• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Lockless get_user_pages_fast for x86
3  *
4  * Copyright (C) 2008 Nick Piggin
5  * Copyright (C) 2008 Novell Inc.
6  */
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/vmstat.h>
10 #include <linux/highmem.h>
11 #include <linux/swap.h>
12 
13 #include <asm/pgtable.h>
14 
gup_get_pte(pte_t * ptep)15 static inline pte_t gup_get_pte(pte_t *ptep)
16 {
17 #ifndef CONFIG_X86_PAE
18 	return READ_ONCE(*ptep);
19 #else
20 	/*
21 	 * With get_user_pages_fast, we walk down the pagetables without taking
22 	 * any locks.  For this we would like to load the pointers atomically,
23 	 * but that is not possible (without expensive cmpxchg8b) on PAE.  What
24 	 * we do have is the guarantee that a pte will only either go from not
25 	 * present to present, or present to not present or both -- it will not
26 	 * switch to a completely different present page without a TLB flush in
27 	 * between; something that we are blocking by holding interrupts off.
28 	 *
29 	 * Setting ptes from not present to present goes:
30 	 * ptep->pte_high = h;
31 	 * smp_wmb();
32 	 * ptep->pte_low = l;
33 	 *
34 	 * And present to not present goes:
35 	 * ptep->pte_low = 0;
36 	 * smp_wmb();
37 	 * ptep->pte_high = 0;
38 	 *
39 	 * We must ensure here that the load of pte_low sees l iff pte_high
40 	 * sees h. We load pte_high *after* loading pte_low, which ensures we
41 	 * don't see an older value of pte_high.  *Then* we recheck pte_low,
42 	 * which ensures that we haven't picked up a changed pte high. We might
43 	 * have got rubbish values from pte_low and pte_high, but we are
44 	 * guaranteed that pte_low will not have the present bit set *unless*
45 	 * it is 'l'. And get_user_pages_fast only operates on present ptes, so
46 	 * we're safe.
47 	 *
48 	 * gup_get_pte should not be used or copied outside gup.c without being
49 	 * very careful -- it does not atomically load the pte or anything that
50 	 * is likely to be useful for you.
51 	 */
52 	pte_t pte;
53 
54 retry:
55 	pte.pte_low = ptep->pte_low;
56 	smp_rmb();
57 	pte.pte_high = ptep->pte_high;
58 	smp_rmb();
59 	if (unlikely(pte.pte_low != ptep->pte_low))
60 		goto retry;
61 
62 	return pte;
63 #endif
64 }
65 
66 /*
67  * The performance critical leaf functions are made noinline otherwise gcc
68  * inlines everything into a single function which results in too much
69  * register pressure.
70  */
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)71 static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
72 		unsigned long end, int write, struct page **pages, int *nr)
73 {
74 	unsigned long mask;
75 	pte_t *ptep;
76 
77 	mask = _PAGE_PRESENT|_PAGE_USER;
78 	if (write)
79 		mask |= _PAGE_RW;
80 
81 	ptep = pte_offset_map(&pmd, addr);
82 	do {
83 		pte_t pte = gup_get_pte(ptep);
84 		struct page *page;
85 
86 		/* Similar to the PMD case, NUMA hinting must take slow path */
87 		if (pte_protnone(pte)) {
88 			pte_unmap(ptep);
89 			return 0;
90 		}
91 
92 		if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
93 			pte_unmap(ptep);
94 			return 0;
95 		}
96 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
97 		page = pte_page(pte);
98 		if (unlikely(!try_get_page(page))) {
99 			pte_unmap(ptep);
100 			return 0;
101 		}
102 		SetPageReferenced(page);
103 		pages[*nr] = page;
104 		(*nr)++;
105 
106 	} while (ptep++, addr += PAGE_SIZE, addr != end);
107 	pte_unmap(ptep - 1);
108 
109 	return 1;
110 }
111 
get_head_page_multiple(struct page * page,int nr)112 static inline void get_head_page_multiple(struct page *page, int nr)
113 {
114 	VM_BUG_ON_PAGE(page != compound_head(page), page);
115 	VM_BUG_ON_PAGE(page_count(page) == 0, page);
116 	atomic_add(nr, &page->_count);
117 	SetPageReferenced(page);
118 }
119 
gup_huge_pmd(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)120 static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
121 		unsigned long end, int write, struct page **pages, int *nr)
122 {
123 	unsigned long mask;
124 	struct page *head, *page;
125 	int refs;
126 
127 	mask = _PAGE_PRESENT|_PAGE_USER;
128 	if (write)
129 		mask |= _PAGE_RW;
130 	if ((pmd_flags(pmd) & mask) != mask)
131 		return 0;
132 	/* hugepages are never "special" */
133 	VM_BUG_ON(pmd_flags(pmd) & _PAGE_SPECIAL);
134 	VM_BUG_ON(!pfn_valid(pmd_pfn(pmd)));
135 
136 	refs = 0;
137 	head = pmd_page(pmd);
138 	if (WARN_ON_ONCE(page_ref_count(head) <= 0))
139 		return 0;
140 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
141 	do {
142 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
143 		pages[*nr] = page;
144 		if (PageTail(page))
145 			get_huge_page_tail(page);
146 		(*nr)++;
147 		page++;
148 		refs++;
149 	} while (addr += PAGE_SIZE, addr != end);
150 	get_head_page_multiple(head, refs);
151 
152 	return 1;
153 }
154 
gup_pmd_range(pud_t pud,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)155 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
156 		int write, struct page **pages, int *nr)
157 {
158 	unsigned long next;
159 	pmd_t *pmdp;
160 
161 	pmdp = pmd_offset(&pud, addr);
162 	do {
163 		pmd_t pmd = *pmdp;
164 
165 		next = pmd_addr_end(addr, end);
166 		/*
167 		 * The pmd_trans_splitting() check below explains why
168 		 * pmdp_splitting_flush has to flush the tlb, to stop
169 		 * this gup-fast code from running while we set the
170 		 * splitting bit in the pmd. Returning zero will take
171 		 * the slow path that will call wait_split_huge_page()
172 		 * if the pmd is still in splitting state. gup-fast
173 		 * can't because it has irq disabled and
174 		 * wait_split_huge_page() would never return as the
175 		 * tlb flush IPI wouldn't run.
176 		 */
177 		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
178 			return 0;
179 		if (unlikely(pmd_large(pmd) || !pmd_present(pmd))) {
180 			/*
181 			 * NUMA hinting faults need to be handled in the GUP
182 			 * slowpath for accounting purposes and so that they
183 			 * can be serialised against THP migration.
184 			 */
185 			if (pmd_protnone(pmd))
186 				return 0;
187 			if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
188 				return 0;
189 		} else {
190 			if (!gup_pte_range(pmd, addr, next, write, pages, nr))
191 				return 0;
192 		}
193 	} while (pmdp++, addr = next, addr != end);
194 
195 	return 1;
196 }
197 
gup_huge_pud(pud_t pud,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)198 static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
199 		unsigned long end, int write, struct page **pages, int *nr)
200 {
201 	unsigned long mask;
202 	struct page *head, *page;
203 	int refs;
204 
205 	mask = _PAGE_PRESENT|_PAGE_USER;
206 	if (write)
207 		mask |= _PAGE_RW;
208 	if ((pud_flags(pud) & mask) != mask)
209 		return 0;
210 	/* hugepages are never "special" */
211 	VM_BUG_ON(pud_flags(pud) & _PAGE_SPECIAL);
212 	VM_BUG_ON(!pfn_valid(pud_pfn(pud)));
213 
214 	refs = 0;
215 	head = pud_page(pud);
216 	if (WARN_ON_ONCE(page_ref_count(head) <= 0))
217 		return 0;
218 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
219 	do {
220 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
221 		pages[*nr] = page;
222 		if (PageTail(page))
223 			get_huge_page_tail(page);
224 		(*nr)++;
225 		page++;
226 		refs++;
227 	} while (addr += PAGE_SIZE, addr != end);
228 	get_head_page_multiple(head, refs);
229 
230 	return 1;
231 }
232 
gup_pud_range(pgd_t pgd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)233 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
234 			int write, struct page **pages, int *nr)
235 {
236 	unsigned long next;
237 	pud_t *pudp;
238 
239 	pudp = pud_offset(&pgd, addr);
240 	do {
241 		pud_t pud = *pudp;
242 
243 		next = pud_addr_end(addr, end);
244 		if (pud_none(pud))
245 			return 0;
246 		if (unlikely(pud_large(pud))) {
247 			if (!gup_huge_pud(pud, addr, next, write, pages, nr))
248 				return 0;
249 		} else {
250 			if (!gup_pmd_range(pud, addr, next, write, pages, nr))
251 				return 0;
252 		}
253 	} while (pudp++, addr = next, addr != end);
254 
255 	return 1;
256 }
257 
258 /*
259  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
260  * back to the regular GUP.
261  */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)262 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
263 			  struct page **pages)
264 {
265 	struct mm_struct *mm = current->mm;
266 	unsigned long addr, len, end;
267 	unsigned long next;
268 	unsigned long flags;
269 	pgd_t *pgdp;
270 	int nr = 0;
271 
272 	start &= PAGE_MASK;
273 	addr = start;
274 	len = (unsigned long) nr_pages << PAGE_SHIFT;
275 	end = start + len;
276 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
277 					(void __user *)start, len)))
278 		return 0;
279 
280 	/*
281 	 * XXX: batch / limit 'nr', to avoid large irq off latency
282 	 * needs some instrumenting to determine the common sizes used by
283 	 * important workloads (eg. DB2), and whether limiting the batch size
284 	 * will decrease performance.
285 	 *
286 	 * It seems like we're in the clear for the moment. Direct-IO is
287 	 * the main guy that batches up lots of get_user_pages, and even
288 	 * they are limited to 64-at-a-time which is not so many.
289 	 */
290 	/*
291 	 * This doesn't prevent pagetable teardown, but does prevent
292 	 * the pagetables and pages from being freed on x86.
293 	 *
294 	 * So long as we atomically load page table pointers versus teardown
295 	 * (which we do on x86, with the above PAE exception), we can follow the
296 	 * address down to the the page and take a ref on it.
297 	 */
298 	local_irq_save(flags);
299 	pgdp = pgd_offset(mm, addr);
300 	do {
301 		pgd_t pgd = *pgdp;
302 
303 		next = pgd_addr_end(addr, end);
304 		if (pgd_none(pgd))
305 			break;
306 		if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
307 			break;
308 	} while (pgdp++, addr = next, addr != end);
309 	local_irq_restore(flags);
310 
311 	return nr;
312 }
313 
314 /**
315  * get_user_pages_fast() - pin user pages in memory
316  * @start:	starting user address
317  * @nr_pages:	number of pages from start to pin
318  * @write:	whether pages will be written to
319  * @pages:	array that receives pointers to the pages pinned.
320  * 		Should be at least nr_pages long.
321  *
322  * Attempt to pin user pages in memory without taking mm->mmap_sem.
323  * If not successful, it will fall back to taking the lock and
324  * calling get_user_pages().
325  *
326  * Returns number of pages pinned. This may be fewer than the number
327  * requested. If nr_pages is 0 or negative, returns 0. If no pages
328  * were pinned, returns -errno.
329  */
get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)330 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
331 			struct page **pages)
332 {
333 	struct mm_struct *mm = current->mm;
334 	unsigned long addr, len, end;
335 	unsigned long next;
336 	pgd_t *pgdp;
337 	int nr = 0;
338 
339 	start &= PAGE_MASK;
340 	addr = start;
341 	len = (unsigned long) nr_pages << PAGE_SHIFT;
342 
343 	end = start + len;
344 	if (end < start)
345 		goto slow_irqon;
346 
347 #ifdef CONFIG_X86_64
348 	if (end >> __VIRTUAL_MASK_SHIFT)
349 		goto slow_irqon;
350 #endif
351 
352 	/*
353 	 * XXX: batch / limit 'nr', to avoid large irq off latency
354 	 * needs some instrumenting to determine the common sizes used by
355 	 * important workloads (eg. DB2), and whether limiting the batch size
356 	 * will decrease performance.
357 	 *
358 	 * It seems like we're in the clear for the moment. Direct-IO is
359 	 * the main guy that batches up lots of get_user_pages, and even
360 	 * they are limited to 64-at-a-time which is not so many.
361 	 */
362 	/*
363 	 * This doesn't prevent pagetable teardown, but does prevent
364 	 * the pagetables and pages from being freed on x86.
365 	 *
366 	 * So long as we atomically load page table pointers versus teardown
367 	 * (which we do on x86, with the above PAE exception), we can follow the
368 	 * address down to the the page and take a ref on it.
369 	 */
370 	local_irq_disable();
371 	pgdp = pgd_offset(mm, addr);
372 	do {
373 		pgd_t pgd = *pgdp;
374 
375 		next = pgd_addr_end(addr, end);
376 		if (pgd_none(pgd))
377 			goto slow;
378 		if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
379 			goto slow;
380 	} while (pgdp++, addr = next, addr != end);
381 	local_irq_enable();
382 
383 	VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
384 	return nr;
385 
386 	{
387 		int ret;
388 
389 slow:
390 		local_irq_enable();
391 slow_irqon:
392 		/* Try to get the remaining pages with get_user_pages */
393 		start += nr << PAGE_SHIFT;
394 		pages += nr;
395 
396 		ret = get_user_pages_unlocked(current, mm, start,
397 					      (end - start) >> PAGE_SHIFT,
398 					      pages, write ? FOLL_WRITE : 0);
399 
400 		/* Have to be a bit careful with return values */
401 		if (nr > 0) {
402 			if (ret < 0)
403 				ret = nr;
404 			else
405 				ret += nr;
406 		}
407 
408 		return ret;
409 	}
410 }
411