• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
blk_queue_prep_rq(struct request_queue * q,prep_rq_fn * pfn)33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
blk_queue_unprep_rq(struct request_queue * q,unprep_rq_fn * ufn)50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
blk_queue_softirq_done(struct request_queue * q,softirq_done_fn * fn)56 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
57 {
58 	q->softirq_done_fn = fn;
59 }
60 EXPORT_SYMBOL(blk_queue_softirq_done);
61 
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)62 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
63 {
64 	q->rq_timeout = timeout;
65 }
66 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
67 
blk_queue_rq_timed_out(struct request_queue * q,rq_timed_out_fn * fn)68 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
69 {
70 	q->rq_timed_out_fn = fn;
71 }
72 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
73 
blk_queue_lld_busy(struct request_queue * q,lld_busy_fn * fn)74 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
75 {
76 	q->lld_busy_fn = fn;
77 }
78 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
79 
80 /**
81  * blk_set_default_limits - reset limits to default values
82  * @lim:  the queue_limits structure to reset
83  *
84  * Description:
85  *   Returns a queue_limit struct to its default state.
86  */
blk_set_default_limits(struct queue_limits * lim)87 void blk_set_default_limits(struct queue_limits *lim)
88 {
89 	lim->max_segments = BLK_MAX_SEGMENTS;
90 	lim->max_integrity_segments = 0;
91 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
92 	lim->virt_boundary_mask = 0;
93 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
94 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
95 	lim->max_dev_sectors = 0;
96 	lim->chunk_sectors = 0;
97 	lim->max_write_same_sectors = 0;
98 	lim->max_discard_sectors = 0;
99 	lim->max_hw_discard_sectors = 0;
100 	lim->discard_granularity = 0;
101 	lim->discard_alignment = 0;
102 	lim->discard_misaligned = 0;
103 	lim->discard_zeroes_data = 0;
104 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
105 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
106 	lim->alignment_offset = 0;
107 	lim->io_opt = 0;
108 	lim->misaligned = 0;
109 	lim->cluster = 1;
110 }
111 EXPORT_SYMBOL(blk_set_default_limits);
112 
113 /**
114  * blk_set_stacking_limits - set default limits for stacking devices
115  * @lim:  the queue_limits structure to reset
116  *
117  * Description:
118  *   Returns a queue_limit struct to its default state. Should be used
119  *   by stacking drivers like DM that have no internal limits.
120  */
blk_set_stacking_limits(struct queue_limits * lim)121 void blk_set_stacking_limits(struct queue_limits *lim)
122 {
123 	blk_set_default_limits(lim);
124 
125 	/* Inherit limits from component devices */
126 	lim->discard_zeroes_data = 1;
127 	lim->max_segments = USHRT_MAX;
128 	lim->max_hw_sectors = UINT_MAX;
129 	lim->max_segment_size = UINT_MAX;
130 	lim->max_sectors = UINT_MAX;
131 	lim->max_dev_sectors = UINT_MAX;
132 	lim->max_write_same_sectors = UINT_MAX;
133 }
134 EXPORT_SYMBOL(blk_set_stacking_limits);
135 
136 /**
137  * blk_queue_make_request - define an alternate make_request function for a device
138  * @q:  the request queue for the device to be affected
139  * @mfn: the alternate make_request function
140  *
141  * Description:
142  *    The normal way for &struct bios to be passed to a device
143  *    driver is for them to be collected into requests on a request
144  *    queue, and then to allow the device driver to select requests
145  *    off that queue when it is ready.  This works well for many block
146  *    devices. However some block devices (typically virtual devices
147  *    such as md or lvm) do not benefit from the processing on the
148  *    request queue, and are served best by having the requests passed
149  *    directly to them.  This can be achieved by providing a function
150  *    to blk_queue_make_request().
151  *
152  * Caveat:
153  *    The driver that does this *must* be able to deal appropriately
154  *    with buffers in "highmemory". This can be accomplished by either calling
155  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
156  *    blk_queue_bounce() to create a buffer in normal memory.
157  **/
blk_queue_make_request(struct request_queue * q,make_request_fn * mfn)158 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
159 {
160 	/*
161 	 * set defaults
162 	 */
163 	q->nr_requests = BLKDEV_MAX_RQ;
164 
165 	q->make_request_fn = mfn;
166 	blk_queue_dma_alignment(q, 511);
167 	blk_queue_congestion_threshold(q);
168 	q->nr_batching = BLK_BATCH_REQ;
169 
170 	blk_set_default_limits(&q->limits);
171 
172 	/*
173 	 * by default assume old behaviour and bounce for any highmem page
174 	 */
175 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
176 }
177 EXPORT_SYMBOL(blk_queue_make_request);
178 
179 /**
180  * blk_queue_bounce_limit - set bounce buffer limit for queue
181  * @q: the request queue for the device
182  * @max_addr: the maximum address the device can handle
183  *
184  * Description:
185  *    Different hardware can have different requirements as to what pages
186  *    it can do I/O directly to. A low level driver can call
187  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
188  *    buffers for doing I/O to pages residing above @max_addr.
189  **/
blk_queue_bounce_limit(struct request_queue * q,u64 max_addr)190 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
191 {
192 	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
193 	int dma = 0;
194 
195 	q->bounce_gfp = GFP_NOIO;
196 #if BITS_PER_LONG == 64
197 	/*
198 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
199 	 * some IOMMUs can handle everything, but I don't know of a
200 	 * way to test this here.
201 	 */
202 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
203 		dma = 1;
204 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
205 #else
206 	if (b_pfn < blk_max_low_pfn)
207 		dma = 1;
208 	q->limits.bounce_pfn = b_pfn;
209 #endif
210 	if (dma) {
211 		init_emergency_isa_pool();
212 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
213 		q->limits.bounce_pfn = b_pfn;
214 	}
215 }
216 EXPORT_SYMBOL(blk_queue_bounce_limit);
217 
218 /**
219  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
220  * @q:  the request queue for the device
221  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
222  *
223  * Description:
224  *    Enables a low level driver to set a hard upper limit,
225  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
226  *    the device driver based upon the capabilities of the I/O
227  *    controller.
228  *
229  *    max_dev_sectors is a hard limit imposed by the storage device for
230  *    READ/WRITE requests. It is set by the disk driver.
231  *
232  *    max_sectors is a soft limit imposed by the block layer for
233  *    filesystem type requests.  This value can be overridden on a
234  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
235  *    The soft limit can not exceed max_hw_sectors.
236  **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)237 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
238 {
239 	struct queue_limits *limits = &q->limits;
240 	unsigned int max_sectors;
241 
242 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
243 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
244 		printk(KERN_INFO "%s: set to minimum %d\n",
245 		       __func__, max_hw_sectors);
246 	}
247 
248 	limits->max_hw_sectors = max_hw_sectors;
249 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
250 	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
251 	limits->max_sectors = max_sectors;
252 }
253 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
254 
255 /**
256  * blk_queue_chunk_sectors - set size of the chunk for this queue
257  * @q:  the request queue for the device
258  * @chunk_sectors:  chunk sectors in the usual 512b unit
259  *
260  * Description:
261  *    If a driver doesn't want IOs to cross a given chunk size, it can set
262  *    this limit and prevent merging across chunks. Note that the chunk size
263  *    must currently be a power-of-2 in sectors. Also note that the block
264  *    layer must accept a page worth of data at any offset. So if the
265  *    crossing of chunks is a hard limitation in the driver, it must still be
266  *    prepared to split single page bios.
267  **/
blk_queue_chunk_sectors(struct request_queue * q,unsigned int chunk_sectors)268 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
269 {
270 	BUG_ON(!is_power_of_2(chunk_sectors));
271 	q->limits.chunk_sectors = chunk_sectors;
272 }
273 EXPORT_SYMBOL(blk_queue_chunk_sectors);
274 
275 /**
276  * blk_queue_max_discard_sectors - set max sectors for a single discard
277  * @q:  the request queue for the device
278  * @max_discard_sectors: maximum number of sectors to discard
279  **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)280 void blk_queue_max_discard_sectors(struct request_queue *q,
281 		unsigned int max_discard_sectors)
282 {
283 	q->limits.max_hw_discard_sectors = max_discard_sectors;
284 	q->limits.max_discard_sectors = max_discard_sectors;
285 }
286 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
287 
288 /**
289  * blk_queue_max_write_same_sectors - set max sectors for a single write same
290  * @q:  the request queue for the device
291  * @max_write_same_sectors: maximum number of sectors to write per command
292  **/
blk_queue_max_write_same_sectors(struct request_queue * q,unsigned int max_write_same_sectors)293 void blk_queue_max_write_same_sectors(struct request_queue *q,
294 				      unsigned int max_write_same_sectors)
295 {
296 	q->limits.max_write_same_sectors = max_write_same_sectors;
297 }
298 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
299 
300 /**
301  * blk_queue_max_segments - set max hw segments for a request for this queue
302  * @q:  the request queue for the device
303  * @max_segments:  max number of segments
304  *
305  * Description:
306  *    Enables a low level driver to set an upper limit on the number of
307  *    hw data segments in a request.
308  **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)309 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
310 {
311 	if (!max_segments) {
312 		max_segments = 1;
313 		printk(KERN_INFO "%s: set to minimum %d\n",
314 		       __func__, max_segments);
315 	}
316 
317 	q->limits.max_segments = max_segments;
318 }
319 EXPORT_SYMBOL(blk_queue_max_segments);
320 
321 /**
322  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
323  * @q:  the request queue for the device
324  * @max_size:  max size of segment in bytes
325  *
326  * Description:
327  *    Enables a low level driver to set an upper limit on the size of a
328  *    coalesced segment
329  **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)330 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
331 {
332 	if (max_size < PAGE_CACHE_SIZE) {
333 		max_size = PAGE_CACHE_SIZE;
334 		printk(KERN_INFO "%s: set to minimum %d\n",
335 		       __func__, max_size);
336 	}
337 
338 	q->limits.max_segment_size = max_size;
339 }
340 EXPORT_SYMBOL(blk_queue_max_segment_size);
341 
342 /**
343  * blk_queue_logical_block_size - set logical block size for the queue
344  * @q:  the request queue for the device
345  * @size:  the logical block size, in bytes
346  *
347  * Description:
348  *   This should be set to the lowest possible block size that the
349  *   storage device can address.  The default of 512 covers most
350  *   hardware.
351  **/
blk_queue_logical_block_size(struct request_queue * q,unsigned int size)352 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
353 {
354 	q->limits.logical_block_size = size;
355 
356 	if (q->limits.physical_block_size < size)
357 		q->limits.physical_block_size = size;
358 
359 	if (q->limits.io_min < q->limits.physical_block_size)
360 		q->limits.io_min = q->limits.physical_block_size;
361 }
362 EXPORT_SYMBOL(blk_queue_logical_block_size);
363 
364 /**
365  * blk_queue_physical_block_size - set physical block size for the queue
366  * @q:  the request queue for the device
367  * @size:  the physical block size, in bytes
368  *
369  * Description:
370  *   This should be set to the lowest possible sector size that the
371  *   hardware can operate on without reverting to read-modify-write
372  *   operations.
373  */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)374 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
375 {
376 	q->limits.physical_block_size = size;
377 
378 	if (q->limits.physical_block_size < q->limits.logical_block_size)
379 		q->limits.physical_block_size = q->limits.logical_block_size;
380 
381 	if (q->limits.io_min < q->limits.physical_block_size)
382 		q->limits.io_min = q->limits.physical_block_size;
383 }
384 EXPORT_SYMBOL(blk_queue_physical_block_size);
385 
386 /**
387  * blk_queue_alignment_offset - set physical block alignment offset
388  * @q:	the request queue for the device
389  * @offset: alignment offset in bytes
390  *
391  * Description:
392  *   Some devices are naturally misaligned to compensate for things like
393  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
394  *   should call this function for devices whose first sector is not
395  *   naturally aligned.
396  */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)397 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
398 {
399 	q->limits.alignment_offset =
400 		offset & (q->limits.physical_block_size - 1);
401 	q->limits.misaligned = 0;
402 }
403 EXPORT_SYMBOL(blk_queue_alignment_offset);
404 
405 /**
406  * blk_limits_io_min - set minimum request size for a device
407  * @limits: the queue limits
408  * @min:  smallest I/O size in bytes
409  *
410  * Description:
411  *   Some devices have an internal block size bigger than the reported
412  *   hardware sector size.  This function can be used to signal the
413  *   smallest I/O the device can perform without incurring a performance
414  *   penalty.
415  */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)416 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
417 {
418 	limits->io_min = min;
419 
420 	if (limits->io_min < limits->logical_block_size)
421 		limits->io_min = limits->logical_block_size;
422 
423 	if (limits->io_min < limits->physical_block_size)
424 		limits->io_min = limits->physical_block_size;
425 }
426 EXPORT_SYMBOL(blk_limits_io_min);
427 
428 /**
429  * blk_queue_io_min - set minimum request size for the queue
430  * @q:	the request queue for the device
431  * @min:  smallest I/O size in bytes
432  *
433  * Description:
434  *   Storage devices may report a granularity or preferred minimum I/O
435  *   size which is the smallest request the device can perform without
436  *   incurring a performance penalty.  For disk drives this is often the
437  *   physical block size.  For RAID arrays it is often the stripe chunk
438  *   size.  A properly aligned multiple of minimum_io_size is the
439  *   preferred request size for workloads where a high number of I/O
440  *   operations is desired.
441  */
blk_queue_io_min(struct request_queue * q,unsigned int min)442 void blk_queue_io_min(struct request_queue *q, unsigned int min)
443 {
444 	blk_limits_io_min(&q->limits, min);
445 }
446 EXPORT_SYMBOL(blk_queue_io_min);
447 
448 /**
449  * blk_limits_io_opt - set optimal request size for a device
450  * @limits: the queue limits
451  * @opt:  smallest I/O size in bytes
452  *
453  * Description:
454  *   Storage devices may report an optimal I/O size, which is the
455  *   device's preferred unit for sustained I/O.  This is rarely reported
456  *   for disk drives.  For RAID arrays it is usually the stripe width or
457  *   the internal track size.  A properly aligned multiple of
458  *   optimal_io_size is the preferred request size for workloads where
459  *   sustained throughput is desired.
460  */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)461 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
462 {
463 	limits->io_opt = opt;
464 }
465 EXPORT_SYMBOL(blk_limits_io_opt);
466 
467 /**
468  * blk_queue_io_opt - set optimal request size for the queue
469  * @q:	the request queue for the device
470  * @opt:  optimal request size in bytes
471  *
472  * Description:
473  *   Storage devices may report an optimal I/O size, which is the
474  *   device's preferred unit for sustained I/O.  This is rarely reported
475  *   for disk drives.  For RAID arrays it is usually the stripe width or
476  *   the internal track size.  A properly aligned multiple of
477  *   optimal_io_size is the preferred request size for workloads where
478  *   sustained throughput is desired.
479  */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)480 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
481 {
482 	blk_limits_io_opt(&q->limits, opt);
483 }
484 EXPORT_SYMBOL(blk_queue_io_opt);
485 
486 /**
487  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
488  * @t:	the stacking driver (top)
489  * @b:  the underlying device (bottom)
490  **/
blk_queue_stack_limits(struct request_queue * t,struct request_queue * b)491 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
492 {
493 	blk_stack_limits(&t->limits, &b->limits, 0);
494 }
495 EXPORT_SYMBOL(blk_queue_stack_limits);
496 
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)497 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
498 {
499 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
500 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
501 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
502 	return sectors;
503 }
504 
505 /**
506  * blk_stack_limits - adjust queue_limits for stacked devices
507  * @t:	the stacking driver limits (top device)
508  * @b:  the underlying queue limits (bottom, component device)
509  * @start:  first data sector within component device
510  *
511  * Description:
512  *    This function is used by stacking drivers like MD and DM to ensure
513  *    that all component devices have compatible block sizes and
514  *    alignments.  The stacking driver must provide a queue_limits
515  *    struct (top) and then iteratively call the stacking function for
516  *    all component (bottom) devices.  The stacking function will
517  *    attempt to combine the values and ensure proper alignment.
518  *
519  *    Returns 0 if the top and bottom queue_limits are compatible.  The
520  *    top device's block sizes and alignment offsets may be adjusted to
521  *    ensure alignment with the bottom device. If no compatible sizes
522  *    and alignments exist, -1 is returned and the resulting top
523  *    queue_limits will have the misaligned flag set to indicate that
524  *    the alignment_offset is undefined.
525  */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)526 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
527 		     sector_t start)
528 {
529 	unsigned int top, bottom, alignment, ret = 0;
530 
531 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
532 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
533 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
534 	t->max_write_same_sectors = min(t->max_write_same_sectors,
535 					b->max_write_same_sectors);
536 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
537 
538 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
539 					    b->seg_boundary_mask);
540 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
541 					    b->virt_boundary_mask);
542 
543 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
544 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
545 						 b->max_integrity_segments);
546 
547 	t->max_segment_size = min_not_zero(t->max_segment_size,
548 					   b->max_segment_size);
549 
550 	t->misaligned |= b->misaligned;
551 
552 	alignment = queue_limit_alignment_offset(b, start);
553 
554 	/* Bottom device has different alignment.  Check that it is
555 	 * compatible with the current top alignment.
556 	 */
557 	if (t->alignment_offset != alignment) {
558 
559 		top = max(t->physical_block_size, t->io_min)
560 			+ t->alignment_offset;
561 		bottom = max(b->physical_block_size, b->io_min) + alignment;
562 
563 		/* Verify that top and bottom intervals line up */
564 		if (max(top, bottom) % min(top, bottom)) {
565 			t->misaligned = 1;
566 			ret = -1;
567 		}
568 	}
569 
570 	t->logical_block_size = max(t->logical_block_size,
571 				    b->logical_block_size);
572 
573 	t->physical_block_size = max(t->physical_block_size,
574 				     b->physical_block_size);
575 
576 	t->io_min = max(t->io_min, b->io_min);
577 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
578 
579 	t->cluster &= b->cluster;
580 	t->discard_zeroes_data &= b->discard_zeroes_data;
581 
582 	/* Physical block size a multiple of the logical block size? */
583 	if (t->physical_block_size & (t->logical_block_size - 1)) {
584 		t->physical_block_size = t->logical_block_size;
585 		t->misaligned = 1;
586 		ret = -1;
587 	}
588 
589 	/* Minimum I/O a multiple of the physical block size? */
590 	if (t->io_min & (t->physical_block_size - 1)) {
591 		t->io_min = t->physical_block_size;
592 		t->misaligned = 1;
593 		ret = -1;
594 	}
595 
596 	/* Optimal I/O a multiple of the physical block size? */
597 	if (t->io_opt & (t->physical_block_size - 1)) {
598 		t->io_opt = 0;
599 		t->misaligned = 1;
600 		ret = -1;
601 	}
602 
603 	t->raid_partial_stripes_expensive =
604 		max(t->raid_partial_stripes_expensive,
605 		    b->raid_partial_stripes_expensive);
606 
607 	/* Find lowest common alignment_offset */
608 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
609 		% max(t->physical_block_size, t->io_min);
610 
611 	/* Verify that new alignment_offset is on a logical block boundary */
612 	if (t->alignment_offset & (t->logical_block_size - 1)) {
613 		t->misaligned = 1;
614 		ret = -1;
615 	}
616 
617 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
618 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
619 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
620 
621 	/* Discard alignment and granularity */
622 	if (b->discard_granularity) {
623 		alignment = queue_limit_discard_alignment(b, start);
624 
625 		if (t->discard_granularity != 0 &&
626 		    t->discard_alignment != alignment) {
627 			top = t->discard_granularity + t->discard_alignment;
628 			bottom = b->discard_granularity + alignment;
629 
630 			/* Verify that top and bottom intervals line up */
631 			if ((max(top, bottom) % min(top, bottom)) != 0)
632 				t->discard_misaligned = 1;
633 		}
634 
635 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
636 						      b->max_discard_sectors);
637 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
638 							 b->max_hw_discard_sectors);
639 		t->discard_granularity = max(t->discard_granularity,
640 					     b->discard_granularity);
641 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
642 			t->discard_granularity;
643 	}
644 
645 	return ret;
646 }
647 EXPORT_SYMBOL(blk_stack_limits);
648 
649 /**
650  * bdev_stack_limits - adjust queue limits for stacked drivers
651  * @t:	the stacking driver limits (top device)
652  * @bdev:  the component block_device (bottom)
653  * @start:  first data sector within component device
654  *
655  * Description:
656  *    Merges queue limits for a top device and a block_device.  Returns
657  *    0 if alignment didn't change.  Returns -1 if adding the bottom
658  *    device caused misalignment.
659  */
bdev_stack_limits(struct queue_limits * t,struct block_device * bdev,sector_t start)660 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
661 		      sector_t start)
662 {
663 	struct request_queue *bq = bdev_get_queue(bdev);
664 
665 	start += get_start_sect(bdev);
666 
667 	return blk_stack_limits(t, &bq->limits, start);
668 }
669 EXPORT_SYMBOL(bdev_stack_limits);
670 
671 /**
672  * disk_stack_limits - adjust queue limits for stacked drivers
673  * @disk:  MD/DM gendisk (top)
674  * @bdev:  the underlying block device (bottom)
675  * @offset:  offset to beginning of data within component device
676  *
677  * Description:
678  *    Merges the limits for a top level gendisk and a bottom level
679  *    block_device.
680  */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)681 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
682 		       sector_t offset)
683 {
684 	struct request_queue *t = disk->queue;
685 
686 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
687 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
688 
689 		disk_name(disk, 0, top);
690 		bdevname(bdev, bottom);
691 
692 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
693 		       top, bottom);
694 	}
695 }
696 EXPORT_SYMBOL(disk_stack_limits);
697 
698 /**
699  * blk_queue_dma_pad - set pad mask
700  * @q:     the request queue for the device
701  * @mask:  pad mask
702  *
703  * Set dma pad mask.
704  *
705  * Appending pad buffer to a request modifies the last entry of a
706  * scatter list such that it includes the pad buffer.
707  **/
blk_queue_dma_pad(struct request_queue * q,unsigned int mask)708 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
709 {
710 	q->dma_pad_mask = mask;
711 }
712 EXPORT_SYMBOL(blk_queue_dma_pad);
713 
714 /**
715  * blk_queue_update_dma_pad - update pad mask
716  * @q:     the request queue for the device
717  * @mask:  pad mask
718  *
719  * Update dma pad mask.
720  *
721  * Appending pad buffer to a request modifies the last entry of a
722  * scatter list such that it includes the pad buffer.
723  **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)724 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
725 {
726 	if (mask > q->dma_pad_mask)
727 		q->dma_pad_mask = mask;
728 }
729 EXPORT_SYMBOL(blk_queue_update_dma_pad);
730 
731 /**
732  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
733  * @q:  the request queue for the device
734  * @dma_drain_needed: fn which returns non-zero if drain is necessary
735  * @buf:	physically contiguous buffer
736  * @size:	size of the buffer in bytes
737  *
738  * Some devices have excess DMA problems and can't simply discard (or
739  * zero fill) the unwanted piece of the transfer.  They have to have a
740  * real area of memory to transfer it into.  The use case for this is
741  * ATAPI devices in DMA mode.  If the packet command causes a transfer
742  * bigger than the transfer size some HBAs will lock up if there
743  * aren't DMA elements to contain the excess transfer.  What this API
744  * does is adjust the queue so that the buf is always appended
745  * silently to the scatterlist.
746  *
747  * Note: This routine adjusts max_hw_segments to make room for appending
748  * the drain buffer.  If you call blk_queue_max_segments() after calling
749  * this routine, you must set the limit to one fewer than your device
750  * can support otherwise there won't be room for the drain buffer.
751  */
blk_queue_dma_drain(struct request_queue * q,dma_drain_needed_fn * dma_drain_needed,void * buf,unsigned int size)752 int blk_queue_dma_drain(struct request_queue *q,
753 			       dma_drain_needed_fn *dma_drain_needed,
754 			       void *buf, unsigned int size)
755 {
756 	if (queue_max_segments(q) < 2)
757 		return -EINVAL;
758 	/* make room for appending the drain */
759 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
760 	q->dma_drain_needed = dma_drain_needed;
761 	q->dma_drain_buffer = buf;
762 	q->dma_drain_size = size;
763 
764 	return 0;
765 }
766 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
767 
768 /**
769  * blk_queue_segment_boundary - set boundary rules for segment merging
770  * @q:  the request queue for the device
771  * @mask:  the memory boundary mask
772  **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)773 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
774 {
775 	if (mask < PAGE_CACHE_SIZE - 1) {
776 		mask = PAGE_CACHE_SIZE - 1;
777 		printk(KERN_INFO "%s: set to minimum %lx\n",
778 		       __func__, mask);
779 	}
780 
781 	q->limits.seg_boundary_mask = mask;
782 }
783 EXPORT_SYMBOL(blk_queue_segment_boundary);
784 
785 /**
786  * blk_queue_virt_boundary - set boundary rules for bio merging
787  * @q:  the request queue for the device
788  * @mask:  the memory boundary mask
789  **/
blk_queue_virt_boundary(struct request_queue * q,unsigned long mask)790 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
791 {
792 	q->limits.virt_boundary_mask = mask;
793 }
794 EXPORT_SYMBOL(blk_queue_virt_boundary);
795 
796 /**
797  * blk_queue_dma_alignment - set dma length and memory alignment
798  * @q:     the request queue for the device
799  * @mask:  alignment mask
800  *
801  * description:
802  *    set required memory and length alignment for direct dma transactions.
803  *    this is used when building direct io requests for the queue.
804  *
805  **/
blk_queue_dma_alignment(struct request_queue * q,int mask)806 void blk_queue_dma_alignment(struct request_queue *q, int mask)
807 {
808 	q->dma_alignment = mask;
809 }
810 EXPORT_SYMBOL(blk_queue_dma_alignment);
811 
812 /**
813  * blk_queue_update_dma_alignment - update dma length and memory alignment
814  * @q:     the request queue for the device
815  * @mask:  alignment mask
816  *
817  * description:
818  *    update required memory and length alignment for direct dma transactions.
819  *    If the requested alignment is larger than the current alignment, then
820  *    the current queue alignment is updated to the new value, otherwise it
821  *    is left alone.  The design of this is to allow multiple objects
822  *    (driver, device, transport etc) to set their respective
823  *    alignments without having them interfere.
824  *
825  **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)826 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
827 {
828 	BUG_ON(mask > PAGE_SIZE);
829 
830 	if (mask > q->dma_alignment)
831 		q->dma_alignment = mask;
832 }
833 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
834 
835 /**
836  * blk_queue_flush - configure queue's cache flush capability
837  * @q:		the request queue for the device
838  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
839  *
840  * Tell block layer cache flush capability of @q.  If it supports
841  * flushing, REQ_FLUSH should be set.  If it supports bypassing
842  * write cache for individual writes, REQ_FUA should be set.
843  */
blk_queue_flush(struct request_queue * q,unsigned int flush)844 void blk_queue_flush(struct request_queue *q, unsigned int flush)
845 {
846 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
847 
848 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
849 		flush &= ~REQ_FUA;
850 
851 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
852 }
853 EXPORT_SYMBOL_GPL(blk_queue_flush);
854 
blk_queue_flush_queueable(struct request_queue * q,bool queueable)855 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
856 {
857 	q->flush_not_queueable = !queueable;
858 }
859 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
860 
blk_settings_init(void)861 static int __init blk_settings_init(void)
862 {
863 	blk_max_low_pfn = max_low_pfn - 1;
864 	blk_max_pfn = max_pfn - 1;
865 	return 0;
866 }
867 subsys_initcall(blk_settings_init);
868