• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
bio_find_or_create_slab(unsigned int extra_size)71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
bio_put_slab(struct bio_set * bs)127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
bvec_nr_vecs(unsigned short idx)156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164 
165 	if (idx == BIOVEC_MAX_IDX)
166 		mempool_free(bv, pool);
167 	else {
168 		struct biovec_slab *bvs = bvec_slabs + idx;
169 
170 		kmem_cache_free(bvs->slab, bv);
171 	}
172 }
173 
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 			   mempool_t *pool)
176 {
177 	struct bio_vec *bvl;
178 
179 	/*
180 	 * see comment near bvec_array define!
181 	 */
182 	switch (nr) {
183 	case 1:
184 		*idx = 0;
185 		break;
186 	case 2 ... 4:
187 		*idx = 1;
188 		break;
189 	case 5 ... 16:
190 		*idx = 2;
191 		break;
192 	case 17 ... 64:
193 		*idx = 3;
194 		break;
195 	case 65 ... 128:
196 		*idx = 4;
197 		break;
198 	case 129 ... BIO_MAX_PAGES:
199 		*idx = 5;
200 		break;
201 	default:
202 		return NULL;
203 	}
204 
205 	/*
206 	 * idx now points to the pool we want to allocate from. only the
207 	 * 1-vec entry pool is mempool backed.
208 	 */
209 	if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 		bvl = mempool_alloc(pool, gfp_mask);
212 	} else {
213 		struct biovec_slab *bvs = bvec_slabs + *idx;
214 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215 
216 		/*
217 		 * Make this allocation restricted and don't dump info on
218 		 * allocation failures, since we'll fallback to the mempool
219 		 * in case of failure.
220 		 */
221 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222 
223 		/*
224 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 		 * is set, retry with the 1-entry mempool
226 		 */
227 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 			*idx = BIOVEC_MAX_IDX;
230 			goto fallback;
231 		}
232 	}
233 
234 	return bvl;
235 }
236 
__bio_free(struct bio * bio)237 static void __bio_free(struct bio *bio)
238 {
239 	bio_disassociate_task(bio);
240 
241 	if (bio_integrity(bio))
242 		bio_integrity_free(bio);
243 }
244 
bio_free(struct bio * bio)245 static void bio_free(struct bio *bio)
246 {
247 	struct bio_set *bs = bio->bi_pool;
248 	void *p;
249 
250 	__bio_free(bio);
251 
252 	if (bs) {
253 		if (bio_flagged(bio, BIO_OWNS_VEC))
254 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255 
256 		/*
257 		 * If we have front padding, adjust the bio pointer before freeing
258 		 */
259 		p = bio;
260 		p -= bs->front_pad;
261 
262 		mempool_free(p, bs->bio_pool);
263 	} else {
264 		/* Bio was allocated by bio_kmalloc() */
265 		kfree(bio);
266 	}
267 }
268 
bio_init(struct bio * bio)269 void bio_init(struct bio *bio)
270 {
271 	memset(bio, 0, sizeof(*bio));
272 	atomic_set(&bio->__bi_remaining, 1);
273 	atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276 
277 /**
278  * bio_reset - reinitialize a bio
279  * @bio:	bio to reset
280  *
281  * Description:
282  *   After calling bio_reset(), @bio will be in the same state as a freshly
283  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
284  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
285  *   comment in struct bio.
286  */
bio_reset(struct bio * bio)287 void bio_reset(struct bio *bio)
288 {
289 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290 
291 	__bio_free(bio);
292 
293 	memset(bio, 0, BIO_RESET_BYTES);
294 	bio->bi_flags = flags;
295 	atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298 
bio_chain_endio(struct bio * bio)299 static void bio_chain_endio(struct bio *bio)
300 {
301 	struct bio *parent = bio->bi_private;
302 
303 	parent->bi_error = bio->bi_error;
304 	bio_endio(parent);
305 	bio_put(bio);
306 }
307 
308 /*
309  * Increment chain count for the bio. Make sure the CHAIN flag update
310  * is visible before the raised count.
311  */
bio_inc_remaining(struct bio * bio)312 static inline void bio_inc_remaining(struct bio *bio)
313 {
314 	bio_set_flag(bio, BIO_CHAIN);
315 	smp_mb__before_atomic();
316 	atomic_inc(&bio->__bi_remaining);
317 }
318 
319 /**
320  * bio_chain - chain bio completions
321  * @bio: the target bio
322  * @parent: the @bio's parent bio
323  *
324  * The caller won't have a bi_end_io called when @bio completes - instead,
325  * @parent's bi_end_io won't be called until both @parent and @bio have
326  * completed; the chained bio will also be freed when it completes.
327  *
328  * The caller must not set bi_private or bi_end_io in @bio.
329  */
bio_chain(struct bio * bio,struct bio * parent)330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 	BUG_ON(bio->bi_private || bio->bi_end_io);
333 
334 	bio->bi_private = parent;
335 	bio->bi_end_io	= bio_chain_endio;
336 	bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339 
bio_alloc_rescue(struct work_struct * work)340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 	struct bio *bio;
344 
345 	while (1) {
346 		spin_lock(&bs->rescue_lock);
347 		bio = bio_list_pop(&bs->rescue_list);
348 		spin_unlock(&bs->rescue_lock);
349 
350 		if (!bio)
351 			break;
352 
353 		generic_make_request(bio);
354 	}
355 }
356 
punt_bios_to_rescuer(struct bio_set * bs)357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 	struct bio_list punt, nopunt;
360 	struct bio *bio;
361 
362 	/*
363 	 * In order to guarantee forward progress we must punt only bios that
364 	 * were allocated from this bio_set; otherwise, if there was a bio on
365 	 * there for a stacking driver higher up in the stack, processing it
366 	 * could require allocating bios from this bio_set, and doing that from
367 	 * our own rescuer would be bad.
368 	 *
369 	 * Since bio lists are singly linked, pop them all instead of trying to
370 	 * remove from the middle of the list:
371 	 */
372 
373 	bio_list_init(&punt);
374 	bio_list_init(&nopunt);
375 
376 	while ((bio = bio_list_pop(&current->bio_list[0])))
377 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
378 	current->bio_list[0] = nopunt;
379 
380 	bio_list_init(&nopunt);
381 	while ((bio = bio_list_pop(&current->bio_list[1])))
382 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
383 	current->bio_list[1] = nopunt;
384 
385 	spin_lock(&bs->rescue_lock);
386 	bio_list_merge(&bs->rescue_list, &punt);
387 	spin_unlock(&bs->rescue_lock);
388 
389 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
390 }
391 
392 /**
393  * bio_alloc_bioset - allocate a bio for I/O
394  * @gfp_mask:   the GFP_ mask given to the slab allocator
395  * @nr_iovecs:	number of iovecs to pre-allocate
396  * @bs:		the bio_set to allocate from.
397  *
398  * Description:
399  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
400  *   backed by the @bs's mempool.
401  *
402  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
403  *   always be able to allocate a bio. This is due to the mempool guarantees.
404  *   To make this work, callers must never allocate more than 1 bio at a time
405  *   from this pool. Callers that need to allocate more than 1 bio must always
406  *   submit the previously allocated bio for IO before attempting to allocate
407  *   a new one. Failure to do so can cause deadlocks under memory pressure.
408  *
409  *   Note that when running under generic_make_request() (i.e. any block
410  *   driver), bios are not submitted until after you return - see the code in
411  *   generic_make_request() that converts recursion into iteration, to prevent
412  *   stack overflows.
413  *
414  *   This would normally mean allocating multiple bios under
415  *   generic_make_request() would be susceptible to deadlocks, but we have
416  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
417  *   thread.
418  *
419  *   However, we do not guarantee forward progress for allocations from other
420  *   mempools. Doing multiple allocations from the same mempool under
421  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
422  *   for per bio allocations.
423  *
424  *   RETURNS:
425  *   Pointer to new bio on success, NULL on failure.
426  */
bio_alloc_bioset(gfp_t gfp_mask,int nr_iovecs,struct bio_set * bs)427 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
428 {
429 	gfp_t saved_gfp = gfp_mask;
430 	unsigned front_pad;
431 	unsigned inline_vecs;
432 	unsigned long idx = BIO_POOL_NONE;
433 	struct bio_vec *bvl = NULL;
434 	struct bio *bio;
435 	void *p;
436 
437 	if (!bs) {
438 		if (nr_iovecs > UIO_MAXIOV)
439 			return NULL;
440 
441 		p = kmalloc(sizeof(struct bio) +
442 			    nr_iovecs * sizeof(struct bio_vec),
443 			    gfp_mask);
444 		front_pad = 0;
445 		inline_vecs = nr_iovecs;
446 	} else {
447 		/* should not use nobvec bioset for nr_iovecs > 0 */
448 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
449 			return NULL;
450 		/*
451 		 * generic_make_request() converts recursion to iteration; this
452 		 * means if we're running beneath it, any bios we allocate and
453 		 * submit will not be submitted (and thus freed) until after we
454 		 * return.
455 		 *
456 		 * This exposes us to a potential deadlock if we allocate
457 		 * multiple bios from the same bio_set() while running
458 		 * underneath generic_make_request(). If we were to allocate
459 		 * multiple bios (say a stacking block driver that was splitting
460 		 * bios), we would deadlock if we exhausted the mempool's
461 		 * reserve.
462 		 *
463 		 * We solve this, and guarantee forward progress, with a rescuer
464 		 * workqueue per bio_set. If we go to allocate and there are
465 		 * bios on current->bio_list, we first try the allocation
466 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 		 * bios we would be blocking to the rescuer workqueue before
468 		 * we retry with the original gfp_flags.
469 		 */
470 
471 		if (current->bio_list &&
472 		    (!bio_list_empty(&current->bio_list[0]) ||
473 		     !bio_list_empty(&current->bio_list[1])))
474 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475 
476 		p = mempool_alloc(bs->bio_pool, gfp_mask);
477 		if (!p && gfp_mask != saved_gfp) {
478 			punt_bios_to_rescuer(bs);
479 			gfp_mask = saved_gfp;
480 			p = mempool_alloc(bs->bio_pool, gfp_mask);
481 		}
482 
483 		front_pad = bs->front_pad;
484 		inline_vecs = BIO_INLINE_VECS;
485 	}
486 
487 	if (unlikely(!p))
488 		return NULL;
489 
490 	bio = p + front_pad;
491 	bio_init(bio);
492 
493 	if (nr_iovecs > inline_vecs) {
494 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 		if (!bvl && gfp_mask != saved_gfp) {
496 			punt_bios_to_rescuer(bs);
497 			gfp_mask = saved_gfp;
498 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 		}
500 
501 		if (unlikely(!bvl))
502 			goto err_free;
503 
504 		bio_set_flag(bio, BIO_OWNS_VEC);
505 	} else if (nr_iovecs) {
506 		bvl = bio->bi_inline_vecs;
507 	}
508 
509 	bio->bi_pool = bs;
510 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 	bio->bi_max_vecs = nr_iovecs;
512 	bio->bi_io_vec = bvl;
513 	return bio;
514 
515 err_free:
516 	mempool_free(p, bs->bio_pool);
517 	return NULL;
518 }
519 EXPORT_SYMBOL(bio_alloc_bioset);
520 
zero_fill_bio(struct bio * bio)521 void zero_fill_bio(struct bio *bio)
522 {
523 	unsigned long flags;
524 	struct bio_vec bv;
525 	struct bvec_iter iter;
526 
527 	bio_for_each_segment(bv, bio, iter) {
528 		char *data = bvec_kmap_irq(&bv, &flags);
529 		memset(data, 0, bv.bv_len);
530 		flush_dcache_page(bv.bv_page);
531 		bvec_kunmap_irq(data, &flags);
532 	}
533 }
534 EXPORT_SYMBOL(zero_fill_bio);
535 
536 /**
537  * bio_put - release a reference to a bio
538  * @bio:   bio to release reference to
539  *
540  * Description:
541  *   Put a reference to a &struct bio, either one you have gotten with
542  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
543  **/
bio_put(struct bio * bio)544 void bio_put(struct bio *bio)
545 {
546 	if (!bio_flagged(bio, BIO_REFFED))
547 		bio_free(bio);
548 	else {
549 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550 
551 		/*
552 		 * last put frees it
553 		 */
554 		if (atomic_dec_and_test(&bio->__bi_cnt))
555 			bio_free(bio);
556 	}
557 }
558 EXPORT_SYMBOL(bio_put);
559 
bio_phys_segments(struct request_queue * q,struct bio * bio)560 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
561 {
562 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 		blk_recount_segments(q, bio);
564 
565 	return bio->bi_phys_segments;
566 }
567 EXPORT_SYMBOL(bio_phys_segments);
568 
569 /**
570  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
571  * 	@bio: destination bio
572  * 	@bio_src: bio to clone
573  *
574  *	Clone a &bio. Caller will own the returned bio, but not
575  *	the actual data it points to. Reference count of returned
576  * 	bio will be one.
577  *
578  * 	Caller must ensure that @bio_src is not freed before @bio.
579  */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581 {
582 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583 
584 	/*
585 	 * most users will be overriding ->bi_bdev with a new target,
586 	 * so we don't set nor calculate new physical/hw segment counts here
587 	 */
588 	bio->bi_bdev = bio_src->bi_bdev;
589 	bio_set_flag(bio, BIO_CLONED);
590 	bio->bi_rw = bio_src->bi_rw;
591 	bio->bi_iter = bio_src->bi_iter;
592 	bio->bi_io_vec = bio_src->bi_io_vec;
593 
594 	bio_clone_blkcg_association(bio, bio_src);
595 }
596 EXPORT_SYMBOL(__bio_clone_fast);
597 
598 /**
599  *	bio_clone_fast - clone a bio that shares the original bio's biovec
600  *	@bio: bio to clone
601  *	@gfp_mask: allocation priority
602  *	@bs: bio_set to allocate from
603  *
604  * 	Like __bio_clone_fast, only also allocates the returned bio
605  */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)606 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
607 {
608 	struct bio *b;
609 
610 	b = bio_alloc_bioset(gfp_mask, 0, bs);
611 	if (!b)
612 		return NULL;
613 
614 	__bio_clone_fast(b, bio);
615 
616 	if (bio_integrity(bio)) {
617 		int ret;
618 
619 		ret = bio_integrity_clone(b, bio, gfp_mask);
620 
621 		if (ret < 0) {
622 			bio_put(b);
623 			return NULL;
624 		}
625 	}
626 
627 	return b;
628 }
629 EXPORT_SYMBOL(bio_clone_fast);
630 
631 /**
632  * 	bio_clone_bioset - clone a bio
633  * 	@bio_src: bio to clone
634  *	@gfp_mask: allocation priority
635  *	@bs: bio_set to allocate from
636  *
637  *	Clone bio. Caller will own the returned bio, but not the actual data it
638  *	points to. Reference count of returned bio will be one.
639  */
bio_clone_bioset(struct bio * bio_src,gfp_t gfp_mask,struct bio_set * bs)640 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
641 			     struct bio_set *bs)
642 {
643 	struct bvec_iter iter;
644 	struct bio_vec bv;
645 	struct bio *bio;
646 
647 	/*
648 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
649 	 * bio_src->bi_io_vec to bio->bi_io_vec.
650 	 *
651 	 * We can't do that anymore, because:
652 	 *
653 	 *  - The point of cloning the biovec is to produce a bio with a biovec
654 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
655 	 *
656 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
657 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
658 	 *    But the clone should succeed as long as the number of biovecs we
659 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
660 	 *
661 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
662 	 *    that does not own the bio - reason being drivers don't use it for
663 	 *    iterating over the biovec anymore, so expecting it to be kept up
664 	 *    to date (i.e. for clones that share the parent biovec) is just
665 	 *    asking for trouble and would force extra work on
666 	 *    __bio_clone_fast() anyways.
667 	 */
668 
669 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
670 	if (!bio)
671 		return NULL;
672 
673 	bio->bi_bdev		= bio_src->bi_bdev;
674 	bio->bi_rw		= bio_src->bi_rw;
675 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
676 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
677 
678 	if (bio->bi_rw & REQ_DISCARD)
679 		goto integrity_clone;
680 
681 	if (bio->bi_rw & REQ_WRITE_SAME) {
682 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
683 		goto integrity_clone;
684 	}
685 
686 	bio_for_each_segment(bv, bio_src, iter)
687 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
688 
689 integrity_clone:
690 	if (bio_integrity(bio_src)) {
691 		int ret;
692 
693 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
694 		if (ret < 0) {
695 			bio_put(bio);
696 			return NULL;
697 		}
698 	}
699 
700 	bio_clone_blkcg_association(bio, bio_src);
701 
702 	return bio;
703 }
704 EXPORT_SYMBOL(bio_clone_bioset);
705 
706 /**
707  *	bio_add_pc_page	-	attempt to add page to bio
708  *	@q: the target queue
709  *	@bio: destination bio
710  *	@page: page to add
711  *	@len: vec entry length
712  *	@offset: vec entry offset
713  *
714  *	Attempt to add a page to the bio_vec maplist. This can fail for a
715  *	number of reasons, such as the bio being full or target block device
716  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
717  *	so it is always possible to add a single page to an empty bio.
718  *
719  *	This should only be used by REQ_PC bios.
720  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)721 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
722 		    *page, unsigned int len, unsigned int offset)
723 {
724 	int retried_segments = 0;
725 	struct bio_vec *bvec;
726 
727 	/*
728 	 * cloned bio must not modify vec list
729 	 */
730 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
731 		return 0;
732 
733 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
734 		return 0;
735 
736 	/*
737 	 * For filesystems with a blocksize smaller than the pagesize
738 	 * we will often be called with the same page as last time and
739 	 * a consecutive offset.  Optimize this special case.
740 	 */
741 	if (bio->bi_vcnt > 0) {
742 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
743 
744 		if (page == prev->bv_page &&
745 		    offset == prev->bv_offset + prev->bv_len) {
746 			prev->bv_len += len;
747 			bio->bi_iter.bi_size += len;
748 			goto done;
749 		}
750 
751 		/*
752 		 * If the queue doesn't support SG gaps and adding this
753 		 * offset would create a gap, disallow it.
754 		 */
755 		if (bvec_gap_to_prev(q, prev, offset))
756 			return 0;
757 	}
758 
759 	if (bio->bi_vcnt >= bio->bi_max_vecs)
760 		return 0;
761 
762 	/*
763 	 * setup the new entry, we might clear it again later if we
764 	 * cannot add the page
765 	 */
766 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
767 	bvec->bv_page = page;
768 	bvec->bv_len = len;
769 	bvec->bv_offset = offset;
770 	bio->bi_vcnt++;
771 	bio->bi_phys_segments++;
772 	bio->bi_iter.bi_size += len;
773 
774 	/*
775 	 * Perform a recount if the number of segments is greater
776 	 * than queue_max_segments(q).
777 	 */
778 
779 	while (bio->bi_phys_segments > queue_max_segments(q)) {
780 
781 		if (retried_segments)
782 			goto failed;
783 
784 		retried_segments = 1;
785 		blk_recount_segments(q, bio);
786 	}
787 
788 	/* If we may be able to merge these biovecs, force a recount */
789 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
790 		bio_clear_flag(bio, BIO_SEG_VALID);
791 
792  done:
793 	return len;
794 
795  failed:
796 	bvec->bv_page = NULL;
797 	bvec->bv_len = 0;
798 	bvec->bv_offset = 0;
799 	bio->bi_vcnt--;
800 	bio->bi_iter.bi_size -= len;
801 	blk_recount_segments(q, bio);
802 	return 0;
803 }
804 EXPORT_SYMBOL(bio_add_pc_page);
805 
806 /**
807  *	bio_add_page	-	attempt to add page to bio
808  *	@bio: destination bio
809  *	@page: page to add
810  *	@len: vec entry length
811  *	@offset: vec entry offset
812  *
813  *	Attempt to add a page to the bio_vec maplist. This will only fail
814  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
815  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)816 int bio_add_page(struct bio *bio, struct page *page,
817 		 unsigned int len, unsigned int offset)
818 {
819 	struct bio_vec *bv;
820 
821 	/*
822 	 * cloned bio must not modify vec list
823 	 */
824 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
825 		return 0;
826 
827 	/*
828 	 * For filesystems with a blocksize smaller than the pagesize
829 	 * we will often be called with the same page as last time and
830 	 * a consecutive offset.  Optimize this special case.
831 	 */
832 	if (bio->bi_vcnt > 0) {
833 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
834 
835 		if (page == bv->bv_page &&
836 		    offset == bv->bv_offset + bv->bv_len) {
837 			bv->bv_len += len;
838 			goto done;
839 		}
840 	}
841 
842 	if (bio->bi_vcnt >= bio->bi_max_vecs)
843 		return 0;
844 
845 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
846 	bv->bv_page	= page;
847 	bv->bv_len	= len;
848 	bv->bv_offset	= offset;
849 
850 	bio->bi_vcnt++;
851 done:
852 	bio->bi_iter.bi_size += len;
853 	return len;
854 }
855 EXPORT_SYMBOL(bio_add_page);
856 
857 struct submit_bio_ret {
858 	struct completion event;
859 	int error;
860 };
861 
submit_bio_wait_endio(struct bio * bio)862 static void submit_bio_wait_endio(struct bio *bio)
863 {
864 	struct submit_bio_ret *ret = bio->bi_private;
865 
866 	ret->error = bio->bi_error;
867 	complete(&ret->event);
868 }
869 
870 /**
871  * submit_bio_wait - submit a bio, and wait until it completes
872  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
873  * @bio: The &struct bio which describes the I/O
874  *
875  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
876  * bio_endio() on failure.
877  */
submit_bio_wait(int rw,struct bio * bio)878 int submit_bio_wait(int rw, struct bio *bio)
879 {
880 	struct submit_bio_ret ret;
881 
882 	rw |= REQ_SYNC;
883 	init_completion(&ret.event);
884 	bio->bi_private = &ret;
885 	bio->bi_end_io = submit_bio_wait_endio;
886 	submit_bio(rw, bio);
887 	wait_for_completion(&ret.event);
888 
889 	return ret.error;
890 }
891 EXPORT_SYMBOL(submit_bio_wait);
892 
893 /**
894  * bio_advance - increment/complete a bio by some number of bytes
895  * @bio:	bio to advance
896  * @bytes:	number of bytes to complete
897  *
898  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
899  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
900  * be updated on the last bvec as well.
901  *
902  * @bio will then represent the remaining, uncompleted portion of the io.
903  */
bio_advance(struct bio * bio,unsigned bytes)904 void bio_advance(struct bio *bio, unsigned bytes)
905 {
906 	if (bio_integrity(bio))
907 		bio_integrity_advance(bio, bytes);
908 
909 	bio_advance_iter(bio, &bio->bi_iter, bytes);
910 }
911 EXPORT_SYMBOL(bio_advance);
912 
913 /**
914  * bio_alloc_pages - allocates a single page for each bvec in a bio
915  * @bio: bio to allocate pages for
916  * @gfp_mask: flags for allocation
917  *
918  * Allocates pages up to @bio->bi_vcnt.
919  *
920  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
921  * freed.
922  */
bio_alloc_pages(struct bio * bio,gfp_t gfp_mask)923 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
924 {
925 	int i;
926 	struct bio_vec *bv;
927 
928 	bio_for_each_segment_all(bv, bio, i) {
929 		bv->bv_page = alloc_page(gfp_mask);
930 		if (!bv->bv_page) {
931 			while (--bv >= bio->bi_io_vec)
932 				__free_page(bv->bv_page);
933 			return -ENOMEM;
934 		}
935 	}
936 
937 	return 0;
938 }
939 EXPORT_SYMBOL(bio_alloc_pages);
940 
941 /**
942  * bio_copy_data - copy contents of data buffers from one chain of bios to
943  * another
944  * @src: source bio list
945  * @dst: destination bio list
946  *
947  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
948  * @src and @dst as linked lists of bios.
949  *
950  * Stops when it reaches the end of either @src or @dst - that is, copies
951  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
952  */
bio_copy_data(struct bio * dst,struct bio * src)953 void bio_copy_data(struct bio *dst, struct bio *src)
954 {
955 	struct bvec_iter src_iter, dst_iter;
956 	struct bio_vec src_bv, dst_bv;
957 	void *src_p, *dst_p;
958 	unsigned bytes;
959 
960 	src_iter = src->bi_iter;
961 	dst_iter = dst->bi_iter;
962 
963 	while (1) {
964 		if (!src_iter.bi_size) {
965 			src = src->bi_next;
966 			if (!src)
967 				break;
968 
969 			src_iter = src->bi_iter;
970 		}
971 
972 		if (!dst_iter.bi_size) {
973 			dst = dst->bi_next;
974 			if (!dst)
975 				break;
976 
977 			dst_iter = dst->bi_iter;
978 		}
979 
980 		src_bv = bio_iter_iovec(src, src_iter);
981 		dst_bv = bio_iter_iovec(dst, dst_iter);
982 
983 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
984 
985 		src_p = kmap_atomic(src_bv.bv_page);
986 		dst_p = kmap_atomic(dst_bv.bv_page);
987 
988 		memcpy(dst_p + dst_bv.bv_offset,
989 		       src_p + src_bv.bv_offset,
990 		       bytes);
991 
992 		kunmap_atomic(dst_p);
993 		kunmap_atomic(src_p);
994 
995 		bio_advance_iter(src, &src_iter, bytes);
996 		bio_advance_iter(dst, &dst_iter, bytes);
997 	}
998 }
999 EXPORT_SYMBOL(bio_copy_data);
1000 
1001 struct bio_map_data {
1002 	int is_our_pages;
1003 	struct iov_iter iter;
1004 	struct iovec iov[];
1005 };
1006 
bio_alloc_map_data(unsigned int iov_count,gfp_t gfp_mask)1007 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1008 					       gfp_t gfp_mask)
1009 {
1010 	if (iov_count > UIO_MAXIOV)
1011 		return NULL;
1012 
1013 	return kmalloc(sizeof(struct bio_map_data) +
1014 		       sizeof(struct iovec) * iov_count, gfp_mask);
1015 }
1016 
1017 /**
1018  * bio_copy_from_iter - copy all pages from iov_iter to bio
1019  * @bio: The &struct bio which describes the I/O as destination
1020  * @iter: iov_iter as source
1021  *
1022  * Copy all pages from iov_iter to bio.
1023  * Returns 0 on success, or error on failure.
1024  */
bio_copy_from_iter(struct bio * bio,struct iov_iter iter)1025 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1026 {
1027 	int i;
1028 	struct bio_vec *bvec;
1029 
1030 	bio_for_each_segment_all(bvec, bio, i) {
1031 		ssize_t ret;
1032 
1033 		ret = copy_page_from_iter(bvec->bv_page,
1034 					  bvec->bv_offset,
1035 					  bvec->bv_len,
1036 					  &iter);
1037 
1038 		if (!iov_iter_count(&iter))
1039 			break;
1040 
1041 		if (ret < bvec->bv_len)
1042 			return -EFAULT;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  * bio_copy_to_iter - copy all pages from bio to iov_iter
1050  * @bio: The &struct bio which describes the I/O as source
1051  * @iter: iov_iter as destination
1052  *
1053  * Copy all pages from bio to iov_iter.
1054  * Returns 0 on success, or error on failure.
1055  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1056 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1057 {
1058 	int i;
1059 	struct bio_vec *bvec;
1060 
1061 	bio_for_each_segment_all(bvec, bio, i) {
1062 		ssize_t ret;
1063 
1064 		ret = copy_page_to_iter(bvec->bv_page,
1065 					bvec->bv_offset,
1066 					bvec->bv_len,
1067 					&iter);
1068 
1069 		if (!iov_iter_count(&iter))
1070 			break;
1071 
1072 		if (ret < bvec->bv_len)
1073 			return -EFAULT;
1074 	}
1075 
1076 	return 0;
1077 }
1078 
bio_free_pages(struct bio * bio)1079 static void bio_free_pages(struct bio *bio)
1080 {
1081 	struct bio_vec *bvec;
1082 	int i;
1083 
1084 	bio_for_each_segment_all(bvec, bio, i)
1085 		__free_page(bvec->bv_page);
1086 }
1087 
1088 /**
1089  *	bio_uncopy_user	-	finish previously mapped bio
1090  *	@bio: bio being terminated
1091  *
1092  *	Free pages allocated from bio_copy_user_iov() and write back data
1093  *	to user space in case of a read.
1094  */
bio_uncopy_user(struct bio * bio)1095 int bio_uncopy_user(struct bio *bio)
1096 {
1097 	struct bio_map_data *bmd = bio->bi_private;
1098 	int ret = 0;
1099 
1100 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1101 		/*
1102 		 * if we're in a workqueue, the request is orphaned, so
1103 		 * don't copy into a random user address space, just free
1104 		 * and return -EINTR so user space doesn't expect any data.
1105 		 */
1106 		if (!current->mm)
1107 			ret = -EINTR;
1108 		else if (bio_data_dir(bio) == READ)
1109 			ret = bio_copy_to_iter(bio, bmd->iter);
1110 		if (bmd->is_our_pages)
1111 			bio_free_pages(bio);
1112 	}
1113 	kfree(bmd);
1114 	bio_put(bio);
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL(bio_uncopy_user);
1118 
1119 /**
1120  *	bio_copy_user_iov	-	copy user data to bio
1121  *	@q:		destination block queue
1122  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1123  *	@iter:		iovec iterator
1124  *	@gfp_mask:	memory allocation flags
1125  *
1126  *	Prepares and returns a bio for indirect user io, bouncing data
1127  *	to/from kernel pages as necessary. Must be paired with
1128  *	call bio_uncopy_user() on io completion.
1129  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)1130 struct bio *bio_copy_user_iov(struct request_queue *q,
1131 			      struct rq_map_data *map_data,
1132 			      const struct iov_iter *iter,
1133 			      gfp_t gfp_mask)
1134 {
1135 	struct bio_map_data *bmd;
1136 	struct page *page;
1137 	struct bio *bio;
1138 	int i, ret;
1139 	int nr_pages = 0;
1140 	unsigned int len = iter->count;
1141 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1142 
1143 	for (i = 0; i < iter->nr_segs; i++) {
1144 		unsigned long uaddr;
1145 		unsigned long end;
1146 		unsigned long start;
1147 
1148 		uaddr = (unsigned long) iter->iov[i].iov_base;
1149 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1150 			>> PAGE_SHIFT;
1151 		start = uaddr >> PAGE_SHIFT;
1152 
1153 		/*
1154 		 * Overflow, abort
1155 		 */
1156 		if (end < start)
1157 			return ERR_PTR(-EINVAL);
1158 
1159 		nr_pages += end - start;
1160 	}
1161 
1162 	if (offset)
1163 		nr_pages++;
1164 
1165 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1166 	if (!bmd)
1167 		return ERR_PTR(-ENOMEM);
1168 
1169 	/*
1170 	 * We need to do a deep copy of the iov_iter including the iovecs.
1171 	 * The caller provided iov might point to an on-stack or otherwise
1172 	 * shortlived one.
1173 	 */
1174 	bmd->is_our_pages = map_data ? 0 : 1;
1175 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1176 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1177 			iter->nr_segs, iter->count);
1178 
1179 	ret = -ENOMEM;
1180 	bio = bio_kmalloc(gfp_mask, nr_pages);
1181 	if (!bio)
1182 		goto out_bmd;
1183 
1184 	if (iter->type & WRITE)
1185 		bio->bi_rw |= REQ_WRITE;
1186 
1187 	ret = 0;
1188 
1189 	if (map_data) {
1190 		nr_pages = 1 << map_data->page_order;
1191 		i = map_data->offset / PAGE_SIZE;
1192 	}
1193 	while (len) {
1194 		unsigned int bytes = PAGE_SIZE;
1195 
1196 		bytes -= offset;
1197 
1198 		if (bytes > len)
1199 			bytes = len;
1200 
1201 		if (map_data) {
1202 			if (i == map_data->nr_entries * nr_pages) {
1203 				ret = -ENOMEM;
1204 				break;
1205 			}
1206 
1207 			page = map_data->pages[i / nr_pages];
1208 			page += (i % nr_pages);
1209 
1210 			i++;
1211 		} else {
1212 			page = alloc_page(q->bounce_gfp | gfp_mask);
1213 			if (!page) {
1214 				ret = -ENOMEM;
1215 				break;
1216 			}
1217 		}
1218 
1219 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1220 			if (!map_data)
1221 				__free_page(page);
1222 			break;
1223 		}
1224 
1225 		len -= bytes;
1226 		offset = 0;
1227 	}
1228 
1229 	if (ret)
1230 		goto cleanup;
1231 
1232 	/*
1233 	 * success
1234 	 */
1235 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1236 	    (map_data && map_data->from_user)) {
1237 		ret = bio_copy_from_iter(bio, *iter);
1238 		if (ret)
1239 			goto cleanup;
1240 	}
1241 
1242 	bio->bi_private = bmd;
1243 	return bio;
1244 cleanup:
1245 	if (!map_data)
1246 		bio_free_pages(bio);
1247 	bio_put(bio);
1248 out_bmd:
1249 	kfree(bmd);
1250 	return ERR_PTR(ret);
1251 }
1252 
1253 /**
1254  *	bio_map_user_iov - map user iovec into bio
1255  *	@q:		the struct request_queue for the bio
1256  *	@iter:		iovec iterator
1257  *	@gfp_mask:	memory allocation flags
1258  *
1259  *	Map the user space address into a bio suitable for io to a block
1260  *	device. Returns an error pointer in case of error.
1261  */
bio_map_user_iov(struct request_queue * q,const struct iov_iter * iter,gfp_t gfp_mask)1262 struct bio *bio_map_user_iov(struct request_queue *q,
1263 			     const struct iov_iter *iter,
1264 			     gfp_t gfp_mask)
1265 {
1266 	int j;
1267 	int nr_pages = 0;
1268 	struct page **pages;
1269 	struct bio *bio;
1270 	int cur_page = 0;
1271 	int ret, offset;
1272 	struct iov_iter i;
1273 	struct iovec iov;
1274 	struct bio_vec *bvec;
1275 
1276 	iov_for_each(iov, i, *iter) {
1277 		unsigned long uaddr = (unsigned long) iov.iov_base;
1278 		unsigned long len = iov.iov_len;
1279 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1280 		unsigned long start = uaddr >> PAGE_SHIFT;
1281 
1282 		/*
1283 		 * Overflow, abort
1284 		 */
1285 		if (end < start)
1286 			return ERR_PTR(-EINVAL);
1287 
1288 		nr_pages += end - start;
1289 		/*
1290 		 * buffer must be aligned to at least hardsector size for now
1291 		 */
1292 		if (uaddr & queue_dma_alignment(q))
1293 			return ERR_PTR(-EINVAL);
1294 	}
1295 
1296 	if (!nr_pages)
1297 		return ERR_PTR(-EINVAL);
1298 
1299 	bio = bio_kmalloc(gfp_mask, nr_pages);
1300 	if (!bio)
1301 		return ERR_PTR(-ENOMEM);
1302 
1303 	ret = -ENOMEM;
1304 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1305 	if (!pages)
1306 		goto out;
1307 
1308 	iov_for_each(iov, i, *iter) {
1309 		unsigned long uaddr = (unsigned long) iov.iov_base;
1310 		unsigned long len = iov.iov_len;
1311 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1312 		unsigned long start = uaddr >> PAGE_SHIFT;
1313 		const int local_nr_pages = end - start;
1314 		const int page_limit = cur_page + local_nr_pages;
1315 
1316 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1317 				(iter->type & WRITE) != WRITE,
1318 				&pages[cur_page]);
1319 		if (unlikely(ret < local_nr_pages)) {
1320 			for (j = cur_page; j < page_limit; j++) {
1321 				if (!pages[j])
1322 					break;
1323 				put_page(pages[j]);
1324 			}
1325 			ret = -EFAULT;
1326 			goto out_unmap;
1327 		}
1328 
1329 		offset = uaddr & ~PAGE_MASK;
1330 		for (j = cur_page; j < page_limit; j++) {
1331 			unsigned int bytes = PAGE_SIZE - offset;
1332 			unsigned short prev_bi_vcnt = bio->bi_vcnt;
1333 
1334 			if (len <= 0)
1335 				break;
1336 
1337 			if (bytes > len)
1338 				bytes = len;
1339 
1340 			/*
1341 			 * sorry...
1342 			 */
1343 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1344 					    bytes)
1345 				break;
1346 
1347 			/*
1348 			 * check if vector was merged with previous
1349 			 * drop page reference if needed
1350 			 */
1351 			if (bio->bi_vcnt == prev_bi_vcnt)
1352 				put_page(pages[j]);
1353 
1354 			len -= bytes;
1355 			offset = 0;
1356 		}
1357 
1358 		cur_page = j;
1359 		/*
1360 		 * release the pages we didn't map into the bio, if any
1361 		 */
1362 		while (j < page_limit)
1363 			page_cache_release(pages[j++]);
1364 	}
1365 
1366 	kfree(pages);
1367 
1368 	/*
1369 	 * set data direction, and check if mapped pages need bouncing
1370 	 */
1371 	if (iter->type & WRITE)
1372 		bio->bi_rw |= REQ_WRITE;
1373 
1374 	bio_set_flag(bio, BIO_USER_MAPPED);
1375 
1376 	/*
1377 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1378 	 * it would normally disappear when its bi_end_io is run.
1379 	 * however, we need it for the unmap, so grab an extra
1380 	 * reference to it
1381 	 */
1382 	bio_get(bio);
1383 	return bio;
1384 
1385  out_unmap:
1386 	bio_for_each_segment_all(bvec, bio, j) {
1387 		put_page(bvec->bv_page);
1388 	}
1389  out:
1390 	kfree(pages);
1391 	bio_put(bio);
1392 	return ERR_PTR(ret);
1393 }
1394 
__bio_unmap_user(struct bio * bio)1395 static void __bio_unmap_user(struct bio *bio)
1396 {
1397 	struct bio_vec *bvec;
1398 	int i;
1399 
1400 	/*
1401 	 * make sure we dirty pages we wrote to
1402 	 */
1403 	bio_for_each_segment_all(bvec, bio, i) {
1404 		if (bio_data_dir(bio) == READ)
1405 			set_page_dirty_lock(bvec->bv_page);
1406 
1407 		page_cache_release(bvec->bv_page);
1408 	}
1409 
1410 	bio_put(bio);
1411 }
1412 
1413 /**
1414  *	bio_unmap_user	-	unmap a bio
1415  *	@bio:		the bio being unmapped
1416  *
1417  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1418  *	a process context.
1419  *
1420  *	bio_unmap_user() may sleep.
1421  */
bio_unmap_user(struct bio * bio)1422 void bio_unmap_user(struct bio *bio)
1423 {
1424 	__bio_unmap_user(bio);
1425 	bio_put(bio);
1426 }
1427 EXPORT_SYMBOL(bio_unmap_user);
1428 
bio_map_kern_endio(struct bio * bio)1429 static void bio_map_kern_endio(struct bio *bio)
1430 {
1431 	bio_put(bio);
1432 }
1433 
1434 /**
1435  *	bio_map_kern	-	map kernel address into bio
1436  *	@q: the struct request_queue for the bio
1437  *	@data: pointer to buffer to map
1438  *	@len: length in bytes
1439  *	@gfp_mask: allocation flags for bio allocation
1440  *
1441  *	Map the kernel address into a bio suitable for io to a block
1442  *	device. Returns an error pointer in case of error.
1443  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1444 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1445 			 gfp_t gfp_mask)
1446 {
1447 	unsigned long kaddr = (unsigned long)data;
1448 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1449 	unsigned long start = kaddr >> PAGE_SHIFT;
1450 	const int nr_pages = end - start;
1451 	int offset, i;
1452 	struct bio *bio;
1453 
1454 	bio = bio_kmalloc(gfp_mask, nr_pages);
1455 	if (!bio)
1456 		return ERR_PTR(-ENOMEM);
1457 
1458 	offset = offset_in_page(kaddr);
1459 	for (i = 0; i < nr_pages; i++) {
1460 		unsigned int bytes = PAGE_SIZE - offset;
1461 
1462 		if (len <= 0)
1463 			break;
1464 
1465 		if (bytes > len)
1466 			bytes = len;
1467 
1468 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1469 				    offset) < bytes) {
1470 			/* we don't support partial mappings */
1471 			bio_put(bio);
1472 			return ERR_PTR(-EINVAL);
1473 		}
1474 
1475 		data += bytes;
1476 		len -= bytes;
1477 		offset = 0;
1478 	}
1479 
1480 	bio->bi_end_io = bio_map_kern_endio;
1481 	return bio;
1482 }
1483 EXPORT_SYMBOL(bio_map_kern);
1484 
bio_copy_kern_endio(struct bio * bio)1485 static void bio_copy_kern_endio(struct bio *bio)
1486 {
1487 	bio_free_pages(bio);
1488 	bio_put(bio);
1489 }
1490 
bio_copy_kern_endio_read(struct bio * bio)1491 static void bio_copy_kern_endio_read(struct bio *bio)
1492 {
1493 	char *p = bio->bi_private;
1494 	struct bio_vec *bvec;
1495 	int i;
1496 
1497 	bio_for_each_segment_all(bvec, bio, i) {
1498 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1499 		p += bvec->bv_len;
1500 	}
1501 
1502 	bio_copy_kern_endio(bio);
1503 }
1504 
1505 /**
1506  *	bio_copy_kern	-	copy kernel address into bio
1507  *	@q: the struct request_queue for the bio
1508  *	@data: pointer to buffer to copy
1509  *	@len: length in bytes
1510  *	@gfp_mask: allocation flags for bio and page allocation
1511  *	@reading: data direction is READ
1512  *
1513  *	copy the kernel address into a bio suitable for io to a block
1514  *	device. Returns an error pointer in case of error.
1515  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1516 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1517 			  gfp_t gfp_mask, int reading)
1518 {
1519 	unsigned long kaddr = (unsigned long)data;
1520 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1521 	unsigned long start = kaddr >> PAGE_SHIFT;
1522 	struct bio *bio;
1523 	void *p = data;
1524 	int nr_pages = 0;
1525 
1526 	/*
1527 	 * Overflow, abort
1528 	 */
1529 	if (end < start)
1530 		return ERR_PTR(-EINVAL);
1531 
1532 	nr_pages = end - start;
1533 	bio = bio_kmalloc(gfp_mask, nr_pages);
1534 	if (!bio)
1535 		return ERR_PTR(-ENOMEM);
1536 
1537 	while (len) {
1538 		struct page *page;
1539 		unsigned int bytes = PAGE_SIZE;
1540 
1541 		if (bytes > len)
1542 			bytes = len;
1543 
1544 		page = alloc_page(q->bounce_gfp | gfp_mask);
1545 		if (!page)
1546 			goto cleanup;
1547 
1548 		if (!reading)
1549 			memcpy(page_address(page), p, bytes);
1550 
1551 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1552 			break;
1553 
1554 		len -= bytes;
1555 		p += bytes;
1556 	}
1557 
1558 	if (reading) {
1559 		bio->bi_end_io = bio_copy_kern_endio_read;
1560 		bio->bi_private = data;
1561 	} else {
1562 		bio->bi_end_io = bio_copy_kern_endio;
1563 		bio->bi_rw |= REQ_WRITE;
1564 	}
1565 
1566 	return bio;
1567 
1568 cleanup:
1569 	bio_free_pages(bio);
1570 	bio_put(bio);
1571 	return ERR_PTR(-ENOMEM);
1572 }
1573 EXPORT_SYMBOL(bio_copy_kern);
1574 
1575 /*
1576  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1577  * for performing direct-IO in BIOs.
1578  *
1579  * The problem is that we cannot run set_page_dirty() from interrupt context
1580  * because the required locks are not interrupt-safe.  So what we can do is to
1581  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1582  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1583  * in process context.
1584  *
1585  * We special-case compound pages here: normally this means reads into hugetlb
1586  * pages.  The logic in here doesn't really work right for compound pages
1587  * because the VM does not uniformly chase down the head page in all cases.
1588  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1589  * handle them at all.  So we skip compound pages here at an early stage.
1590  *
1591  * Note that this code is very hard to test under normal circumstances because
1592  * direct-io pins the pages with get_user_pages().  This makes
1593  * is_page_cache_freeable return false, and the VM will not clean the pages.
1594  * But other code (eg, flusher threads) could clean the pages if they are mapped
1595  * pagecache.
1596  *
1597  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1598  * deferred bio dirtying paths.
1599  */
1600 
1601 /*
1602  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1603  */
bio_set_pages_dirty(struct bio * bio)1604 void bio_set_pages_dirty(struct bio *bio)
1605 {
1606 	struct bio_vec *bvec;
1607 	int i;
1608 
1609 	bio_for_each_segment_all(bvec, bio, i) {
1610 		struct page *page = bvec->bv_page;
1611 
1612 		if (page && !PageCompound(page))
1613 			set_page_dirty_lock(page);
1614 	}
1615 }
1616 
bio_release_pages(struct bio * bio)1617 static void bio_release_pages(struct bio *bio)
1618 {
1619 	struct bio_vec *bvec;
1620 	int i;
1621 
1622 	bio_for_each_segment_all(bvec, bio, i) {
1623 		struct page *page = bvec->bv_page;
1624 
1625 		if (page)
1626 			put_page(page);
1627 	}
1628 }
1629 
1630 /*
1631  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1632  * If they are, then fine.  If, however, some pages are clean then they must
1633  * have been written out during the direct-IO read.  So we take another ref on
1634  * the BIO and the offending pages and re-dirty the pages in process context.
1635  *
1636  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1637  * here on.  It will run one page_cache_release() against each page and will
1638  * run one bio_put() against the BIO.
1639  */
1640 
1641 static void bio_dirty_fn(struct work_struct *work);
1642 
1643 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1644 static DEFINE_SPINLOCK(bio_dirty_lock);
1645 static struct bio *bio_dirty_list;
1646 
1647 /*
1648  * This runs in process context
1649  */
bio_dirty_fn(struct work_struct * work)1650 static void bio_dirty_fn(struct work_struct *work)
1651 {
1652 	unsigned long flags;
1653 	struct bio *bio;
1654 
1655 	spin_lock_irqsave(&bio_dirty_lock, flags);
1656 	bio = bio_dirty_list;
1657 	bio_dirty_list = NULL;
1658 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1659 
1660 	while (bio) {
1661 		struct bio *next = bio->bi_private;
1662 
1663 		bio_set_pages_dirty(bio);
1664 		bio_release_pages(bio);
1665 		bio_put(bio);
1666 		bio = next;
1667 	}
1668 }
1669 
bio_check_pages_dirty(struct bio * bio)1670 void bio_check_pages_dirty(struct bio *bio)
1671 {
1672 	struct bio_vec *bvec;
1673 	int nr_clean_pages = 0;
1674 	int i;
1675 
1676 	bio_for_each_segment_all(bvec, bio, i) {
1677 		struct page *page = bvec->bv_page;
1678 
1679 		if (PageDirty(page) || PageCompound(page)) {
1680 			page_cache_release(page);
1681 			bvec->bv_page = NULL;
1682 		} else {
1683 			nr_clean_pages++;
1684 		}
1685 	}
1686 
1687 	if (nr_clean_pages) {
1688 		unsigned long flags;
1689 
1690 		spin_lock_irqsave(&bio_dirty_lock, flags);
1691 		bio->bi_private = bio_dirty_list;
1692 		bio_dirty_list = bio;
1693 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1694 		schedule_work(&bio_dirty_work);
1695 	} else {
1696 		bio_put(bio);
1697 	}
1698 }
1699 
generic_start_io_acct(int rw,unsigned long sectors,struct hd_struct * part)1700 void generic_start_io_acct(int rw, unsigned long sectors,
1701 			   struct hd_struct *part)
1702 {
1703 	int cpu = part_stat_lock();
1704 
1705 	part_round_stats(cpu, part);
1706 	part_stat_inc(cpu, part, ios[rw]);
1707 	part_stat_add(cpu, part, sectors[rw], sectors);
1708 	part_inc_in_flight(part, rw);
1709 
1710 	part_stat_unlock();
1711 }
1712 EXPORT_SYMBOL(generic_start_io_acct);
1713 
generic_end_io_acct(int rw,struct hd_struct * part,unsigned long start_time)1714 void generic_end_io_acct(int rw, struct hd_struct *part,
1715 			 unsigned long start_time)
1716 {
1717 	unsigned long duration = jiffies - start_time;
1718 	int cpu = part_stat_lock();
1719 
1720 	part_stat_add(cpu, part, ticks[rw], duration);
1721 	part_round_stats(cpu, part);
1722 	part_dec_in_flight(part, rw);
1723 
1724 	part_stat_unlock();
1725 }
1726 EXPORT_SYMBOL(generic_end_io_acct);
1727 
1728 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1729 void bio_flush_dcache_pages(struct bio *bi)
1730 {
1731 	struct bio_vec bvec;
1732 	struct bvec_iter iter;
1733 
1734 	bio_for_each_segment(bvec, bi, iter)
1735 		flush_dcache_page(bvec.bv_page);
1736 }
1737 EXPORT_SYMBOL(bio_flush_dcache_pages);
1738 #endif
1739 
bio_remaining_done(struct bio * bio)1740 static inline bool bio_remaining_done(struct bio *bio)
1741 {
1742 	/*
1743 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1744 	 * we always end io on the first invocation.
1745 	 */
1746 	if (!bio_flagged(bio, BIO_CHAIN))
1747 		return true;
1748 
1749 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1750 
1751 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1752 		bio_clear_flag(bio, BIO_CHAIN);
1753 		return true;
1754 	}
1755 
1756 	return false;
1757 }
1758 
1759 /**
1760  * bio_endio - end I/O on a bio
1761  * @bio:	bio
1762  *
1763  * Description:
1764  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1765  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1766  *   bio unless they own it and thus know that it has an end_io function.
1767  **/
bio_endio(struct bio * bio)1768 void bio_endio(struct bio *bio)
1769 {
1770 	while (bio) {
1771 		if (unlikely(!bio_remaining_done(bio)))
1772 			break;
1773 
1774 		/*
1775 		 * Need to have a real endio function for chained bios,
1776 		 * otherwise various corner cases will break (like stacking
1777 		 * block devices that save/restore bi_end_io) - however, we want
1778 		 * to avoid unbounded recursion and blowing the stack. Tail call
1779 		 * optimization would handle this, but compiling with frame
1780 		 * pointers also disables gcc's sibling call optimization.
1781 		 */
1782 		if (bio->bi_end_io == bio_chain_endio) {
1783 			struct bio *parent = bio->bi_private;
1784 			parent->bi_error = bio->bi_error;
1785 			bio_put(bio);
1786 			bio = parent;
1787 		} else {
1788 			if (bio->bi_end_io)
1789 				bio->bi_end_io(bio);
1790 			bio = NULL;
1791 		}
1792 	}
1793 }
1794 EXPORT_SYMBOL(bio_endio);
1795 
1796 /**
1797  * bio_split - split a bio
1798  * @bio:	bio to split
1799  * @sectors:	number of sectors to split from the front of @bio
1800  * @gfp:	gfp mask
1801  * @bs:		bio set to allocate from
1802  *
1803  * Allocates and returns a new bio which represents @sectors from the start of
1804  * @bio, and updates @bio to represent the remaining sectors.
1805  *
1806  * Unless this is a discard request the newly allocated bio will point
1807  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1808  * @bio is not freed before the split.
1809  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1810 struct bio *bio_split(struct bio *bio, int sectors,
1811 		      gfp_t gfp, struct bio_set *bs)
1812 {
1813 	struct bio *split = NULL;
1814 
1815 	BUG_ON(sectors <= 0);
1816 	BUG_ON(sectors >= bio_sectors(bio));
1817 
1818 	/*
1819 	 * Discards need a mutable bio_vec to accommodate the payload
1820 	 * required by the DSM TRIM and UNMAP commands.
1821 	 */
1822 	if (bio->bi_rw & REQ_DISCARD)
1823 		split = bio_clone_bioset(bio, gfp, bs);
1824 	else
1825 		split = bio_clone_fast(bio, gfp, bs);
1826 
1827 	if (!split)
1828 		return NULL;
1829 
1830 	split->bi_iter.bi_size = sectors << 9;
1831 
1832 	if (bio_integrity(split))
1833 		bio_integrity_trim(split, 0, sectors);
1834 
1835 	bio_advance(bio, split->bi_iter.bi_size);
1836 
1837 	return split;
1838 }
1839 EXPORT_SYMBOL(bio_split);
1840 
1841 /**
1842  * bio_trim - trim a bio
1843  * @bio:	bio to trim
1844  * @offset:	number of sectors to trim from the front of @bio
1845  * @size:	size we want to trim @bio to, in sectors
1846  */
bio_trim(struct bio * bio,int offset,int size)1847 void bio_trim(struct bio *bio, int offset, int size)
1848 {
1849 	/* 'bio' is a cloned bio which we need to trim to match
1850 	 * the given offset and size.
1851 	 */
1852 
1853 	size <<= 9;
1854 	if (offset == 0 && size == bio->bi_iter.bi_size)
1855 		return;
1856 
1857 	bio_clear_flag(bio, BIO_SEG_VALID);
1858 
1859 	bio_advance(bio, offset << 9);
1860 
1861 	bio->bi_iter.bi_size = size;
1862 }
1863 EXPORT_SYMBOL_GPL(bio_trim);
1864 
1865 /*
1866  * create memory pools for biovec's in a bio_set.
1867  * use the global biovec slabs created for general use.
1868  */
biovec_create_pool(int pool_entries)1869 mempool_t *biovec_create_pool(int pool_entries)
1870 {
1871 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1872 
1873 	return mempool_create_slab_pool(pool_entries, bp->slab);
1874 }
1875 
bioset_free(struct bio_set * bs)1876 void bioset_free(struct bio_set *bs)
1877 {
1878 	if (bs->rescue_workqueue)
1879 		destroy_workqueue(bs->rescue_workqueue);
1880 
1881 	if (bs->bio_pool)
1882 		mempool_destroy(bs->bio_pool);
1883 
1884 	if (bs->bvec_pool)
1885 		mempool_destroy(bs->bvec_pool);
1886 
1887 	bioset_integrity_free(bs);
1888 	bio_put_slab(bs);
1889 
1890 	kfree(bs);
1891 }
1892 EXPORT_SYMBOL(bioset_free);
1893 
__bioset_create(unsigned int pool_size,unsigned int front_pad,bool create_bvec_pool)1894 static struct bio_set *__bioset_create(unsigned int pool_size,
1895 				       unsigned int front_pad,
1896 				       bool create_bvec_pool)
1897 {
1898 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1899 	struct bio_set *bs;
1900 
1901 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1902 	if (!bs)
1903 		return NULL;
1904 
1905 	bs->front_pad = front_pad;
1906 
1907 	spin_lock_init(&bs->rescue_lock);
1908 	bio_list_init(&bs->rescue_list);
1909 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1910 
1911 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1912 	if (!bs->bio_slab) {
1913 		kfree(bs);
1914 		return NULL;
1915 	}
1916 
1917 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1918 	if (!bs->bio_pool)
1919 		goto bad;
1920 
1921 	if (create_bvec_pool) {
1922 		bs->bvec_pool = biovec_create_pool(pool_size);
1923 		if (!bs->bvec_pool)
1924 			goto bad;
1925 	}
1926 
1927 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1928 	if (!bs->rescue_workqueue)
1929 		goto bad;
1930 
1931 	return bs;
1932 bad:
1933 	bioset_free(bs);
1934 	return NULL;
1935 }
1936 
1937 /**
1938  * bioset_create  - Create a bio_set
1939  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1940  * @front_pad:	Number of bytes to allocate in front of the returned bio
1941  *
1942  * Description:
1943  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1944  *    to ask for a number of bytes to be allocated in front of the bio.
1945  *    Front pad allocation is useful for embedding the bio inside
1946  *    another structure, to avoid allocating extra data to go with the bio.
1947  *    Note that the bio must be embedded at the END of that structure always,
1948  *    or things will break badly.
1949  */
bioset_create(unsigned int pool_size,unsigned int front_pad)1950 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1951 {
1952 	return __bioset_create(pool_size, front_pad, true);
1953 }
1954 EXPORT_SYMBOL(bioset_create);
1955 
1956 /**
1957  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1958  * @pool_size:	Number of bio to cache in the mempool
1959  * @front_pad:	Number of bytes to allocate in front of the returned bio
1960  *
1961  * Description:
1962  *    Same functionality as bioset_create() except that mempool is not
1963  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1964  */
bioset_create_nobvec(unsigned int pool_size,unsigned int front_pad)1965 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1966 {
1967 	return __bioset_create(pool_size, front_pad, false);
1968 }
1969 EXPORT_SYMBOL(bioset_create_nobvec);
1970 
1971 #ifdef CONFIG_BLK_CGROUP
1972 
1973 /**
1974  * bio_associate_blkcg - associate a bio with the specified blkcg
1975  * @bio: target bio
1976  * @blkcg_css: css of the blkcg to associate
1977  *
1978  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1979  * treat @bio as if it were issued by a task which belongs to the blkcg.
1980  *
1981  * This function takes an extra reference of @blkcg_css which will be put
1982  * when @bio is released.  The caller must own @bio and is responsible for
1983  * synchronizing calls to this function.
1984  */
bio_associate_blkcg(struct bio * bio,struct cgroup_subsys_state * blkcg_css)1985 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1986 {
1987 	if (unlikely(bio->bi_css))
1988 		return -EBUSY;
1989 	css_get(blkcg_css);
1990 	bio->bi_css = blkcg_css;
1991 	return 0;
1992 }
1993 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1994 
1995 /**
1996  * bio_associate_current - associate a bio with %current
1997  * @bio: target bio
1998  *
1999  * Associate @bio with %current if it hasn't been associated yet.  Block
2000  * layer will treat @bio as if it were issued by %current no matter which
2001  * task actually issues it.
2002  *
2003  * This function takes an extra reference of @task's io_context and blkcg
2004  * which will be put when @bio is released.  The caller must own @bio,
2005  * ensure %current->io_context exists, and is responsible for synchronizing
2006  * calls to this function.
2007  */
bio_associate_current(struct bio * bio)2008 int bio_associate_current(struct bio *bio)
2009 {
2010 	struct io_context *ioc;
2011 
2012 	if (bio->bi_css)
2013 		return -EBUSY;
2014 
2015 	ioc = current->io_context;
2016 	if (!ioc)
2017 		return -ENOENT;
2018 
2019 	get_io_context_active(ioc);
2020 	bio->bi_ioc = ioc;
2021 	bio->bi_css = task_get_css(current, io_cgrp_id);
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(bio_associate_current);
2025 
2026 /**
2027  * bio_disassociate_task - undo bio_associate_current()
2028  * @bio: target bio
2029  */
bio_disassociate_task(struct bio * bio)2030 void bio_disassociate_task(struct bio *bio)
2031 {
2032 	if (bio->bi_ioc) {
2033 		put_io_context(bio->bi_ioc);
2034 		bio->bi_ioc = NULL;
2035 	}
2036 	if (bio->bi_css) {
2037 		css_put(bio->bi_css);
2038 		bio->bi_css = NULL;
2039 	}
2040 }
2041 
2042 /**
2043  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2044  * @dst: destination bio
2045  * @src: source bio
2046  */
bio_clone_blkcg_association(struct bio * dst,struct bio * src)2047 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2048 {
2049 	if (src->bi_css)
2050 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2051 }
2052 
2053 #endif /* CONFIG_BLK_CGROUP */
2054 
biovec_init_slabs(void)2055 static void __init biovec_init_slabs(void)
2056 {
2057 	int i;
2058 
2059 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2060 		int size;
2061 		struct biovec_slab *bvs = bvec_slabs + i;
2062 
2063 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2064 			bvs->slab = NULL;
2065 			continue;
2066 		}
2067 
2068 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2069 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2070                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2071 	}
2072 }
2073 
init_bio(void)2074 static int __init init_bio(void)
2075 {
2076 	bio_slab_max = 2;
2077 	bio_slab_nr = 0;
2078 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2079 	if (!bio_slabs)
2080 		panic("bio: can't allocate bios\n");
2081 
2082 	bio_integrity_init();
2083 	biovec_init_slabs();
2084 
2085 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2086 	if (!fs_bio_set)
2087 		panic("bio: can't allocate bios\n");
2088 
2089 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2090 		panic("bio: can't create integrity pool\n");
2091 
2092 	return 0;
2093 }
2094 subsys_initcall(init_bio);
2095