• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Support for MMIO probes.
2  * Benfit many code from kprobes
3  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
4  *     2007 Alexander Eichner
5  *     2008 Pekka Paalanen <pq@iki.fi>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/list.h>
11 #include <linux/rculist.h>
12 #include <linux/spinlock.h>
13 #include <linux/hash.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/uaccess.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/percpu.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <linux/errno.h>
27 #include <asm/debugreg.h>
28 #include <linux/mmiotrace.h>
29 
30 #define KMMIO_PAGE_HASH_BITS 4
31 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
32 
33 struct kmmio_fault_page {
34 	struct list_head list;
35 	struct kmmio_fault_page *release_next;
36 	unsigned long addr; /* the requested address */
37 	pteval_t old_presence; /* page presence prior to arming */
38 	bool armed;
39 
40 	/*
41 	 * Number of times this page has been registered as a part
42 	 * of a probe. If zero, page is disarmed and this may be freed.
43 	 * Used only by writers (RCU) and post_kmmio_handler().
44 	 * Protected by kmmio_lock, when linked into kmmio_page_table.
45 	 */
46 	int count;
47 
48 	bool scheduled_for_release;
49 };
50 
51 struct kmmio_delayed_release {
52 	struct rcu_head rcu;
53 	struct kmmio_fault_page *release_list;
54 };
55 
56 struct kmmio_context {
57 	struct kmmio_fault_page *fpage;
58 	struct kmmio_probe *probe;
59 	unsigned long saved_flags;
60 	unsigned long addr;
61 	int active;
62 };
63 
64 static DEFINE_SPINLOCK(kmmio_lock);
65 
66 /* Protected by kmmio_lock */
67 unsigned int kmmio_count;
68 
69 /* Read-protected by RCU, write-protected by kmmio_lock. */
70 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
71 static LIST_HEAD(kmmio_probes);
72 
kmmio_page_list(unsigned long addr)73 static struct list_head *kmmio_page_list(unsigned long addr)
74 {
75 	unsigned int l;
76 	pte_t *pte = lookup_address(addr, &l);
77 
78 	if (!pte)
79 		return NULL;
80 	addr &= page_level_mask(l);
81 
82 	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
83 }
84 
85 /* Accessed per-cpu */
86 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
87 
88 /*
89  * this is basically a dynamic stabbing problem:
90  * Could use the existing prio tree code or
91  * Possible better implementations:
92  * The Interval Skip List: A Data Structure for Finding All Intervals That
93  * Overlap a Point (might be simple)
94  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
95  */
96 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
get_kmmio_probe(unsigned long addr)97 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
98 {
99 	struct kmmio_probe *p;
100 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
101 		if (addr >= p->addr && addr < (p->addr + p->len))
102 			return p;
103 	}
104 	return NULL;
105 }
106 
107 /* You must be holding RCU read lock. */
get_kmmio_fault_page(unsigned long addr)108 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
109 {
110 	struct list_head *head;
111 	struct kmmio_fault_page *f;
112 	unsigned int l;
113 	pte_t *pte = lookup_address(addr, &l);
114 
115 	if (!pte)
116 		return NULL;
117 	addr &= page_level_mask(l);
118 	head = kmmio_page_list(addr);
119 	list_for_each_entry_rcu(f, head, list) {
120 		if (f->addr == addr)
121 			return f;
122 	}
123 	return NULL;
124 }
125 
clear_pmd_presence(pmd_t * pmd,bool clear,pmdval_t * old)126 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
127 {
128 	pmd_t new_pmd;
129 	pmdval_t v = pmd_val(*pmd);
130 	if (clear) {
131 		*old = v;
132 		new_pmd = pmd_mknotpresent(*pmd);
133 	} else {
134 		/* Presume this has been called with clear==true previously */
135 		new_pmd = __pmd(*old);
136 	}
137 	set_pmd(pmd, new_pmd);
138 }
139 
clear_pte_presence(pte_t * pte,bool clear,pteval_t * old)140 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
141 {
142 	pteval_t v = pte_val(*pte);
143 	if (clear) {
144 		*old = v;
145 		/* Nothing should care about address */
146 		pte_clear(&init_mm, 0, pte);
147 	} else {
148 		/* Presume this has been called with clear==true previously */
149 		set_pte_atomic(pte, __pte(*old));
150 	}
151 }
152 
clear_page_presence(struct kmmio_fault_page * f,bool clear)153 static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
154 {
155 	unsigned int level;
156 	pte_t *pte = lookup_address(f->addr, &level);
157 
158 	if (!pte) {
159 		pr_err("no pte for addr 0x%08lx\n", f->addr);
160 		return -1;
161 	}
162 
163 	switch (level) {
164 	case PG_LEVEL_2M:
165 		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
166 		break;
167 	case PG_LEVEL_4K:
168 		clear_pte_presence(pte, clear, &f->old_presence);
169 		break;
170 	default:
171 		pr_err("unexpected page level 0x%x.\n", level);
172 		return -1;
173 	}
174 
175 	__flush_tlb_one(f->addr);
176 	return 0;
177 }
178 
179 /*
180  * Mark the given page as not present. Access to it will trigger a fault.
181  *
182  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
183  * protection is ignored here. RCU read lock is assumed held, so the struct
184  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
185  * that double arming the same virtual address (page) cannot occur.
186  *
187  * Double disarming on the other hand is allowed, and may occur when a fault
188  * and mmiotrace shutdown happen simultaneously.
189  */
arm_kmmio_fault_page(struct kmmio_fault_page * f)190 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
191 {
192 	int ret;
193 	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
194 	if (f->armed) {
195 		pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
196 			   f->addr, f->count, !!f->old_presence);
197 	}
198 	ret = clear_page_presence(f, true);
199 	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
200 		  f->addr);
201 	f->armed = true;
202 	return ret;
203 }
204 
205 /** Restore the given page to saved presence state. */
disarm_kmmio_fault_page(struct kmmio_fault_page * f)206 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
207 {
208 	int ret = clear_page_presence(f, false);
209 	WARN_ONCE(ret < 0,
210 			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
211 	f->armed = false;
212 }
213 
214 /*
215  * This is being called from do_page_fault().
216  *
217  * We may be in an interrupt or a critical section. Also prefecthing may
218  * trigger a page fault. We may be in the middle of process switch.
219  * We cannot take any locks, because we could be executing especially
220  * within a kmmio critical section.
221  *
222  * Local interrupts are disabled, so preemption cannot happen.
223  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
224  */
225 /*
226  * Interrupts are disabled on entry as trap3 is an interrupt gate
227  * and they remain disabled throughout this function.
228  */
kmmio_handler(struct pt_regs * regs,unsigned long addr)229 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
230 {
231 	struct kmmio_context *ctx;
232 	struct kmmio_fault_page *faultpage;
233 	int ret = 0; /* default to fault not handled */
234 	unsigned long page_base = addr;
235 	unsigned int l;
236 	pte_t *pte = lookup_address(addr, &l);
237 	if (!pte)
238 		return -EINVAL;
239 	page_base &= page_level_mask(l);
240 
241 	/*
242 	 * Preemption is now disabled to prevent process switch during
243 	 * single stepping. We can only handle one active kmmio trace
244 	 * per cpu, so ensure that we finish it before something else
245 	 * gets to run. We also hold the RCU read lock over single
246 	 * stepping to avoid looking up the probe and kmmio_fault_page
247 	 * again.
248 	 */
249 	preempt_disable();
250 	rcu_read_lock();
251 
252 	faultpage = get_kmmio_fault_page(page_base);
253 	if (!faultpage) {
254 		/*
255 		 * Either this page fault is not caused by kmmio, or
256 		 * another CPU just pulled the kmmio probe from under
257 		 * our feet. The latter case should not be possible.
258 		 */
259 		goto no_kmmio;
260 	}
261 
262 	ctx = &get_cpu_var(kmmio_ctx);
263 	if (ctx->active) {
264 		if (page_base == ctx->addr) {
265 			/*
266 			 * A second fault on the same page means some other
267 			 * condition needs handling by do_page_fault(), the
268 			 * page really not being present is the most common.
269 			 */
270 			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
271 				 addr, smp_processor_id());
272 
273 			if (!faultpage->old_presence)
274 				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
275 					addr, smp_processor_id());
276 		} else {
277 			/*
278 			 * Prevent overwriting already in-flight context.
279 			 * This should not happen, let's hope disarming at
280 			 * least prevents a panic.
281 			 */
282 			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
283 				 smp_processor_id(), addr);
284 			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
285 			disarm_kmmio_fault_page(faultpage);
286 		}
287 		goto no_kmmio_ctx;
288 	}
289 	ctx->active++;
290 
291 	ctx->fpage = faultpage;
292 	ctx->probe = get_kmmio_probe(page_base);
293 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
294 	ctx->addr = page_base;
295 
296 	if (ctx->probe && ctx->probe->pre_handler)
297 		ctx->probe->pre_handler(ctx->probe, regs, addr);
298 
299 	/*
300 	 * Enable single-stepping and disable interrupts for the faulting
301 	 * context. Local interrupts must not get enabled during stepping.
302 	 */
303 	regs->flags |= X86_EFLAGS_TF;
304 	regs->flags &= ~X86_EFLAGS_IF;
305 
306 	/* Now we set present bit in PTE and single step. */
307 	disarm_kmmio_fault_page(ctx->fpage);
308 
309 	/*
310 	 * If another cpu accesses the same page while we are stepping,
311 	 * the access will not be caught. It will simply succeed and the
312 	 * only downside is we lose the event. If this becomes a problem,
313 	 * the user should drop to single cpu before tracing.
314 	 */
315 
316 	put_cpu_var(kmmio_ctx);
317 	return 1; /* fault handled */
318 
319 no_kmmio_ctx:
320 	put_cpu_var(kmmio_ctx);
321 no_kmmio:
322 	rcu_read_unlock();
323 	preempt_enable_no_resched();
324 	return ret;
325 }
326 
327 /*
328  * Interrupts are disabled on entry as trap1 is an interrupt gate
329  * and they remain disabled throughout this function.
330  * This must always get called as the pair to kmmio_handler().
331  */
post_kmmio_handler(unsigned long condition,struct pt_regs * regs)332 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
333 {
334 	int ret = 0;
335 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
336 
337 	if (!ctx->active) {
338 		/*
339 		 * debug traps without an active context are due to either
340 		 * something external causing them (f.e. using a debugger while
341 		 * mmio tracing enabled), or erroneous behaviour
342 		 */
343 		pr_warning("unexpected debug trap on CPU %d.\n",
344 			   smp_processor_id());
345 		goto out;
346 	}
347 
348 	if (ctx->probe && ctx->probe->post_handler)
349 		ctx->probe->post_handler(ctx->probe, condition, regs);
350 
351 	/* Prevent racing against release_kmmio_fault_page(). */
352 	spin_lock(&kmmio_lock);
353 	if (ctx->fpage->count)
354 		arm_kmmio_fault_page(ctx->fpage);
355 	spin_unlock(&kmmio_lock);
356 
357 	regs->flags &= ~X86_EFLAGS_TF;
358 	regs->flags |= ctx->saved_flags;
359 
360 	/* These were acquired in kmmio_handler(). */
361 	ctx->active--;
362 	BUG_ON(ctx->active);
363 	rcu_read_unlock();
364 	preempt_enable_no_resched();
365 
366 	/*
367 	 * if somebody else is singlestepping across a probe point, flags
368 	 * will have TF set, in which case, continue the remaining processing
369 	 * of do_debug, as if this is not a probe hit.
370 	 */
371 	if (!(regs->flags & X86_EFLAGS_TF))
372 		ret = 1;
373 out:
374 	put_cpu_var(kmmio_ctx);
375 	return ret;
376 }
377 
378 /* You must be holding kmmio_lock. */
add_kmmio_fault_page(unsigned long addr)379 static int add_kmmio_fault_page(unsigned long addr)
380 {
381 	struct kmmio_fault_page *f;
382 
383 	f = get_kmmio_fault_page(addr);
384 	if (f) {
385 		if (!f->count)
386 			arm_kmmio_fault_page(f);
387 		f->count++;
388 		return 0;
389 	}
390 
391 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
392 	if (!f)
393 		return -1;
394 
395 	f->count = 1;
396 	f->addr = addr;
397 
398 	if (arm_kmmio_fault_page(f)) {
399 		kfree(f);
400 		return -1;
401 	}
402 
403 	list_add_rcu(&f->list, kmmio_page_list(f->addr));
404 
405 	return 0;
406 }
407 
408 /* You must be holding kmmio_lock. */
release_kmmio_fault_page(unsigned long addr,struct kmmio_fault_page ** release_list)409 static void release_kmmio_fault_page(unsigned long addr,
410 				struct kmmio_fault_page **release_list)
411 {
412 	struct kmmio_fault_page *f;
413 
414 	f = get_kmmio_fault_page(addr);
415 	if (!f)
416 		return;
417 
418 	f->count--;
419 	BUG_ON(f->count < 0);
420 	if (!f->count) {
421 		disarm_kmmio_fault_page(f);
422 		if (!f->scheduled_for_release) {
423 			f->release_next = *release_list;
424 			*release_list = f;
425 			f->scheduled_for_release = true;
426 		}
427 	}
428 }
429 
430 /*
431  * With page-unaligned ioremaps, one or two armed pages may contain
432  * addresses from outside the intended mapping. Events for these addresses
433  * are currently silently dropped. The events may result only from programming
434  * mistakes by accessing addresses before the beginning or past the end of a
435  * mapping.
436  */
register_kmmio_probe(struct kmmio_probe * p)437 int register_kmmio_probe(struct kmmio_probe *p)
438 {
439 	unsigned long flags;
440 	int ret = 0;
441 	unsigned long size = 0;
442 	unsigned long addr = p->addr & PAGE_MASK;
443 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
444 	unsigned int l;
445 	pte_t *pte;
446 
447 	spin_lock_irqsave(&kmmio_lock, flags);
448 	if (get_kmmio_probe(addr)) {
449 		ret = -EEXIST;
450 		goto out;
451 	}
452 
453 	pte = lookup_address(addr, &l);
454 	if (!pte) {
455 		ret = -EINVAL;
456 		goto out;
457 	}
458 
459 	kmmio_count++;
460 	list_add_rcu(&p->list, &kmmio_probes);
461 	while (size < size_lim) {
462 		if (add_kmmio_fault_page(addr + size))
463 			pr_err("Unable to set page fault.\n");
464 		size += page_level_size(l);
465 	}
466 out:
467 	spin_unlock_irqrestore(&kmmio_lock, flags);
468 	/*
469 	 * XXX: What should I do here?
470 	 * Here was a call to global_flush_tlb(), but it does not exist
471 	 * anymore. It seems it's not needed after all.
472 	 */
473 	return ret;
474 }
475 EXPORT_SYMBOL(register_kmmio_probe);
476 
rcu_free_kmmio_fault_pages(struct rcu_head * head)477 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
478 {
479 	struct kmmio_delayed_release *dr = container_of(
480 						head,
481 						struct kmmio_delayed_release,
482 						rcu);
483 	struct kmmio_fault_page *f = dr->release_list;
484 	while (f) {
485 		struct kmmio_fault_page *next = f->release_next;
486 		BUG_ON(f->count);
487 		kfree(f);
488 		f = next;
489 	}
490 	kfree(dr);
491 }
492 
remove_kmmio_fault_pages(struct rcu_head * head)493 static void remove_kmmio_fault_pages(struct rcu_head *head)
494 {
495 	struct kmmio_delayed_release *dr =
496 		container_of(head, struct kmmio_delayed_release, rcu);
497 	struct kmmio_fault_page *f = dr->release_list;
498 	struct kmmio_fault_page **prevp = &dr->release_list;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&kmmio_lock, flags);
502 	while (f) {
503 		if (!f->count) {
504 			list_del_rcu(&f->list);
505 			prevp = &f->release_next;
506 		} else {
507 			*prevp = f->release_next;
508 			f->release_next = NULL;
509 			f->scheduled_for_release = false;
510 		}
511 		f = *prevp;
512 	}
513 	spin_unlock_irqrestore(&kmmio_lock, flags);
514 
515 	/* This is the real RCU destroy call. */
516 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
517 }
518 
519 /*
520  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
521  * sure that the callbacks will not be called anymore. Only after that
522  * you may actually release your struct kmmio_probe.
523  *
524  * Unregistering a kmmio fault page has three steps:
525  * 1. release_kmmio_fault_page()
526  *    Disarm the page, wait a grace period to let all faults finish.
527  * 2. remove_kmmio_fault_pages()
528  *    Remove the pages from kmmio_page_table.
529  * 3. rcu_free_kmmio_fault_pages()
530  *    Actually free the kmmio_fault_page structs as with RCU.
531  */
unregister_kmmio_probe(struct kmmio_probe * p)532 void unregister_kmmio_probe(struct kmmio_probe *p)
533 {
534 	unsigned long flags;
535 	unsigned long size = 0;
536 	unsigned long addr = p->addr & PAGE_MASK;
537 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
538 	struct kmmio_fault_page *release_list = NULL;
539 	struct kmmio_delayed_release *drelease;
540 	unsigned int l;
541 	pte_t *pte;
542 
543 	pte = lookup_address(addr, &l);
544 	if (!pte)
545 		return;
546 
547 	spin_lock_irqsave(&kmmio_lock, flags);
548 	while (size < size_lim) {
549 		release_kmmio_fault_page(addr + size, &release_list);
550 		size += page_level_size(l);
551 	}
552 	list_del_rcu(&p->list);
553 	kmmio_count--;
554 	spin_unlock_irqrestore(&kmmio_lock, flags);
555 
556 	if (!release_list)
557 		return;
558 
559 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
560 	if (!drelease) {
561 		pr_crit("leaking kmmio_fault_page objects.\n");
562 		return;
563 	}
564 	drelease->release_list = release_list;
565 
566 	/*
567 	 * This is not really RCU here. We have just disarmed a set of
568 	 * pages so that they cannot trigger page faults anymore. However,
569 	 * we cannot remove the pages from kmmio_page_table,
570 	 * because a probe hit might be in flight on another CPU. The
571 	 * pages are collected into a list, and they will be removed from
572 	 * kmmio_page_table when it is certain that no probe hit related to
573 	 * these pages can be in flight. RCU grace period sounds like a
574 	 * good choice.
575 	 *
576 	 * If we removed the pages too early, kmmio page fault handler might
577 	 * not find the respective kmmio_fault_page and determine it's not
578 	 * a kmmio fault, when it actually is. This would lead to madness.
579 	 */
580 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
581 }
582 EXPORT_SYMBOL(unregister_kmmio_probe);
583 
584 static int
kmmio_die_notifier(struct notifier_block * nb,unsigned long val,void * args)585 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
586 {
587 	struct die_args *arg = args;
588 	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
589 
590 	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
591 		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
592 			/*
593 			 * Reset the BS bit in dr6 (pointed by args->err) to
594 			 * denote completion of processing
595 			 */
596 			*dr6_p &= ~DR_STEP;
597 			return NOTIFY_STOP;
598 		}
599 
600 	return NOTIFY_DONE;
601 }
602 
603 static struct notifier_block nb_die = {
604 	.notifier_call = kmmio_die_notifier
605 };
606 
kmmio_init(void)607 int kmmio_init(void)
608 {
609 	int i;
610 
611 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
612 		INIT_LIST_HEAD(&kmmio_page_table[i]);
613 
614 	return register_die_notifier(&nb_die);
615 }
616 
kmmio_cleanup(void)617 void kmmio_cleanup(void)
618 {
619 	int i;
620 
621 	unregister_die_notifier(&nb_die);
622 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
623 		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
624 			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
625 	}
626 }
627