1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19
20 unsigned long blk_max_pfn;
21
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
blk_queue_prep_rq(struct request_queue * q,prep_rq_fn * pfn)33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38
39 /**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
blk_queue_unprep_rq(struct request_queue * q,unprep_rq_fn * ufn)50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55
blk_queue_softirq_done(struct request_queue * q,softirq_done_fn * fn)56 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
57 {
58 q->softirq_done_fn = fn;
59 }
60 EXPORT_SYMBOL(blk_queue_softirq_done);
61
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)62 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
63 {
64 q->rq_timeout = timeout;
65 }
66 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
67
blk_queue_rq_timed_out(struct request_queue * q,rq_timed_out_fn * fn)68 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
69 {
70 q->rq_timed_out_fn = fn;
71 }
72 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
73
blk_queue_lld_busy(struct request_queue * q,lld_busy_fn * fn)74 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
75 {
76 q->lld_busy_fn = fn;
77 }
78 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
79
80 /**
81 * blk_set_default_limits - reset limits to default values
82 * @lim: the queue_limits structure to reset
83 *
84 * Description:
85 * Returns a queue_limit struct to its default state.
86 */
blk_set_default_limits(struct queue_limits * lim)87 void blk_set_default_limits(struct queue_limits *lim)
88 {
89 lim->max_segments = BLK_MAX_SEGMENTS;
90 lim->max_integrity_segments = 0;
91 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
92 lim->virt_boundary_mask = 0;
93 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
94 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
95 lim->max_dev_sectors = 0;
96 lim->chunk_sectors = 0;
97 lim->max_write_same_sectors = 0;
98 lim->max_discard_sectors = 0;
99 lim->max_hw_discard_sectors = 0;
100 lim->discard_granularity = 0;
101 lim->discard_alignment = 0;
102 lim->discard_misaligned = 0;
103 lim->discard_zeroes_data = 0;
104 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
105 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
106 lim->alignment_offset = 0;
107 lim->io_opt = 0;
108 lim->misaligned = 0;
109 lim->cluster = 1;
110 }
111 EXPORT_SYMBOL(blk_set_default_limits);
112
113 /**
114 * blk_set_stacking_limits - set default limits for stacking devices
115 * @lim: the queue_limits structure to reset
116 *
117 * Description:
118 * Returns a queue_limit struct to its default state. Should be used
119 * by stacking drivers like DM that have no internal limits.
120 */
blk_set_stacking_limits(struct queue_limits * lim)121 void blk_set_stacking_limits(struct queue_limits *lim)
122 {
123 blk_set_default_limits(lim);
124
125 /* Inherit limits from component devices */
126 lim->discard_zeroes_data = 1;
127 lim->max_segments = USHRT_MAX;
128 lim->max_hw_sectors = UINT_MAX;
129 lim->max_segment_size = UINT_MAX;
130 lim->max_sectors = UINT_MAX;
131 lim->max_dev_sectors = UINT_MAX;
132 lim->max_write_same_sectors = UINT_MAX;
133 }
134 EXPORT_SYMBOL(blk_set_stacking_limits);
135
136 /**
137 * blk_queue_make_request - define an alternate make_request function for a device
138 * @q: the request queue for the device to be affected
139 * @mfn: the alternate make_request function
140 *
141 * Description:
142 * The normal way for &struct bios to be passed to a device
143 * driver is for them to be collected into requests on a request
144 * queue, and then to allow the device driver to select requests
145 * off that queue when it is ready. This works well for many block
146 * devices. However some block devices (typically virtual devices
147 * such as md or lvm) do not benefit from the processing on the
148 * request queue, and are served best by having the requests passed
149 * directly to them. This can be achieved by providing a function
150 * to blk_queue_make_request().
151 *
152 * Caveat:
153 * The driver that does this *must* be able to deal appropriately
154 * with buffers in "highmemory". This can be accomplished by either calling
155 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
156 * blk_queue_bounce() to create a buffer in normal memory.
157 **/
blk_queue_make_request(struct request_queue * q,make_request_fn * mfn)158 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
159 {
160 /*
161 * set defaults
162 */
163 q->nr_requests = BLKDEV_MAX_RQ;
164
165 q->make_request_fn = mfn;
166 blk_queue_dma_alignment(q, 511);
167 blk_queue_congestion_threshold(q);
168 q->nr_batching = BLK_BATCH_REQ;
169
170 blk_set_default_limits(&q->limits);
171
172 /*
173 * by default assume old behaviour and bounce for any highmem page
174 */
175 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
176 }
177 EXPORT_SYMBOL(blk_queue_make_request);
178
179 /**
180 * blk_queue_bounce_limit - set bounce buffer limit for queue
181 * @q: the request queue for the device
182 * @max_addr: the maximum address the device can handle
183 *
184 * Description:
185 * Different hardware can have different requirements as to what pages
186 * it can do I/O directly to. A low level driver can call
187 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
188 * buffers for doing I/O to pages residing above @max_addr.
189 **/
blk_queue_bounce_limit(struct request_queue * q,u64 max_addr)190 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
191 {
192 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
193 int dma = 0;
194
195 q->bounce_gfp = GFP_NOIO;
196 #if BITS_PER_LONG == 64
197 /*
198 * Assume anything <= 4GB can be handled by IOMMU. Actually
199 * some IOMMUs can handle everything, but I don't know of a
200 * way to test this here.
201 */
202 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
203 dma = 1;
204 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
205 #else
206 if (b_pfn < blk_max_low_pfn)
207 dma = 1;
208 q->limits.bounce_pfn = b_pfn;
209 #endif
210 if (dma) {
211 init_emergency_isa_pool();
212 q->bounce_gfp = GFP_NOIO | GFP_DMA;
213 q->limits.bounce_pfn = b_pfn;
214 }
215 }
216 EXPORT_SYMBOL(blk_queue_bounce_limit);
217
218 /**
219 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
220 * @q: the request queue for the device
221 * @max_hw_sectors: max hardware sectors in the usual 512b unit
222 *
223 * Description:
224 * Enables a low level driver to set a hard upper limit,
225 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
226 * the device driver based upon the capabilities of the I/O
227 * controller.
228 *
229 * max_dev_sectors is a hard limit imposed by the storage device for
230 * READ/WRITE requests. It is set by the disk driver.
231 *
232 * max_sectors is a soft limit imposed by the block layer for
233 * filesystem type requests. This value can be overridden on a
234 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
235 * The soft limit can not exceed max_hw_sectors.
236 **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)237 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
238 {
239 struct queue_limits *limits = &q->limits;
240 unsigned int max_sectors;
241
242 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
243 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
244 printk(KERN_INFO "%s: set to minimum %d\n",
245 __func__, max_hw_sectors);
246 }
247
248 limits->max_hw_sectors = max_hw_sectors;
249 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
250 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
251 limits->max_sectors = max_sectors;
252 }
253 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
254
255 /**
256 * blk_queue_chunk_sectors - set size of the chunk for this queue
257 * @q: the request queue for the device
258 * @chunk_sectors: chunk sectors in the usual 512b unit
259 *
260 * Description:
261 * If a driver doesn't want IOs to cross a given chunk size, it can set
262 * this limit and prevent merging across chunks. Note that the chunk size
263 * must currently be a power-of-2 in sectors. Also note that the block
264 * layer must accept a page worth of data at any offset. So if the
265 * crossing of chunks is a hard limitation in the driver, it must still be
266 * prepared to split single page bios.
267 **/
blk_queue_chunk_sectors(struct request_queue * q,unsigned int chunk_sectors)268 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
269 {
270 BUG_ON(!is_power_of_2(chunk_sectors));
271 q->limits.chunk_sectors = chunk_sectors;
272 }
273 EXPORT_SYMBOL(blk_queue_chunk_sectors);
274
275 /**
276 * blk_queue_max_discard_sectors - set max sectors for a single discard
277 * @q: the request queue for the device
278 * @max_discard_sectors: maximum number of sectors to discard
279 **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)280 void blk_queue_max_discard_sectors(struct request_queue *q,
281 unsigned int max_discard_sectors)
282 {
283 q->limits.max_hw_discard_sectors = max_discard_sectors;
284 q->limits.max_discard_sectors = max_discard_sectors;
285 }
286 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
287
288 /**
289 * blk_queue_max_write_same_sectors - set max sectors for a single write same
290 * @q: the request queue for the device
291 * @max_write_same_sectors: maximum number of sectors to write per command
292 **/
blk_queue_max_write_same_sectors(struct request_queue * q,unsigned int max_write_same_sectors)293 void blk_queue_max_write_same_sectors(struct request_queue *q,
294 unsigned int max_write_same_sectors)
295 {
296 q->limits.max_write_same_sectors = max_write_same_sectors;
297 }
298 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
299
300 /**
301 * blk_queue_max_segments - set max hw segments for a request for this queue
302 * @q: the request queue for the device
303 * @max_segments: max number of segments
304 *
305 * Description:
306 * Enables a low level driver to set an upper limit on the number of
307 * hw data segments in a request.
308 **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)309 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
310 {
311 if (!max_segments) {
312 max_segments = 1;
313 printk(KERN_INFO "%s: set to minimum %d\n",
314 __func__, max_segments);
315 }
316
317 q->limits.max_segments = max_segments;
318 }
319 EXPORT_SYMBOL(blk_queue_max_segments);
320
321 /**
322 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
323 * @q: the request queue for the device
324 * @max_size: max size of segment in bytes
325 *
326 * Description:
327 * Enables a low level driver to set an upper limit on the size of a
328 * coalesced segment
329 **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)330 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
331 {
332 if (max_size < PAGE_CACHE_SIZE) {
333 max_size = PAGE_CACHE_SIZE;
334 printk(KERN_INFO "%s: set to minimum %d\n",
335 __func__, max_size);
336 }
337
338 q->limits.max_segment_size = max_size;
339 }
340 EXPORT_SYMBOL(blk_queue_max_segment_size);
341
342 /**
343 * blk_queue_logical_block_size - set logical block size for the queue
344 * @q: the request queue for the device
345 * @size: the logical block size, in bytes
346 *
347 * Description:
348 * This should be set to the lowest possible block size that the
349 * storage device can address. The default of 512 covers most
350 * hardware.
351 **/
blk_queue_logical_block_size(struct request_queue * q,unsigned int size)352 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
353 {
354 q->limits.logical_block_size = size;
355
356 if (q->limits.physical_block_size < size)
357 q->limits.physical_block_size = size;
358
359 if (q->limits.io_min < q->limits.physical_block_size)
360 q->limits.io_min = q->limits.physical_block_size;
361 }
362 EXPORT_SYMBOL(blk_queue_logical_block_size);
363
364 /**
365 * blk_queue_physical_block_size - set physical block size for the queue
366 * @q: the request queue for the device
367 * @size: the physical block size, in bytes
368 *
369 * Description:
370 * This should be set to the lowest possible sector size that the
371 * hardware can operate on without reverting to read-modify-write
372 * operations.
373 */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)374 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
375 {
376 q->limits.physical_block_size = size;
377
378 if (q->limits.physical_block_size < q->limits.logical_block_size)
379 q->limits.physical_block_size = q->limits.logical_block_size;
380
381 if (q->limits.io_min < q->limits.physical_block_size)
382 q->limits.io_min = q->limits.physical_block_size;
383 }
384 EXPORT_SYMBOL(blk_queue_physical_block_size);
385
386 /**
387 * blk_queue_alignment_offset - set physical block alignment offset
388 * @q: the request queue for the device
389 * @offset: alignment offset in bytes
390 *
391 * Description:
392 * Some devices are naturally misaligned to compensate for things like
393 * the legacy DOS partition table 63-sector offset. Low-level drivers
394 * should call this function for devices whose first sector is not
395 * naturally aligned.
396 */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)397 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
398 {
399 q->limits.alignment_offset =
400 offset & (q->limits.physical_block_size - 1);
401 q->limits.misaligned = 0;
402 }
403 EXPORT_SYMBOL(blk_queue_alignment_offset);
404
405 /**
406 * blk_limits_io_min - set minimum request size for a device
407 * @limits: the queue limits
408 * @min: smallest I/O size in bytes
409 *
410 * Description:
411 * Some devices have an internal block size bigger than the reported
412 * hardware sector size. This function can be used to signal the
413 * smallest I/O the device can perform without incurring a performance
414 * penalty.
415 */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)416 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
417 {
418 limits->io_min = min;
419
420 if (limits->io_min < limits->logical_block_size)
421 limits->io_min = limits->logical_block_size;
422
423 if (limits->io_min < limits->physical_block_size)
424 limits->io_min = limits->physical_block_size;
425 }
426 EXPORT_SYMBOL(blk_limits_io_min);
427
428 /**
429 * blk_queue_io_min - set minimum request size for the queue
430 * @q: the request queue for the device
431 * @min: smallest I/O size in bytes
432 *
433 * Description:
434 * Storage devices may report a granularity or preferred minimum I/O
435 * size which is the smallest request the device can perform without
436 * incurring a performance penalty. For disk drives this is often the
437 * physical block size. For RAID arrays it is often the stripe chunk
438 * size. A properly aligned multiple of minimum_io_size is the
439 * preferred request size for workloads where a high number of I/O
440 * operations is desired.
441 */
blk_queue_io_min(struct request_queue * q,unsigned int min)442 void blk_queue_io_min(struct request_queue *q, unsigned int min)
443 {
444 blk_limits_io_min(&q->limits, min);
445 }
446 EXPORT_SYMBOL(blk_queue_io_min);
447
448 /**
449 * blk_limits_io_opt - set optimal request size for a device
450 * @limits: the queue limits
451 * @opt: smallest I/O size in bytes
452 *
453 * Description:
454 * Storage devices may report an optimal I/O size, which is the
455 * device's preferred unit for sustained I/O. This is rarely reported
456 * for disk drives. For RAID arrays it is usually the stripe width or
457 * the internal track size. A properly aligned multiple of
458 * optimal_io_size is the preferred request size for workloads where
459 * sustained throughput is desired.
460 */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)461 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
462 {
463 limits->io_opt = opt;
464 }
465 EXPORT_SYMBOL(blk_limits_io_opt);
466
467 /**
468 * blk_queue_io_opt - set optimal request size for the queue
469 * @q: the request queue for the device
470 * @opt: optimal request size in bytes
471 *
472 * Description:
473 * Storage devices may report an optimal I/O size, which is the
474 * device's preferred unit for sustained I/O. This is rarely reported
475 * for disk drives. For RAID arrays it is usually the stripe width or
476 * the internal track size. A properly aligned multiple of
477 * optimal_io_size is the preferred request size for workloads where
478 * sustained throughput is desired.
479 */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)480 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
481 {
482 blk_limits_io_opt(&q->limits, opt);
483 }
484 EXPORT_SYMBOL(blk_queue_io_opt);
485
486 /**
487 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
488 * @t: the stacking driver (top)
489 * @b: the underlying device (bottom)
490 **/
blk_queue_stack_limits(struct request_queue * t,struct request_queue * b)491 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
492 {
493 blk_stack_limits(&t->limits, &b->limits, 0);
494 }
495 EXPORT_SYMBOL(blk_queue_stack_limits);
496
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)497 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
498 {
499 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
500 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
501 sectors = PAGE_SIZE >> SECTOR_SHIFT;
502 return sectors;
503 }
504
505 /**
506 * blk_stack_limits - adjust queue_limits for stacked devices
507 * @t: the stacking driver limits (top device)
508 * @b: the underlying queue limits (bottom, component device)
509 * @start: first data sector within component device
510 *
511 * Description:
512 * This function is used by stacking drivers like MD and DM to ensure
513 * that all component devices have compatible block sizes and
514 * alignments. The stacking driver must provide a queue_limits
515 * struct (top) and then iteratively call the stacking function for
516 * all component (bottom) devices. The stacking function will
517 * attempt to combine the values and ensure proper alignment.
518 *
519 * Returns 0 if the top and bottom queue_limits are compatible. The
520 * top device's block sizes and alignment offsets may be adjusted to
521 * ensure alignment with the bottom device. If no compatible sizes
522 * and alignments exist, -1 is returned and the resulting top
523 * queue_limits will have the misaligned flag set to indicate that
524 * the alignment_offset is undefined.
525 */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)526 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
527 sector_t start)
528 {
529 unsigned int top, bottom, alignment, ret = 0;
530
531 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
532 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
533 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
534 t->max_write_same_sectors = min(t->max_write_same_sectors,
535 b->max_write_same_sectors);
536 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
537
538 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
539 b->seg_boundary_mask);
540 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
541 b->virt_boundary_mask);
542
543 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
544 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
545 b->max_integrity_segments);
546
547 t->max_segment_size = min_not_zero(t->max_segment_size,
548 b->max_segment_size);
549
550 t->misaligned |= b->misaligned;
551
552 alignment = queue_limit_alignment_offset(b, start);
553
554 /* Bottom device has different alignment. Check that it is
555 * compatible with the current top alignment.
556 */
557 if (t->alignment_offset != alignment) {
558
559 top = max(t->physical_block_size, t->io_min)
560 + t->alignment_offset;
561 bottom = max(b->physical_block_size, b->io_min) + alignment;
562
563 /* Verify that top and bottom intervals line up */
564 if (max(top, bottom) % min(top, bottom)) {
565 t->misaligned = 1;
566 ret = -1;
567 }
568 }
569
570 t->logical_block_size = max(t->logical_block_size,
571 b->logical_block_size);
572
573 t->physical_block_size = max(t->physical_block_size,
574 b->physical_block_size);
575
576 t->io_min = max(t->io_min, b->io_min);
577 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
578
579 t->cluster &= b->cluster;
580 t->discard_zeroes_data &= b->discard_zeroes_data;
581
582 /* Physical block size a multiple of the logical block size? */
583 if (t->physical_block_size & (t->logical_block_size - 1)) {
584 t->physical_block_size = t->logical_block_size;
585 t->misaligned = 1;
586 ret = -1;
587 }
588
589 /* Minimum I/O a multiple of the physical block size? */
590 if (t->io_min & (t->physical_block_size - 1)) {
591 t->io_min = t->physical_block_size;
592 t->misaligned = 1;
593 ret = -1;
594 }
595
596 /* Optimal I/O a multiple of the physical block size? */
597 if (t->io_opt & (t->physical_block_size - 1)) {
598 t->io_opt = 0;
599 t->misaligned = 1;
600 ret = -1;
601 }
602
603 t->raid_partial_stripes_expensive =
604 max(t->raid_partial_stripes_expensive,
605 b->raid_partial_stripes_expensive);
606
607 /* Find lowest common alignment_offset */
608 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
609 % max(t->physical_block_size, t->io_min);
610
611 /* Verify that new alignment_offset is on a logical block boundary */
612 if (t->alignment_offset & (t->logical_block_size - 1)) {
613 t->misaligned = 1;
614 ret = -1;
615 }
616
617 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
618 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
619 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
620
621 /* Discard alignment and granularity */
622 if (b->discard_granularity) {
623 alignment = queue_limit_discard_alignment(b, start);
624
625 if (t->discard_granularity != 0 &&
626 t->discard_alignment != alignment) {
627 top = t->discard_granularity + t->discard_alignment;
628 bottom = b->discard_granularity + alignment;
629
630 /* Verify that top and bottom intervals line up */
631 if ((max(top, bottom) % min(top, bottom)) != 0)
632 t->discard_misaligned = 1;
633 }
634
635 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
636 b->max_discard_sectors);
637 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
638 b->max_hw_discard_sectors);
639 t->discard_granularity = max(t->discard_granularity,
640 b->discard_granularity);
641 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
642 t->discard_granularity;
643 }
644
645 return ret;
646 }
647 EXPORT_SYMBOL(blk_stack_limits);
648
649 /**
650 * bdev_stack_limits - adjust queue limits for stacked drivers
651 * @t: the stacking driver limits (top device)
652 * @bdev: the component block_device (bottom)
653 * @start: first data sector within component device
654 *
655 * Description:
656 * Merges queue limits for a top device and a block_device. Returns
657 * 0 if alignment didn't change. Returns -1 if adding the bottom
658 * device caused misalignment.
659 */
bdev_stack_limits(struct queue_limits * t,struct block_device * bdev,sector_t start)660 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
661 sector_t start)
662 {
663 struct request_queue *bq = bdev_get_queue(bdev);
664
665 start += get_start_sect(bdev);
666
667 return blk_stack_limits(t, &bq->limits, start);
668 }
669 EXPORT_SYMBOL(bdev_stack_limits);
670
671 /**
672 * disk_stack_limits - adjust queue limits for stacked drivers
673 * @disk: MD/DM gendisk (top)
674 * @bdev: the underlying block device (bottom)
675 * @offset: offset to beginning of data within component device
676 *
677 * Description:
678 * Merges the limits for a top level gendisk and a bottom level
679 * block_device.
680 */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)681 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
682 sector_t offset)
683 {
684 struct request_queue *t = disk->queue;
685
686 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
687 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
688
689 disk_name(disk, 0, top);
690 bdevname(bdev, bottom);
691
692 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
693 top, bottom);
694 }
695 }
696 EXPORT_SYMBOL(disk_stack_limits);
697
698 /**
699 * blk_queue_dma_pad - set pad mask
700 * @q: the request queue for the device
701 * @mask: pad mask
702 *
703 * Set dma pad mask.
704 *
705 * Appending pad buffer to a request modifies the last entry of a
706 * scatter list such that it includes the pad buffer.
707 **/
blk_queue_dma_pad(struct request_queue * q,unsigned int mask)708 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
709 {
710 q->dma_pad_mask = mask;
711 }
712 EXPORT_SYMBOL(blk_queue_dma_pad);
713
714 /**
715 * blk_queue_update_dma_pad - update pad mask
716 * @q: the request queue for the device
717 * @mask: pad mask
718 *
719 * Update dma pad mask.
720 *
721 * Appending pad buffer to a request modifies the last entry of a
722 * scatter list such that it includes the pad buffer.
723 **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)724 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
725 {
726 if (mask > q->dma_pad_mask)
727 q->dma_pad_mask = mask;
728 }
729 EXPORT_SYMBOL(blk_queue_update_dma_pad);
730
731 /**
732 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
733 * @q: the request queue for the device
734 * @dma_drain_needed: fn which returns non-zero if drain is necessary
735 * @buf: physically contiguous buffer
736 * @size: size of the buffer in bytes
737 *
738 * Some devices have excess DMA problems and can't simply discard (or
739 * zero fill) the unwanted piece of the transfer. They have to have a
740 * real area of memory to transfer it into. The use case for this is
741 * ATAPI devices in DMA mode. If the packet command causes a transfer
742 * bigger than the transfer size some HBAs will lock up if there
743 * aren't DMA elements to contain the excess transfer. What this API
744 * does is adjust the queue so that the buf is always appended
745 * silently to the scatterlist.
746 *
747 * Note: This routine adjusts max_hw_segments to make room for appending
748 * the drain buffer. If you call blk_queue_max_segments() after calling
749 * this routine, you must set the limit to one fewer than your device
750 * can support otherwise there won't be room for the drain buffer.
751 */
blk_queue_dma_drain(struct request_queue * q,dma_drain_needed_fn * dma_drain_needed,void * buf,unsigned int size)752 int blk_queue_dma_drain(struct request_queue *q,
753 dma_drain_needed_fn *dma_drain_needed,
754 void *buf, unsigned int size)
755 {
756 if (queue_max_segments(q) < 2)
757 return -EINVAL;
758 /* make room for appending the drain */
759 blk_queue_max_segments(q, queue_max_segments(q) - 1);
760 q->dma_drain_needed = dma_drain_needed;
761 q->dma_drain_buffer = buf;
762 q->dma_drain_size = size;
763
764 return 0;
765 }
766 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
767
768 /**
769 * blk_queue_segment_boundary - set boundary rules for segment merging
770 * @q: the request queue for the device
771 * @mask: the memory boundary mask
772 **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)773 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
774 {
775 if (mask < PAGE_CACHE_SIZE - 1) {
776 mask = PAGE_CACHE_SIZE - 1;
777 printk(KERN_INFO "%s: set to minimum %lx\n",
778 __func__, mask);
779 }
780
781 q->limits.seg_boundary_mask = mask;
782 }
783 EXPORT_SYMBOL(blk_queue_segment_boundary);
784
785 /**
786 * blk_queue_virt_boundary - set boundary rules for bio merging
787 * @q: the request queue for the device
788 * @mask: the memory boundary mask
789 **/
blk_queue_virt_boundary(struct request_queue * q,unsigned long mask)790 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
791 {
792 q->limits.virt_boundary_mask = mask;
793 }
794 EXPORT_SYMBOL(blk_queue_virt_boundary);
795
796 /**
797 * blk_queue_dma_alignment - set dma length and memory alignment
798 * @q: the request queue for the device
799 * @mask: alignment mask
800 *
801 * description:
802 * set required memory and length alignment for direct dma transactions.
803 * this is used when building direct io requests for the queue.
804 *
805 **/
blk_queue_dma_alignment(struct request_queue * q,int mask)806 void blk_queue_dma_alignment(struct request_queue *q, int mask)
807 {
808 q->dma_alignment = mask;
809 }
810 EXPORT_SYMBOL(blk_queue_dma_alignment);
811
812 /**
813 * blk_queue_update_dma_alignment - update dma length and memory alignment
814 * @q: the request queue for the device
815 * @mask: alignment mask
816 *
817 * description:
818 * update required memory and length alignment for direct dma transactions.
819 * If the requested alignment is larger than the current alignment, then
820 * the current queue alignment is updated to the new value, otherwise it
821 * is left alone. The design of this is to allow multiple objects
822 * (driver, device, transport etc) to set their respective
823 * alignments without having them interfere.
824 *
825 **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)826 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
827 {
828 BUG_ON(mask > PAGE_SIZE);
829
830 if (mask > q->dma_alignment)
831 q->dma_alignment = mask;
832 }
833 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
834
835 /**
836 * blk_queue_flush - configure queue's cache flush capability
837 * @q: the request queue for the device
838 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
839 *
840 * Tell block layer cache flush capability of @q. If it supports
841 * flushing, REQ_FLUSH should be set. If it supports bypassing
842 * write cache for individual writes, REQ_FUA should be set.
843 */
blk_queue_flush(struct request_queue * q,unsigned int flush)844 void blk_queue_flush(struct request_queue *q, unsigned int flush)
845 {
846 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
847
848 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
849 flush &= ~REQ_FUA;
850
851 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
852 }
853 EXPORT_SYMBOL_GPL(blk_queue_flush);
854
blk_queue_flush_queueable(struct request_queue * q,bool queueable)855 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
856 {
857 q->flush_not_queueable = !queueable;
858 }
859 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
860
blk_settings_init(void)861 static int __init blk_settings_init(void)
862 {
863 blk_max_low_pfn = max_low_pfn - 1;
864 blk_max_pfn = max_pfn - 1;
865 return 0;
866 }
867 subsys_initcall(blk_settings_init);
868