• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
23 
24 static struct blkcg_policy blkcg_policy_throtl;
25 
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 
29 /*
30  * To implement hierarchical throttling, throtl_grps form a tree and bios
31  * are dispatched upwards level by level until they reach the top and get
32  * issued.  When dispatching bios from the children and local group at each
33  * level, if the bios are dispatched into a single bio_list, there's a risk
34  * of a local or child group which can queue many bios at once filling up
35  * the list starving others.
36  *
37  * To avoid such starvation, dispatched bios are queued separately
38  * according to where they came from.  When they are again dispatched to
39  * the parent, they're popped in round-robin order so that no single source
40  * hogs the dispatch window.
41  *
42  * throtl_qnode is used to keep the queued bios separated by their sources.
43  * Bios are queued to throtl_qnode which in turn is queued to
44  * throtl_service_queue and then dispatched in round-robin order.
45  *
46  * It's also used to track the reference counts on blkg's.  A qnode always
47  * belongs to a throtl_grp and gets queued on itself or the parent, so
48  * incrementing the reference of the associated throtl_grp when a qnode is
49  * queued and decrementing when dequeued is enough to keep the whole blkg
50  * tree pinned while bios are in flight.
51  */
52 struct throtl_qnode {
53 	struct list_head	node;		/* service_queue->queued[] */
54 	struct bio_list		bios;		/* queued bios */
55 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
56 };
57 
58 struct throtl_service_queue {
59 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
60 
61 	/*
62 	 * Bios queued directly to this service_queue or dispatched from
63 	 * children throtl_grp's.
64 	 */
65 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 	unsigned int		nr_queued[2];	/* number of queued bios */
67 
68 	/*
69 	 * RB tree of active children throtl_grp's, which are sorted by
70 	 * their ->disptime.
71 	 */
72 	struct rb_root		pending_tree;	/* RB tree of active tgs */
73 	struct rb_node		*first_pending;	/* first node in the tree */
74 	unsigned int		nr_pending;	/* # queued in the tree */
75 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 };
78 
79 enum tg_state_flags {
80 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 };
83 
84 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
85 
86 struct throtl_grp {
87 	/* must be the first member */
88 	struct blkg_policy_data pd;
89 
90 	/* active throtl group service_queue member */
91 	struct rb_node rb_node;
92 
93 	/* throtl_data this group belongs to */
94 	struct throtl_data *td;
95 
96 	/* this group's service queue */
97 	struct throtl_service_queue service_queue;
98 
99 	/*
100 	 * qnode_on_self is used when bios are directly queued to this
101 	 * throtl_grp so that local bios compete fairly with bios
102 	 * dispatched from children.  qnode_on_parent is used when bios are
103 	 * dispatched from this throtl_grp into its parent and will compete
104 	 * with the sibling qnode_on_parents and the parent's
105 	 * qnode_on_self.
106 	 */
107 	struct throtl_qnode qnode_on_self[2];
108 	struct throtl_qnode qnode_on_parent[2];
109 
110 	/*
111 	 * Dispatch time in jiffies. This is the estimated time when group
112 	 * will unthrottle and is ready to dispatch more bio. It is used as
113 	 * key to sort active groups in service tree.
114 	 */
115 	unsigned long disptime;
116 
117 	unsigned int flags;
118 
119 	/* are there any throtl rules between this group and td? */
120 	bool has_rules[2];
121 
122 	/* bytes per second rate limits */
123 	uint64_t bps[2];
124 
125 	/* IOPS limits */
126 	unsigned int iops[2];
127 
128 	/* Number of bytes disptached in current slice */
129 	uint64_t bytes_disp[2];
130 	/* Number of bio's dispatched in current slice */
131 	unsigned int io_disp[2];
132 
133 	/* When did we start a new slice */
134 	unsigned long slice_start[2];
135 	unsigned long slice_end[2];
136 };
137 
138 struct throtl_data
139 {
140 	/* service tree for active throtl groups */
141 	struct throtl_service_queue service_queue;
142 
143 	struct request_queue *queue;
144 
145 	/* Total Number of queued bios on READ and WRITE lists */
146 	unsigned int nr_queued[2];
147 
148 	/*
149 	 * number of total undestroyed groups
150 	 */
151 	unsigned int nr_undestroyed_grps;
152 
153 	/* Work for dispatching throttled bios */
154 	struct work_struct dispatch_work;
155 };
156 
157 static void throtl_pending_timer_fn(unsigned long arg);
158 
pd_to_tg(struct blkg_policy_data * pd)159 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
160 {
161 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
162 }
163 
blkg_to_tg(struct blkcg_gq * blkg)164 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
165 {
166 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
167 }
168 
tg_to_blkg(struct throtl_grp * tg)169 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
170 {
171 	return pd_to_blkg(&tg->pd);
172 }
173 
174 /**
175  * sq_to_tg - return the throl_grp the specified service queue belongs to
176  * @sq: the throtl_service_queue of interest
177  *
178  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
179  * embedded in throtl_data, %NULL is returned.
180  */
sq_to_tg(struct throtl_service_queue * sq)181 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
182 {
183 	if (sq && sq->parent_sq)
184 		return container_of(sq, struct throtl_grp, service_queue);
185 	else
186 		return NULL;
187 }
188 
189 /**
190  * sq_to_td - return throtl_data the specified service queue belongs to
191  * @sq: the throtl_service_queue of interest
192  *
193  * A service_queue can be embeded in either a throtl_grp or throtl_data.
194  * Determine the associated throtl_data accordingly and return it.
195  */
sq_to_td(struct throtl_service_queue * sq)196 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
197 {
198 	struct throtl_grp *tg = sq_to_tg(sq);
199 
200 	if (tg)
201 		return tg->td;
202 	else
203 		return container_of(sq, struct throtl_data, service_queue);
204 }
205 
206 /**
207  * throtl_log - log debug message via blktrace
208  * @sq: the service_queue being reported
209  * @fmt: printf format string
210  * @args: printf args
211  *
212  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
213  * throtl_grp; otherwise, just "throtl".
214  *
215  * TODO: this should be made a function and name formatting should happen
216  * after testing whether blktrace is enabled.
217  */
218 #define throtl_log(sq, fmt, args...)	do {				\
219 	struct throtl_grp *__tg = sq_to_tg((sq));			\
220 	struct throtl_data *__td = sq_to_td((sq));			\
221 									\
222 	(void)__td;							\
223 	if ((__tg)) {							\
224 		char __pbuf[128];					\
225 									\
226 		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
227 		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
228 	} else {							\
229 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
230 	}								\
231 } while (0)
232 
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)233 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
234 {
235 	INIT_LIST_HEAD(&qn->node);
236 	bio_list_init(&qn->bios);
237 	qn->tg = tg;
238 }
239 
240 /**
241  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
242  * @bio: bio being added
243  * @qn: qnode to add bio to
244  * @queued: the service_queue->queued[] list @qn belongs to
245  *
246  * Add @bio to @qn and put @qn on @queued if it's not already on.
247  * @qn->tg's reference count is bumped when @qn is activated.  See the
248  * comment on top of throtl_qnode definition for details.
249  */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)250 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
251 				 struct list_head *queued)
252 {
253 	bio_list_add(&qn->bios, bio);
254 	if (list_empty(&qn->node)) {
255 		list_add_tail(&qn->node, queued);
256 		blkg_get(tg_to_blkg(qn->tg));
257 	}
258 }
259 
260 /**
261  * throtl_peek_queued - peek the first bio on a qnode list
262  * @queued: the qnode list to peek
263  */
throtl_peek_queued(struct list_head * queued)264 static struct bio *throtl_peek_queued(struct list_head *queued)
265 {
266 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
267 	struct bio *bio;
268 
269 	if (list_empty(queued))
270 		return NULL;
271 
272 	bio = bio_list_peek(&qn->bios);
273 	WARN_ON_ONCE(!bio);
274 	return bio;
275 }
276 
277 /**
278  * throtl_pop_queued - pop the first bio form a qnode list
279  * @queued: the qnode list to pop a bio from
280  * @tg_to_put: optional out argument for throtl_grp to put
281  *
282  * Pop the first bio from the qnode list @queued.  After popping, the first
283  * qnode is removed from @queued if empty or moved to the end of @queued so
284  * that the popping order is round-robin.
285  *
286  * When the first qnode is removed, its associated throtl_grp should be put
287  * too.  If @tg_to_put is NULL, this function automatically puts it;
288  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
289  * responsible for putting it.
290  */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)291 static struct bio *throtl_pop_queued(struct list_head *queued,
292 				     struct throtl_grp **tg_to_put)
293 {
294 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
295 	struct bio *bio;
296 
297 	if (list_empty(queued))
298 		return NULL;
299 
300 	bio = bio_list_pop(&qn->bios);
301 	WARN_ON_ONCE(!bio);
302 
303 	if (bio_list_empty(&qn->bios)) {
304 		list_del_init(&qn->node);
305 		if (tg_to_put)
306 			*tg_to_put = qn->tg;
307 		else
308 			blkg_put(tg_to_blkg(qn->tg));
309 	} else {
310 		list_move_tail(&qn->node, queued);
311 	}
312 
313 	return bio;
314 }
315 
316 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)317 static void throtl_service_queue_init(struct throtl_service_queue *sq)
318 {
319 	INIT_LIST_HEAD(&sq->queued[0]);
320 	INIT_LIST_HEAD(&sq->queued[1]);
321 	sq->pending_tree = RB_ROOT;
322 	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
323 		    (unsigned long)sq);
324 }
325 
throtl_pd_alloc(gfp_t gfp,int node)326 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
327 {
328 	struct throtl_grp *tg;
329 	int rw;
330 
331 	tg = kzalloc_node(sizeof(*tg), gfp, node);
332 	if (!tg)
333 		return NULL;
334 
335 	throtl_service_queue_init(&tg->service_queue);
336 
337 	for (rw = READ; rw <= WRITE; rw++) {
338 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
339 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
340 	}
341 
342 	RB_CLEAR_NODE(&tg->rb_node);
343 	tg->bps[READ] = -1;
344 	tg->bps[WRITE] = -1;
345 	tg->iops[READ] = -1;
346 	tg->iops[WRITE] = -1;
347 
348 	return &tg->pd;
349 }
350 
throtl_pd_init(struct blkg_policy_data * pd)351 static void throtl_pd_init(struct blkg_policy_data *pd)
352 {
353 	struct throtl_grp *tg = pd_to_tg(pd);
354 	struct blkcg_gq *blkg = tg_to_blkg(tg);
355 	struct throtl_data *td = blkg->q->td;
356 	struct throtl_service_queue *sq = &tg->service_queue;
357 
358 	/*
359 	 * If on the default hierarchy, we switch to properly hierarchical
360 	 * behavior where limits on a given throtl_grp are applied to the
361 	 * whole subtree rather than just the group itself.  e.g. If 16M
362 	 * read_bps limit is set on the root group, the whole system can't
363 	 * exceed 16M for the device.
364 	 *
365 	 * If not on the default hierarchy, the broken flat hierarchy
366 	 * behavior is retained where all throtl_grps are treated as if
367 	 * they're all separate root groups right below throtl_data.
368 	 * Limits of a group don't interact with limits of other groups
369 	 * regardless of the position of the group in the hierarchy.
370 	 */
371 	sq->parent_sq = &td->service_queue;
372 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
373 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
374 	tg->td = td;
375 }
376 
377 /*
378  * Set has_rules[] if @tg or any of its parents have limits configured.
379  * This doesn't require walking up to the top of the hierarchy as the
380  * parent's has_rules[] is guaranteed to be correct.
381  */
tg_update_has_rules(struct throtl_grp * tg)382 static void tg_update_has_rules(struct throtl_grp *tg)
383 {
384 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
385 	int rw;
386 
387 	for (rw = READ; rw <= WRITE; rw++)
388 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
389 				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
390 }
391 
throtl_pd_online(struct blkg_policy_data * pd)392 static void throtl_pd_online(struct blkg_policy_data *pd)
393 {
394 	/*
395 	 * We don't want new groups to escape the limits of its ancestors.
396 	 * Update has_rules[] after a new group is brought online.
397 	 */
398 	tg_update_has_rules(pd_to_tg(pd));
399 }
400 
throtl_pd_free(struct blkg_policy_data * pd)401 static void throtl_pd_free(struct blkg_policy_data *pd)
402 {
403 	struct throtl_grp *tg = pd_to_tg(pd);
404 
405 	del_timer_sync(&tg->service_queue.pending_timer);
406 	kfree(tg);
407 }
408 
409 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)410 throtl_rb_first(struct throtl_service_queue *parent_sq)
411 {
412 	/* Service tree is empty */
413 	if (!parent_sq->nr_pending)
414 		return NULL;
415 
416 	if (!parent_sq->first_pending)
417 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
418 
419 	if (parent_sq->first_pending)
420 		return rb_entry_tg(parent_sq->first_pending);
421 
422 	return NULL;
423 }
424 
rb_erase_init(struct rb_node * n,struct rb_root * root)425 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
426 {
427 	rb_erase(n, root);
428 	RB_CLEAR_NODE(n);
429 }
430 
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)431 static void throtl_rb_erase(struct rb_node *n,
432 			    struct throtl_service_queue *parent_sq)
433 {
434 	if (parent_sq->first_pending == n)
435 		parent_sq->first_pending = NULL;
436 	rb_erase_init(n, &parent_sq->pending_tree);
437 	--parent_sq->nr_pending;
438 }
439 
update_min_dispatch_time(struct throtl_service_queue * parent_sq)440 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
441 {
442 	struct throtl_grp *tg;
443 
444 	tg = throtl_rb_first(parent_sq);
445 	if (!tg)
446 		return;
447 
448 	parent_sq->first_pending_disptime = tg->disptime;
449 }
450 
tg_service_queue_add(struct throtl_grp * tg)451 static void tg_service_queue_add(struct throtl_grp *tg)
452 {
453 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
454 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
455 	struct rb_node *parent = NULL;
456 	struct throtl_grp *__tg;
457 	unsigned long key = tg->disptime;
458 	int left = 1;
459 
460 	while (*node != NULL) {
461 		parent = *node;
462 		__tg = rb_entry_tg(parent);
463 
464 		if (time_before(key, __tg->disptime))
465 			node = &parent->rb_left;
466 		else {
467 			node = &parent->rb_right;
468 			left = 0;
469 		}
470 	}
471 
472 	if (left)
473 		parent_sq->first_pending = &tg->rb_node;
474 
475 	rb_link_node(&tg->rb_node, parent, node);
476 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
477 }
478 
__throtl_enqueue_tg(struct throtl_grp * tg)479 static void __throtl_enqueue_tg(struct throtl_grp *tg)
480 {
481 	tg_service_queue_add(tg);
482 	tg->flags |= THROTL_TG_PENDING;
483 	tg->service_queue.parent_sq->nr_pending++;
484 }
485 
throtl_enqueue_tg(struct throtl_grp * tg)486 static void throtl_enqueue_tg(struct throtl_grp *tg)
487 {
488 	if (!(tg->flags & THROTL_TG_PENDING))
489 		__throtl_enqueue_tg(tg);
490 }
491 
__throtl_dequeue_tg(struct throtl_grp * tg)492 static void __throtl_dequeue_tg(struct throtl_grp *tg)
493 {
494 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
495 	tg->flags &= ~THROTL_TG_PENDING;
496 }
497 
throtl_dequeue_tg(struct throtl_grp * tg)498 static void throtl_dequeue_tg(struct throtl_grp *tg)
499 {
500 	if (tg->flags & THROTL_TG_PENDING)
501 		__throtl_dequeue_tg(tg);
502 }
503 
504 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)505 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
506 					  unsigned long expires)
507 {
508 	unsigned long max_expire = jiffies + 8 * throtl_slice;
509 
510 	/*
511 	 * Since we are adjusting the throttle limit dynamically, the sleep
512 	 * time calculated according to previous limit might be invalid. It's
513 	 * possible the cgroup sleep time is very long and no other cgroups
514 	 * have IO running so notify the limit changes. Make sure the cgroup
515 	 * doesn't sleep too long to avoid the missed notification.
516 	 */
517 	if (time_after(expires, max_expire))
518 		expires = max_expire;
519 	mod_timer(&sq->pending_timer, expires);
520 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
521 		   expires - jiffies, jiffies);
522 }
523 
524 /**
525  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
526  * @sq: the service_queue to schedule dispatch for
527  * @force: force scheduling
528  *
529  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
530  * dispatch time of the first pending child.  Returns %true if either timer
531  * is armed or there's no pending child left.  %false if the current
532  * dispatch window is still open and the caller should continue
533  * dispatching.
534  *
535  * If @force is %true, the dispatch timer is always scheduled and this
536  * function is guaranteed to return %true.  This is to be used when the
537  * caller can't dispatch itself and needs to invoke pending_timer
538  * unconditionally.  Note that forced scheduling is likely to induce short
539  * delay before dispatch starts even if @sq->first_pending_disptime is not
540  * in the future and thus shouldn't be used in hot paths.
541  */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)542 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
543 					  bool force)
544 {
545 	/* any pending children left? */
546 	if (!sq->nr_pending)
547 		return true;
548 
549 	update_min_dispatch_time(sq);
550 
551 	/* is the next dispatch time in the future? */
552 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
553 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
554 		return true;
555 	}
556 
557 	/* tell the caller to continue dispatching */
558 	return false;
559 }
560 
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)561 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
562 		bool rw, unsigned long start)
563 {
564 	tg->bytes_disp[rw] = 0;
565 	tg->io_disp[rw] = 0;
566 
567 	/*
568 	 * Previous slice has expired. We must have trimmed it after last
569 	 * bio dispatch. That means since start of last slice, we never used
570 	 * that bandwidth. Do try to make use of that bandwidth while giving
571 	 * credit.
572 	 */
573 	if (time_after_eq(start, tg->slice_start[rw]))
574 		tg->slice_start[rw] = start;
575 
576 	tg->slice_end[rw] = jiffies + throtl_slice;
577 	throtl_log(&tg->service_queue,
578 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
579 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
580 		   tg->slice_end[rw], jiffies);
581 }
582 
throtl_start_new_slice(struct throtl_grp * tg,bool rw)583 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
584 {
585 	tg->bytes_disp[rw] = 0;
586 	tg->io_disp[rw] = 0;
587 	tg->slice_start[rw] = jiffies;
588 	tg->slice_end[rw] = jiffies + throtl_slice;
589 	throtl_log(&tg->service_queue,
590 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
591 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
592 		   tg->slice_end[rw], jiffies);
593 }
594 
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)595 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
596 					unsigned long jiffy_end)
597 {
598 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
599 }
600 
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)601 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
602 				       unsigned long jiffy_end)
603 {
604 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
605 	throtl_log(&tg->service_queue,
606 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
607 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
608 		   tg->slice_end[rw], jiffies);
609 }
610 
611 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)612 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
613 {
614 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
615 		return false;
616 
617 	return 1;
618 }
619 
620 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)621 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
622 {
623 	unsigned long nr_slices, time_elapsed, io_trim;
624 	u64 bytes_trim, tmp;
625 
626 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
627 
628 	/*
629 	 * If bps are unlimited (-1), then time slice don't get
630 	 * renewed. Don't try to trim the slice if slice is used. A new
631 	 * slice will start when appropriate.
632 	 */
633 	if (throtl_slice_used(tg, rw))
634 		return;
635 
636 	/*
637 	 * A bio has been dispatched. Also adjust slice_end. It might happen
638 	 * that initially cgroup limit was very low resulting in high
639 	 * slice_end, but later limit was bumped up and bio was dispached
640 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
641 	 * is bad because it does not allow new slice to start.
642 	 */
643 
644 	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
645 
646 	time_elapsed = jiffies - tg->slice_start[rw];
647 
648 	nr_slices = time_elapsed / throtl_slice;
649 
650 	if (!nr_slices)
651 		return;
652 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
653 	do_div(tmp, HZ);
654 	bytes_trim = tmp;
655 
656 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
657 
658 	if (!bytes_trim && !io_trim)
659 		return;
660 
661 	if (tg->bytes_disp[rw] >= bytes_trim)
662 		tg->bytes_disp[rw] -= bytes_trim;
663 	else
664 		tg->bytes_disp[rw] = 0;
665 
666 	if (tg->io_disp[rw] >= io_trim)
667 		tg->io_disp[rw] -= io_trim;
668 	else
669 		tg->io_disp[rw] = 0;
670 
671 	tg->slice_start[rw] += nr_slices * throtl_slice;
672 
673 	throtl_log(&tg->service_queue,
674 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
675 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
676 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
677 }
678 
tg_with_in_iops_limit(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)679 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
680 				  unsigned long *wait)
681 {
682 	bool rw = bio_data_dir(bio);
683 	unsigned int io_allowed;
684 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
685 	u64 tmp;
686 
687 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
688 
689 	/* Slice has just started. Consider one slice interval */
690 	if (!jiffy_elapsed)
691 		jiffy_elapsed_rnd = throtl_slice;
692 
693 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
694 
695 	/*
696 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
697 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
698 	 * will allow dispatch after 1 second and after that slice should
699 	 * have been trimmed.
700 	 */
701 
702 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
703 	do_div(tmp, HZ);
704 
705 	if (tmp > UINT_MAX)
706 		io_allowed = UINT_MAX;
707 	else
708 		io_allowed = tmp;
709 
710 	if (tg->io_disp[rw] + 1 <= io_allowed) {
711 		if (wait)
712 			*wait = 0;
713 		return true;
714 	}
715 
716 	/* Calc approx time to dispatch */
717 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
718 
719 	if (jiffy_wait > jiffy_elapsed)
720 		jiffy_wait = jiffy_wait - jiffy_elapsed;
721 	else
722 		jiffy_wait = 1;
723 
724 	if (wait)
725 		*wait = jiffy_wait;
726 	return 0;
727 }
728 
tg_with_in_bps_limit(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)729 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
730 				 unsigned long *wait)
731 {
732 	bool rw = bio_data_dir(bio);
733 	u64 bytes_allowed, extra_bytes, tmp;
734 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
735 
736 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
737 
738 	/* Slice has just started. Consider one slice interval */
739 	if (!jiffy_elapsed)
740 		jiffy_elapsed_rnd = throtl_slice;
741 
742 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
743 
744 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
745 	do_div(tmp, HZ);
746 	bytes_allowed = tmp;
747 
748 	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
749 		if (wait)
750 			*wait = 0;
751 		return true;
752 	}
753 
754 	/* Calc approx time to dispatch */
755 	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
756 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
757 
758 	if (!jiffy_wait)
759 		jiffy_wait = 1;
760 
761 	/*
762 	 * This wait time is without taking into consideration the rounding
763 	 * up we did. Add that time also.
764 	 */
765 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
766 	if (wait)
767 		*wait = jiffy_wait;
768 	return 0;
769 }
770 
771 /*
772  * Returns whether one can dispatch a bio or not. Also returns approx number
773  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
774  */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)775 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
776 			    unsigned long *wait)
777 {
778 	bool rw = bio_data_dir(bio);
779 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
780 
781 	/*
782  	 * Currently whole state machine of group depends on first bio
783 	 * queued in the group bio list. So one should not be calling
784 	 * this function with a different bio if there are other bios
785 	 * queued.
786 	 */
787 	BUG_ON(tg->service_queue.nr_queued[rw] &&
788 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
789 
790 	/* If tg->bps = -1, then BW is unlimited */
791 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
792 		if (wait)
793 			*wait = 0;
794 		return true;
795 	}
796 
797 	/*
798 	 * If previous slice expired, start a new one otherwise renew/extend
799 	 * existing slice to make sure it is at least throtl_slice interval
800 	 * long since now.
801 	 */
802 	if (throtl_slice_used(tg, rw))
803 		throtl_start_new_slice(tg, rw);
804 	else {
805 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
806 			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
807 	}
808 
809 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
810 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
811 		if (wait)
812 			*wait = 0;
813 		return 1;
814 	}
815 
816 	max_wait = max(bps_wait, iops_wait);
817 
818 	if (wait)
819 		*wait = max_wait;
820 
821 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
822 		throtl_extend_slice(tg, rw, jiffies + max_wait);
823 
824 	return 0;
825 }
826 
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)827 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
828 {
829 	bool rw = bio_data_dir(bio);
830 
831 	/* Charge the bio to the group */
832 	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
833 	tg->io_disp[rw]++;
834 
835 	/*
836 	 * REQ_THROTTLED is used to prevent the same bio to be throttled
837 	 * more than once as a throttled bio will go through blk-throtl the
838 	 * second time when it eventually gets issued.  Set it when a bio
839 	 * is being charged to a tg.
840 	 */
841 	if (!(bio->bi_rw & REQ_THROTTLED))
842 		bio->bi_rw |= REQ_THROTTLED;
843 }
844 
845 /**
846  * throtl_add_bio_tg - add a bio to the specified throtl_grp
847  * @bio: bio to add
848  * @qn: qnode to use
849  * @tg: the target throtl_grp
850  *
851  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
852  * tg->qnode_on_self[] is used.
853  */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)854 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
855 			      struct throtl_grp *tg)
856 {
857 	struct throtl_service_queue *sq = &tg->service_queue;
858 	bool rw = bio_data_dir(bio);
859 
860 	if (!qn)
861 		qn = &tg->qnode_on_self[rw];
862 
863 	/*
864 	 * If @tg doesn't currently have any bios queued in the same
865 	 * direction, queueing @bio can change when @tg should be
866 	 * dispatched.  Mark that @tg was empty.  This is automatically
867 	 * cleaered on the next tg_update_disptime().
868 	 */
869 	if (!sq->nr_queued[rw])
870 		tg->flags |= THROTL_TG_WAS_EMPTY;
871 
872 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
873 
874 	sq->nr_queued[rw]++;
875 	throtl_enqueue_tg(tg);
876 }
877 
tg_update_disptime(struct throtl_grp * tg)878 static void tg_update_disptime(struct throtl_grp *tg)
879 {
880 	struct throtl_service_queue *sq = &tg->service_queue;
881 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
882 	struct bio *bio;
883 
884 	if ((bio = throtl_peek_queued(&sq->queued[READ])))
885 		tg_may_dispatch(tg, bio, &read_wait);
886 
887 	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
888 		tg_may_dispatch(tg, bio, &write_wait);
889 
890 	min_wait = min(read_wait, write_wait);
891 	disptime = jiffies + min_wait;
892 
893 	/* Update dispatch time */
894 	throtl_dequeue_tg(tg);
895 	tg->disptime = disptime;
896 	throtl_enqueue_tg(tg);
897 
898 	/* see throtl_add_bio_tg() */
899 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
900 }
901 
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)902 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
903 					struct throtl_grp *parent_tg, bool rw)
904 {
905 	if (throtl_slice_used(parent_tg, rw)) {
906 		throtl_start_new_slice_with_credit(parent_tg, rw,
907 				child_tg->slice_start[rw]);
908 	}
909 
910 }
911 
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)912 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
913 {
914 	struct throtl_service_queue *sq = &tg->service_queue;
915 	struct throtl_service_queue *parent_sq = sq->parent_sq;
916 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
917 	struct throtl_grp *tg_to_put = NULL;
918 	struct bio *bio;
919 
920 	/*
921 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
922 	 * from @tg may put its reference and @parent_sq might end up
923 	 * getting released prematurely.  Remember the tg to put and put it
924 	 * after @bio is transferred to @parent_sq.
925 	 */
926 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
927 	sq->nr_queued[rw]--;
928 
929 	throtl_charge_bio(tg, bio);
930 
931 	/*
932 	 * If our parent is another tg, we just need to transfer @bio to
933 	 * the parent using throtl_add_bio_tg().  If our parent is
934 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
935 	 * bio_lists[] and decrease total number queued.  The caller is
936 	 * responsible for issuing these bios.
937 	 */
938 	if (parent_tg) {
939 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
940 		start_parent_slice_with_credit(tg, parent_tg, rw);
941 	} else {
942 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
943 				     &parent_sq->queued[rw]);
944 		BUG_ON(tg->td->nr_queued[rw] <= 0);
945 		tg->td->nr_queued[rw]--;
946 	}
947 
948 	throtl_trim_slice(tg, rw);
949 
950 	if (tg_to_put)
951 		blkg_put(tg_to_blkg(tg_to_put));
952 }
953 
throtl_dispatch_tg(struct throtl_grp * tg)954 static int throtl_dispatch_tg(struct throtl_grp *tg)
955 {
956 	struct throtl_service_queue *sq = &tg->service_queue;
957 	unsigned int nr_reads = 0, nr_writes = 0;
958 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
959 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
960 	struct bio *bio;
961 
962 	/* Try to dispatch 75% READS and 25% WRITES */
963 
964 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
965 	       tg_may_dispatch(tg, bio, NULL)) {
966 
967 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
968 		nr_reads++;
969 
970 		if (nr_reads >= max_nr_reads)
971 			break;
972 	}
973 
974 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
975 	       tg_may_dispatch(tg, bio, NULL)) {
976 
977 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
978 		nr_writes++;
979 
980 		if (nr_writes >= max_nr_writes)
981 			break;
982 	}
983 
984 	return nr_reads + nr_writes;
985 }
986 
throtl_select_dispatch(struct throtl_service_queue * parent_sq)987 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
988 {
989 	unsigned int nr_disp = 0;
990 
991 	while (1) {
992 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
993 		struct throtl_service_queue *sq = &tg->service_queue;
994 
995 		if (!tg)
996 			break;
997 
998 		if (time_before(jiffies, tg->disptime))
999 			break;
1000 
1001 		throtl_dequeue_tg(tg);
1002 
1003 		nr_disp += throtl_dispatch_tg(tg);
1004 
1005 		if (sq->nr_queued[0] || sq->nr_queued[1])
1006 			tg_update_disptime(tg);
1007 
1008 		if (nr_disp >= throtl_quantum)
1009 			break;
1010 	}
1011 
1012 	return nr_disp;
1013 }
1014 
1015 /**
1016  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1017  * @arg: the throtl_service_queue being serviced
1018  *
1019  * This timer is armed when a child throtl_grp with active bio's become
1020  * pending and queued on the service_queue's pending_tree and expires when
1021  * the first child throtl_grp should be dispatched.  This function
1022  * dispatches bio's from the children throtl_grps to the parent
1023  * service_queue.
1024  *
1025  * If the parent's parent is another throtl_grp, dispatching is propagated
1026  * by either arming its pending_timer or repeating dispatch directly.  If
1027  * the top-level service_tree is reached, throtl_data->dispatch_work is
1028  * kicked so that the ready bio's are issued.
1029  */
throtl_pending_timer_fn(unsigned long arg)1030 static void throtl_pending_timer_fn(unsigned long arg)
1031 {
1032 	struct throtl_service_queue *sq = (void *)arg;
1033 	struct throtl_grp *tg = sq_to_tg(sq);
1034 	struct throtl_data *td = sq_to_td(sq);
1035 	struct request_queue *q = td->queue;
1036 	struct throtl_service_queue *parent_sq;
1037 	bool dispatched;
1038 	int ret;
1039 
1040 	spin_lock_irq(q->queue_lock);
1041 again:
1042 	parent_sq = sq->parent_sq;
1043 	dispatched = false;
1044 
1045 	while (true) {
1046 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1047 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1048 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1049 
1050 		ret = throtl_select_dispatch(sq);
1051 		if (ret) {
1052 			throtl_log(sq, "bios disp=%u", ret);
1053 			dispatched = true;
1054 		}
1055 
1056 		if (throtl_schedule_next_dispatch(sq, false))
1057 			break;
1058 
1059 		/* this dispatch windows is still open, relax and repeat */
1060 		spin_unlock_irq(q->queue_lock);
1061 		cpu_relax();
1062 		spin_lock_irq(q->queue_lock);
1063 	}
1064 
1065 	if (!dispatched)
1066 		goto out_unlock;
1067 
1068 	if (parent_sq) {
1069 		/* @parent_sq is another throl_grp, propagate dispatch */
1070 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1071 			tg_update_disptime(tg);
1072 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1073 				/* window is already open, repeat dispatching */
1074 				sq = parent_sq;
1075 				tg = sq_to_tg(sq);
1076 				goto again;
1077 			}
1078 		}
1079 	} else {
1080 		/* reached the top-level, queue issueing */
1081 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1082 	}
1083 out_unlock:
1084 	spin_unlock_irq(q->queue_lock);
1085 }
1086 
1087 /**
1088  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1089  * @work: work item being executed
1090  *
1091  * This function is queued for execution when bio's reach the bio_lists[]
1092  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1093  * function.
1094  */
blk_throtl_dispatch_work_fn(struct work_struct * work)1095 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1096 {
1097 	struct throtl_data *td = container_of(work, struct throtl_data,
1098 					      dispatch_work);
1099 	struct throtl_service_queue *td_sq = &td->service_queue;
1100 	struct request_queue *q = td->queue;
1101 	struct bio_list bio_list_on_stack;
1102 	struct bio *bio;
1103 	struct blk_plug plug;
1104 	int rw;
1105 
1106 	bio_list_init(&bio_list_on_stack);
1107 
1108 	spin_lock_irq(q->queue_lock);
1109 	for (rw = READ; rw <= WRITE; rw++)
1110 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1111 			bio_list_add(&bio_list_on_stack, bio);
1112 	spin_unlock_irq(q->queue_lock);
1113 
1114 	if (!bio_list_empty(&bio_list_on_stack)) {
1115 		blk_start_plug(&plug);
1116 		while((bio = bio_list_pop(&bio_list_on_stack)))
1117 			generic_make_request(bio);
1118 		blk_finish_plug(&plug);
1119 	}
1120 }
1121 
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1122 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1123 			      int off)
1124 {
1125 	struct throtl_grp *tg = pd_to_tg(pd);
1126 	u64 v = *(u64 *)((void *)tg + off);
1127 
1128 	if (v == -1)
1129 		return 0;
1130 	return __blkg_prfill_u64(sf, pd, v);
1131 }
1132 
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1133 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1134 			       int off)
1135 {
1136 	struct throtl_grp *tg = pd_to_tg(pd);
1137 	unsigned int v = *(unsigned int *)((void *)tg + off);
1138 
1139 	if (v == -1)
1140 		return 0;
1141 	return __blkg_prfill_u64(sf, pd, v);
1142 }
1143 
tg_print_conf_u64(struct seq_file * sf,void * v)1144 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1145 {
1146 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1147 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1148 	return 0;
1149 }
1150 
tg_print_conf_uint(struct seq_file * sf,void * v)1151 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1152 {
1153 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1154 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1155 	return 0;
1156 }
1157 
tg_conf_updated(struct throtl_grp * tg)1158 static void tg_conf_updated(struct throtl_grp *tg)
1159 {
1160 	struct throtl_service_queue *sq = &tg->service_queue;
1161 	struct cgroup_subsys_state *pos_css;
1162 	struct blkcg_gq *blkg;
1163 
1164 	throtl_log(&tg->service_queue,
1165 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1166 		   tg->bps[READ], tg->bps[WRITE],
1167 		   tg->iops[READ], tg->iops[WRITE]);
1168 
1169 	/*
1170 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1171 	 * considered to have rules if either the tg itself or any of its
1172 	 * ancestors has rules.  This identifies groups without any
1173 	 * restrictions in the whole hierarchy and allows them to bypass
1174 	 * blk-throttle.
1175 	 */
1176 	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1177 		tg_update_has_rules(blkg_to_tg(blkg));
1178 
1179 	/*
1180 	 * We're already holding queue_lock and know @tg is valid.  Let's
1181 	 * apply the new config directly.
1182 	 *
1183 	 * Restart the slices for both READ and WRITES. It might happen
1184 	 * that a group's limit are dropped suddenly and we don't want to
1185 	 * account recently dispatched IO with new low rate.
1186 	 */
1187 	throtl_start_new_slice(tg, 0);
1188 	throtl_start_new_slice(tg, 1);
1189 
1190 	if (tg->flags & THROTL_TG_PENDING) {
1191 		tg_update_disptime(tg);
1192 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1193 	}
1194 }
1195 
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1196 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1197 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1198 {
1199 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1200 	struct blkg_conf_ctx ctx;
1201 	struct throtl_grp *tg;
1202 	int ret;
1203 	u64 v;
1204 
1205 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1206 	if (ret)
1207 		return ret;
1208 
1209 	ret = -EINVAL;
1210 	if (sscanf(ctx.body, "%llu", &v) != 1)
1211 		goto out_finish;
1212 	if (!v)
1213 		v = -1;
1214 
1215 	tg = blkg_to_tg(ctx.blkg);
1216 
1217 	if (is_u64)
1218 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1219 	else
1220 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1221 
1222 	tg_conf_updated(tg);
1223 	ret = 0;
1224 out_finish:
1225 	blkg_conf_finish(&ctx);
1226 	return ret ?: nbytes;
1227 }
1228 
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1229 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1230 			       char *buf, size_t nbytes, loff_t off)
1231 {
1232 	return tg_set_conf(of, buf, nbytes, off, true);
1233 }
1234 
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1235 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1236 				char *buf, size_t nbytes, loff_t off)
1237 {
1238 	return tg_set_conf(of, buf, nbytes, off, false);
1239 }
1240 
1241 static struct cftype throtl_legacy_files[] = {
1242 	{
1243 		.name = "throttle.read_bps_device",
1244 		.private = offsetof(struct throtl_grp, bps[READ]),
1245 		.seq_show = tg_print_conf_u64,
1246 		.write = tg_set_conf_u64,
1247 	},
1248 	{
1249 		.name = "throttle.write_bps_device",
1250 		.private = offsetof(struct throtl_grp, bps[WRITE]),
1251 		.seq_show = tg_print_conf_u64,
1252 		.write = tg_set_conf_u64,
1253 	},
1254 	{
1255 		.name = "throttle.read_iops_device",
1256 		.private = offsetof(struct throtl_grp, iops[READ]),
1257 		.seq_show = tg_print_conf_uint,
1258 		.write = tg_set_conf_uint,
1259 	},
1260 	{
1261 		.name = "throttle.write_iops_device",
1262 		.private = offsetof(struct throtl_grp, iops[WRITE]),
1263 		.seq_show = tg_print_conf_uint,
1264 		.write = tg_set_conf_uint,
1265 	},
1266 	{
1267 		.name = "throttle.io_service_bytes",
1268 		.private = (unsigned long)&blkcg_policy_throtl,
1269 		.seq_show = blkg_print_stat_bytes,
1270 	},
1271 	{
1272 		.name = "throttle.io_serviced",
1273 		.private = (unsigned long)&blkcg_policy_throtl,
1274 		.seq_show = blkg_print_stat_ios,
1275 	},
1276 	{ }	/* terminate */
1277 };
1278 
tg_prfill_max(struct seq_file * sf,struct blkg_policy_data * pd,int off)1279 static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
1280 			 int off)
1281 {
1282 	struct throtl_grp *tg = pd_to_tg(pd);
1283 	const char *dname = blkg_dev_name(pd->blkg);
1284 	char bufs[4][21] = { "max", "max", "max", "max" };
1285 
1286 	if (!dname)
1287 		return 0;
1288 	if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
1289 	    tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
1290 		return 0;
1291 
1292 	if (tg->bps[READ] != -1)
1293 		snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
1294 	if (tg->bps[WRITE] != -1)
1295 		snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
1296 	if (tg->iops[READ] != -1)
1297 		snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
1298 	if (tg->iops[WRITE] != -1)
1299 		snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);
1300 
1301 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1302 		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1303 	return 0;
1304 }
1305 
tg_print_max(struct seq_file * sf,void * v)1306 static int tg_print_max(struct seq_file *sf, void *v)
1307 {
1308 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
1309 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1310 	return 0;
1311 }
1312 
tg_set_max(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1313 static ssize_t tg_set_max(struct kernfs_open_file *of,
1314 			  char *buf, size_t nbytes, loff_t off)
1315 {
1316 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1317 	struct blkg_conf_ctx ctx;
1318 	struct throtl_grp *tg;
1319 	u64 v[4];
1320 	int ret;
1321 
1322 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1323 	if (ret)
1324 		return ret;
1325 
1326 	tg = blkg_to_tg(ctx.blkg);
1327 
1328 	v[0] = tg->bps[READ];
1329 	v[1] = tg->bps[WRITE];
1330 	v[2] = tg->iops[READ];
1331 	v[3] = tg->iops[WRITE];
1332 
1333 	while (true) {
1334 		char tok[27];	/* wiops=18446744073709551616 */
1335 		char *p;
1336 		u64 val = -1;
1337 		int len;
1338 
1339 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1340 			break;
1341 		if (tok[0] == '\0')
1342 			break;
1343 		ctx.body += len;
1344 
1345 		ret = -EINVAL;
1346 		p = tok;
1347 		strsep(&p, "=");
1348 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1349 			goto out_finish;
1350 
1351 		ret = -ERANGE;
1352 		if (!val)
1353 			goto out_finish;
1354 
1355 		ret = -EINVAL;
1356 		if (!strcmp(tok, "rbps"))
1357 			v[0] = val;
1358 		else if (!strcmp(tok, "wbps"))
1359 			v[1] = val;
1360 		else if (!strcmp(tok, "riops"))
1361 			v[2] = min_t(u64, val, UINT_MAX);
1362 		else if (!strcmp(tok, "wiops"))
1363 			v[3] = min_t(u64, val, UINT_MAX);
1364 		else
1365 			goto out_finish;
1366 	}
1367 
1368 	tg->bps[READ] = v[0];
1369 	tg->bps[WRITE] = v[1];
1370 	tg->iops[READ] = v[2];
1371 	tg->iops[WRITE] = v[3];
1372 
1373 	tg_conf_updated(tg);
1374 	ret = 0;
1375 out_finish:
1376 	blkg_conf_finish(&ctx);
1377 	return ret ?: nbytes;
1378 }
1379 
1380 static struct cftype throtl_files[] = {
1381 	{
1382 		.name = "max",
1383 		.flags = CFTYPE_NOT_ON_ROOT,
1384 		.seq_show = tg_print_max,
1385 		.write = tg_set_max,
1386 	},
1387 	{ }	/* terminate */
1388 };
1389 
throtl_shutdown_wq(struct request_queue * q)1390 static void throtl_shutdown_wq(struct request_queue *q)
1391 {
1392 	struct throtl_data *td = q->td;
1393 
1394 	cancel_work_sync(&td->dispatch_work);
1395 }
1396 
1397 static struct blkcg_policy blkcg_policy_throtl = {
1398 	.dfl_cftypes		= throtl_files,
1399 	.legacy_cftypes		= throtl_legacy_files,
1400 
1401 	.pd_alloc_fn		= throtl_pd_alloc,
1402 	.pd_init_fn		= throtl_pd_init,
1403 	.pd_online_fn		= throtl_pd_online,
1404 	.pd_free_fn		= throtl_pd_free,
1405 };
1406 
blk_throtl_bio(struct request_queue * q,struct blkcg_gq * blkg,struct bio * bio)1407 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1408 		    struct bio *bio)
1409 {
1410 	struct throtl_qnode *qn = NULL;
1411 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1412 	struct throtl_service_queue *sq;
1413 	bool rw = bio_data_dir(bio);
1414 	bool throttled = false;
1415 
1416 	WARN_ON_ONCE(!rcu_read_lock_held());
1417 
1418 	/* see throtl_charge_bio() */
1419 	if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw])
1420 		goto out;
1421 
1422 	spin_lock_irq(q->queue_lock);
1423 
1424 	if (unlikely(blk_queue_bypass(q)))
1425 		goto out_unlock;
1426 
1427 	sq = &tg->service_queue;
1428 
1429 	while (true) {
1430 		/* throtl is FIFO - if bios are already queued, should queue */
1431 		if (sq->nr_queued[rw])
1432 			break;
1433 
1434 		/* if above limits, break to queue */
1435 		if (!tg_may_dispatch(tg, bio, NULL))
1436 			break;
1437 
1438 		/* within limits, let's charge and dispatch directly */
1439 		throtl_charge_bio(tg, bio);
1440 
1441 		/*
1442 		 * We need to trim slice even when bios are not being queued
1443 		 * otherwise it might happen that a bio is not queued for
1444 		 * a long time and slice keeps on extending and trim is not
1445 		 * called for a long time. Now if limits are reduced suddenly
1446 		 * we take into account all the IO dispatched so far at new
1447 		 * low rate and * newly queued IO gets a really long dispatch
1448 		 * time.
1449 		 *
1450 		 * So keep on trimming slice even if bio is not queued.
1451 		 */
1452 		throtl_trim_slice(tg, rw);
1453 
1454 		/*
1455 		 * @bio passed through this layer without being throttled.
1456 		 * Climb up the ladder.  If we''re already at the top, it
1457 		 * can be executed directly.
1458 		 */
1459 		qn = &tg->qnode_on_parent[rw];
1460 		sq = sq->parent_sq;
1461 		tg = sq_to_tg(sq);
1462 		if (!tg)
1463 			goto out_unlock;
1464 	}
1465 
1466 	/* out-of-limit, queue to @tg */
1467 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1468 		   rw == READ ? 'R' : 'W',
1469 		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1470 		   tg->io_disp[rw], tg->iops[rw],
1471 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1472 
1473 	bio_associate_current(bio);
1474 	tg->td->nr_queued[rw]++;
1475 	throtl_add_bio_tg(bio, qn, tg);
1476 	throttled = true;
1477 
1478 	/*
1479 	 * Update @tg's dispatch time and force schedule dispatch if @tg
1480 	 * was empty before @bio.  The forced scheduling isn't likely to
1481 	 * cause undue delay as @bio is likely to be dispatched directly if
1482 	 * its @tg's disptime is not in the future.
1483 	 */
1484 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1485 		tg_update_disptime(tg);
1486 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1487 	}
1488 
1489 out_unlock:
1490 	spin_unlock_irq(q->queue_lock);
1491 out:
1492 	/*
1493 	 * As multiple blk-throtls may stack in the same issue path, we
1494 	 * don't want bios to leave with the flag set.  Clear the flag if
1495 	 * being issued.
1496 	 */
1497 	if (!throttled)
1498 		bio->bi_rw &= ~REQ_THROTTLED;
1499 	return throttled;
1500 }
1501 
1502 /*
1503  * Dispatch all bios from all children tg's queued on @parent_sq.  On
1504  * return, @parent_sq is guaranteed to not have any active children tg's
1505  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1506  */
tg_drain_bios(struct throtl_service_queue * parent_sq)1507 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1508 {
1509 	struct throtl_grp *tg;
1510 
1511 	while ((tg = throtl_rb_first(parent_sq))) {
1512 		struct throtl_service_queue *sq = &tg->service_queue;
1513 		struct bio *bio;
1514 
1515 		throtl_dequeue_tg(tg);
1516 
1517 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1518 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1519 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1520 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1521 	}
1522 }
1523 
1524 /**
1525  * blk_throtl_drain - drain throttled bios
1526  * @q: request_queue to drain throttled bios for
1527  *
1528  * Dispatch all currently throttled bios on @q through ->make_request_fn().
1529  */
blk_throtl_drain(struct request_queue * q)1530 void blk_throtl_drain(struct request_queue *q)
1531 	__releases(q->queue_lock) __acquires(q->queue_lock)
1532 {
1533 	struct throtl_data *td = q->td;
1534 	struct blkcg_gq *blkg;
1535 	struct cgroup_subsys_state *pos_css;
1536 	struct bio *bio;
1537 	int rw;
1538 
1539 	queue_lockdep_assert_held(q);
1540 	rcu_read_lock();
1541 
1542 	/*
1543 	 * Drain each tg while doing post-order walk on the blkg tree, so
1544 	 * that all bios are propagated to td->service_queue.  It'd be
1545 	 * better to walk service_queue tree directly but blkg walk is
1546 	 * easier.
1547 	 */
1548 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1549 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1550 
1551 	/* finally, transfer bios from top-level tg's into the td */
1552 	tg_drain_bios(&td->service_queue);
1553 
1554 	rcu_read_unlock();
1555 	spin_unlock_irq(q->queue_lock);
1556 
1557 	/* all bios now should be in td->service_queue, issue them */
1558 	for (rw = READ; rw <= WRITE; rw++)
1559 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1560 						NULL)))
1561 			generic_make_request(bio);
1562 
1563 	spin_lock_irq(q->queue_lock);
1564 }
1565 
blk_throtl_init(struct request_queue * q)1566 int blk_throtl_init(struct request_queue *q)
1567 {
1568 	struct throtl_data *td;
1569 	int ret;
1570 
1571 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1572 	if (!td)
1573 		return -ENOMEM;
1574 
1575 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1576 	throtl_service_queue_init(&td->service_queue);
1577 
1578 	q->td = td;
1579 	td->queue = q;
1580 
1581 	/* activate policy */
1582 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1583 	if (ret)
1584 		kfree(td);
1585 	return ret;
1586 }
1587 
blk_throtl_exit(struct request_queue * q)1588 void blk_throtl_exit(struct request_queue *q)
1589 {
1590 	BUG_ON(!q->td);
1591 	del_timer_sync(&q->td->service_queue.pending_timer);
1592 	throtl_shutdown_wq(q);
1593 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1594 	kfree(q->td);
1595 }
1596 
throtl_init(void)1597 static int __init throtl_init(void)
1598 {
1599 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1600 	if (!kthrotld_workqueue)
1601 		panic("Failed to create kthrotld\n");
1602 
1603 	return blkcg_policy_register(&blkcg_policy_throtl);
1604 }
1605 
1606 module_init(throtl_init);
1607