_free_mtmr(mtmr);
110
111 /* Now figure out the physical timer id for clocksource device */
112 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
113 if (mtmr == NULL)
114 goto panic_noapbt;
115
116 /* Now figure out the physical timer id */
117 pr_debug("Use timer %d for clocksource\n",
118 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
119 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
120 APBTMRS_REG_SIZE;
121
122 clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
123 "apbt0", apbt_virt_address + phy_cs_timer_id *
124 APBTMRS_REG_SIZE, apbt_freq);
125 return;
126
127 panic_noapbt:
128 panic("Failed to setup APB system timer\n");
129
130 }
131
apbt_clear_mapping(void)132 static inline void apbt_clear_mapping(void)
133 {
134 iounmap(apbt_virt_address);
135 apbt_virt_address = NULL;
136 }
137
apbt_clockevent_register(void)138 static int __init apbt_clockevent_register(void)
139 {
140 struct sfi_timer_table_entry *mtmr;
141 struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev);
142
143 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
144 if (mtmr == NULL) {
145 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
146 APBT_CLOCKEVENT0_NUM);
147 return -ENODEV;
148 }
149
150 adev->num = smp_processor_id();
151 adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
152 intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ?
153 APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
154 adev_virt_addr(adev), 0, apbt_freq);
155 /* Firmware does EOI handling for us. */
156 adev->timer->eoi = NULL;
157
158 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
159 global_clock_event = &adev->timer->ced;
160 printk(KERN_DEBUG "%s clockevent registered as global\n",
161 global_clock_event->name);
162 }
163
164 dw_apb_clockevent_register(adev->timer);
165
166 sfi_free_mtmr(mtmr);
167 return 0;
168 }
169
170 #ifdef CONFIG_SMP
171
apbt_setup_irq(struct apbt_dev * adev)172 static void apbt_setup_irq(struct apbt_dev *adev)
173 {
174 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
175 irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
176 }
177
178 /* Should be called with per cpu */
apbt_setup_secondary_clock(void)179 void apbt_setup_secondary_clock(void)
180 {
181 struct apbt_dev *adev;
182 int cpu;
183
184 /* Don't register boot CPU clockevent */
185 cpu = smp_processor_id();
186 if (!cpu)
187 return;
188
189 adev = this_cpu_ptr(&cpu_apbt_dev);
190 if (!adev->timer) {
191 adev->timer = dw_apb_clockevent_init(cpu, adev->name,
192 APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
193 adev->irq, apbt_freq);
194 adev->timer->eoi = NULL;
195 } else {
196 dw_apb_clockevent_resume(adev->timer);
197 }
198
199 printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
200 cpu, adev->name, adev->cpu);
201
202 apbt_setup_irq(adev);
203 dw_apb_clockevent_register(adev->timer);
204
205 return;
206 }
207
208 /*
209 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
210 * cpus are disabled/enabled frequently, for performance reasons, we keep the
211 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
212 *
213 * TODO: it might be more reliable to directly disable percpu clockevent device
214 * without the notifier chain. currently, cpu 0 may get interrupts from other
215 * cpu timers during the offline process due to the ordering of notification.
216 * the extra interrupt is harmless.
217 */
apbt_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)218 static int apbt_cpuhp_notify(struct notifier_block *n,
219 unsigned long action, void *hcpu)
220 {
221 unsigned long cpu = (unsigned long)hcpu;
222 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
223
224 switch (action & 0xf) {
225 case CPU_DEAD:
226 dw_apb_clockevent_pause(adev->timer);
227 if (system_state == SYSTEM_RUNNING) {
228 pr_debug("skipping APBT CPU %lu offline\n", cpu);
229 } else {
230 pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
231 dw_apb_clockevent_stop(adev->timer);
232 }
233 break;
234 default:
235 pr_debug("APBT notified %lu, no action\n", action);
236 }
237 return NOTIFY_OK;
238 }
239
apbt_late_init(void)240 static __init int apbt_late_init(void)
241 {
242 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ||
243 !apb_timer_block_enabled)
244 return 0;
245 /* This notifier should be called after workqueue is ready */
246 hotcpu_notifier(apbt_cpuhp_notify, -20);
247 return 0;
248 }
249 fs_initcall(apbt_late_init);
250 #else
251
apbt_setup_secondary_clock(void)252 void apbt_setup_secondary_clock(void) {}
253
254 #endif /* CONFIG_SMP */
255
apbt_clocksource_register(void)256 static int apbt_clocksource_register(void)
257 {
258 u64 start, now;
259 cycle_t t1;
260
261 /* Start the counter, use timer 2 as source, timer 0/1 for event */
262 dw_apb_clocksource_start(clocksource_apbt);
263
264 /* Verify whether apbt counter works */
265 t1 = dw_apb_clocksource_read(clocksource_apbt);
266 start = rdtsc();
267
268 /*
269 * We don't know the TSC frequency yet, but waiting for
270 * 200000 TSC cycles is safe:
271 * 4 GHz == 50us
272 * 1 GHz == 200us
273 */
274 do {
275 rep_nop();
276 now = rdtsc();
277 } while ((now - start) < 200000UL);
278
279 /* APBT is the only always on clocksource, it has to work! */
280 if (t1 == dw_apb_clocksource_read(clocksource_apbt))
281 panic("APBT counter not counting. APBT disabled\n");
282
283 dw_apb_clocksource_register(clocksource_apbt);
284
285 return 0;
286 }
287
288 /*
289 * Early setup the APBT timer, only use timer 0 for booting then switch to
290 * per CPU timer if possible.
291 * returns 1 if per cpu apbt is setup
292 * returns 0 if no per cpu apbt is chosen
293 * panic if set up failed, this is the only platform timer on Moorestown.
294 */
apbt_time_init(void)295 void __init apbt_time_init(void)
296 {
297 #ifdef CONFIG_SMP
298 int i;
299 struct sfi_timer_table_entry *p_mtmr;
300 struct apbt_dev *adev;
301 #endif
302
303 if (apb_timer_block_enabled)
304 return;
305 apbt_set_mapping();
306 if (!apbt_virt_address)
307 goto out_noapbt;
308 /*
309 * Read the frequency and check for a sane value, for ESL model
310 * we extend the possible clock range to allow time scaling.
311 */
312
313 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
314 pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
315 goto out_noapbt;
316 }
317 if (apbt_clocksource_register()) {
318 pr_debug("APBT has failed to register clocksource\n");
319 goto out_noapbt;
320 }
321 if (!apbt_clockevent_register())
322 apb_timer_block_enabled = 1;
323 else {
324 pr_debug("APBT has failed to register clockevent\n");
325 goto out_noapbt;
326 }
327 #ifdef CONFIG_SMP
328 /* kernel cmdline disable apb timer, so we will use lapic timers */
329 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
330 printk(KERN_INFO "apbt: disabled per cpu timer\n");
331 return;
332 }
333 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
334 if (num_possible_cpus() <= sfi_mtimer_num)
335 apbt_num_timers_used = num_possible_cpus();
336 else
337 apbt_num_timers_used = 1;
338 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
339
340 /* here we set up per CPU timer data structure */
341 for (i = 0; i < apbt_num_timers_used; i++) {
342 adev = &per_cpu(cpu_apbt_dev, i);
343 adev->num = i;
344 adev->cpu = i;
345 p_mtmr = sfi_get_mtmr(i);
346 if (p_mtmr)
347 adev->irq = p_mtmr->irq;
348 else
349 printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
350 snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
351 }
352 #endif
353
354 return;
355
356 out_noapbt:
357 apbt_clear_mapping();
358 apb_timer_block_enabled = 0;
359 panic("failed to enable APB timer\n");
360 }
361
362 /* called before apb_timer_enable, use early map */
apbt_quick_calibrate(void)363 unsigned long apbt_quick_calibrate(void)
364 {
365 int i, scale;
366 u64 old, new;
367 cycle_t t1, t2;
368 unsigned long khz = 0;
369 u32 loop, shift;
370
371 apbt_set_mapping();
372 dw_apb_clocksource_start(clocksource_apbt);
373
374 /* check if the timer can count down, otherwise return */
375 old = dw_apb_clocksource_read(clocksource_apbt);
376 i = 10000;
377 while (--i) {
378 if (old != dw_apb_clocksource_read(clocksource_apbt))
379 break;
380 }
381 if (!i)
382 goto failed;
383
384 /* count 16 ms */
385 loop = (apbt_freq / 1000) << 4;
386
387 /* restart the timer to ensure it won't get to 0 in the calibration */
388 dw_apb_clocksource_start(clocksource_apbt);
389
390 old = dw_apb_clocksource_read(clocksource_apbt);
391 old += loop;
392
393 t1 = rdtsc();
394
395 do {
396 new = dw_apb_clocksource_read(clocksource_apbt);
397 } while (new < old);
398
399 t2 = rdtsc();
400
401 shift = 5;
402 if (unlikely(loop >> shift == 0)) {
403 printk(KERN_INFO
404 "APBT TSC calibration failed, not enough resolution\n");
405 return 0;
406 }
407 scale = (int)div_u64((t2 - t1), loop >> shift);
408 khz = (scale * (apbt_freq / 1000)) >> shift;
409 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
410 return khz;
411 failed:
412 return 0;
413 }
414