• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/fs.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/elfcore.h>
19 #include <linux/smp.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/mc146818rtc.h>
28 #include <linux/module.h>
29 #include <linux/kallsyms.h>
30 #include <linux/ptrace.h>
31 #include <linux/personality.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/ftrace.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/kdebug.h>
38 
39 #include <asm/pgtable.h>
40 #include <asm/ldt.h>
41 #include <asm/processor.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/desc.h>
44 #ifdef CONFIG_MATH_EMULATION
45 #include <asm/math_emu.h>
46 #endif
47 
48 #include <linux/err.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/cpu.h>
52 #include <asm/idle.h>
53 #include <asm/syscalls.h>
54 #include <asm/debugreg.h>
55 #include <asm/switch_to.h>
56 #include <asm/vm86.h>
57 
58 #include "process.h"
59 
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61 asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread");
62 
63 /*
64  * Return saved PC of a blocked thread.
65  */
thread_saved_pc(struct task_struct * tsk)66 unsigned long thread_saved_pc(struct task_struct *tsk)
67 {
68 	return ((unsigned long *)tsk->thread.sp)[3];
69 }
70 
__show_regs(struct pt_regs * regs,int all)71 void __show_regs(struct pt_regs *regs, int all)
72 {
73 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
74 	unsigned long d0, d1, d2, d3, d6, d7;
75 	unsigned long sp;
76 	unsigned short ss, gs;
77 
78 	if (user_mode(regs)) {
79 		sp = regs->sp;
80 		ss = regs->ss & 0xffff;
81 		gs = get_user_gs(regs);
82 	} else {
83 		sp = kernel_stack_pointer(regs);
84 		savesegment(ss, ss);
85 		savesegment(gs, gs);
86 	}
87 
88 	printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
89 			(u16)regs->cs, regs->ip, regs->flags,
90 			smp_processor_id());
91 	print_symbol("EIP is at %s\n", regs->ip);
92 
93 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
94 		regs->ax, regs->bx, regs->cx, regs->dx);
95 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
96 		regs->si, regs->di, regs->bp, sp);
97 	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
98 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
99 
100 	if (!all)
101 		return;
102 
103 	cr0 = read_cr0();
104 	cr2 = read_cr2();
105 	cr3 = read_cr3();
106 	cr4 = __read_cr4_safe();
107 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
108 			cr0, cr2, cr3, cr4);
109 
110 	get_debugreg(d0, 0);
111 	get_debugreg(d1, 1);
112 	get_debugreg(d2, 2);
113 	get_debugreg(d3, 3);
114 	get_debugreg(d6, 6);
115 	get_debugreg(d7, 7);
116 
117 	/* Only print out debug registers if they are in their non-default state. */
118 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
119 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
120 		return;
121 
122 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
123 			d0, d1, d2, d3);
124 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
125 			d6, d7);
126 }
127 
release_thread(struct task_struct * dead_task)128 void release_thread(struct task_struct *dead_task)
129 {
130 	BUG_ON(dead_task->mm);
131 	release_vm86_irqs(dead_task);
132 }
133 
copy_thread_tls(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)134 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
135 	unsigned long arg, struct task_struct *p, unsigned long tls)
136 {
137 	struct pt_regs *childregs = task_pt_regs(p);
138 	struct task_struct *tsk;
139 	int err;
140 
141 	p->thread.sp = (unsigned long) childregs;
142 	p->thread.sp0 = (unsigned long) (childregs+1);
143 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
144 
145 	if (unlikely(p->flags & PF_KTHREAD)) {
146 		/* kernel thread */
147 		memset(childregs, 0, sizeof(struct pt_regs));
148 		p->thread.ip = (unsigned long) ret_from_kernel_thread;
149 		task_user_gs(p) = __KERNEL_STACK_CANARY;
150 		childregs->ds = __USER_DS;
151 		childregs->es = __USER_DS;
152 		childregs->fs = __KERNEL_PERCPU;
153 		childregs->bx = sp;	/* function */
154 		childregs->bp = arg;
155 		childregs->orig_ax = -1;
156 		childregs->cs = __KERNEL_CS | get_kernel_rpl();
157 		childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
158 		p->thread.io_bitmap_ptr = NULL;
159 		return 0;
160 	}
161 	*childregs = *current_pt_regs();
162 	childregs->ax = 0;
163 	if (sp)
164 		childregs->sp = sp;
165 
166 	p->thread.ip = (unsigned long) ret_from_fork;
167 	task_user_gs(p) = get_user_gs(current_pt_regs());
168 
169 	p->thread.io_bitmap_ptr = NULL;
170 	tsk = current;
171 	err = -ENOMEM;
172 
173 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
174 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
175 						IO_BITMAP_BYTES, GFP_KERNEL);
176 		if (!p->thread.io_bitmap_ptr) {
177 			p->thread.io_bitmap_max = 0;
178 			return -ENOMEM;
179 		}
180 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
181 	}
182 
183 	err = 0;
184 
185 	/*
186 	 * Set a new TLS for the child thread?
187 	 */
188 	if (clone_flags & CLONE_SETTLS)
189 		err = do_set_thread_area(p, -1,
190 			(struct user_desc __user *)tls, 0);
191 
192 	if (err && p->thread.io_bitmap_ptr) {
193 		kfree(p->thread.io_bitmap_ptr);
194 		p->thread.io_bitmap_max = 0;
195 	}
196 	return err;
197 }
198 
199 void
start_thread(struct pt_regs * regs,unsigned long new_ip,unsigned long new_sp)200 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
201 {
202 	set_user_gs(regs, 0);
203 	regs->fs		= 0;
204 	regs->ds		= __USER_DS;
205 	regs->es		= __USER_DS;
206 	regs->ss		= __USER_DS;
207 	regs->cs		= __USER_CS;
208 	regs->ip		= new_ip;
209 	regs->sp		= new_sp;
210 	regs->flags		= X86_EFLAGS_IF;
211 	force_iret();
212 }
213 EXPORT_SYMBOL_GPL(start_thread);
214 
215 
216 /*
217  *	switch_to(x,y) should switch tasks from x to y.
218  *
219  * We fsave/fwait so that an exception goes off at the right time
220  * (as a call from the fsave or fwait in effect) rather than to
221  * the wrong process. Lazy FP saving no longer makes any sense
222  * with modern CPU's, and this simplifies a lot of things (SMP
223  * and UP become the same).
224  *
225  * NOTE! We used to use the x86 hardware context switching. The
226  * reason for not using it any more becomes apparent when you
227  * try to recover gracefully from saved state that is no longer
228  * valid (stale segment register values in particular). With the
229  * hardware task-switch, there is no way to fix up bad state in
230  * a reasonable manner.
231  *
232  * The fact that Intel documents the hardware task-switching to
233  * be slow is a fairly red herring - this code is not noticeably
234  * faster. However, there _is_ some room for improvement here,
235  * so the performance issues may eventually be a valid point.
236  * More important, however, is the fact that this allows us much
237  * more flexibility.
238  *
239  * The return value (in %ax) will be the "prev" task after
240  * the task-switch, and shows up in ret_from_fork in entry.S,
241  * for example.
242  */
243 __visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct * prev_p,struct task_struct * next_p)244 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
245 {
246 	struct thread_struct *prev = &prev_p->thread,
247 			     *next = &next_p->thread;
248 	struct fpu *prev_fpu = &prev->fpu;
249 	struct fpu *next_fpu = &next->fpu;
250 	int cpu = smp_processor_id();
251 	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
252 	fpu_switch_t fpu_switch;
253 
254 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
255 
256 	fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
257 
258 	/*
259 	 * Save away %gs. No need to save %fs, as it was saved on the
260 	 * stack on entry.  No need to save %es and %ds, as those are
261 	 * always kernel segments while inside the kernel.  Doing this
262 	 * before setting the new TLS descriptors avoids the situation
263 	 * where we temporarily have non-reloadable segments in %fs
264 	 * and %gs.  This could be an issue if the NMI handler ever
265 	 * used %fs or %gs (it does not today), or if the kernel is
266 	 * running inside of a hypervisor layer.
267 	 */
268 	lazy_save_gs(prev->gs);
269 
270 	/*
271 	 * Load the per-thread Thread-Local Storage descriptor.
272 	 */
273 	load_TLS(next, cpu);
274 
275 	/*
276 	 * Restore IOPL if needed.  In normal use, the flags restore
277 	 * in the switch assembly will handle this.  But if the kernel
278 	 * is running virtualized at a non-zero CPL, the popf will
279 	 * not restore flags, so it must be done in a separate step.
280 	 */
281 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
282 		set_iopl_mask(next->iopl);
283 
284 	switch_to_extra(prev_p, next_p);
285 
286 	/*
287 	 * Leave lazy mode, flushing any hypercalls made here.
288 	 * This must be done before restoring TLS segments so
289 	 * the GDT and LDT are properly updated, and must be
290 	 * done before fpu__restore(), so the TS bit is up
291 	 * to date.
292 	 */
293 	arch_end_context_switch(next_p);
294 
295 	/*
296 	 * Reload esp0 and cpu_current_top_of_stack.  This changes
297 	 * current_thread_info().
298 	 */
299 	load_sp0(tss, next);
300 	this_cpu_write(cpu_current_top_of_stack,
301 		       (unsigned long)task_stack_page(next_p) +
302 		       THREAD_SIZE);
303 
304 	/*
305 	 * Restore %gs if needed (which is common)
306 	 */
307 	if (prev->gs | next->gs)
308 		lazy_load_gs(next->gs);
309 
310 	switch_fpu_finish(next_fpu, fpu_switch);
311 
312 	this_cpu_write(current_task, next_p);
313 
314 	return prev_p;
315 }
316