1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28
29 /*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52 struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56 };
57
58 struct throtl_service_queue {
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
76 struct timer_list pending_timer; /* fires on first_pending_disptime */
77 };
78
79 enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
82 };
83
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
86 struct throtl_grp {
87 /* must be the first member */
88 struct blkg_policy_data pd;
89
90 /* active throtl group service_queue member */
91 struct rb_node rb_node;
92
93 /* throtl_data this group belongs to */
94 struct throtl_data *td;
95
96 /* this group's service queue */
97 struct throtl_service_queue service_queue;
98
99 /*
100 * qnode_on_self is used when bios are directly queued to this
101 * throtl_grp so that local bios compete fairly with bios
102 * dispatched from children. qnode_on_parent is used when bios are
103 * dispatched from this throtl_grp into its parent and will compete
104 * with the sibling qnode_on_parents and the parent's
105 * qnode_on_self.
106 */
107 struct throtl_qnode qnode_on_self[2];
108 struct throtl_qnode qnode_on_parent[2];
109
110 /*
111 * Dispatch time in jiffies. This is the estimated time when group
112 * will unthrottle and is ready to dispatch more bio. It is used as
113 * key to sort active groups in service tree.
114 */
115 unsigned long disptime;
116
117 unsigned int flags;
118
119 /* are there any throtl rules between this group and td? */
120 bool has_rules[2];
121
122 /* bytes per second rate limits */
123 uint64_t bps[2];
124
125 /* IOPS limits */
126 unsigned int iops[2];
127
128 /* Number of bytes disptached in current slice */
129 uint64_t bytes_disp[2];
130 /* Number of bio's dispatched in current slice */
131 unsigned int io_disp[2];
132
133 /* When did we start a new slice */
134 unsigned long slice_start[2];
135 unsigned long slice_end[2];
136 };
137
138 struct throtl_data
139 {
140 /* service tree for active throtl groups */
141 struct throtl_service_queue service_queue;
142
143 struct request_queue *queue;
144
145 /* Total Number of queued bios on READ and WRITE lists */
146 unsigned int nr_queued[2];
147
148 /*
149 * number of total undestroyed groups
150 */
151 unsigned int nr_undestroyed_grps;
152
153 /* Work for dispatching throttled bios */
154 struct work_struct dispatch_work;
155 };
156
157 static void throtl_pending_timer_fn(unsigned long arg);
158
pd_to_tg(struct blkg_policy_data * pd)159 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
160 {
161 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
162 }
163
blkg_to_tg(struct blkcg_gq * blkg)164 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
165 {
166 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
167 }
168
tg_to_blkg(struct throtl_grp * tg)169 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
170 {
171 return pd_to_blkg(&tg->pd);
172 }
173
174 /**
175 * sq_to_tg - return the throl_grp the specified service queue belongs to
176 * @sq: the throtl_service_queue of interest
177 *
178 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
179 * embedded in throtl_data, %NULL is returned.
180 */
sq_to_tg(struct throtl_service_queue * sq)181 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
182 {
183 if (sq && sq->parent_sq)
184 return container_of(sq, struct throtl_grp, service_queue);
185 else
186 return NULL;
187 }
188
189 /**
190 * sq_to_td - return throtl_data the specified service queue belongs to
191 * @sq: the throtl_service_queue of interest
192 *
193 * A service_queue can be embeded in either a throtl_grp or throtl_data.
194 * Determine the associated throtl_data accordingly and return it.
195 */
sq_to_td(struct throtl_service_queue * sq)196 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
197 {
198 struct throtl_grp *tg = sq_to_tg(sq);
199
200 if (tg)
201 return tg->td;
202 else
203 return container_of(sq, struct throtl_data, service_queue);
204 }
205
206 /**
207 * throtl_log - log debug message via blktrace
208 * @sq: the service_queue being reported
209 * @fmt: printf format string
210 * @args: printf args
211 *
212 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
213 * throtl_grp; otherwise, just "throtl".
214 *
215 * TODO: this should be made a function and name formatting should happen
216 * after testing whether blktrace is enabled.
217 */
218 #define throtl_log(sq, fmt, args...) do { \
219 struct throtl_grp *__tg = sq_to_tg((sq)); \
220 struct throtl_data *__td = sq_to_td((sq)); \
221 \
222 (void)__td; \
223 if ((__tg)) { \
224 char __pbuf[128]; \
225 \
226 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
227 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
228 } else { \
229 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
230 } \
231 } while (0)
232
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)233 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
234 {
235 INIT_LIST_HEAD(&qn->node);
236 bio_list_init(&qn->bios);
237 qn->tg = tg;
238 }
239
240 /**
241 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
242 * @bio: bio being added
243 * @qn: qnode to add bio to
244 * @queued: the service_queue->queued[] list @qn belongs to
245 *
246 * Add @bio to @qn and put @qn on @queued if it's not already on.
247 * @qn->tg's reference count is bumped when @qn is activated. See the
248 * comment on top of throtl_qnode definition for details.
249 */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)250 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
251 struct list_head *queued)
252 {
253 bio_list_add(&qn->bios, bio);
254 if (list_empty(&qn->node)) {
255 list_add_tail(&qn->node, queued);
256 blkg_get(tg_to_blkg(qn->tg));
257 }
258 }
259
260 /**
261 * throtl_peek_queued - peek the first bio on a qnode list
262 * @queued: the qnode list to peek
263 */
throtl_peek_queued(struct list_head * queued)264 static struct bio *throtl_peek_queued(struct list_head *queued)
265 {
266 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
267 struct bio *bio;
268
269 if (list_empty(queued))
270 return NULL;
271
272 bio = bio_list_peek(&qn->bios);
273 WARN_ON_ONCE(!bio);
274 return bio;
275 }
276
277 /**
278 * throtl_pop_queued - pop the first bio form a qnode list
279 * @queued: the qnode list to pop a bio from
280 * @tg_to_put: optional out argument for throtl_grp to put
281 *
282 * Pop the first bio from the qnode list @queued. After popping, the first
283 * qnode is removed from @queued if empty or moved to the end of @queued so
284 * that the popping order is round-robin.
285 *
286 * When the first qnode is removed, its associated throtl_grp should be put
287 * too. If @tg_to_put is NULL, this function automatically puts it;
288 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
289 * responsible for putting it.
290 */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)291 static struct bio *throtl_pop_queued(struct list_head *queued,
292 struct throtl_grp **tg_to_put)
293 {
294 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
295 struct bio *bio;
296
297 if (list_empty(queued))
298 return NULL;
299
300 bio = bio_list_pop(&qn->bios);
301 WARN_ON_ONCE(!bio);
302
303 if (bio_list_empty(&qn->bios)) {
304 list_del_init(&qn->node);
305 if (tg_to_put)
306 *tg_to_put = qn->tg;
307 else
308 blkg_put(tg_to_blkg(qn->tg));
309 } else {
310 list_move_tail(&qn->node, queued);
311 }
312
313 return bio;
314 }
315
316 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)317 static void throtl_service_queue_init(struct throtl_service_queue *sq)
318 {
319 INIT_LIST_HEAD(&sq->queued[0]);
320 INIT_LIST_HEAD(&sq->queued[1]);
321 sq->pending_tree = RB_ROOT;
322 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
323 (unsigned long)sq);
324 }
325
throtl_pd_alloc(gfp_t gfp,int node)326 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
327 {
328 struct throtl_grp *tg;
329 int rw;
330
331 tg = kzalloc_node(sizeof(*tg), gfp, node);
332 if (!tg)
333 return NULL;
334
335 throtl_service_queue_init(&tg->service_queue);
336
337 for (rw = READ; rw <= WRITE; rw++) {
338 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
339 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
340 }
341
342 RB_CLEAR_NODE(&tg->rb_node);
343 tg->bps[READ] = -1;
344 tg->bps[WRITE] = -1;
345 tg->iops[READ] = -1;
346 tg->iops[WRITE] = -1;
347
348 return &tg->pd;
349 }
350
throtl_pd_init(struct blkg_policy_data * pd)351 static void throtl_pd_init(struct blkg_policy_data *pd)
352 {
353 struct throtl_grp *tg = pd_to_tg(pd);
354 struct blkcg_gq *blkg = tg_to_blkg(tg);
355 struct throtl_data *td = blkg->q->td;
356 struct throtl_service_queue *sq = &tg->service_queue;
357
358 /*
359 * If on the default hierarchy, we switch to properly hierarchical
360 * behavior where limits on a given throtl_grp are applied to the
361 * whole subtree rather than just the group itself. e.g. If 16M
362 * read_bps limit is set on the root group, the whole system can't
363 * exceed 16M for the device.
364 *
365 * If not on the default hierarchy, the broken flat hierarchy
366 * behavior is retained where all throtl_grps are treated as if
367 * they're all separate root groups right below throtl_data.
368 * Limits of a group don't interact with limits of other groups
369 * regardless of the position of the group in the hierarchy.
370 */
371 sq->parent_sq = &td->service_queue;
372 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
373 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
374 tg->td = td;
375 }
376
377 /*
378 * Set has_rules[] if @tg or any of its parents have limits configured.
379 * This doesn't require walking up to the top of the hierarchy as the
380 * parent's has_rules[] is guaranteed to be correct.
381 */
tg_update_has_rules(struct throtl_grp * tg)382 static void tg_update_has_rules(struct throtl_grp *tg)
383 {
384 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
385 int rw;
386
387 for (rw = READ; rw <= WRITE; rw++)
388 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
389 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
390 }
391
throtl_pd_online(struct blkg_policy_data * pd)392 static void throtl_pd_online(struct blkg_policy_data *pd)
393 {
394 /*
395 * We don't want new groups to escape the limits of its ancestors.
396 * Update has_rules[] after a new group is brought online.
397 */
398 tg_update_has_rules(pd_to_tg(pd));
399 }
400
throtl_pd_free(struct blkg_policy_data * pd)401 static void throtl_pd_free(struct blkg_policy_data *pd)
402 {
403 struct throtl_grp *tg = pd_to_tg(pd);
404
405 del_timer_sync(&tg->service_queue.pending_timer);
406 kfree(tg);
407 }
408
409 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)410 throtl_rb_first(struct throtl_service_queue *parent_sq)
411 {
412 /* Service tree is empty */
413 if (!parent_sq->nr_pending)
414 return NULL;
415
416 if (!parent_sq->first_pending)
417 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
418
419 if (parent_sq->first_pending)
420 return rb_entry_tg(parent_sq->first_pending);
421
422 return NULL;
423 }
424
rb_erase_init(struct rb_node * n,struct rb_root * root)425 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
426 {
427 rb_erase(n, root);
428 RB_CLEAR_NODE(n);
429 }
430
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)431 static void throtl_rb_erase(struct rb_node *n,
432 struct throtl_service_queue *parent_sq)
433 {
434 if (parent_sq->first_pending == n)
435 parent_sq->first_pending = NULL;
436 rb_erase_init(n, &parent_sq->pending_tree);
437 --parent_sq->nr_pending;
438 }
439
update_min_dispatch_time(struct throtl_service_queue * parent_sq)440 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
441 {
442 struct throtl_grp *tg;
443
444 tg = throtl_rb_first(parent_sq);
445 if (!tg)
446 return;
447
448 parent_sq->first_pending_disptime = tg->disptime;
449 }
450
tg_service_queue_add(struct throtl_grp * tg)451 static void tg_service_queue_add(struct throtl_grp *tg)
452 {
453 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
454 struct rb_node **node = &parent_sq->pending_tree.rb_node;
455 struct rb_node *parent = NULL;
456 struct throtl_grp *__tg;
457 unsigned long key = tg->disptime;
458 int left = 1;
459
460 while (*node != NULL) {
461 parent = *node;
462 __tg = rb_entry_tg(parent);
463
464 if (time_before(key, __tg->disptime))
465 node = &parent->rb_left;
466 else {
467 node = &parent->rb_right;
468 left = 0;
469 }
470 }
471
472 if (left)
473 parent_sq->first_pending = &tg->rb_node;
474
475 rb_link_node(&tg->rb_node, parent, node);
476 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
477 }
478
__throtl_enqueue_tg(struct throtl_grp * tg)479 static void __throtl_enqueue_tg(struct throtl_grp *tg)
480 {
481 tg_service_queue_add(tg);
482 tg->flags |= THROTL_TG_PENDING;
483 tg->service_queue.parent_sq->nr_pending++;
484 }
485
throtl_enqueue_tg(struct throtl_grp * tg)486 static void throtl_enqueue_tg(struct throtl_grp *tg)
487 {
488 if (!(tg->flags & THROTL_TG_PENDING))
489 __throtl_enqueue_tg(tg);
490 }
491
__throtl_dequeue_tg(struct throtl_grp * tg)492 static void __throtl_dequeue_tg(struct throtl_grp *tg)
493 {
494 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
495 tg->flags &= ~THROTL_TG_PENDING;
496 }
497
throtl_dequeue_tg(struct throtl_grp * tg)498 static void throtl_dequeue_tg(struct throtl_grp *tg)
499 {
500 if (tg->flags & THROTL_TG_PENDING)
501 __throtl_dequeue_tg(tg);
502 }
503
504 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)505 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
506 unsigned long expires)
507 {
508 unsigned long max_expire = jiffies + 8 * throtl_slice;
509
510 /*
511 * Since we are adjusting the throttle limit dynamically, the sleep
512 * time calculated according to previous limit might be invalid. It's
513 * possible the cgroup sleep time is very long and no other cgroups
514 * have IO running so notify the limit changes. Make sure the cgroup
515 * doesn't sleep too long to avoid the missed notification.
516 */
517 if (time_after(expires, max_expire))
518 expires = max_expire;
519 mod_timer(&sq->pending_timer, expires);
520 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
521 expires - jiffies, jiffies);
522 }
523
524 /**
525 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
526 * @sq: the service_queue to schedule dispatch for
527 * @force: force scheduling
528 *
529 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
530 * dispatch time of the first pending child. Returns %true if either timer
531 * is armed or there's no pending child left. %false if the current
532 * dispatch window is still open and the caller should continue
533 * dispatching.
534 *
535 * If @force is %true, the dispatch timer is always scheduled and this
536 * function is guaranteed to return %true. This is to be used when the
537 * caller can't dispatch itself and needs to invoke pending_timer
538 * unconditionally. Note that forced scheduling is likely to induce short
539 * delay before dispatch starts even if @sq->first_pending_disptime is not
540 * in the future and thus shouldn't be used in hot paths.
541 */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)542 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
543 bool force)
544 {
545 /* any pending children left? */
546 if (!sq->nr_pending)
547 return true;
548
549 update_min_dispatch_time(sq);
550
551 /* is the next dispatch time in the future? */
552 if (force || time_after(sq->first_pending_disptime, jiffies)) {
553 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
554 return true;
555 }
556
557 /* tell the caller to continue dispatching */
558 return false;
559 }
560
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)561 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
562 bool rw, unsigned long start)
563 {
564 tg->bytes_disp[rw] = 0;
565 tg->io_disp[rw] = 0;
566
567 /*
568 * Previous slice has expired. We must have trimmed it after last
569 * bio dispatch. That means since start of last slice, we never used
570 * that bandwidth. Do try to make use of that bandwidth while giving
571 * credit.
572 */
573 if (time_after_eq(start, tg->slice_start[rw]))
574 tg->slice_start[rw] = start;
575
576 tg->slice_end[rw] = jiffies + throtl_slice;
577 throtl_log(&tg->service_queue,
578 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
579 rw == READ ? 'R' : 'W', tg->slice_start[rw],
580 tg->slice_end[rw], jiffies);
581 }
582
throtl_start_new_slice(struct throtl_grp * tg,bool rw)583 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
584 {
585 tg->bytes_disp[rw] = 0;
586 tg->io_disp[rw] = 0;
587 tg->slice_start[rw] = jiffies;
588 tg->slice_end[rw] = jiffies + throtl_slice;
589 throtl_log(&tg->service_queue,
590 "[%c] new slice start=%lu end=%lu jiffies=%lu",
591 rw == READ ? 'R' : 'W', tg->slice_start[rw],
592 tg->slice_end[rw], jiffies);
593 }
594
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)595 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
596 unsigned long jiffy_end)
597 {
598 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
599 }
600
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)601 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
602 unsigned long jiffy_end)
603 {
604 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
605 throtl_log(&tg->service_queue,
606 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
607 rw == READ ? 'R' : 'W', tg->slice_start[rw],
608 tg->slice_end[rw], jiffies);
609 }
610
611 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)612 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
613 {
614 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
615 return false;
616
617 return 1;
618 }
619
620 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)621 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
622 {
623 unsigned long nr_slices, time_elapsed, io_trim;
624 u64 bytes_trim, tmp;
625
626 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
627
628 /*
629 * If bps are unlimited (-1), then time slice don't get
630 * renewed. Don't try to trim the slice if slice is used. A new
631 * slice will start when appropriate.
632 */
633 if (throtl_slice_used(tg, rw))
634 return;
635
636 /*
637 * A bio has been dispatched. Also adjust slice_end. It might happen
638 * that initially cgroup limit was very low resulting in high
639 * slice_end, but later limit was bumped up and bio was dispached
640 * sooner, then we need to reduce slice_end. A high bogus slice_end
641 * is bad because it does not allow new slice to start.
642 */
643
644 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
645
646 time_elapsed = jiffies - tg->slice_start[rw];
647
648 nr_slices = time_elapsed / throtl_slice;
649
650 if (!nr_slices)
651 return;
652 tmp = tg->bps[rw] * throtl_slice * nr_slices;
653 do_div(tmp, HZ);
654 bytes_trim = tmp;
655
656 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
657
658 if (!bytes_trim && !io_trim)
659 return;
660
661 if (tg->bytes_disp[rw] >= bytes_trim)
662 tg->bytes_disp[rw] -= bytes_trim;
663 else
664 tg->bytes_disp[rw] = 0;
665
666 if (tg->io_disp[rw] >= io_trim)
667 tg->io_disp[rw] -= io_trim;
668 else
669 tg->io_disp[rw] = 0;
670
671 tg->slice_start[rw] += nr_slices * throtl_slice;
672
673 throtl_log(&tg->service_queue,
674 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
675 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
676 tg->slice_start[rw], tg->slice_end[rw], jiffies);
677 }
678
tg_with_in_iops_limit(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)679 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
680 unsigned long *wait)
681 {
682 bool rw = bio_data_dir(bio);
683 unsigned int io_allowed;
684 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
685 u64 tmp;
686
687 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
688
689 /* Slice has just started. Consider one slice interval */
690 if (!jiffy_elapsed)
691 jiffy_elapsed_rnd = throtl_slice;
692
693 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
694
695 /*
696 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
697 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
698 * will allow dispatch after 1 second and after that slice should
699 * have been trimmed.
700 */
701
702 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
703 do_div(tmp, HZ);
704
705 if (tmp > UINT_MAX)
706 io_allowed = UINT_MAX;
707 else
708 io_allowed = tmp;
709
710 if (tg->io_disp[rw] + 1 <= io_allowed) {
711 if (wait)
712 *wait = 0;
713 return true;
714 }
715
716 /* Calc approx time to dispatch */
717 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
718
719 if (jiffy_wait > jiffy_elapsed)
720 jiffy_wait = jiffy_wait - jiffy_elapsed;
721 else
722 jiffy_wait = 1;
723
724 if (wait)
725 *wait = jiffy_wait;
726 return 0;
727 }
728
tg_with_in_bps_limit(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)729 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
730 unsigned long *wait)
731 {
732 bool rw = bio_data_dir(bio);
733 u64 bytes_allowed, extra_bytes, tmp;
734 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
735
736 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
737
738 /* Slice has just started. Consider one slice interval */
739 if (!jiffy_elapsed)
740 jiffy_elapsed_rnd = throtl_slice;
741
742 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
743
744 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
745 do_div(tmp, HZ);
746 bytes_allowed = tmp;
747
748 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
749 if (wait)
750 *wait = 0;
751 return true;
752 }
753
754 /* Calc approx time to dispatch */
755 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
756 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
757
758 if (!jiffy_wait)
759 jiffy_wait = 1;
760
761 /*
762 * This wait time is without taking into consideration the rounding
763 * up we did. Add that time also.
764 */
765 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
766 if (wait)
767 *wait = jiffy_wait;
768 return 0;
769 }
770
771 /*
772 * Returns whether one can dispatch a bio or not. Also returns approx number
773 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
774 */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)775 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
776 unsigned long *wait)
777 {
778 bool rw = bio_data_dir(bio);
779 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
780
781 /*
782 * Currently whole state machine of group depends on first bio
783 * queued in the group bio list. So one should not be calling
784 * this function with a different bio if there are other bios
785 * queued.
786 */
787 BUG_ON(tg->service_queue.nr_queued[rw] &&
788 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
789
790 /* If tg->bps = -1, then BW is unlimited */
791 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
792 if (wait)
793 *wait = 0;
794 return true;
795 }
796
797 /*
798 * If previous slice expired, start a new one otherwise renew/extend
799 * existing slice to make sure it is at least throtl_slice interval
800 * long since now.
801 */
802 if (throtl_slice_used(tg, rw))
803 throtl_start_new_slice(tg, rw);
804 else {
805 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
806 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
807 }
808
809 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
810 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
811 if (wait)
812 *wait = 0;
813 return 1;
814 }
815
816 max_wait = max(bps_wait, iops_wait);
817
818 if (wait)
819 *wait = max_wait;
820
821 if (time_before(tg->slice_end[rw], jiffies + max_wait))
822 throtl_extend_slice(tg, rw, jiffies + max_wait);
823
824 return 0;
825 }
826
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)827 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
828 {
829 bool rw = bio_data_dir(bio);
830
831 /* Charge the bio to the group */
832 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
833 tg->io_disp[rw]++;
834
835 /*
836 * REQ_THROTTLED is used to prevent the same bio to be throttled
837 * more than once as a throttled bio will go through blk-throtl the
838 * second time when it eventually gets issued. Set it when a bio
839 * is being charged to a tg.
840 */
841 if (!(bio->bi_rw & REQ_THROTTLED))
842 bio->bi_rw |= REQ_THROTTLED;
843 }
844
845 /**
846 * throtl_add_bio_tg - add a bio to the specified throtl_grp
847 * @bio: bio to add
848 * @qn: qnode to use
849 * @tg: the target throtl_grp
850 *
851 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
852 * tg->qnode_on_self[] is used.
853 */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)854 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
855 struct throtl_grp *tg)
856 {
857 struct throtl_service_queue *sq = &tg->service_queue;
858 bool rw = bio_data_dir(bio);
859
860 if (!qn)
861 qn = &tg->qnode_on_self[rw];
862
863 /*
864 * If @tg doesn't currently have any bios queued in the same
865 * direction, queueing @bio can change when @tg should be
866 * dispatched. Mark that @tg was empty. This is automatically
867 * cleaered on the next tg_update_disptime().
868 */
869 if (!sq->nr_queued[rw])
870 tg->flags |= THROTL_TG_WAS_EMPTY;
871
872 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
873
874 sq->nr_queued[rw]++;
875 throtl_enqueue_tg(tg);
876 }
877
tg_update_disptime(struct throtl_grp * tg)878 static void tg_update_disptime(struct throtl_grp *tg)
879 {
880 struct throtl_service_queue *sq = &tg->service_queue;
881 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
882 struct bio *bio;
883
884 if ((bio = throtl_peek_queued(&sq->queued[READ])))
885 tg_may_dispatch(tg, bio, &read_wait);
886
887 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
888 tg_may_dispatch(tg, bio, &write_wait);
889
890 min_wait = min(read_wait, write_wait);
891 disptime = jiffies + min_wait;
892
893 /* Update dispatch time */
894 throtl_dequeue_tg(tg);
895 tg->disptime = disptime;
896 throtl_enqueue_tg(tg);
897
898 /* see throtl_add_bio_tg() */
899 tg->flags &= ~THROTL_TG_WAS_EMPTY;
900 }
901
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)902 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
903 struct throtl_grp *parent_tg, bool rw)
904 {
905 if (throtl_slice_used(parent_tg, rw)) {
906 throtl_start_new_slice_with_credit(parent_tg, rw,
907 child_tg->slice_start[rw]);
908 }
909
910 }
911
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)912 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
913 {
914 struct throtl_service_queue *sq = &tg->service_queue;
915 struct throtl_service_queue *parent_sq = sq->parent_sq;
916 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
917 struct throtl_grp *tg_to_put = NULL;
918 struct bio *bio;
919
920 /*
921 * @bio is being transferred from @tg to @parent_sq. Popping a bio
922 * from @tg may put its reference and @parent_sq might end up
923 * getting released prematurely. Remember the tg to put and put it
924 * after @bio is transferred to @parent_sq.
925 */
926 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
927 sq->nr_queued[rw]--;
928
929 throtl_charge_bio(tg, bio);
930
931 /*
932 * If our parent is another tg, we just need to transfer @bio to
933 * the parent using throtl_add_bio_tg(). If our parent is
934 * @td->service_queue, @bio is ready to be issued. Put it on its
935 * bio_lists[] and decrease total number queued. The caller is
936 * responsible for issuing these bios.
937 */
938 if (parent_tg) {
939 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
940 start_parent_slice_with_credit(tg, parent_tg, rw);
941 } else {
942 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
943 &parent_sq->queued[rw]);
944 BUG_ON(tg->td->nr_queued[rw] <= 0);
945 tg->td->nr_queued[rw]--;
946 }
947
948 throtl_trim_slice(tg, rw);
949
950 if (tg_to_put)
951 blkg_put(tg_to_blkg(tg_to_put));
952 }
953
throtl_dispatch_tg(struct throtl_grp * tg)954 static int throtl_dispatch_tg(struct throtl_grp *tg)
955 {
956 struct throtl_service_queue *sq = &tg->service_queue;
957 unsigned int nr_reads = 0, nr_writes = 0;
958 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
959 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
960 struct bio *bio;
961
962 /* Try to dispatch 75% READS and 25% WRITES */
963
964 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
965 tg_may_dispatch(tg, bio, NULL)) {
966
967 tg_dispatch_one_bio(tg, bio_data_dir(bio));
968 nr_reads++;
969
970 if (nr_reads >= max_nr_reads)
971 break;
972 }
973
974 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
975 tg_may_dispatch(tg, bio, NULL)) {
976
977 tg_dispatch_one_bio(tg, bio_data_dir(bio));
978 nr_writes++;
979
980 if (nr_writes >= max_nr_writes)
981 break;
982 }
983
984 return nr_reads + nr_writes;
985 }
986
throtl_select_dispatch(struct throtl_service_queue * parent_sq)987 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
988 {
989 unsigned int nr_disp = 0;
990
991 while (1) {
992 struct throtl_grp *tg = throtl_rb_first(parent_sq);
993 struct throtl_service_queue *sq = &tg->service_queue;
994
995 if (!tg)
996 break;
997
998 if (time_before(jiffies, tg->disptime))
999 break;
1000
1001 throtl_dequeue_tg(tg);
1002
1003 nr_disp += throtl_dispatch_tg(tg);
1004
1005 if (sq->nr_queued[0] || sq->nr_queued[1])
1006 tg_update_disptime(tg);
1007
1008 if (nr_disp >= throtl_quantum)
1009 break;
1010 }
1011
1012 return nr_disp;
1013 }
1014
1015 /**
1016 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1017 * @arg: the throtl_service_queue being serviced
1018 *
1019 * This timer is armed when a child throtl_grp with active bio's become
1020 * pending and queued on the service_queue's pending_tree and expires when
1021 * the first child throtl_grp should be dispatched. This function
1022 * dispatches bio's from the children throtl_grps to the parent
1023 * service_queue.
1024 *
1025 * If the parent's parent is another throtl_grp, dispatching is propagated
1026 * by either arming its pending_timer or repeating dispatch directly. If
1027 * the top-level service_tree is reached, throtl_data->dispatch_work is
1028 * kicked so that the ready bio's are issued.
1029 */
throtl_pending_timer_fn(unsigned long arg)1030 static void throtl_pending_timer_fn(unsigned long arg)
1031 {
1032 struct throtl_service_queue *sq = (void *)arg;
1033 struct throtl_grp *tg = sq_to_tg(sq);
1034 struct throtl_data *td = sq_to_td(sq);
1035 struct request_queue *q = td->queue;
1036 struct throtl_service_queue *parent_sq;
1037 bool dispatched;
1038 int ret;
1039
1040 spin_lock_irq(q->queue_lock);
1041 again:
1042 parent_sq = sq->parent_sq;
1043 dispatched = false;
1044
1045 while (true) {
1046 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1047 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1048 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1049
1050 ret = throtl_select_dispatch(sq);
1051 if (ret) {
1052 throtl_log(sq, "bios disp=%u", ret);
1053 dispatched = true;
1054 }
1055
1056 if (throtl_schedule_next_dispatch(sq, false))
1057 break;
1058
1059 /* this dispatch windows is still open, relax and repeat */
1060 spin_unlock_irq(q->queue_lock);
1061 cpu_relax();
1062 spin_lock_irq(q->queue_lock);
1063 }
1064
1065 if (!dispatched)
1066 goto out_unlock;
1067
1068 if (parent_sq) {
1069 /* @parent_sq is another throl_grp, propagate dispatch */
1070 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1071 tg_update_disptime(tg);
1072 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1073 /* window is already open, repeat dispatching */
1074 sq = parent_sq;
1075 tg = sq_to_tg(sq);
1076 goto again;
1077 }
1078 }
1079 } else {
1080 /* reached the top-level, queue issueing */
1081 queue_work(kthrotld_workqueue, &td->dispatch_work);
1082 }
1083 out_unlock:
1084 spin_unlock_irq(q->queue_lock);
1085 }
1086
1087 /**
1088 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1089 * @work: work item being executed
1090 *
1091 * This function is queued for execution when bio's reach the bio_lists[]
1092 * of throtl_data->service_queue. Those bio's are ready and issued by this
1093 * function.
1094 */
blk_throtl_dispatch_work_fn(struct work_struct * work)1095 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1096 {
1097 struct throtl_data *td = container_of(work, struct throtl_data,
1098 dispatch_work);
1099 struct throtl_service_queue *td_sq = &td->service_queue;
1100 struct request_queue *q = td->queue;
1101 struct bio_list bio_list_on_stack;
1102 struct bio *bio;
1103 struct blk_plug plug;
1104 int rw;
1105
1106 bio_list_init(&bio_list_on_stack);
1107
1108 spin_lock_irq(q->queue_lock);
1109 for (rw = READ; rw <= WRITE; rw++)
1110 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1111 bio_list_add(&bio_list_on_stack, bio);
1112 spin_unlock_irq(q->queue_lock);
1113
1114 if (!bio_list_empty(&bio_list_on_stack)) {
1115 blk_start_plug(&plug);
1116 while((bio = bio_list_pop(&bio_list_on_stack)))
1117 generic_make_request(bio);
1118 blk_finish_plug(&plug);
1119 }
1120 }
1121
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1122 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1123 int off)
1124 {
1125 struct throtl_grp *tg = pd_to_tg(pd);
1126 u64 v = *(u64 *)((void *)tg + off);
1127
1128 if (v == -1)
1129 return 0;
1130 return __blkg_prfill_u64(sf, pd, v);
1131 }
1132
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1133 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1134 int off)
1135 {
1136 struct throtl_grp *tg = pd_to_tg(pd);
1137 unsigned int v = *(unsigned int *)((void *)tg + off);
1138
1139 if (v == -1)
1140 return 0;
1141 return __blkg_prfill_u64(sf, pd, v);
1142 }
1143
tg_print_conf_u64(struct seq_file * sf,void * v)1144 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1145 {
1146 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1147 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1148 return 0;
1149 }
1150
tg_print_conf_uint(struct seq_file * sf,void * v)1151 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1152 {
1153 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1154 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1155 return 0;
1156 }
1157
tg_conf_updated(struct throtl_grp * tg)1158 static void tg_conf_updated(struct throtl_grp *tg)
1159 {
1160 struct throtl_service_queue *sq = &tg->service_queue;
1161 struct cgroup_subsys_state *pos_css;
1162 struct blkcg_gq *blkg;
1163
1164 throtl_log(&tg->service_queue,
1165 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1166 tg->bps[READ], tg->bps[WRITE],
1167 tg->iops[READ], tg->iops[WRITE]);
1168
1169 /*
1170 * Update has_rules[] flags for the updated tg's subtree. A tg is
1171 * considered to have rules if either the tg itself or any of its
1172 * ancestors has rules. This identifies groups without any
1173 * restrictions in the whole hierarchy and allows them to bypass
1174 * blk-throttle.
1175 */
1176 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1177 tg_update_has_rules(blkg_to_tg(blkg));
1178
1179 /*
1180 * We're already holding queue_lock and know @tg is valid. Let's
1181 * apply the new config directly.
1182 *
1183 * Restart the slices for both READ and WRITES. It might happen
1184 * that a group's limit are dropped suddenly and we don't want to
1185 * account recently dispatched IO with new low rate.
1186 */
1187 throtl_start_new_slice(tg, 0);
1188 throtl_start_new_slice(tg, 1);
1189
1190 if (tg->flags & THROTL_TG_PENDING) {
1191 tg_update_disptime(tg);
1192 throtl_schedule_next_dispatch(sq->parent_sq, true);
1193 }
1194 }
1195
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1196 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1197 char *buf, size_t nbytes, loff_t off, bool is_u64)
1198 {
1199 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1200 struct blkg_conf_ctx ctx;
1201 struct throtl_grp *tg;
1202 int ret;
1203 u64 v;
1204
1205 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1206 if (ret)
1207 return ret;
1208
1209 ret = -EINVAL;
1210 if (sscanf(ctx.body, "%llu", &v) != 1)
1211 goto out_finish;
1212 if (!v)
1213 v = -1;
1214
1215 tg = blkg_to_tg(ctx.blkg);
1216
1217 if (is_u64)
1218 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1219 else
1220 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1221
1222 tg_conf_updated(tg);
1223 ret = 0;
1224 out_finish:
1225 blkg_conf_finish(&ctx);
1226 return ret ?: nbytes;
1227 }
1228
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1229 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1230 char *buf, size_t nbytes, loff_t off)
1231 {
1232 return tg_set_conf(of, buf, nbytes, off, true);
1233 }
1234
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1235 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1236 char *buf, size_t nbytes, loff_t off)
1237 {
1238 return tg_set_conf(of, buf, nbytes, off, false);
1239 }
1240
1241 static struct cftype throtl_legacy_files[] = {
1242 {
1243 .name = "throttle.read_bps_device",
1244 .private = offsetof(struct throtl_grp, bps[READ]),
1245 .seq_show = tg_print_conf_u64,
1246 .write = tg_set_conf_u64,
1247 },
1248 {
1249 .name = "throttle.write_bps_device",
1250 .private = offsetof(struct throtl_grp, bps[WRITE]),
1251 .seq_show = tg_print_conf_u64,
1252 .write = tg_set_conf_u64,
1253 },
1254 {
1255 .name = "throttle.read_iops_device",
1256 .private = offsetof(struct throtl_grp, iops[READ]),
1257 .seq_show = tg_print_conf_uint,
1258 .write = tg_set_conf_uint,
1259 },
1260 {
1261 .name = "throttle.write_iops_device",
1262 .private = offsetof(struct throtl_grp, iops[WRITE]),
1263 .seq_show = tg_print_conf_uint,
1264 .write = tg_set_conf_uint,
1265 },
1266 {
1267 .name = "throttle.io_service_bytes",
1268 .private = (unsigned long)&blkcg_policy_throtl,
1269 .seq_show = blkg_print_stat_bytes,
1270 },
1271 {
1272 .name = "throttle.io_serviced",
1273 .private = (unsigned long)&blkcg_policy_throtl,
1274 .seq_show = blkg_print_stat_ios,
1275 },
1276 { } /* terminate */
1277 };
1278
tg_prfill_max(struct seq_file * sf,struct blkg_policy_data * pd,int off)1279 static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
1280 int off)
1281 {
1282 struct throtl_grp *tg = pd_to_tg(pd);
1283 const char *dname = blkg_dev_name(pd->blkg);
1284 char bufs[4][21] = { "max", "max", "max", "max" };
1285
1286 if (!dname)
1287 return 0;
1288 if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
1289 tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
1290 return 0;
1291
1292 if (tg->bps[READ] != -1)
1293 snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
1294 if (tg->bps[WRITE] != -1)
1295 snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
1296 if (tg->iops[READ] != -1)
1297 snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
1298 if (tg->iops[WRITE] != -1)
1299 snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);
1300
1301 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1302 dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1303 return 0;
1304 }
1305
tg_print_max(struct seq_file * sf,void * v)1306 static int tg_print_max(struct seq_file *sf, void *v)
1307 {
1308 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
1309 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1310 return 0;
1311 }
1312
tg_set_max(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1313 static ssize_t tg_set_max(struct kernfs_open_file *of,
1314 char *buf, size_t nbytes, loff_t off)
1315 {
1316 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1317 struct blkg_conf_ctx ctx;
1318 struct throtl_grp *tg;
1319 u64 v[4];
1320 int ret;
1321
1322 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1323 if (ret)
1324 return ret;
1325
1326 tg = blkg_to_tg(ctx.blkg);
1327
1328 v[0] = tg->bps[READ];
1329 v[1] = tg->bps[WRITE];
1330 v[2] = tg->iops[READ];
1331 v[3] = tg->iops[WRITE];
1332
1333 while (true) {
1334 char tok[27]; /* wiops=18446744073709551616 */
1335 char *p;
1336 u64 val = -1;
1337 int len;
1338
1339 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1340 break;
1341 if (tok[0] == '\0')
1342 break;
1343 ctx.body += len;
1344
1345 ret = -EINVAL;
1346 p = tok;
1347 strsep(&p, "=");
1348 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1349 goto out_finish;
1350
1351 ret = -ERANGE;
1352 if (!val)
1353 goto out_finish;
1354
1355 ret = -EINVAL;
1356 if (!strcmp(tok, "rbps"))
1357 v[0] = val;
1358 else if (!strcmp(tok, "wbps"))
1359 v[1] = val;
1360 else if (!strcmp(tok, "riops"))
1361 v[2] = min_t(u64, val, UINT_MAX);
1362 else if (!strcmp(tok, "wiops"))
1363 v[3] = min_t(u64, val, UINT_MAX);
1364 else
1365 goto out_finish;
1366 }
1367
1368 tg->bps[READ] = v[0];
1369 tg->bps[WRITE] = v[1];
1370 tg->iops[READ] = v[2];
1371 tg->iops[WRITE] = v[3];
1372
1373 tg_conf_updated(tg);
1374 ret = 0;
1375 out_finish:
1376 blkg_conf_finish(&ctx);
1377 return ret ?: nbytes;
1378 }
1379
1380 static struct cftype throtl_files[] = {
1381 {
1382 .name = "max",
1383 .flags = CFTYPE_NOT_ON_ROOT,
1384 .seq_show = tg_print_max,
1385 .write = tg_set_max,
1386 },
1387 { } /* terminate */
1388 };
1389
throtl_shutdown_wq(struct request_queue * q)1390 static void throtl_shutdown_wq(struct request_queue *q)
1391 {
1392 struct throtl_data *td = q->td;
1393
1394 cancel_work_sync(&td->dispatch_work);
1395 }
1396
1397 static struct blkcg_policy blkcg_policy_throtl = {
1398 .dfl_cftypes = throtl_files,
1399 .legacy_cftypes = throtl_legacy_files,
1400
1401 .pd_alloc_fn = throtl_pd_alloc,
1402 .pd_init_fn = throtl_pd_init,
1403 .pd_online_fn = throtl_pd_online,
1404 .pd_free_fn = throtl_pd_free,
1405 };
1406
blk_throtl_bio(struct request_queue * q,struct blkcg_gq * blkg,struct bio * bio)1407 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1408 struct bio *bio)
1409 {
1410 struct throtl_qnode *qn = NULL;
1411 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1412 struct throtl_service_queue *sq;
1413 bool rw = bio_data_dir(bio);
1414 bool throttled = false;
1415
1416 WARN_ON_ONCE(!rcu_read_lock_held());
1417
1418 /* see throtl_charge_bio() */
1419 if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw])
1420 goto out;
1421
1422 spin_lock_irq(q->queue_lock);
1423
1424 if (unlikely(blk_queue_bypass(q)))
1425 goto out_unlock;
1426
1427 sq = &tg->service_queue;
1428
1429 while (true) {
1430 /* throtl is FIFO - if bios are already queued, should queue */
1431 if (sq->nr_queued[rw])
1432 break;
1433
1434 /* if above limits, break to queue */
1435 if (!tg_may_dispatch(tg, bio, NULL))
1436 break;
1437
1438 /* within limits, let's charge and dispatch directly */
1439 throtl_charge_bio(tg, bio);
1440
1441 /*
1442 * We need to trim slice even when bios are not being queued
1443 * otherwise it might happen that a bio is not queued for
1444 * a long time and slice keeps on extending and trim is not
1445 * called for a long time. Now if limits are reduced suddenly
1446 * we take into account all the IO dispatched so far at new
1447 * low rate and * newly queued IO gets a really long dispatch
1448 * time.
1449 *
1450 * So keep on trimming slice even if bio is not queued.
1451 */
1452 throtl_trim_slice(tg, rw);
1453
1454 /*
1455 * @bio passed through this layer without being throttled.
1456 * Climb up the ladder. If we''re already at the top, it
1457 * can be executed directly.
1458 */
1459 qn = &tg->qnode_on_parent[rw];
1460 sq = sq->parent_sq;
1461 tg = sq_to_tg(sq);
1462 if (!tg)
1463 goto out_unlock;
1464 }
1465
1466 /* out-of-limit, queue to @tg */
1467 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1468 rw == READ ? 'R' : 'W',
1469 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1470 tg->io_disp[rw], tg->iops[rw],
1471 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1472
1473 bio_associate_current(bio);
1474 tg->td->nr_queued[rw]++;
1475 throtl_add_bio_tg(bio, qn, tg);
1476 throttled = true;
1477
1478 /*
1479 * Update @tg's dispatch time and force schedule dispatch if @tg
1480 * was empty before @bio. The forced scheduling isn't likely to
1481 * cause undue delay as @bio is likely to be dispatched directly if
1482 * its @tg's disptime is not in the future.
1483 */
1484 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1485 tg_update_disptime(tg);
1486 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1487 }
1488
1489 out_unlock:
1490 spin_unlock_irq(q->queue_lock);
1491 out:
1492 /*
1493 * As multiple blk-throtls may stack in the same issue path, we
1494 * don't want bios to leave with the flag set. Clear the flag if
1495 * being issued.
1496 */
1497 if (!throttled)
1498 bio->bi_rw &= ~REQ_THROTTLED;
1499 return throttled;
1500 }
1501
1502 /*
1503 * Dispatch all bios from all children tg's queued on @parent_sq. On
1504 * return, @parent_sq is guaranteed to not have any active children tg's
1505 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1506 */
tg_drain_bios(struct throtl_service_queue * parent_sq)1507 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1508 {
1509 struct throtl_grp *tg;
1510
1511 while ((tg = throtl_rb_first(parent_sq))) {
1512 struct throtl_service_queue *sq = &tg->service_queue;
1513 struct bio *bio;
1514
1515 throtl_dequeue_tg(tg);
1516
1517 while ((bio = throtl_peek_queued(&sq->queued[READ])))
1518 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1519 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1520 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1521 }
1522 }
1523
1524 /**
1525 * blk_throtl_drain - drain throttled bios
1526 * @q: request_queue to drain throttled bios for
1527 *
1528 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1529 */
blk_throtl_drain(struct request_queue * q)1530 void blk_throtl_drain(struct request_queue *q)
1531 __releases(q->queue_lock) __acquires(q->queue_lock)
1532 {
1533 struct throtl_data *td = q->td;
1534 struct blkcg_gq *blkg;
1535 struct cgroup_subsys_state *pos_css;
1536 struct bio *bio;
1537 int rw;
1538
1539 queue_lockdep_assert_held(q);
1540 rcu_read_lock();
1541
1542 /*
1543 * Drain each tg while doing post-order walk on the blkg tree, so
1544 * that all bios are propagated to td->service_queue. It'd be
1545 * better to walk service_queue tree directly but blkg walk is
1546 * easier.
1547 */
1548 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1549 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1550
1551 /* finally, transfer bios from top-level tg's into the td */
1552 tg_drain_bios(&td->service_queue);
1553
1554 rcu_read_unlock();
1555 spin_unlock_irq(q->queue_lock);
1556
1557 /* all bios now should be in td->service_queue, issue them */
1558 for (rw = READ; rw <= WRITE; rw++)
1559 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1560 NULL)))
1561 generic_make_request(bio);
1562
1563 spin_lock_irq(q->queue_lock);
1564 }
1565
blk_throtl_init(struct request_queue * q)1566 int blk_throtl_init(struct request_queue *q)
1567 {
1568 struct throtl_data *td;
1569 int ret;
1570
1571 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1572 if (!td)
1573 return -ENOMEM;
1574
1575 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1576 throtl_service_queue_init(&td->service_queue);
1577
1578 q->td = td;
1579 td->queue = q;
1580
1581 /* activate policy */
1582 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1583 if (ret)
1584 kfree(td);
1585 return ret;
1586 }
1587
blk_throtl_exit(struct request_queue * q)1588 void blk_throtl_exit(struct request_queue *q)
1589 {
1590 BUG_ON(!q->td);
1591 del_timer_sync(&q->td->service_queue.pending_timer);
1592 throtl_shutdown_wq(q);
1593 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1594 kfree(q->td);
1595 }
1596
throtl_init(void)1597 static int __init throtl_init(void)
1598 {
1599 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1600 if (!kthrotld_workqueue)
1601 panic("Failed to create kthrotld\n");
1602
1603 return blkcg_policy_register(&blkcg_policy_throtl);
1604 }
1605
1606 module_init(throtl_init);
1607