• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 
26 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz);
28 
29 unsigned int __read_mostly tsc_khz;
30 EXPORT_SYMBOL(tsc_khz);
31 
32 /*
33  * TSC can be unstable due to cpufreq or due to unsynced TSCs
34  */
35 static int __read_mostly tsc_unstable;
36 
37 /* native_sched_clock() is called before tsc_init(), so
38    we must start with the TSC soft disabled to prevent
39    erroneous rdtsc usage on !cpu_has_tsc processors */
40 static int __read_mostly tsc_disabled = -1;
41 
42 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
43 
44 int tsc_clocksource_reliable;
45 
46 /*
47  * Use a ring-buffer like data structure, where a writer advances the head by
48  * writing a new data entry and a reader advances the tail when it observes a
49  * new entry.
50  *
51  * Writers are made to wait on readers until there's space to write a new
52  * entry.
53  *
54  * This means that we can always use an {offset, mul} pair to compute a ns
55  * value that is 'roughly' in the right direction, even if we're writing a new
56  * {offset, mul} pair during the clock read.
57  *
58  * The down-side is that we can no longer guarantee strict monotonicity anymore
59  * (assuming the TSC was that to begin with), because while we compute the
60  * intersection point of the two clock slopes and make sure the time is
61  * continuous at the point of switching; we can no longer guarantee a reader is
62  * strictly before or after the switch point.
63  *
64  * It does mean a reader no longer needs to disable IRQs in order to avoid
65  * CPU-Freq updates messing with his times, and similarly an NMI reader will
66  * no longer run the risk of hitting half-written state.
67  */
68 
69 struct cyc2ns {
70 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
71 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
72 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
73 }; /* exactly fits one cacheline */
74 
75 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
76 
cyc2ns_read_begin(void)77 struct cyc2ns_data *cyc2ns_read_begin(void)
78 {
79 	struct cyc2ns_data *head;
80 
81 	preempt_disable();
82 
83 	head = this_cpu_read(cyc2ns.head);
84 	/*
85 	 * Ensure we observe the entry when we observe the pointer to it.
86 	 * matches the wmb from cyc2ns_write_end().
87 	 */
88 	smp_read_barrier_depends();
89 	head->__count++;
90 	barrier();
91 
92 	return head;
93 }
94 
cyc2ns_read_end(struct cyc2ns_data * head)95 void cyc2ns_read_end(struct cyc2ns_data *head)
96 {
97 	barrier();
98 	/*
99 	 * If we're the outer most nested read; update the tail pointer
100 	 * when we're done. This notifies possible pending writers
101 	 * that we've observed the head pointer and that the other
102 	 * entry is now free.
103 	 */
104 	if (!--head->__count) {
105 		/*
106 		 * x86-TSO does not reorder writes with older reads;
107 		 * therefore once this write becomes visible to another
108 		 * cpu, we must be finished reading the cyc2ns_data.
109 		 *
110 		 * matches with cyc2ns_write_begin().
111 		 */
112 		this_cpu_write(cyc2ns.tail, head);
113 	}
114 	preempt_enable();
115 }
116 
117 /*
118  * Begin writing a new @data entry for @cpu.
119  *
120  * Assumes some sort of write side lock; currently 'provided' by the assumption
121  * that cpufreq will call its notifiers sequentially.
122  */
cyc2ns_write_begin(int cpu)123 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
124 {
125 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
126 	struct cyc2ns_data *data = c2n->data;
127 
128 	if (data == c2n->head)
129 		data++;
130 
131 	/* XXX send an IPI to @cpu in order to guarantee a read? */
132 
133 	/*
134 	 * When we observe the tail write from cyc2ns_read_end(),
135 	 * the cpu must be done with that entry and its safe
136 	 * to start writing to it.
137 	 */
138 	while (c2n->tail == data)
139 		cpu_relax();
140 
141 	return data;
142 }
143 
cyc2ns_write_end(int cpu,struct cyc2ns_data * data)144 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
145 {
146 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
147 
148 	/*
149 	 * Ensure the @data writes are visible before we publish the
150 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
151 	 */
152 	smp_wmb();
153 
154 	ACCESS_ONCE(c2n->head) = data;
155 }
156 
157 /*
158  * Accelerators for sched_clock()
159  * convert from cycles(64bits) => nanoseconds (64bits)
160  *  basic equation:
161  *              ns = cycles / (freq / ns_per_sec)
162  *              ns = cycles * (ns_per_sec / freq)
163  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
164  *              ns = cycles * (10^6 / cpu_khz)
165  *
166  *      Then we use scaling math (suggested by george@mvista.com) to get:
167  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
168  *              ns = cycles * cyc2ns_scale / SC
169  *
170  *      And since SC is a constant power of two, we can convert the div
171  *  into a shift. The larger SC is, the more accurate the conversion, but
172  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
173  *  (64-bit result) can be used.
174  *
175  *  We can use khz divisor instead of mhz to keep a better precision.
176  *  (mathieu.desnoyers@polymtl.ca)
177  *
178  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
179  */
180 
cyc2ns_data_init(struct cyc2ns_data * data)181 static void cyc2ns_data_init(struct cyc2ns_data *data)
182 {
183 	data->cyc2ns_mul = 0;
184 	data->cyc2ns_shift = 0;
185 	data->cyc2ns_offset = 0;
186 	data->__count = 0;
187 }
188 
cyc2ns_init(int cpu)189 static void cyc2ns_init(int cpu)
190 {
191 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192 
193 	cyc2ns_data_init(&c2n->data[0]);
194 	cyc2ns_data_init(&c2n->data[1]);
195 
196 	c2n->head = c2n->data;
197 	c2n->tail = c2n->data;
198 }
199 
cycles_2_ns(unsigned long long cyc)200 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201 {
202 	struct cyc2ns_data *data, *tail;
203 	unsigned long long ns;
204 
205 	/*
206 	 * See cyc2ns_read_*() for details; replicated in order to avoid
207 	 * an extra few instructions that came with the abstraction.
208 	 * Notable, it allows us to only do the __count and tail update
209 	 * dance when its actually needed.
210 	 */
211 
212 	preempt_disable_notrace();
213 	data = this_cpu_read(cyc2ns.head);
214 	tail = this_cpu_read(cyc2ns.tail);
215 
216 	if (likely(data == tail)) {
217 		ns = data->cyc2ns_offset;
218 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
219 	} else {
220 		data->__count++;
221 
222 		barrier();
223 
224 		ns = data->cyc2ns_offset;
225 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
226 
227 		barrier();
228 
229 		if (!--data->__count)
230 			this_cpu_write(cyc2ns.tail, data);
231 	}
232 	preempt_enable_notrace();
233 
234 	return ns;
235 }
236 
set_cyc2ns_scale(unsigned long cpu_khz,int cpu)237 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238 {
239 	unsigned long long tsc_now, ns_now;
240 	struct cyc2ns_data *data;
241 	unsigned long flags;
242 
243 	local_irq_save(flags);
244 	sched_clock_idle_sleep_event();
245 
246 	if (!cpu_khz)
247 		goto done;
248 
249 	data = cyc2ns_write_begin(cpu);
250 
251 	tsc_now = rdtsc();
252 	ns_now = cycles_2_ns(tsc_now);
253 
254 	/*
255 	 * Compute a new multiplier as per the above comment and ensure our
256 	 * time function is continuous; see the comment near struct
257 	 * cyc2ns_data.
258 	 */
259 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
260 			       NSEC_PER_MSEC, 0);
261 
262 	/*
263 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
264 	 * not expected to be greater than 31 due to the original published
265 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
266 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
267 	 */
268 	if (data->cyc2ns_shift == 32) {
269 		data->cyc2ns_shift = 31;
270 		data->cyc2ns_mul >>= 1;
271 	}
272 
273 	data->cyc2ns_offset = ns_now -
274 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
275 
276 	cyc2ns_write_end(cpu, data);
277 
278 done:
279 	sched_clock_idle_wakeup_event(0);
280 	local_irq_restore(flags);
281 }
282 /*
283  * Scheduler clock - returns current time in nanosec units.
284  */
native_sched_clock(void)285 u64 native_sched_clock(void)
286 {
287 	if (static_branch_likely(&__use_tsc)) {
288 		u64 tsc_now = rdtsc();
289 
290 		/* return the value in ns */
291 		return cycles_2_ns(tsc_now);
292 	}
293 
294 	/*
295 	 * Fall back to jiffies if there's no TSC available:
296 	 * ( But note that we still use it if the TSC is marked
297 	 *   unstable. We do this because unlike Time Of Day,
298 	 *   the scheduler clock tolerates small errors and it's
299 	 *   very important for it to be as fast as the platform
300 	 *   can achieve it. )
301 	 */
302 
303 	/* No locking but a rare wrong value is not a big deal: */
304 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
305 }
306 
307 /*
308  * Generate a sched_clock if you already have a TSC value.
309  */
native_sched_clock_from_tsc(u64 tsc)310 u64 native_sched_clock_from_tsc(u64 tsc)
311 {
312 	return cycles_2_ns(tsc);
313 }
314 
315 /* We need to define a real function for sched_clock, to override the
316    weak default version */
317 #ifdef CONFIG_PARAVIRT
sched_clock(void)318 unsigned long long sched_clock(void)
319 {
320 	return paravirt_sched_clock();
321 }
322 #else
323 unsigned long long
324 sched_clock(void) __attribute__((alias("native_sched_clock")));
325 #endif
326 
check_tsc_unstable(void)327 int check_tsc_unstable(void)
328 {
329 	return tsc_unstable;
330 }
331 EXPORT_SYMBOL_GPL(check_tsc_unstable);
332 
check_tsc_disabled(void)333 int check_tsc_disabled(void)
334 {
335 	return tsc_disabled;
336 }
337 EXPORT_SYMBOL_GPL(check_tsc_disabled);
338 
339 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)340 int __init notsc_setup(char *str)
341 {
342 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
343 	tsc_disabled = 1;
344 	return 1;
345 }
346 #else
347 /*
348  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
349  * in cpu/common.c
350  */
notsc_setup(char * str)351 int __init notsc_setup(char *str)
352 {
353 	setup_clear_cpu_cap(X86_FEATURE_TSC);
354 	return 1;
355 }
356 #endif
357 
358 __setup("notsc", notsc_setup);
359 
360 static int no_sched_irq_time;
361 
tsc_setup(char * str)362 static int __init tsc_setup(char *str)
363 {
364 	if (!strcmp(str, "reliable"))
365 		tsc_clocksource_reliable = 1;
366 	if (!strncmp(str, "noirqtime", 9))
367 		no_sched_irq_time = 1;
368 	if (!strcmp(str, "unstable"))
369 		mark_tsc_unstable("boot parameter");
370 	return 1;
371 }
372 
373 __setup("tsc=", tsc_setup);
374 
375 #define MAX_RETRIES     5
376 #define SMI_TRESHOLD    50000
377 
378 /*
379  * Read TSC and the reference counters. Take care of SMI disturbance
380  */
tsc_read_refs(u64 * p,int hpet)381 static u64 tsc_read_refs(u64 *p, int hpet)
382 {
383 	u64 t1, t2;
384 	int i;
385 
386 	for (i = 0; i < MAX_RETRIES; i++) {
387 		t1 = get_cycles();
388 		if (hpet)
389 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
390 		else
391 			*p = acpi_pm_read_early();
392 		t2 = get_cycles();
393 		if ((t2 - t1) < SMI_TRESHOLD)
394 			return t2;
395 	}
396 	return ULLONG_MAX;
397 }
398 
399 /*
400  * Calculate the TSC frequency from HPET reference
401  */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)402 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
403 {
404 	u64 tmp;
405 
406 	if (hpet2 < hpet1)
407 		hpet2 += 0x100000000ULL;
408 	hpet2 -= hpet1;
409 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
410 	do_div(tmp, 1000000);
411 	deltatsc = div64_u64(deltatsc, tmp);
412 
413 	return (unsigned long) deltatsc;
414 }
415 
416 /*
417  * Calculate the TSC frequency from PMTimer reference
418  */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)419 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
420 {
421 	u64 tmp;
422 
423 	if (!pm1 && !pm2)
424 		return ULONG_MAX;
425 
426 	if (pm2 < pm1)
427 		pm2 += (u64)ACPI_PM_OVRRUN;
428 	pm2 -= pm1;
429 	tmp = pm2 * 1000000000LL;
430 	do_div(tmp, PMTMR_TICKS_PER_SEC);
431 	do_div(deltatsc, tmp);
432 
433 	return (unsigned long) deltatsc;
434 }
435 
436 #define CAL_MS		10
437 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
438 #define CAL_PIT_LOOPS	1000
439 
440 #define CAL2_MS		50
441 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
442 #define CAL2_PIT_LOOPS	5000
443 
444 
445 /*
446  * Try to calibrate the TSC against the Programmable
447  * Interrupt Timer and return the frequency of the TSC
448  * in kHz.
449  *
450  * Return ULONG_MAX on failure to calibrate.
451  */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)452 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
453 {
454 	u64 tsc, t1, t2, delta;
455 	unsigned long tscmin, tscmax;
456 	int pitcnt;
457 
458 	/* Set the Gate high, disable speaker */
459 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
460 
461 	/*
462 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
463 	 * count mode), binary count. Set the latch register to 50ms
464 	 * (LSB then MSB) to begin countdown.
465 	 */
466 	outb(0xb0, 0x43);
467 	outb(latch & 0xff, 0x42);
468 	outb(latch >> 8, 0x42);
469 
470 	tsc = t1 = t2 = get_cycles();
471 
472 	pitcnt = 0;
473 	tscmax = 0;
474 	tscmin = ULONG_MAX;
475 	while ((inb(0x61) & 0x20) == 0) {
476 		t2 = get_cycles();
477 		delta = t2 - tsc;
478 		tsc = t2;
479 		if ((unsigned long) delta < tscmin)
480 			tscmin = (unsigned int) delta;
481 		if ((unsigned long) delta > tscmax)
482 			tscmax = (unsigned int) delta;
483 		pitcnt++;
484 	}
485 
486 	/*
487 	 * Sanity checks:
488 	 *
489 	 * If we were not able to read the PIT more than loopmin
490 	 * times, then we have been hit by a massive SMI
491 	 *
492 	 * If the maximum is 10 times larger than the minimum,
493 	 * then we got hit by an SMI as well.
494 	 */
495 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
496 		return ULONG_MAX;
497 
498 	/* Calculate the PIT value */
499 	delta = t2 - t1;
500 	do_div(delta, ms);
501 	return delta;
502 }
503 
504 /*
505  * This reads the current MSB of the PIT counter, and
506  * checks if we are running on sufficiently fast and
507  * non-virtualized hardware.
508  *
509  * Our expectations are:
510  *
511  *  - the PIT is running at roughly 1.19MHz
512  *
513  *  - each IO is going to take about 1us on real hardware,
514  *    but we allow it to be much faster (by a factor of 10) or
515  *    _slightly_ slower (ie we allow up to a 2us read+counter
516  *    update - anything else implies a unacceptably slow CPU
517  *    or PIT for the fast calibration to work.
518  *
519  *  - with 256 PIT ticks to read the value, we have 214us to
520  *    see the same MSB (and overhead like doing a single TSC
521  *    read per MSB value etc).
522  *
523  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
524  *    them each to take about a microsecond on real hardware.
525  *    So we expect a count value of around 100. But we'll be
526  *    generous, and accept anything over 50.
527  *
528  *  - if the PIT is stuck, and we see *many* more reads, we
529  *    return early (and the next caller of pit_expect_msb()
530  *    then consider it a failure when they don't see the
531  *    next expected value).
532  *
533  * These expectations mean that we know that we have seen the
534  * transition from one expected value to another with a fairly
535  * high accuracy, and we didn't miss any events. We can thus
536  * use the TSC value at the transitions to calculate a pretty
537  * good value for the TSC frequencty.
538  */
pit_verify_msb(unsigned char val)539 static inline int pit_verify_msb(unsigned char val)
540 {
541 	/* Ignore LSB */
542 	inb(0x42);
543 	return inb(0x42) == val;
544 }
545 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)546 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
547 {
548 	int count;
549 	u64 tsc = 0, prev_tsc = 0;
550 
551 	for (count = 0; count < 50000; count++) {
552 		if (!pit_verify_msb(val))
553 			break;
554 		prev_tsc = tsc;
555 		tsc = get_cycles();
556 	}
557 	*deltap = get_cycles() - prev_tsc;
558 	*tscp = tsc;
559 
560 	/*
561 	 * We require _some_ success, but the quality control
562 	 * will be based on the error terms on the TSC values.
563 	 */
564 	return count > 5;
565 }
566 
567 /*
568  * How many MSB values do we want to see? We aim for
569  * a maximum error rate of 500ppm (in practice the
570  * real error is much smaller), but refuse to spend
571  * more than 50ms on it.
572  */
573 #define MAX_QUICK_PIT_MS 50
574 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
575 
quick_pit_calibrate(void)576 static unsigned long quick_pit_calibrate(void)
577 {
578 	int i;
579 	u64 tsc, delta;
580 	unsigned long d1, d2;
581 
582 	/* Set the Gate high, disable speaker */
583 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
584 
585 	/*
586 	 * Counter 2, mode 0 (one-shot), binary count
587 	 *
588 	 * NOTE! Mode 2 decrements by two (and then the
589 	 * output is flipped each time, giving the same
590 	 * final output frequency as a decrement-by-one),
591 	 * so mode 0 is much better when looking at the
592 	 * individual counts.
593 	 */
594 	outb(0xb0, 0x43);
595 
596 	/* Start at 0xffff */
597 	outb(0xff, 0x42);
598 	outb(0xff, 0x42);
599 
600 	/*
601 	 * The PIT starts counting at the next edge, so we
602 	 * need to delay for a microsecond. The easiest way
603 	 * to do that is to just read back the 16-bit counter
604 	 * once from the PIT.
605 	 */
606 	pit_verify_msb(0);
607 
608 	if (pit_expect_msb(0xff, &tsc, &d1)) {
609 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
610 			if (!pit_expect_msb(0xff-i, &delta, &d2))
611 				break;
612 
613 			delta -= tsc;
614 
615 			/*
616 			 * Extrapolate the error and fail fast if the error will
617 			 * never be below 500 ppm.
618 			 */
619 			if (i == 1 &&
620 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
621 				return 0;
622 
623 			/*
624 			 * Iterate until the error is less than 500 ppm
625 			 */
626 			if (d1+d2 >= delta >> 11)
627 				continue;
628 
629 			/*
630 			 * Check the PIT one more time to verify that
631 			 * all TSC reads were stable wrt the PIT.
632 			 *
633 			 * This also guarantees serialization of the
634 			 * last cycle read ('d2') in pit_expect_msb.
635 			 */
636 			if (!pit_verify_msb(0xfe - i))
637 				break;
638 			goto success;
639 		}
640 	}
641 	pr_info("Fast TSC calibration failed\n");
642 	return 0;
643 
644 success:
645 	/*
646 	 * Ok, if we get here, then we've seen the
647 	 * MSB of the PIT decrement 'i' times, and the
648 	 * error has shrunk to less than 500 ppm.
649 	 *
650 	 * As a result, we can depend on there not being
651 	 * any odd delays anywhere, and the TSC reads are
652 	 * reliable (within the error).
653 	 *
654 	 * kHz = ticks / time-in-seconds / 1000;
655 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
656 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
657 	 */
658 	delta *= PIT_TICK_RATE;
659 	do_div(delta, i*256*1000);
660 	pr_info("Fast TSC calibration using PIT\n");
661 	return delta;
662 }
663 
664 /**
665  * native_calibrate_tsc - calibrate the tsc on boot
666  */
native_calibrate_tsc(void)667 unsigned long native_calibrate_tsc(void)
668 {
669 	u64 tsc1, tsc2, delta, ref1, ref2;
670 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
671 	unsigned long flags, latch, ms, fast_calibrate;
672 	int hpet = is_hpet_enabled(), i, loopmin;
673 
674 	/* Calibrate TSC using MSR for Intel Atom SoCs */
675 	local_irq_save(flags);
676 	fast_calibrate = try_msr_calibrate_tsc();
677 	local_irq_restore(flags);
678 	if (fast_calibrate)
679 		return fast_calibrate;
680 
681 	local_irq_save(flags);
682 	fast_calibrate = quick_pit_calibrate();
683 	local_irq_restore(flags);
684 	if (fast_calibrate)
685 		return fast_calibrate;
686 
687 	/*
688 	 * Run 5 calibration loops to get the lowest frequency value
689 	 * (the best estimate). We use two different calibration modes
690 	 * here:
691 	 *
692 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
693 	 * load a timeout of 50ms. We read the time right after we
694 	 * started the timer and wait until the PIT count down reaches
695 	 * zero. In each wait loop iteration we read the TSC and check
696 	 * the delta to the previous read. We keep track of the min
697 	 * and max values of that delta. The delta is mostly defined
698 	 * by the IO time of the PIT access, so we can detect when a
699 	 * SMI/SMM disturbance happened between the two reads. If the
700 	 * maximum time is significantly larger than the minimum time,
701 	 * then we discard the result and have another try.
702 	 *
703 	 * 2) Reference counter. If available we use the HPET or the
704 	 * PMTIMER as a reference to check the sanity of that value.
705 	 * We use separate TSC readouts and check inside of the
706 	 * reference read for a SMI/SMM disturbance. We dicard
707 	 * disturbed values here as well. We do that around the PIT
708 	 * calibration delay loop as we have to wait for a certain
709 	 * amount of time anyway.
710 	 */
711 
712 	/* Preset PIT loop values */
713 	latch = CAL_LATCH;
714 	ms = CAL_MS;
715 	loopmin = CAL_PIT_LOOPS;
716 
717 	for (i = 0; i < 3; i++) {
718 		unsigned long tsc_pit_khz;
719 
720 		/*
721 		 * Read the start value and the reference count of
722 		 * hpet/pmtimer when available. Then do the PIT
723 		 * calibration, which will take at least 50ms, and
724 		 * read the end value.
725 		 */
726 		local_irq_save(flags);
727 		tsc1 = tsc_read_refs(&ref1, hpet);
728 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
729 		tsc2 = tsc_read_refs(&ref2, hpet);
730 		local_irq_restore(flags);
731 
732 		/* Pick the lowest PIT TSC calibration so far */
733 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
734 
735 		/* hpet or pmtimer available ? */
736 		if (ref1 == ref2)
737 			continue;
738 
739 		/* Check, whether the sampling was disturbed by an SMI */
740 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
741 			continue;
742 
743 		tsc2 = (tsc2 - tsc1) * 1000000LL;
744 		if (hpet)
745 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
746 		else
747 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
748 
749 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
750 
751 		/* Check the reference deviation */
752 		delta = ((u64) tsc_pit_min) * 100;
753 		do_div(delta, tsc_ref_min);
754 
755 		/*
756 		 * If both calibration results are inside a 10% window
757 		 * then we can be sure, that the calibration
758 		 * succeeded. We break out of the loop right away. We
759 		 * use the reference value, as it is more precise.
760 		 */
761 		if (delta >= 90 && delta <= 110) {
762 			pr_info("PIT calibration matches %s. %d loops\n",
763 				hpet ? "HPET" : "PMTIMER", i + 1);
764 			return tsc_ref_min;
765 		}
766 
767 		/*
768 		 * Check whether PIT failed more than once. This
769 		 * happens in virtualized environments. We need to
770 		 * give the virtual PC a slightly longer timeframe for
771 		 * the HPET/PMTIMER to make the result precise.
772 		 */
773 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
774 			latch = CAL2_LATCH;
775 			ms = CAL2_MS;
776 			loopmin = CAL2_PIT_LOOPS;
777 		}
778 	}
779 
780 	/*
781 	 * Now check the results.
782 	 */
783 	if (tsc_pit_min == ULONG_MAX) {
784 		/* PIT gave no useful value */
785 		pr_warn("Unable to calibrate against PIT\n");
786 
787 		/* We don't have an alternative source, disable TSC */
788 		if (!hpet && !ref1 && !ref2) {
789 			pr_notice("No reference (HPET/PMTIMER) available\n");
790 			return 0;
791 		}
792 
793 		/* The alternative source failed as well, disable TSC */
794 		if (tsc_ref_min == ULONG_MAX) {
795 			pr_warn("HPET/PMTIMER calibration failed\n");
796 			return 0;
797 		}
798 
799 		/* Use the alternative source */
800 		pr_info("using %s reference calibration\n",
801 			hpet ? "HPET" : "PMTIMER");
802 
803 		return tsc_ref_min;
804 	}
805 
806 	/* We don't have an alternative source, use the PIT calibration value */
807 	if (!hpet && !ref1 && !ref2) {
808 		pr_info("Using PIT calibration value\n");
809 		return tsc_pit_min;
810 	}
811 
812 	/* The alternative source failed, use the PIT calibration value */
813 	if (tsc_ref_min == ULONG_MAX) {
814 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
815 		return tsc_pit_min;
816 	}
817 
818 	/*
819 	 * The calibration values differ too much. In doubt, we use
820 	 * the PIT value as we know that there are PMTIMERs around
821 	 * running at double speed. At least we let the user know:
822 	 */
823 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
824 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
825 	pr_info("Using PIT calibration value\n");
826 	return tsc_pit_min;
827 }
828 
recalibrate_cpu_khz(void)829 int recalibrate_cpu_khz(void)
830 {
831 #ifndef CONFIG_SMP
832 	unsigned long cpu_khz_old = cpu_khz;
833 
834 	if (cpu_has_tsc) {
835 		tsc_khz = x86_platform.calibrate_tsc();
836 		cpu_khz = tsc_khz;
837 		cpu_data(0).loops_per_jiffy =
838 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
839 					cpu_khz_old, cpu_khz);
840 		return 0;
841 	} else
842 		return -ENODEV;
843 #else
844 	return -ENODEV;
845 #endif
846 }
847 
848 EXPORT_SYMBOL(recalibrate_cpu_khz);
849 
850 
851 static unsigned long long cyc2ns_suspend;
852 
tsc_save_sched_clock_state(void)853 void tsc_save_sched_clock_state(void)
854 {
855 	if (!sched_clock_stable())
856 		return;
857 
858 	cyc2ns_suspend = sched_clock();
859 }
860 
861 /*
862  * Even on processors with invariant TSC, TSC gets reset in some the
863  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
864  * arbitrary value (still sync'd across cpu's) during resume from such sleep
865  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
866  * that sched_clock() continues from the point where it was left off during
867  * suspend.
868  */
tsc_restore_sched_clock_state(void)869 void tsc_restore_sched_clock_state(void)
870 {
871 	unsigned long long offset;
872 	unsigned long flags;
873 	int cpu;
874 
875 	if (!sched_clock_stable())
876 		return;
877 
878 	local_irq_save(flags);
879 
880 	/*
881 	 * We're comming out of suspend, there's no concurrency yet; don't
882 	 * bother being nice about the RCU stuff, just write to both
883 	 * data fields.
884 	 */
885 
886 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
887 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
888 
889 	offset = cyc2ns_suspend - sched_clock();
890 
891 	for_each_possible_cpu(cpu) {
892 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
893 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
894 	}
895 
896 	local_irq_restore(flags);
897 }
898 
899 #ifdef CONFIG_CPU_FREQ
900 
901 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
902  * changes.
903  *
904  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
905  * not that important because current Opteron setups do not support
906  * scaling on SMP anyroads.
907  *
908  * Should fix up last_tsc too. Currently gettimeofday in the
909  * first tick after the change will be slightly wrong.
910  */
911 
912 static unsigned int  ref_freq;
913 static unsigned long loops_per_jiffy_ref;
914 static unsigned long tsc_khz_ref;
915 
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)916 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
917 				void *data)
918 {
919 	struct cpufreq_freqs *freq = data;
920 	unsigned long *lpj;
921 
922 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
923 		return 0;
924 
925 	lpj = &boot_cpu_data.loops_per_jiffy;
926 #ifdef CONFIG_SMP
927 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
928 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
929 #endif
930 
931 	if (!ref_freq) {
932 		ref_freq = freq->old;
933 		loops_per_jiffy_ref = *lpj;
934 		tsc_khz_ref = tsc_khz;
935 	}
936 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
937 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
938 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
939 
940 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
941 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
942 			mark_tsc_unstable("cpufreq changes");
943 
944 		set_cyc2ns_scale(tsc_khz, freq->cpu);
945 	}
946 
947 	return 0;
948 }
949 
950 static struct notifier_block time_cpufreq_notifier_block = {
951 	.notifier_call  = time_cpufreq_notifier
952 };
953 
cpufreq_tsc(void)954 static int __init cpufreq_tsc(void)
955 {
956 	if (!cpu_has_tsc)
957 		return 0;
958 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
959 		return 0;
960 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
961 				CPUFREQ_TRANSITION_NOTIFIER);
962 	return 0;
963 }
964 
965 core_initcall(cpufreq_tsc);
966 
967 #endif /* CONFIG_CPU_FREQ */
968 
969 /* clocksource code */
970 
971 static struct clocksource clocksource_tsc;
972 
973 /*
974  * We used to compare the TSC to the cycle_last value in the clocksource
975  * structure to avoid a nasty time-warp. This can be observed in a
976  * very small window right after one CPU updated cycle_last under
977  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
978  * is smaller than the cycle_last reference value due to a TSC which
979  * is slighty behind. This delta is nowhere else observable, but in
980  * that case it results in a forward time jump in the range of hours
981  * due to the unsigned delta calculation of the time keeping core
982  * code, which is necessary to support wrapping clocksources like pm
983  * timer.
984  *
985  * This sanity check is now done in the core timekeeping code.
986  * checking the result of read_tsc() - cycle_last for being negative.
987  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
988  */
read_tsc(struct clocksource * cs)989 static cycle_t read_tsc(struct clocksource *cs)
990 {
991 	return (cycle_t)rdtsc_ordered();
992 }
993 
994 /*
995  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
996  */
997 static struct clocksource clocksource_tsc = {
998 	.name                   = "tsc",
999 	.rating                 = 300,
1000 	.read                   = read_tsc,
1001 	.mask                   = CLOCKSOURCE_MASK(64),
1002 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1003 				  CLOCK_SOURCE_MUST_VERIFY,
1004 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1005 };
1006 
mark_tsc_unstable(char * reason)1007 void mark_tsc_unstable(char *reason)
1008 {
1009 	if (!tsc_unstable) {
1010 		tsc_unstable = 1;
1011 		clear_sched_clock_stable();
1012 		disable_sched_clock_irqtime();
1013 		pr_info("Marking TSC unstable due to %s\n", reason);
1014 		/* Change only the rating, when not registered */
1015 		if (clocksource_tsc.mult)
1016 			clocksource_mark_unstable(&clocksource_tsc);
1017 		else {
1018 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1019 			clocksource_tsc.rating = 0;
1020 		}
1021 	}
1022 }
1023 
1024 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1025 
check_system_tsc_reliable(void)1026 static void __init check_system_tsc_reliable(void)
1027 {
1028 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1029 	if (is_geode_lx()) {
1030 		/* RTSC counts during suspend */
1031 #define RTSC_SUSP 0x100
1032 		unsigned long res_low, res_high;
1033 
1034 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1035 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1036 		if (res_low & RTSC_SUSP)
1037 			tsc_clocksource_reliable = 1;
1038 	}
1039 #endif
1040 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1041 		tsc_clocksource_reliable = 1;
1042 }
1043 
1044 /*
1045  * Make an educated guess if the TSC is trustworthy and synchronized
1046  * over all CPUs.
1047  */
unsynchronized_tsc(void)1048 int unsynchronized_tsc(void)
1049 {
1050 	if (!cpu_has_tsc || tsc_unstable)
1051 		return 1;
1052 
1053 #ifdef CONFIG_SMP
1054 	if (apic_is_clustered_box())
1055 		return 1;
1056 #endif
1057 
1058 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1059 		return 0;
1060 
1061 	if (tsc_clocksource_reliable)
1062 		return 0;
1063 	/*
1064 	 * Intel systems are normally all synchronized.
1065 	 * Exceptions must mark TSC as unstable:
1066 	 */
1067 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1068 		/* assume multi socket systems are not synchronized: */
1069 		if (num_possible_cpus() > 1)
1070 			return 1;
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 
1077 static void tsc_refine_calibration_work(struct work_struct *work);
1078 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1079 /**
1080  * tsc_refine_calibration_work - Further refine tsc freq calibration
1081  * @work - ignored.
1082  *
1083  * This functions uses delayed work over a period of a
1084  * second to further refine the TSC freq value. Since this is
1085  * timer based, instead of loop based, we don't block the boot
1086  * process while this longer calibration is done.
1087  *
1088  * If there are any calibration anomalies (too many SMIs, etc),
1089  * or the refined calibration is off by 1% of the fast early
1090  * calibration, we throw out the new calibration and use the
1091  * early calibration.
1092  */
tsc_refine_calibration_work(struct work_struct * work)1093 static void tsc_refine_calibration_work(struct work_struct *work)
1094 {
1095 	static u64 tsc_start = -1, ref_start;
1096 	static int hpet;
1097 	u64 tsc_stop, ref_stop, delta;
1098 	unsigned long freq;
1099 
1100 	/* Don't bother refining TSC on unstable systems */
1101 	if (check_tsc_unstable())
1102 		goto out;
1103 
1104 	/*
1105 	 * Since the work is started early in boot, we may be
1106 	 * delayed the first time we expire. So set the workqueue
1107 	 * again once we know timers are working.
1108 	 */
1109 	if (tsc_start == -1) {
1110 		/*
1111 		 * Only set hpet once, to avoid mixing hardware
1112 		 * if the hpet becomes enabled later.
1113 		 */
1114 		hpet = is_hpet_enabled();
1115 		schedule_delayed_work(&tsc_irqwork, HZ);
1116 		tsc_start = tsc_read_refs(&ref_start, hpet);
1117 		return;
1118 	}
1119 
1120 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1121 
1122 	/* hpet or pmtimer available ? */
1123 	if (ref_start == ref_stop)
1124 		goto out;
1125 
1126 	/* Check, whether the sampling was disturbed by an SMI */
1127 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1128 		goto out;
1129 
1130 	delta = tsc_stop - tsc_start;
1131 	delta *= 1000000LL;
1132 	if (hpet)
1133 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1134 	else
1135 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1136 
1137 	/* Make sure we're within 1% */
1138 	if (abs(tsc_khz - freq) > tsc_khz/100)
1139 		goto out;
1140 
1141 	tsc_khz = freq;
1142 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1143 		(unsigned long)tsc_khz / 1000,
1144 		(unsigned long)tsc_khz % 1000);
1145 
1146 out:
1147 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1148 }
1149 
1150 
init_tsc_clocksource(void)1151 static int __init init_tsc_clocksource(void)
1152 {
1153 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1154 		return 0;
1155 
1156 	if (tsc_clocksource_reliable)
1157 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1158 	/* lower the rating if we already know its unstable: */
1159 	if (check_tsc_unstable()) {
1160 		clocksource_tsc.rating = 0;
1161 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1162 	}
1163 
1164 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1165 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1166 
1167 	/*
1168 	 * Trust the results of the earlier calibration on systems
1169 	 * exporting a reliable TSC.
1170 	 */
1171 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1172 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1173 		return 0;
1174 	}
1175 
1176 	schedule_delayed_work(&tsc_irqwork, 0);
1177 	return 0;
1178 }
1179 /*
1180  * We use device_initcall here, to ensure we run after the hpet
1181  * is fully initialized, which may occur at fs_initcall time.
1182  */
1183 device_initcall(init_tsc_clocksource);
1184 
tsc_init(void)1185 void __init tsc_init(void)
1186 {
1187 	u64 lpj;
1188 	int cpu;
1189 
1190 	x86_init.timers.tsc_pre_init();
1191 
1192 	if (!cpu_has_tsc) {
1193 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1194 		return;
1195 	}
1196 
1197 	tsc_khz = x86_platform.calibrate_tsc();
1198 	cpu_khz = tsc_khz;
1199 
1200 	if (!tsc_khz) {
1201 		mark_tsc_unstable("could not calculate TSC khz");
1202 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1203 		return;
1204 	}
1205 
1206 	pr_info("Detected %lu.%03lu MHz processor\n",
1207 		(unsigned long)cpu_khz / 1000,
1208 		(unsigned long)cpu_khz % 1000);
1209 
1210 	/*
1211 	 * Secondary CPUs do not run through tsc_init(), so set up
1212 	 * all the scale factors for all CPUs, assuming the same
1213 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1214 	 * up if their speed diverges)
1215 	 */
1216 	for_each_possible_cpu(cpu) {
1217 		cyc2ns_init(cpu);
1218 		set_cyc2ns_scale(cpu_khz, cpu);
1219 	}
1220 
1221 	if (tsc_disabled > 0)
1222 		return;
1223 
1224 	/* now allow native_sched_clock() to use rdtsc */
1225 
1226 	tsc_disabled = 0;
1227 	static_branch_enable(&__use_tsc);
1228 
1229 	if (!no_sched_irq_time)
1230 		enable_sched_clock_irqtime();
1231 
1232 	lpj = ((u64)tsc_khz * 1000);
1233 	do_div(lpj, HZ);
1234 	lpj_fine = lpj;
1235 
1236 	use_tsc_delay();
1237 
1238 	if (unsynchronized_tsc())
1239 		mark_tsc_unstable("TSCs unsynchronized");
1240 
1241 	check_system_tsc_reliable();
1242 }
1243 
1244 #ifdef CONFIG_SMP
1245 /*
1246  * If we have a constant TSC and are using the TSC for the delay loop,
1247  * we can skip clock calibration if another cpu in the same socket has already
1248  * been calibrated. This assumes that CONSTANT_TSC applies to all
1249  * cpus in the socket - this should be a safe assumption.
1250  */
calibrate_delay_is_known(void)1251 unsigned long calibrate_delay_is_known(void)
1252 {
1253 	int i, cpu = smp_processor_id();
1254 
1255 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1256 		return 0;
1257 
1258 	for_each_online_cpu(i)
1259 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1260 			return cpu_data(i).loops_per_jiffy;
1261 	return 0;
1262 }
1263 #endif
1264