• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19 
20 /*
21  * tunables
22  */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37 
38 /*
39  * offset from end of service tree
40  */
41 #define CFQ_IDLE_DELAY		(HZ / 5)
42 
43 /*
44  * below this threshold, we consider thinktime immediate
45  */
46 #define CFQ_MIN_TT		(2)
47 
48 #define CFQ_SLICE_SCALE		(5)
49 #define CFQ_HW_QUEUE_MIN	(5)
50 #define CFQ_SERVICE_SHIFT       12
51 
52 #define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56 
57 #define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60 
61 static struct kmem_cache *cfq_pool;
62 
63 #define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66 
67 #define sample_valid(samples)	((samples) > 80)
68 #define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69 
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_LEGACY_MIN	10
72 #define CFQ_WEIGHT_LEGACY_DFL	500
73 #define CFQ_WEIGHT_LEGACY_MAX	1000
74 
75 struct cfq_ttime {
76 	unsigned long last_end_request;
77 
78 	unsigned long ttime_total;
79 	unsigned long ttime_samples;
80 	unsigned long ttime_mean;
81 };
82 
83 /*
84  * Most of our rbtree usage is for sorting with min extraction, so
85  * if we cache the leftmost node we don't have to walk down the tree
86  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87  * move this into the elevator for the rq sorting as well.
88  */
89 struct cfq_rb_root {
90 	struct rb_root rb;
91 	struct rb_node *left;
92 	unsigned count;
93 	u64 min_vdisktime;
94 	struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
97 			.ttime = {.last_end_request = jiffies,},}
98 
99 /*
100  * Per process-grouping structure
101  */
102 struct cfq_queue {
103 	/* reference count */
104 	int ref;
105 	/* various state flags, see below */
106 	unsigned int flags;
107 	/* parent cfq_data */
108 	struct cfq_data *cfqd;
109 	/* service_tree member */
110 	struct rb_node rb_node;
111 	/* service_tree key */
112 	unsigned long rb_key;
113 	/* prio tree member */
114 	struct rb_node p_node;
115 	/* prio tree root we belong to, if any */
116 	struct rb_root *p_root;
117 	/* sorted list of pending requests */
118 	struct rb_root sort_list;
119 	/* if fifo isn't expired, next request to serve */
120 	struct request *next_rq;
121 	/* requests queued in sort_list */
122 	int queued[2];
123 	/* currently allocated requests */
124 	int allocated[2];
125 	/* fifo list of requests in sort_list */
126 	struct list_head fifo;
127 
128 	/* time when queue got scheduled in to dispatch first request. */
129 	unsigned long dispatch_start;
130 	unsigned int allocated_slice;
131 	unsigned int slice_dispatch;
132 	/* time when first request from queue completed and slice started. */
133 	unsigned long slice_start;
134 	unsigned long slice_end;
135 	long slice_resid;
136 
137 	/* pending priority requests */
138 	int prio_pending;
139 	/* number of requests that are on the dispatch list or inside driver */
140 	int dispatched;
141 
142 	/* io prio of this group */
143 	unsigned short ioprio, org_ioprio;
144 	unsigned short ioprio_class;
145 
146 	pid_t pid;
147 
148 	u32 seek_history;
149 	sector_t last_request_pos;
150 
151 	struct cfq_rb_root *service_tree;
152 	struct cfq_queue *new_cfqq;
153 	struct cfq_group *cfqg;
154 	/* Number of sectors dispatched from queue in single dispatch round */
155 	unsigned long nr_sectors;
156 };
157 
158 /*
159  * First index in the service_trees.
160  * IDLE is handled separately, so it has negative index
161  */
162 enum wl_class_t {
163 	BE_WORKLOAD = 0,
164 	RT_WORKLOAD = 1,
165 	IDLE_WORKLOAD = 2,
166 	CFQ_PRIO_NR,
167 };
168 
169 /*
170  * Second index in the service_trees.
171  */
172 enum wl_type_t {
173 	ASYNC_WORKLOAD = 0,
174 	SYNC_NOIDLE_WORKLOAD = 1,
175 	SYNC_WORKLOAD = 2
176 };
177 
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 	/* number of ios merged */
181 	struct blkg_rwstat		merged;
182 	/* total time spent on device in ns, may not be accurate w/ queueing */
183 	struct blkg_rwstat		service_time;
184 	/* total time spent waiting in scheduler queue in ns */
185 	struct blkg_rwstat		wait_time;
186 	/* number of IOs queued up */
187 	struct blkg_rwstat		queued;
188 	/* total disk time and nr sectors dispatched by this group */
189 	struct blkg_stat		time;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 	/* time not charged to this cgroup */
192 	struct blkg_stat		unaccounted_time;
193 	/* sum of number of ios queued across all samples */
194 	struct blkg_stat		avg_queue_size_sum;
195 	/* count of samples taken for average */
196 	struct blkg_stat		avg_queue_size_samples;
197 	/* how many times this group has been removed from service tree */
198 	struct blkg_stat		dequeue;
199 	/* total time spent waiting for it to be assigned a timeslice. */
200 	struct blkg_stat		group_wait_time;
201 	/* time spent idling for this blkcg_gq */
202 	struct blkg_stat		idle_time;
203 	/* total time with empty current active q with other requests queued */
204 	struct blkg_stat		empty_time;
205 	/* fields after this shouldn't be cleared on stat reset */
206 	uint64_t			start_group_wait_time;
207 	uint64_t			start_idle_time;
208 	uint64_t			start_empty_time;
209 	uint16_t			flags;
210 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
211 #endif	/* CONFIG_CFQ_GROUP_IOSCHED */
212 };
213 
214 /* Per-cgroup data */
215 struct cfq_group_data {
216 	/* must be the first member */
217 	struct blkcg_policy_data cpd;
218 
219 	unsigned int weight;
220 	unsigned int leaf_weight;
221 };
222 
223 /* This is per cgroup per device grouping structure */
224 struct cfq_group {
225 	/* must be the first member */
226 	struct blkg_policy_data pd;
227 
228 	/* group service_tree member */
229 	struct rb_node rb_node;
230 
231 	/* group service_tree key */
232 	u64 vdisktime;
233 
234 	/*
235 	 * The number of active cfqgs and sum of their weights under this
236 	 * cfqg.  This covers this cfqg's leaf_weight and all children's
237 	 * weights, but does not cover weights of further descendants.
238 	 *
239 	 * If a cfqg is on the service tree, it's active.  An active cfqg
240 	 * also activates its parent and contributes to the children_weight
241 	 * of the parent.
242 	 */
243 	int nr_active;
244 	unsigned int children_weight;
245 
246 	/*
247 	 * vfraction is the fraction of vdisktime that the tasks in this
248 	 * cfqg are entitled to.  This is determined by compounding the
249 	 * ratios walking up from this cfqg to the root.
250 	 *
251 	 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 	 * vfractions on a service tree is approximately 1.  The sum may
253 	 * deviate a bit due to rounding errors and fluctuations caused by
254 	 * cfqgs entering and leaving the service tree.
255 	 */
256 	unsigned int vfraction;
257 
258 	/*
259 	 * There are two weights - (internal) weight is the weight of this
260 	 * cfqg against the sibling cfqgs.  leaf_weight is the wight of
261 	 * this cfqg against the child cfqgs.  For the root cfqg, both
262 	 * weights are kept in sync for backward compatibility.
263 	 */
264 	unsigned int weight;
265 	unsigned int new_weight;
266 	unsigned int dev_weight;
267 
268 	unsigned int leaf_weight;
269 	unsigned int new_leaf_weight;
270 	unsigned int dev_leaf_weight;
271 
272 	/* number of cfqq currently on this group */
273 	int nr_cfqq;
274 
275 	/*
276 	 * Per group busy queues average. Useful for workload slice calc. We
277 	 * create the array for each prio class but at run time it is used
278 	 * only for RT and BE class and slot for IDLE class remains unused.
279 	 * This is primarily done to avoid confusion and a gcc warning.
280 	 */
281 	unsigned int busy_queues_avg[CFQ_PRIO_NR];
282 	/*
283 	 * rr lists of queues with requests. We maintain service trees for
284 	 * RT and BE classes. These trees are subdivided in subclasses
285 	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 	 * class there is no subclassification and all the cfq queues go on
287 	 * a single tree service_tree_idle.
288 	 * Counts are embedded in the cfq_rb_root
289 	 */
290 	struct cfq_rb_root service_trees[2][3];
291 	struct cfq_rb_root service_tree_idle;
292 
293 	unsigned long saved_wl_slice;
294 	enum wl_type_t saved_wl_type;
295 	enum wl_class_t saved_wl_class;
296 
297 	/* number of requests that are on the dispatch list or inside driver */
298 	int dispatched;
299 	struct cfq_ttime ttime;
300 	struct cfqg_stats stats;	/* stats for this cfqg */
301 
302 	/* async queue for each priority case */
303 	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
304 	struct cfq_queue *async_idle_cfqq;
305 
306 };
307 
308 struct cfq_io_cq {
309 	struct io_cq		icq;		/* must be the first member */
310 	struct cfq_queue	*cfqq[2];
311 	struct cfq_ttime	ttime;
312 	int			ioprio;		/* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 	uint64_t		blkcg_serial_nr; /* the current blkcg serial */
315 #endif
316 };
317 
318 /*
319  * Per block device queue structure
320  */
321 struct cfq_data {
322 	struct request_queue *queue;
323 	/* Root service tree for cfq_groups */
324 	struct cfq_rb_root grp_service_tree;
325 	struct cfq_group *root_group;
326 
327 	/*
328 	 * The priority currently being served
329 	 */
330 	enum wl_class_t serving_wl_class;
331 	enum wl_type_t serving_wl_type;
332 	unsigned long workload_expires;
333 	struct cfq_group *serving_group;
334 
335 	/*
336 	 * Each priority tree is sorted by next_request position.  These
337 	 * trees are used when determining if two or more queues are
338 	 * interleaving requests (see cfq_close_cooperator).
339 	 */
340 	struct rb_root prio_trees[CFQ_PRIO_LISTS];
341 
342 	unsigned int busy_queues;
343 	unsigned int busy_sync_queues;
344 
345 	int rq_in_driver;
346 	int rq_in_flight[2];
347 
348 	/*
349 	 * queue-depth detection
350 	 */
351 	int rq_queued;
352 	int hw_tag;
353 	/*
354 	 * hw_tag can be
355 	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
357 	 *  0 => no NCQ
358 	 */
359 	int hw_tag_est_depth;
360 	unsigned int hw_tag_samples;
361 
362 	/*
363 	 * idle window management
364 	 */
365 	struct timer_list idle_slice_timer;
366 	struct work_struct unplug_work;
367 
368 	struct cfq_queue *active_queue;
369 	struct cfq_io_cq *active_cic;
370 
371 	sector_t last_position;
372 
373 	/*
374 	 * tunables, see top of file
375 	 */
376 	unsigned int cfq_quantum;
377 	unsigned int cfq_fifo_expire[2];
378 	unsigned int cfq_back_penalty;
379 	unsigned int cfq_back_max;
380 	unsigned int cfq_slice[2];
381 	unsigned int cfq_slice_async_rq;
382 	unsigned int cfq_slice_idle;
383 	unsigned int cfq_group_idle;
384 	unsigned int cfq_latency;
385 	unsigned int cfq_target_latency;
386 
387 	/*
388 	 * Fallback dummy cfqq for extreme OOM conditions
389 	 */
390 	struct cfq_queue oom_cfqq;
391 
392 	unsigned long last_delayed_sync;
393 };
394 
395 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
396 static void cfq_put_queue(struct cfq_queue *cfqq);
397 
st_for(struct cfq_group * cfqg,enum wl_class_t class,enum wl_type_t type)398 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
399 					    enum wl_class_t class,
400 					    enum wl_type_t type)
401 {
402 	if (!cfqg)
403 		return NULL;
404 
405 	if (class == IDLE_WORKLOAD)
406 		return &cfqg->service_tree_idle;
407 
408 	return &cfqg->service_trees[class][type];
409 }
410 
411 enum cfqq_state_flags {
412 	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
413 	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
414 	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
415 	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
416 	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
417 	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
418 	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
419 	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
420 	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
421 	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
422 	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
423 	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
424 	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
425 };
426 
427 #define CFQ_CFQQ_FNS(name)						\
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
429 {									\
430 	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
431 }									\
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
433 {									\
434 	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
435 }									\
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
437 {									\
438 	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
439 }
440 
441 CFQ_CFQQ_FNS(on_rr);
442 CFQ_CFQQ_FNS(wait_request);
443 CFQ_CFQQ_FNS(must_dispatch);
444 CFQ_CFQQ_FNS(must_alloc_slice);
445 CFQ_CFQQ_FNS(fifo_expire);
446 CFQ_CFQQ_FNS(idle_window);
447 CFQ_CFQQ_FNS(prio_changed);
448 CFQ_CFQQ_FNS(slice_new);
449 CFQ_CFQQ_FNS(sync);
450 CFQ_CFQQ_FNS(coop);
451 CFQ_CFQQ_FNS(split_coop);
452 CFQ_CFQQ_FNS(deep);
453 CFQ_CFQQ_FNS(wait_busy);
454 #undef CFQ_CFQQ_FNS
455 
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
457 
458 /* cfqg stats flags */
459 enum cfqg_stats_flags {
460 	CFQG_stats_waiting = 0,
461 	CFQG_stats_idling,
462 	CFQG_stats_empty,
463 };
464 
465 #define CFQG_FLAG_FNS(name)						\
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
467 {									\
468 	stats->flags |= (1 << CFQG_stats_##name);			\
469 }									\
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
471 {									\
472 	stats->flags &= ~(1 << CFQG_stats_##name);			\
473 }									\
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
475 {									\
476 	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
477 }									\
478 
479 CFQG_FLAG_FNS(waiting)
CFQG_FLAG_FNS(idling)480 CFQG_FLAG_FNS(idling)
481 CFQG_FLAG_FNS(empty)
482 #undef CFQG_FLAG_FNS
483 
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
486 {
487 	unsigned long long now;
488 
489 	if (!cfqg_stats_waiting(stats))
490 		return;
491 
492 	now = sched_clock();
493 	if (time_after64(now, stats->start_group_wait_time))
494 		blkg_stat_add(&stats->group_wait_time,
495 			      now - stats->start_group_wait_time);
496 	cfqg_stats_clear_waiting(stats);
497 }
498 
499 /* This should be called with the queue_lock held. */
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
501 						 struct cfq_group *curr_cfqg)
502 {
503 	struct cfqg_stats *stats = &cfqg->stats;
504 
505 	if (cfqg_stats_waiting(stats))
506 		return;
507 	if (cfqg == curr_cfqg)
508 		return;
509 	stats->start_group_wait_time = sched_clock();
510 	cfqg_stats_mark_waiting(stats);
511 }
512 
513 /* This should be called with the queue_lock held. */
cfqg_stats_end_empty_time(struct cfqg_stats * stats)514 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
515 {
516 	unsigned long long now;
517 
518 	if (!cfqg_stats_empty(stats))
519 		return;
520 
521 	now = sched_clock();
522 	if (time_after64(now, stats->start_empty_time))
523 		blkg_stat_add(&stats->empty_time,
524 			      now - stats->start_empty_time);
525 	cfqg_stats_clear_empty(stats);
526 }
527 
cfqg_stats_update_dequeue(struct cfq_group * cfqg)528 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
529 {
530 	blkg_stat_add(&cfqg->stats.dequeue, 1);
531 }
532 
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)533 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
534 {
535 	struct cfqg_stats *stats = &cfqg->stats;
536 
537 	if (blkg_rwstat_total(&stats->queued))
538 		return;
539 
540 	/*
541 	 * group is already marked empty. This can happen if cfqq got new
542 	 * request in parent group and moved to this group while being added
543 	 * to service tree. Just ignore the event and move on.
544 	 */
545 	if (cfqg_stats_empty(stats))
546 		return;
547 
548 	stats->start_empty_time = sched_clock();
549 	cfqg_stats_mark_empty(stats);
550 }
551 
cfqg_stats_update_idle_time(struct cfq_group * cfqg)552 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
553 {
554 	struct cfqg_stats *stats = &cfqg->stats;
555 
556 	if (cfqg_stats_idling(stats)) {
557 		unsigned long long now = sched_clock();
558 
559 		if (time_after64(now, stats->start_idle_time))
560 			blkg_stat_add(&stats->idle_time,
561 				      now - stats->start_idle_time);
562 		cfqg_stats_clear_idling(stats);
563 	}
564 }
565 
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)566 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
567 {
568 	struct cfqg_stats *stats = &cfqg->stats;
569 
570 	BUG_ON(cfqg_stats_idling(stats));
571 
572 	stats->start_idle_time = sched_clock();
573 	cfqg_stats_mark_idling(stats);
574 }
575 
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)576 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
577 {
578 	struct cfqg_stats *stats = &cfqg->stats;
579 
580 	blkg_stat_add(&stats->avg_queue_size_sum,
581 		      blkg_rwstat_total(&stats->queued));
582 	blkg_stat_add(&stats->avg_queue_size_samples, 1);
583 	cfqg_stats_update_group_wait_time(stats);
584 }
585 
586 #else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
587 
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
cfqg_stats_end_empty_time(struct cfqg_stats * stats)589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
cfqg_stats_update_dequeue(struct cfq_group * cfqg)590 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
cfqg_stats_update_idle_time(struct cfq_group * cfqg)592 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
595 
596 #endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
597 
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
599 
pd_to_cfqg(struct blkg_policy_data * pd)600 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
601 {
602 	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
603 }
604 
605 static struct cfq_group_data
cpd_to_cfqgd(struct blkcg_policy_data * cpd)606 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
607 {
608 	return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
609 }
610 
cfqg_to_blkg(struct cfq_group * cfqg)611 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
612 {
613 	return pd_to_blkg(&cfqg->pd);
614 }
615 
616 static struct blkcg_policy blkcg_policy_cfq;
617 
blkg_to_cfqg(struct blkcg_gq * blkg)618 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
619 {
620 	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
621 }
622 
blkcg_to_cfqgd(struct blkcg * blkcg)623 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
624 {
625 	return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
626 }
627 
cfqg_parent(struct cfq_group * cfqg)628 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
629 {
630 	struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
631 
632 	return pblkg ? blkg_to_cfqg(pblkg) : NULL;
633 }
634 
cfqg_get(struct cfq_group * cfqg)635 static inline void cfqg_get(struct cfq_group *cfqg)
636 {
637 	return blkg_get(cfqg_to_blkg(cfqg));
638 }
639 
cfqg_put(struct cfq_group * cfqg)640 static inline void cfqg_put(struct cfq_group *cfqg)
641 {
642 	return blkg_put(cfqg_to_blkg(cfqg));
643 }
644 
645 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
646 	char __pbuf[128];						\
647 									\
648 	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\
649 	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
650 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
651 			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
652 			  __pbuf, ##args);				\
653 } while (0)
654 
655 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
656 	char __pbuf[128];						\
657 									\
658 	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\
659 	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\
660 } while (0)
661 
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,int rw)662 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
663 					    struct cfq_group *curr_cfqg, int rw)
664 {
665 	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
666 	cfqg_stats_end_empty_time(&cfqg->stats);
667 	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
668 }
669 
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,unsigned long time,unsigned long unaccounted_time)670 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
671 			unsigned long time, unsigned long unaccounted_time)
672 {
673 	blkg_stat_add(&cfqg->stats.time, time);
674 #ifdef CONFIG_DEBUG_BLK_CGROUP
675 	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
676 #endif
677 }
678 
cfqg_stats_update_io_remove(struct cfq_group * cfqg,int rw)679 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
680 {
681 	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
682 }
683 
cfqg_stats_update_io_merged(struct cfq_group * cfqg,int rw)684 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
685 {
686 	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
687 }
688 
cfqg_stats_update_completion(struct cfq_group * cfqg,uint64_t start_time,uint64_t io_start_time,int rw)689 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
690 			uint64_t start_time, uint64_t io_start_time, int rw)
691 {
692 	struct cfqg_stats *stats = &cfqg->stats;
693 	unsigned long long now = sched_clock();
694 
695 	if (time_after64(now, io_start_time))
696 		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
697 	if (time_after64(io_start_time, start_time))
698 		blkg_rwstat_add(&stats->wait_time, rw,
699 				io_start_time - start_time);
700 }
701 
702 /* @stats = 0 */
cfqg_stats_reset(struct cfqg_stats * stats)703 static void cfqg_stats_reset(struct cfqg_stats *stats)
704 {
705 	/* queued stats shouldn't be cleared */
706 	blkg_rwstat_reset(&stats->merged);
707 	blkg_rwstat_reset(&stats->service_time);
708 	blkg_rwstat_reset(&stats->wait_time);
709 	blkg_stat_reset(&stats->time);
710 #ifdef CONFIG_DEBUG_BLK_CGROUP
711 	blkg_stat_reset(&stats->unaccounted_time);
712 	blkg_stat_reset(&stats->avg_queue_size_sum);
713 	blkg_stat_reset(&stats->avg_queue_size_samples);
714 	blkg_stat_reset(&stats->dequeue);
715 	blkg_stat_reset(&stats->group_wait_time);
716 	blkg_stat_reset(&stats->idle_time);
717 	blkg_stat_reset(&stats->empty_time);
718 #endif
719 }
720 
721 /* @to += @from */
cfqg_stats_add_aux(struct cfqg_stats * to,struct cfqg_stats * from)722 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
723 {
724 	/* queued stats shouldn't be cleared */
725 	blkg_rwstat_add_aux(&to->merged, &from->merged);
726 	blkg_rwstat_add_aux(&to->service_time, &from->service_time);
727 	blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
728 	blkg_stat_add_aux(&from->time, &from->time);
729 #ifdef CONFIG_DEBUG_BLK_CGROUP
730 	blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
731 	blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
732 	blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
733 	blkg_stat_add_aux(&to->dequeue, &from->dequeue);
734 	blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
735 	blkg_stat_add_aux(&to->idle_time, &from->idle_time);
736 	blkg_stat_add_aux(&to->empty_time, &from->empty_time);
737 #endif
738 }
739 
740 /*
741  * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
742  * recursive stats can still account for the amount used by this cfqg after
743  * it's gone.
744  */
cfqg_stats_xfer_dead(struct cfq_group * cfqg)745 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
746 {
747 	struct cfq_group *parent = cfqg_parent(cfqg);
748 
749 	lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
750 
751 	if (unlikely(!parent))
752 		return;
753 
754 	cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
755 	cfqg_stats_reset(&cfqg->stats);
756 }
757 
758 #else	/* CONFIG_CFQ_GROUP_IOSCHED */
759 
cfqg_parent(struct cfq_group * cfqg)760 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
cfqg_get(struct cfq_group * cfqg)761 static inline void cfqg_get(struct cfq_group *cfqg) { }
cfqg_put(struct cfq_group * cfqg)762 static inline void cfqg_put(struct cfq_group *cfqg) { }
763 
764 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
765 	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\
766 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
767 			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
768 				##args)
769 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
770 
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,int rw)771 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
772 			struct cfq_group *curr_cfqg, int rw) { }
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,unsigned long time,unsigned long unaccounted_time)773 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
774 			unsigned long time, unsigned long unaccounted_time) { }
cfqg_stats_update_io_remove(struct cfq_group * cfqg,int rw)775 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
cfqg_stats_update_io_merged(struct cfq_group * cfqg,int rw)776 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
cfqg_stats_update_completion(struct cfq_group * cfqg,uint64_t start_time,uint64_t io_start_time,int rw)777 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
778 			uint64_t start_time, uint64_t io_start_time, int rw) { }
779 
780 #endif	/* CONFIG_CFQ_GROUP_IOSCHED */
781 
782 #define cfq_log(cfqd, fmt, args...)	\
783 	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
784 
785 /* Traverses through cfq group service trees */
786 #define for_each_cfqg_st(cfqg, i, j, st) \
787 	for (i = 0; i <= IDLE_WORKLOAD; i++) \
788 		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
789 			: &cfqg->service_tree_idle; \
790 			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
791 			(i == IDLE_WORKLOAD && j == 0); \
792 			j++, st = i < IDLE_WORKLOAD ? \
793 			&cfqg->service_trees[i][j]: NULL) \
794 
cfq_io_thinktime_big(struct cfq_data * cfqd,struct cfq_ttime * ttime,bool group_idle)795 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
796 	struct cfq_ttime *ttime, bool group_idle)
797 {
798 	unsigned long slice;
799 	if (!sample_valid(ttime->ttime_samples))
800 		return false;
801 	if (group_idle)
802 		slice = cfqd->cfq_group_idle;
803 	else
804 		slice = cfqd->cfq_slice_idle;
805 	return ttime->ttime_mean > slice;
806 }
807 
iops_mode(struct cfq_data * cfqd)808 static inline bool iops_mode(struct cfq_data *cfqd)
809 {
810 	/*
811 	 * If we are not idling on queues and it is a NCQ drive, parallel
812 	 * execution of requests is on and measuring time is not possible
813 	 * in most of the cases until and unless we drive shallower queue
814 	 * depths and that becomes a performance bottleneck. In such cases
815 	 * switch to start providing fairness in terms of number of IOs.
816 	 */
817 	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
818 		return true;
819 	else
820 		return false;
821 }
822 
cfqq_class(struct cfq_queue * cfqq)823 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
824 {
825 	if (cfq_class_idle(cfqq))
826 		return IDLE_WORKLOAD;
827 	if (cfq_class_rt(cfqq))
828 		return RT_WORKLOAD;
829 	return BE_WORKLOAD;
830 }
831 
832 
cfqq_type(struct cfq_queue * cfqq)833 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
834 {
835 	if (!cfq_cfqq_sync(cfqq))
836 		return ASYNC_WORKLOAD;
837 	if (!cfq_cfqq_idle_window(cfqq))
838 		return SYNC_NOIDLE_WORKLOAD;
839 	return SYNC_WORKLOAD;
840 }
841 
cfq_group_busy_queues_wl(enum wl_class_t wl_class,struct cfq_data * cfqd,struct cfq_group * cfqg)842 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
843 					struct cfq_data *cfqd,
844 					struct cfq_group *cfqg)
845 {
846 	if (wl_class == IDLE_WORKLOAD)
847 		return cfqg->service_tree_idle.count;
848 
849 	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
850 		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
851 		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
852 }
853 
cfqg_busy_async_queues(struct cfq_data * cfqd,struct cfq_group * cfqg)854 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
855 					struct cfq_group *cfqg)
856 {
857 	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
858 		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
859 }
860 
861 static void cfq_dispatch_insert(struct request_queue *, struct request *);
862 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
863 				       struct cfq_io_cq *cic, struct bio *bio);
864 
icq_to_cic(struct io_cq * icq)865 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
866 {
867 	/* cic->icq is the first member, %NULL will convert to %NULL */
868 	return container_of(icq, struct cfq_io_cq, icq);
869 }
870 
cfq_cic_lookup(struct cfq_data * cfqd,struct io_context * ioc)871 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
872 					       struct io_context *ioc)
873 {
874 	if (ioc)
875 		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
876 	return NULL;
877 }
878 
cic_to_cfqq(struct cfq_io_cq * cic,bool is_sync)879 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
880 {
881 	return cic->cfqq[is_sync];
882 }
883 
cic_set_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq,bool is_sync)884 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
885 				bool is_sync)
886 {
887 	cic->cfqq[is_sync] = cfqq;
888 }
889 
cic_to_cfqd(struct cfq_io_cq * cic)890 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
891 {
892 	return cic->icq.q->elevator->elevator_data;
893 }
894 
895 /*
896  * We regard a request as SYNC, if it's either a read or has the SYNC bit
897  * set (in which case it could also be direct WRITE).
898  */
cfq_bio_sync(struct bio * bio)899 static inline bool cfq_bio_sync(struct bio *bio)
900 {
901 	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
902 }
903 
904 /*
905  * scheduler run of queue, if there are requests pending and no one in the
906  * driver that will restart queueing
907  */
cfq_schedule_dispatch(struct cfq_data * cfqd)908 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
909 {
910 	if (cfqd->busy_queues) {
911 		cfq_log(cfqd, "schedule dispatch");
912 		kblockd_schedule_work(&cfqd->unplug_work);
913 	}
914 }
915 
916 /*
917  * Scale schedule slice based on io priority. Use the sync time slice only
918  * if a queue is marked sync and has sync io queued. A sync queue with async
919  * io only, should not get full sync slice length.
920  */
cfq_prio_slice(struct cfq_data * cfqd,bool sync,unsigned short prio)921 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
922 				 unsigned short prio)
923 {
924 	const int base_slice = cfqd->cfq_slice[sync];
925 
926 	WARN_ON(prio >= IOPRIO_BE_NR);
927 
928 	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
929 }
930 
931 static inline int
cfq_prio_to_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)932 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
933 {
934 	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
935 }
936 
937 /**
938  * cfqg_scale_charge - scale disk time charge according to cfqg weight
939  * @charge: disk time being charged
940  * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
941  *
942  * Scale @charge according to @vfraction, which is in range (0, 1].  The
943  * scaling is inversely proportional.
944  *
945  * scaled = charge / vfraction
946  *
947  * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
948  */
cfqg_scale_charge(unsigned long charge,unsigned int vfraction)949 static inline u64 cfqg_scale_charge(unsigned long charge,
950 				    unsigned int vfraction)
951 {
952 	u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */
953 
954 	/* charge / vfraction */
955 	c <<= CFQ_SERVICE_SHIFT;
956 	do_div(c, vfraction);
957 	return c;
958 }
959 
max_vdisktime(u64 min_vdisktime,u64 vdisktime)960 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
961 {
962 	s64 delta = (s64)(vdisktime - min_vdisktime);
963 	if (delta > 0)
964 		min_vdisktime = vdisktime;
965 
966 	return min_vdisktime;
967 }
968 
min_vdisktime(u64 min_vdisktime,u64 vdisktime)969 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
970 {
971 	s64 delta = (s64)(vdisktime - min_vdisktime);
972 	if (delta < 0)
973 		min_vdisktime = vdisktime;
974 
975 	return min_vdisktime;
976 }
977 
update_min_vdisktime(struct cfq_rb_root * st)978 static void update_min_vdisktime(struct cfq_rb_root *st)
979 {
980 	struct cfq_group *cfqg;
981 
982 	if (st->left) {
983 		cfqg = rb_entry_cfqg(st->left);
984 		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
985 						  cfqg->vdisktime);
986 	}
987 }
988 
989 /*
990  * get averaged number of queues of RT/BE priority.
991  * average is updated, with a formula that gives more weight to higher numbers,
992  * to quickly follows sudden increases and decrease slowly
993  */
994 
cfq_group_get_avg_queues(struct cfq_data * cfqd,struct cfq_group * cfqg,bool rt)995 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
996 					struct cfq_group *cfqg, bool rt)
997 {
998 	unsigned min_q, max_q;
999 	unsigned mult  = cfq_hist_divisor - 1;
1000 	unsigned round = cfq_hist_divisor / 2;
1001 	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1002 
1003 	min_q = min(cfqg->busy_queues_avg[rt], busy);
1004 	max_q = max(cfqg->busy_queues_avg[rt], busy);
1005 	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1006 		cfq_hist_divisor;
1007 	return cfqg->busy_queues_avg[rt];
1008 }
1009 
1010 static inline unsigned
cfq_group_slice(struct cfq_data * cfqd,struct cfq_group * cfqg)1011 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1012 {
1013 	return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1014 }
1015 
1016 static inline unsigned
cfq_scaled_cfqq_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1017 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1018 {
1019 	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1020 	if (cfqd->cfq_latency) {
1021 		/*
1022 		 * interested queues (we consider only the ones with the same
1023 		 * priority class in the cfq group)
1024 		 */
1025 		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1026 						cfq_class_rt(cfqq));
1027 		unsigned sync_slice = cfqd->cfq_slice[1];
1028 		unsigned expect_latency = sync_slice * iq;
1029 		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1030 
1031 		if (expect_latency > group_slice) {
1032 			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1033 			/* scale low_slice according to IO priority
1034 			 * and sync vs async */
1035 			unsigned low_slice =
1036 				min(slice, base_low_slice * slice / sync_slice);
1037 			/* the adapted slice value is scaled to fit all iqs
1038 			 * into the target latency */
1039 			slice = max(slice * group_slice / expect_latency,
1040 				    low_slice);
1041 		}
1042 	}
1043 	return slice;
1044 }
1045 
1046 static inline void
cfq_set_prio_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1047 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1048 {
1049 	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1050 
1051 	cfqq->slice_start = jiffies;
1052 	cfqq->slice_end = jiffies + slice;
1053 	cfqq->allocated_slice = slice;
1054 	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1055 }
1056 
1057 /*
1058  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1059  * isn't valid until the first request from the dispatch is activated
1060  * and the slice time set.
1061  */
cfq_slice_used(struct cfq_queue * cfqq)1062 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1063 {
1064 	if (cfq_cfqq_slice_new(cfqq))
1065 		return false;
1066 	if (time_before(jiffies, cfqq->slice_end))
1067 		return false;
1068 
1069 	return true;
1070 }
1071 
1072 /*
1073  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1074  * We choose the request that is closest to the head right now. Distance
1075  * behind the head is penalized and only allowed to a certain extent.
1076  */
1077 static struct request *
cfq_choose_req(struct cfq_data * cfqd,struct request * rq1,struct request * rq2,sector_t last)1078 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1079 {
1080 	sector_t s1, s2, d1 = 0, d2 = 0;
1081 	unsigned long back_max;
1082 #define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
1083 #define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
1084 	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1085 
1086 	if (rq1 == NULL || rq1 == rq2)
1087 		return rq2;
1088 	if (rq2 == NULL)
1089 		return rq1;
1090 
1091 	if (rq_is_sync(rq1) != rq_is_sync(rq2))
1092 		return rq_is_sync(rq1) ? rq1 : rq2;
1093 
1094 	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1095 		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1096 
1097 	s1 = blk_rq_pos(rq1);
1098 	s2 = blk_rq_pos(rq2);
1099 
1100 	/*
1101 	 * by definition, 1KiB is 2 sectors
1102 	 */
1103 	back_max = cfqd->cfq_back_max * 2;
1104 
1105 	/*
1106 	 * Strict one way elevator _except_ in the case where we allow
1107 	 * short backward seeks which are biased as twice the cost of a
1108 	 * similar forward seek.
1109 	 */
1110 	if (s1 >= last)
1111 		d1 = s1 - last;
1112 	else if (s1 + back_max >= last)
1113 		d1 = (last - s1) * cfqd->cfq_back_penalty;
1114 	else
1115 		wrap |= CFQ_RQ1_WRAP;
1116 
1117 	if (s2 >= last)
1118 		d2 = s2 - last;
1119 	else if (s2 + back_max >= last)
1120 		d2 = (last - s2) * cfqd->cfq_back_penalty;
1121 	else
1122 		wrap |= CFQ_RQ2_WRAP;
1123 
1124 	/* Found required data */
1125 
1126 	/*
1127 	 * By doing switch() on the bit mask "wrap" we avoid having to
1128 	 * check two variables for all permutations: --> faster!
1129 	 */
1130 	switch (wrap) {
1131 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1132 		if (d1 < d2)
1133 			return rq1;
1134 		else if (d2 < d1)
1135 			return rq2;
1136 		else {
1137 			if (s1 >= s2)
1138 				return rq1;
1139 			else
1140 				return rq2;
1141 		}
1142 
1143 	case CFQ_RQ2_WRAP:
1144 		return rq1;
1145 	case CFQ_RQ1_WRAP:
1146 		return rq2;
1147 	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1148 	default:
1149 		/*
1150 		 * Since both rqs are wrapped,
1151 		 * start with the one that's further behind head
1152 		 * (--> only *one* back seek required),
1153 		 * since back seek takes more time than forward.
1154 		 */
1155 		if (s1 <= s2)
1156 			return rq1;
1157 		else
1158 			return rq2;
1159 	}
1160 }
1161 
1162 /*
1163  * The below is leftmost cache rbtree addon
1164  */
cfq_rb_first(struct cfq_rb_root * root)1165 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1166 {
1167 	/* Service tree is empty */
1168 	if (!root->count)
1169 		return NULL;
1170 
1171 	if (!root->left)
1172 		root->left = rb_first(&root->rb);
1173 
1174 	if (root->left)
1175 		return rb_entry(root->left, struct cfq_queue, rb_node);
1176 
1177 	return NULL;
1178 }
1179 
cfq_rb_first_group(struct cfq_rb_root * root)1180 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1181 {
1182 	if (!root->left)
1183 		root->left = rb_first(&root->rb);
1184 
1185 	if (root->left)
1186 		return rb_entry_cfqg(root->left);
1187 
1188 	return NULL;
1189 }
1190 
rb_erase_init(struct rb_node * n,struct rb_root * root)1191 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1192 {
1193 	rb_erase(n, root);
1194 	RB_CLEAR_NODE(n);
1195 }
1196 
cfq_rb_erase(struct rb_node * n,struct cfq_rb_root * root)1197 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1198 {
1199 	if (root->left == n)
1200 		root->left = NULL;
1201 	rb_erase_init(n, &root->rb);
1202 	--root->count;
1203 }
1204 
1205 /*
1206  * would be nice to take fifo expire time into account as well
1207  */
1208 static struct request *
cfq_find_next_rq(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * last)1209 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1210 		  struct request *last)
1211 {
1212 	struct rb_node *rbnext = rb_next(&last->rb_node);
1213 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1214 	struct request *next = NULL, *prev = NULL;
1215 
1216 	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1217 
1218 	if (rbprev)
1219 		prev = rb_entry_rq(rbprev);
1220 
1221 	if (rbnext)
1222 		next = rb_entry_rq(rbnext);
1223 	else {
1224 		rbnext = rb_first(&cfqq->sort_list);
1225 		if (rbnext && rbnext != &last->rb_node)
1226 			next = rb_entry_rq(rbnext);
1227 	}
1228 
1229 	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1230 }
1231 
cfq_slice_offset(struct cfq_data * cfqd,struct cfq_queue * cfqq)1232 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1233 				      struct cfq_queue *cfqq)
1234 {
1235 	/*
1236 	 * just an approximation, should be ok.
1237 	 */
1238 	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1239 		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1240 }
1241 
1242 static inline s64
cfqg_key(struct cfq_rb_root * st,struct cfq_group * cfqg)1243 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1244 {
1245 	return cfqg->vdisktime - st->min_vdisktime;
1246 }
1247 
1248 static void
__cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1249 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1250 {
1251 	struct rb_node **node = &st->rb.rb_node;
1252 	struct rb_node *parent = NULL;
1253 	struct cfq_group *__cfqg;
1254 	s64 key = cfqg_key(st, cfqg);
1255 	int left = 1;
1256 
1257 	while (*node != NULL) {
1258 		parent = *node;
1259 		__cfqg = rb_entry_cfqg(parent);
1260 
1261 		if (key < cfqg_key(st, __cfqg))
1262 			node = &parent->rb_left;
1263 		else {
1264 			node = &parent->rb_right;
1265 			left = 0;
1266 		}
1267 	}
1268 
1269 	if (left)
1270 		st->left = &cfqg->rb_node;
1271 
1272 	rb_link_node(&cfqg->rb_node, parent, node);
1273 	rb_insert_color(&cfqg->rb_node, &st->rb);
1274 }
1275 
1276 /*
1277  * This has to be called only on activation of cfqg
1278  */
1279 static void
cfq_update_group_weight(struct cfq_group * cfqg)1280 cfq_update_group_weight(struct cfq_group *cfqg)
1281 {
1282 	if (cfqg->new_weight) {
1283 		cfqg->weight = cfqg->new_weight;
1284 		cfqg->new_weight = 0;
1285 	}
1286 }
1287 
1288 static void
cfq_update_group_leaf_weight(struct cfq_group * cfqg)1289 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1290 {
1291 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1292 
1293 	if (cfqg->new_leaf_weight) {
1294 		cfqg->leaf_weight = cfqg->new_leaf_weight;
1295 		cfqg->new_leaf_weight = 0;
1296 	}
1297 }
1298 
1299 static void
cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1300 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1301 {
1302 	unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */
1303 	struct cfq_group *pos = cfqg;
1304 	struct cfq_group *parent;
1305 	bool propagate;
1306 
1307 	/* add to the service tree */
1308 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1309 
1310 	/*
1311 	 * Update leaf_weight.  We cannot update weight at this point
1312 	 * because cfqg might already have been activated and is
1313 	 * contributing its current weight to the parent's child_weight.
1314 	 */
1315 	cfq_update_group_leaf_weight(cfqg);
1316 	__cfq_group_service_tree_add(st, cfqg);
1317 
1318 	/*
1319 	 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1320 	 * entitled to.  vfraction is calculated by walking the tree
1321 	 * towards the root calculating the fraction it has at each level.
1322 	 * The compounded ratio is how much vfraction @cfqg owns.
1323 	 *
1324 	 * Start with the proportion tasks in this cfqg has against active
1325 	 * children cfqgs - its leaf_weight against children_weight.
1326 	 */
1327 	propagate = !pos->nr_active++;
1328 	pos->children_weight += pos->leaf_weight;
1329 	vfr = vfr * pos->leaf_weight / pos->children_weight;
1330 
1331 	/*
1332 	 * Compound ->weight walking up the tree.  Both activation and
1333 	 * vfraction calculation are done in the same loop.  Propagation
1334 	 * stops once an already activated node is met.  vfraction
1335 	 * calculation should always continue to the root.
1336 	 */
1337 	while ((parent = cfqg_parent(pos))) {
1338 		if (propagate) {
1339 			cfq_update_group_weight(pos);
1340 			propagate = !parent->nr_active++;
1341 			parent->children_weight += pos->weight;
1342 		}
1343 		vfr = vfr * pos->weight / parent->children_weight;
1344 		pos = parent;
1345 	}
1346 
1347 	cfqg->vfraction = max_t(unsigned, vfr, 1);
1348 }
1349 
1350 static void
cfq_group_notify_queue_add(struct cfq_data * cfqd,struct cfq_group * cfqg)1351 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1352 {
1353 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1354 	struct cfq_group *__cfqg;
1355 	struct rb_node *n;
1356 
1357 	cfqg->nr_cfqq++;
1358 	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1359 		return;
1360 
1361 	/*
1362 	 * Currently put the group at the end. Later implement something
1363 	 * so that groups get lesser vtime based on their weights, so that
1364 	 * if group does not loose all if it was not continuously backlogged.
1365 	 */
1366 	n = rb_last(&st->rb);
1367 	if (n) {
1368 		__cfqg = rb_entry_cfqg(n);
1369 		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1370 	} else
1371 		cfqg->vdisktime = st->min_vdisktime;
1372 	cfq_group_service_tree_add(st, cfqg);
1373 }
1374 
1375 static void
cfq_group_service_tree_del(struct cfq_rb_root * st,struct cfq_group * cfqg)1376 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1377 {
1378 	struct cfq_group *pos = cfqg;
1379 	bool propagate;
1380 
1381 	/*
1382 	 * Undo activation from cfq_group_service_tree_add().  Deactivate
1383 	 * @cfqg and propagate deactivation upwards.
1384 	 */
1385 	propagate = !--pos->nr_active;
1386 	pos->children_weight -= pos->leaf_weight;
1387 
1388 	while (propagate) {
1389 		struct cfq_group *parent = cfqg_parent(pos);
1390 
1391 		/* @pos has 0 nr_active at this point */
1392 		WARN_ON_ONCE(pos->children_weight);
1393 		pos->vfraction = 0;
1394 
1395 		if (!parent)
1396 			break;
1397 
1398 		propagate = !--parent->nr_active;
1399 		parent->children_weight -= pos->weight;
1400 		pos = parent;
1401 	}
1402 
1403 	/* remove from the service tree */
1404 	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1405 		cfq_rb_erase(&cfqg->rb_node, st);
1406 }
1407 
1408 static void
cfq_group_notify_queue_del(struct cfq_data * cfqd,struct cfq_group * cfqg)1409 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1410 {
1411 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1412 
1413 	BUG_ON(cfqg->nr_cfqq < 1);
1414 	cfqg->nr_cfqq--;
1415 
1416 	/* If there are other cfq queues under this group, don't delete it */
1417 	if (cfqg->nr_cfqq)
1418 		return;
1419 
1420 	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1421 	cfq_group_service_tree_del(st, cfqg);
1422 	cfqg->saved_wl_slice = 0;
1423 	cfqg_stats_update_dequeue(cfqg);
1424 }
1425 
cfq_cfqq_slice_usage(struct cfq_queue * cfqq,unsigned int * unaccounted_time)1426 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1427 						unsigned int *unaccounted_time)
1428 {
1429 	unsigned int slice_used;
1430 
1431 	/*
1432 	 * Queue got expired before even a single request completed or
1433 	 * got expired immediately after first request completion.
1434 	 */
1435 	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1436 		/*
1437 		 * Also charge the seek time incurred to the group, otherwise
1438 		 * if there are mutiple queues in the group, each can dispatch
1439 		 * a single request on seeky media and cause lots of seek time
1440 		 * and group will never know it.
1441 		 */
1442 		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1443 					1);
1444 	} else {
1445 		slice_used = jiffies - cfqq->slice_start;
1446 		if (slice_used > cfqq->allocated_slice) {
1447 			*unaccounted_time = slice_used - cfqq->allocated_slice;
1448 			slice_used = cfqq->allocated_slice;
1449 		}
1450 		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1451 			*unaccounted_time += cfqq->slice_start -
1452 					cfqq->dispatch_start;
1453 	}
1454 
1455 	return slice_used;
1456 }
1457 
cfq_group_served(struct cfq_data * cfqd,struct cfq_group * cfqg,struct cfq_queue * cfqq)1458 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1459 				struct cfq_queue *cfqq)
1460 {
1461 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1462 	unsigned int used_sl, charge, unaccounted_sl = 0;
1463 	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1464 			- cfqg->service_tree_idle.count;
1465 	unsigned int vfr;
1466 
1467 	BUG_ON(nr_sync < 0);
1468 	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1469 
1470 	if (iops_mode(cfqd))
1471 		charge = cfqq->slice_dispatch;
1472 	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1473 		charge = cfqq->allocated_slice;
1474 
1475 	/*
1476 	 * Can't update vdisktime while on service tree and cfqg->vfraction
1477 	 * is valid only while on it.  Cache vfr, leave the service tree,
1478 	 * update vdisktime and go back on.  The re-addition to the tree
1479 	 * will also update the weights as necessary.
1480 	 */
1481 	vfr = cfqg->vfraction;
1482 	cfq_group_service_tree_del(st, cfqg);
1483 	cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1484 	cfq_group_service_tree_add(st, cfqg);
1485 
1486 	/* This group is being expired. Save the context */
1487 	if (time_after(cfqd->workload_expires, jiffies)) {
1488 		cfqg->saved_wl_slice = cfqd->workload_expires
1489 						- jiffies;
1490 		cfqg->saved_wl_type = cfqd->serving_wl_type;
1491 		cfqg->saved_wl_class = cfqd->serving_wl_class;
1492 	} else
1493 		cfqg->saved_wl_slice = 0;
1494 
1495 	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1496 					st->min_vdisktime);
1497 	cfq_log_cfqq(cfqq->cfqd, cfqq,
1498 		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1499 		     used_sl, cfqq->slice_dispatch, charge,
1500 		     iops_mode(cfqd), cfqq->nr_sectors);
1501 	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1502 	cfqg_stats_set_start_empty_time(cfqg);
1503 }
1504 
1505 /**
1506  * cfq_init_cfqg_base - initialize base part of a cfq_group
1507  * @cfqg: cfq_group to initialize
1508  *
1509  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510  * is enabled or not.
1511  */
cfq_init_cfqg_base(struct cfq_group * cfqg)1512 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1513 {
1514 	struct cfq_rb_root *st;
1515 	int i, j;
1516 
1517 	for_each_cfqg_st(cfqg, i, j, st)
1518 		*st = CFQ_RB_ROOT;
1519 	RB_CLEAR_NODE(&cfqg->rb_node);
1520 
1521 	cfqg->ttime.last_end_request = jiffies;
1522 }
1523 
1524 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1525 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1526 			    bool on_dfl, bool reset_dev, bool is_leaf_weight);
1527 
cfqg_stats_exit(struct cfqg_stats * stats)1528 static void cfqg_stats_exit(struct cfqg_stats *stats)
1529 {
1530 	blkg_rwstat_exit(&stats->merged);
1531 	blkg_rwstat_exit(&stats->service_time);
1532 	blkg_rwstat_exit(&stats->wait_time);
1533 	blkg_rwstat_exit(&stats->queued);
1534 	blkg_stat_exit(&stats->time);
1535 #ifdef CONFIG_DEBUG_BLK_CGROUP
1536 	blkg_stat_exit(&stats->unaccounted_time);
1537 	blkg_stat_exit(&stats->avg_queue_size_sum);
1538 	blkg_stat_exit(&stats->avg_queue_size_samples);
1539 	blkg_stat_exit(&stats->dequeue);
1540 	blkg_stat_exit(&stats->group_wait_time);
1541 	blkg_stat_exit(&stats->idle_time);
1542 	blkg_stat_exit(&stats->empty_time);
1543 #endif
1544 }
1545 
cfqg_stats_init(struct cfqg_stats * stats,gfp_t gfp)1546 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1547 {
1548 	if (blkg_rwstat_init(&stats->merged, gfp) ||
1549 	    blkg_rwstat_init(&stats->service_time, gfp) ||
1550 	    blkg_rwstat_init(&stats->wait_time, gfp) ||
1551 	    blkg_rwstat_init(&stats->queued, gfp) ||
1552 	    blkg_stat_init(&stats->time, gfp))
1553 		goto err;
1554 
1555 #ifdef CONFIG_DEBUG_BLK_CGROUP
1556 	if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1557 	    blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1558 	    blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1559 	    blkg_stat_init(&stats->dequeue, gfp) ||
1560 	    blkg_stat_init(&stats->group_wait_time, gfp) ||
1561 	    blkg_stat_init(&stats->idle_time, gfp) ||
1562 	    blkg_stat_init(&stats->empty_time, gfp))
1563 		goto err;
1564 #endif
1565 	return 0;
1566 err:
1567 	cfqg_stats_exit(stats);
1568 	return -ENOMEM;
1569 }
1570 
cfq_cpd_alloc(gfp_t gfp)1571 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1572 {
1573 	struct cfq_group_data *cgd;
1574 
1575 	cgd = kzalloc(sizeof(*cgd), gfp);
1576 	if (!cgd)
1577 		return NULL;
1578 	return &cgd->cpd;
1579 }
1580 
cfq_cpd_init(struct blkcg_policy_data * cpd)1581 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1582 {
1583 	struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1584 	unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1585 			      CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1586 
1587 	if (cpd_to_blkcg(cpd) == &blkcg_root)
1588 		weight *= 2;
1589 
1590 	cgd->weight = weight;
1591 	cgd->leaf_weight = weight;
1592 }
1593 
cfq_cpd_free(struct blkcg_policy_data * cpd)1594 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1595 {
1596 	kfree(cpd_to_cfqgd(cpd));
1597 }
1598 
cfq_cpd_bind(struct blkcg_policy_data * cpd)1599 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1600 {
1601 	struct blkcg *blkcg = cpd_to_blkcg(cpd);
1602 	bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1603 	unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1604 
1605 	if (blkcg == &blkcg_root)
1606 		weight *= 2;
1607 
1608 	WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1609 	WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1610 }
1611 
cfq_pd_alloc(gfp_t gfp,int node)1612 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1613 {
1614 	struct cfq_group *cfqg;
1615 
1616 	cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1617 	if (!cfqg)
1618 		return NULL;
1619 
1620 	cfq_init_cfqg_base(cfqg);
1621 	if (cfqg_stats_init(&cfqg->stats, gfp)) {
1622 		kfree(cfqg);
1623 		return NULL;
1624 	}
1625 
1626 	return &cfqg->pd;
1627 }
1628 
cfq_pd_init(struct blkg_policy_data * pd)1629 static void cfq_pd_init(struct blkg_policy_data *pd)
1630 {
1631 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1632 	struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1633 
1634 	cfqg->weight = cgd->weight;
1635 	cfqg->leaf_weight = cgd->leaf_weight;
1636 }
1637 
cfq_pd_offline(struct blkg_policy_data * pd)1638 static void cfq_pd_offline(struct blkg_policy_data *pd)
1639 {
1640 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1641 	int i;
1642 
1643 	for (i = 0; i < IOPRIO_BE_NR; i++) {
1644 		if (cfqg->async_cfqq[0][i])
1645 			cfq_put_queue(cfqg->async_cfqq[0][i]);
1646 		if (cfqg->async_cfqq[1][i])
1647 			cfq_put_queue(cfqg->async_cfqq[1][i]);
1648 	}
1649 
1650 	if (cfqg->async_idle_cfqq)
1651 		cfq_put_queue(cfqg->async_idle_cfqq);
1652 
1653 	/*
1654 	 * @blkg is going offline and will be ignored by
1655 	 * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1656 	 * that they don't get lost.  If IOs complete after this point, the
1657 	 * stats for them will be lost.  Oh well...
1658 	 */
1659 	cfqg_stats_xfer_dead(cfqg);
1660 }
1661 
cfq_pd_free(struct blkg_policy_data * pd)1662 static void cfq_pd_free(struct blkg_policy_data *pd)
1663 {
1664 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1665 
1666 	cfqg_stats_exit(&cfqg->stats);
1667 	return kfree(cfqg);
1668 }
1669 
cfq_pd_reset_stats(struct blkg_policy_data * pd)1670 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1671 {
1672 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1673 
1674 	cfqg_stats_reset(&cfqg->stats);
1675 }
1676 
cfq_lookup_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)1677 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1678 					 struct blkcg *blkcg)
1679 {
1680 	struct blkcg_gq *blkg;
1681 
1682 	blkg = blkg_lookup(blkcg, cfqd->queue);
1683 	if (likely(blkg))
1684 		return blkg_to_cfqg(blkg);
1685 	return NULL;
1686 }
1687 
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)1688 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1689 {
1690 	cfqq->cfqg = cfqg;
1691 	/* cfqq reference on cfqg */
1692 	cfqg_get(cfqg);
1693 }
1694 
cfqg_prfill_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1695 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1696 				     struct blkg_policy_data *pd, int off)
1697 {
1698 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1699 
1700 	if (!cfqg->dev_weight)
1701 		return 0;
1702 	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1703 }
1704 
cfqg_print_weight_device(struct seq_file * sf,void * v)1705 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1706 {
1707 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1708 			  cfqg_prfill_weight_device, &blkcg_policy_cfq,
1709 			  0, false);
1710 	return 0;
1711 }
1712 
cfqg_prfill_leaf_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1713 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1714 					  struct blkg_policy_data *pd, int off)
1715 {
1716 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1717 
1718 	if (!cfqg->dev_leaf_weight)
1719 		return 0;
1720 	return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1721 }
1722 
cfqg_print_leaf_weight_device(struct seq_file * sf,void * v)1723 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1724 {
1725 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1726 			  cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1727 			  0, false);
1728 	return 0;
1729 }
1730 
cfq_print_weight(struct seq_file * sf,void * v)1731 static int cfq_print_weight(struct seq_file *sf, void *v)
1732 {
1733 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1734 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1735 	unsigned int val = 0;
1736 
1737 	if (cgd)
1738 		val = cgd->weight;
1739 
1740 	seq_printf(sf, "%u\n", val);
1741 	return 0;
1742 }
1743 
cfq_print_leaf_weight(struct seq_file * sf,void * v)1744 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1745 {
1746 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1747 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1748 	unsigned int val = 0;
1749 
1750 	if (cgd)
1751 		val = cgd->leaf_weight;
1752 
1753 	seq_printf(sf, "%u\n", val);
1754 	return 0;
1755 }
1756 
__cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool on_dfl,bool is_leaf_weight)1757 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1758 					char *buf, size_t nbytes, loff_t off,
1759 					bool on_dfl, bool is_leaf_weight)
1760 {
1761 	unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1762 	unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1763 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1764 	struct blkg_conf_ctx ctx;
1765 	struct cfq_group *cfqg;
1766 	struct cfq_group_data *cfqgd;
1767 	int ret;
1768 	u64 v;
1769 
1770 	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1771 	if (ret)
1772 		return ret;
1773 
1774 	if (sscanf(ctx.body, "%llu", &v) == 1) {
1775 		/* require "default" on dfl */
1776 		ret = -ERANGE;
1777 		if (!v && on_dfl)
1778 			goto out_finish;
1779 	} else if (!strcmp(strim(ctx.body), "default")) {
1780 		v = 0;
1781 	} else {
1782 		ret = -EINVAL;
1783 		goto out_finish;
1784 	}
1785 
1786 	cfqg = blkg_to_cfqg(ctx.blkg);
1787 	cfqgd = blkcg_to_cfqgd(blkcg);
1788 
1789 	ret = -ERANGE;
1790 	if (!v || (v >= min && v <= max)) {
1791 		if (!is_leaf_weight) {
1792 			cfqg->dev_weight = v;
1793 			cfqg->new_weight = v ?: cfqgd->weight;
1794 		} else {
1795 			cfqg->dev_leaf_weight = v;
1796 			cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1797 		}
1798 		ret = 0;
1799 	}
1800 out_finish:
1801 	blkg_conf_finish(&ctx);
1802 	return ret ?: nbytes;
1803 }
1804 
cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1805 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1806 				      char *buf, size_t nbytes, loff_t off)
1807 {
1808 	return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1809 }
1810 
cfqg_set_leaf_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1811 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1812 					   char *buf, size_t nbytes, loff_t off)
1813 {
1814 	return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1815 }
1816 
__cfq_set_weight(struct cgroup_subsys_state * css,u64 val,bool on_dfl,bool reset_dev,bool is_leaf_weight)1817 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1818 			    bool on_dfl, bool reset_dev, bool is_leaf_weight)
1819 {
1820 	unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1821 	unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1822 	struct blkcg *blkcg = css_to_blkcg(css);
1823 	struct blkcg_gq *blkg;
1824 	struct cfq_group_data *cfqgd;
1825 	int ret = 0;
1826 
1827 	if (val < min || val > max)
1828 		return -ERANGE;
1829 
1830 	spin_lock_irq(&blkcg->lock);
1831 	cfqgd = blkcg_to_cfqgd(blkcg);
1832 	if (!cfqgd) {
1833 		ret = -EINVAL;
1834 		goto out;
1835 	}
1836 
1837 	if (!is_leaf_weight)
1838 		cfqgd->weight = val;
1839 	else
1840 		cfqgd->leaf_weight = val;
1841 
1842 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1843 		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1844 
1845 		if (!cfqg)
1846 			continue;
1847 
1848 		if (!is_leaf_weight) {
1849 			if (reset_dev)
1850 				cfqg->dev_weight = 0;
1851 			if (!cfqg->dev_weight)
1852 				cfqg->new_weight = cfqgd->weight;
1853 		} else {
1854 			if (reset_dev)
1855 				cfqg->dev_leaf_weight = 0;
1856 			if (!cfqg->dev_leaf_weight)
1857 				cfqg->new_leaf_weight = cfqgd->leaf_weight;
1858 		}
1859 	}
1860 
1861 out:
1862 	spin_unlock_irq(&blkcg->lock);
1863 	return ret;
1864 }
1865 
cfq_set_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1866 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1867 			  u64 val)
1868 {
1869 	return __cfq_set_weight(css, val, false, false, false);
1870 }
1871 
cfq_set_leaf_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1872 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1873 			       struct cftype *cft, u64 val)
1874 {
1875 	return __cfq_set_weight(css, val, false, false, true);
1876 }
1877 
cfqg_print_stat(struct seq_file * sf,void * v)1878 static int cfqg_print_stat(struct seq_file *sf, void *v)
1879 {
1880 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1881 			  &blkcg_policy_cfq, seq_cft(sf)->private, false);
1882 	return 0;
1883 }
1884 
cfqg_print_rwstat(struct seq_file * sf,void * v)1885 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1886 {
1887 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1888 			  &blkcg_policy_cfq, seq_cft(sf)->private, true);
1889 	return 0;
1890 }
1891 
cfqg_prfill_stat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1892 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1893 				      struct blkg_policy_data *pd, int off)
1894 {
1895 	u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1896 					  &blkcg_policy_cfq, off);
1897 	return __blkg_prfill_u64(sf, pd, sum);
1898 }
1899 
cfqg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1900 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1901 					struct blkg_policy_data *pd, int off)
1902 {
1903 	struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1904 							&blkcg_policy_cfq, off);
1905 	return __blkg_prfill_rwstat(sf, pd, &sum);
1906 }
1907 
cfqg_print_stat_recursive(struct seq_file * sf,void * v)1908 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1909 {
1910 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1911 			  cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1912 			  seq_cft(sf)->private, false);
1913 	return 0;
1914 }
1915 
cfqg_print_rwstat_recursive(struct seq_file * sf,void * v)1916 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1917 {
1918 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1919 			  cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1920 			  seq_cft(sf)->private, true);
1921 	return 0;
1922 }
1923 
cfqg_prfill_sectors(struct seq_file * sf,struct blkg_policy_data * pd,int off)1924 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1925 			       int off)
1926 {
1927 	u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1928 
1929 	return __blkg_prfill_u64(sf, pd, sum >> 9);
1930 }
1931 
cfqg_print_stat_sectors(struct seq_file * sf,void * v)1932 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1933 {
1934 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1935 			  cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1936 	return 0;
1937 }
1938 
cfqg_prfill_sectors_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1939 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1940 					 struct blkg_policy_data *pd, int off)
1941 {
1942 	struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1943 					offsetof(struct blkcg_gq, stat_bytes));
1944 	u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1945 		atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1946 
1947 	return __blkg_prfill_u64(sf, pd, sum >> 9);
1948 }
1949 
cfqg_print_stat_sectors_recursive(struct seq_file * sf,void * v)1950 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1951 {
1952 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1953 			  cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1954 			  false);
1955 	return 0;
1956 }
1957 
1958 #ifdef CONFIG_DEBUG_BLK_CGROUP
cfqg_prfill_avg_queue_size(struct seq_file * sf,struct blkg_policy_data * pd,int off)1959 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1960 				      struct blkg_policy_data *pd, int off)
1961 {
1962 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1963 	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1964 	u64 v = 0;
1965 
1966 	if (samples) {
1967 		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1968 		v = div64_u64(v, samples);
1969 	}
1970 	__blkg_prfill_u64(sf, pd, v);
1971 	return 0;
1972 }
1973 
1974 /* print avg_queue_size */
cfqg_print_avg_queue_size(struct seq_file * sf,void * v)1975 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1976 {
1977 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1978 			  cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1979 			  0, false);
1980 	return 0;
1981 }
1982 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
1983 
1984 static struct cftype cfq_blkcg_legacy_files[] = {
1985 	/* on root, weight is mapped to leaf_weight */
1986 	{
1987 		.name = "weight_device",
1988 		.flags = CFTYPE_ONLY_ON_ROOT,
1989 		.seq_show = cfqg_print_leaf_weight_device,
1990 		.write = cfqg_set_leaf_weight_device,
1991 	},
1992 	{
1993 		.name = "weight",
1994 		.flags = CFTYPE_ONLY_ON_ROOT,
1995 		.seq_show = cfq_print_leaf_weight,
1996 		.write_u64 = cfq_set_leaf_weight,
1997 	},
1998 
1999 	/* no such mapping necessary for !roots */
2000 	{
2001 		.name = "weight_device",
2002 		.flags = CFTYPE_NOT_ON_ROOT,
2003 		.seq_show = cfqg_print_weight_device,
2004 		.write = cfqg_set_weight_device,
2005 	},
2006 	{
2007 		.name = "weight",
2008 		.flags = CFTYPE_NOT_ON_ROOT,
2009 		.seq_show = cfq_print_weight,
2010 		.write_u64 = cfq_set_weight,
2011 	},
2012 
2013 	{
2014 		.name = "leaf_weight_device",
2015 		.seq_show = cfqg_print_leaf_weight_device,
2016 		.write = cfqg_set_leaf_weight_device,
2017 	},
2018 	{
2019 		.name = "leaf_weight",
2020 		.seq_show = cfq_print_leaf_weight,
2021 		.write_u64 = cfq_set_leaf_weight,
2022 	},
2023 
2024 	/* statistics, covers only the tasks in the cfqg */
2025 	{
2026 		.name = "time",
2027 		.private = offsetof(struct cfq_group, stats.time),
2028 		.seq_show = cfqg_print_stat,
2029 	},
2030 	{
2031 		.name = "sectors",
2032 		.seq_show = cfqg_print_stat_sectors,
2033 	},
2034 	{
2035 		.name = "io_service_bytes",
2036 		.private = (unsigned long)&blkcg_policy_cfq,
2037 		.seq_show = blkg_print_stat_bytes,
2038 	},
2039 	{
2040 		.name = "io_serviced",
2041 		.private = (unsigned long)&blkcg_policy_cfq,
2042 		.seq_show = blkg_print_stat_ios,
2043 	},
2044 	{
2045 		.name = "io_service_time",
2046 		.private = offsetof(struct cfq_group, stats.service_time),
2047 		.seq_show = cfqg_print_rwstat,
2048 	},
2049 	{
2050 		.name = "io_wait_time",
2051 		.private = offsetof(struct cfq_group, stats.wait_time),
2052 		.seq_show = cfqg_print_rwstat,
2053 	},
2054 	{
2055 		.name = "io_merged",
2056 		.private = offsetof(struct cfq_group, stats.merged),
2057 		.seq_show = cfqg_print_rwstat,
2058 	},
2059 	{
2060 		.name = "io_queued",
2061 		.private = offsetof(struct cfq_group, stats.queued),
2062 		.seq_show = cfqg_print_rwstat,
2063 	},
2064 
2065 	/* the same statictics which cover the cfqg and its descendants */
2066 	{
2067 		.name = "time_recursive",
2068 		.private = offsetof(struct cfq_group, stats.time),
2069 		.seq_show = cfqg_print_stat_recursive,
2070 	},
2071 	{
2072 		.name = "sectors_recursive",
2073 		.seq_show = cfqg_print_stat_sectors_recursive,
2074 	},
2075 	{
2076 		.name = "io_service_bytes_recursive",
2077 		.private = (unsigned long)&blkcg_policy_cfq,
2078 		.seq_show = blkg_print_stat_bytes_recursive,
2079 	},
2080 	{
2081 		.name = "io_serviced_recursive",
2082 		.private = (unsigned long)&blkcg_policy_cfq,
2083 		.seq_show = blkg_print_stat_ios_recursive,
2084 	},
2085 	{
2086 		.name = "io_service_time_recursive",
2087 		.private = offsetof(struct cfq_group, stats.service_time),
2088 		.seq_show = cfqg_print_rwstat_recursive,
2089 	},
2090 	{
2091 		.name = "io_wait_time_recursive",
2092 		.private = offsetof(struct cfq_group, stats.wait_time),
2093 		.seq_show = cfqg_print_rwstat_recursive,
2094 	},
2095 	{
2096 		.name = "io_merged_recursive",
2097 		.private = offsetof(struct cfq_group, stats.merged),
2098 		.seq_show = cfqg_print_rwstat_recursive,
2099 	},
2100 	{
2101 		.name = "io_queued_recursive",
2102 		.private = offsetof(struct cfq_group, stats.queued),
2103 		.seq_show = cfqg_print_rwstat_recursive,
2104 	},
2105 #ifdef CONFIG_DEBUG_BLK_CGROUP
2106 	{
2107 		.name = "avg_queue_size",
2108 		.seq_show = cfqg_print_avg_queue_size,
2109 	},
2110 	{
2111 		.name = "group_wait_time",
2112 		.private = offsetof(struct cfq_group, stats.group_wait_time),
2113 		.seq_show = cfqg_print_stat,
2114 	},
2115 	{
2116 		.name = "idle_time",
2117 		.private = offsetof(struct cfq_group, stats.idle_time),
2118 		.seq_show = cfqg_print_stat,
2119 	},
2120 	{
2121 		.name = "empty_time",
2122 		.private = offsetof(struct cfq_group, stats.empty_time),
2123 		.seq_show = cfqg_print_stat,
2124 	},
2125 	{
2126 		.name = "dequeue",
2127 		.private = offsetof(struct cfq_group, stats.dequeue),
2128 		.seq_show = cfqg_print_stat,
2129 	},
2130 	{
2131 		.name = "unaccounted_time",
2132 		.private = offsetof(struct cfq_group, stats.unaccounted_time),
2133 		.seq_show = cfqg_print_stat,
2134 	},
2135 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
2136 	{ }	/* terminate */
2137 };
2138 
cfq_print_weight_on_dfl(struct seq_file * sf,void * v)2139 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2140 {
2141 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2142 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2143 
2144 	seq_printf(sf, "default %u\n", cgd->weight);
2145 	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2146 			  &blkcg_policy_cfq, 0, false);
2147 	return 0;
2148 }
2149 
cfq_set_weight_on_dfl(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2150 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2151 				     char *buf, size_t nbytes, loff_t off)
2152 {
2153 	char *endp;
2154 	int ret;
2155 	u64 v;
2156 
2157 	buf = strim(buf);
2158 
2159 	/* "WEIGHT" or "default WEIGHT" sets the default weight */
2160 	v = simple_strtoull(buf, &endp, 0);
2161 	if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2162 		ret = __cfq_set_weight(of_css(of), v, true, false, false);
2163 		return ret ?: nbytes;
2164 	}
2165 
2166 	/* "MAJ:MIN WEIGHT" */
2167 	return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2168 }
2169 
2170 static struct cftype cfq_blkcg_files[] = {
2171 	{
2172 		.name = "weight",
2173 		.flags = CFTYPE_NOT_ON_ROOT,
2174 		.seq_show = cfq_print_weight_on_dfl,
2175 		.write = cfq_set_weight_on_dfl,
2176 	},
2177 	{ }	/* terminate */
2178 };
2179 
2180 #else /* GROUP_IOSCHED */
cfq_lookup_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)2181 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2182 					 struct blkcg *blkcg)
2183 {
2184 	return cfqd->root_group;
2185 }
2186 
2187 static inline void
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)2188 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2189 	cfqq->cfqg = cfqg;
2190 }
2191 
2192 #endif /* GROUP_IOSCHED */
2193 
2194 /*
2195  * The cfqd->service_trees holds all pending cfq_queue's that have
2196  * requests waiting to be processed. It is sorted in the order that
2197  * we will service the queues.
2198  */
cfq_service_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool add_front)2199 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2200 				 bool add_front)
2201 {
2202 	struct rb_node **p, *parent;
2203 	struct cfq_queue *__cfqq;
2204 	unsigned long rb_key;
2205 	struct cfq_rb_root *st;
2206 	int left;
2207 	int new_cfqq = 1;
2208 
2209 	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2210 	if (cfq_class_idle(cfqq)) {
2211 		rb_key = CFQ_IDLE_DELAY;
2212 		parent = rb_last(&st->rb);
2213 		if (parent && parent != &cfqq->rb_node) {
2214 			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2215 			rb_key += __cfqq->rb_key;
2216 		} else
2217 			rb_key += jiffies;
2218 	} else if (!add_front) {
2219 		/*
2220 		 * Get our rb key offset. Subtract any residual slice
2221 		 * value carried from last service. A negative resid
2222 		 * count indicates slice overrun, and this should position
2223 		 * the next service time further away in the tree.
2224 		 */
2225 		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2226 		rb_key -= cfqq->slice_resid;
2227 		cfqq->slice_resid = 0;
2228 	} else {
2229 		rb_key = -HZ;
2230 		__cfqq = cfq_rb_first(st);
2231 		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2232 	}
2233 
2234 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2235 		new_cfqq = 0;
2236 		/*
2237 		 * same position, nothing more to do
2238 		 */
2239 		if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2240 			return;
2241 
2242 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2243 		cfqq->service_tree = NULL;
2244 	}
2245 
2246 	left = 1;
2247 	parent = NULL;
2248 	cfqq->service_tree = st;
2249 	p = &st->rb.rb_node;
2250 	while (*p) {
2251 		parent = *p;
2252 		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2253 
2254 		/*
2255 		 * sort by key, that represents service time.
2256 		 */
2257 		if (time_before(rb_key, __cfqq->rb_key))
2258 			p = &parent->rb_left;
2259 		else {
2260 			p = &parent->rb_right;
2261 			left = 0;
2262 		}
2263 	}
2264 
2265 	if (left)
2266 		st->left = &cfqq->rb_node;
2267 
2268 	cfqq->rb_key = rb_key;
2269 	rb_link_node(&cfqq->rb_node, parent, p);
2270 	rb_insert_color(&cfqq->rb_node, &st->rb);
2271 	st->count++;
2272 	if (add_front || !new_cfqq)
2273 		return;
2274 	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2275 }
2276 
2277 static struct cfq_queue *
cfq_prio_tree_lookup(struct cfq_data * cfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)2278 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2279 		     sector_t sector, struct rb_node **ret_parent,
2280 		     struct rb_node ***rb_link)
2281 {
2282 	struct rb_node **p, *parent;
2283 	struct cfq_queue *cfqq = NULL;
2284 
2285 	parent = NULL;
2286 	p = &root->rb_node;
2287 	while (*p) {
2288 		struct rb_node **n;
2289 
2290 		parent = *p;
2291 		cfqq = rb_entry(parent, struct cfq_queue, p_node);
2292 
2293 		/*
2294 		 * Sort strictly based on sector.  Smallest to the left,
2295 		 * largest to the right.
2296 		 */
2297 		if (sector > blk_rq_pos(cfqq->next_rq))
2298 			n = &(*p)->rb_right;
2299 		else if (sector < blk_rq_pos(cfqq->next_rq))
2300 			n = &(*p)->rb_left;
2301 		else
2302 			break;
2303 		p = n;
2304 		cfqq = NULL;
2305 	}
2306 
2307 	*ret_parent = parent;
2308 	if (rb_link)
2309 		*rb_link = p;
2310 	return cfqq;
2311 }
2312 
cfq_prio_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq)2313 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2314 {
2315 	struct rb_node **p, *parent;
2316 	struct cfq_queue *__cfqq;
2317 
2318 	if (cfqq->p_root) {
2319 		rb_erase(&cfqq->p_node, cfqq->p_root);
2320 		cfqq->p_root = NULL;
2321 	}
2322 
2323 	if (cfq_class_idle(cfqq))
2324 		return;
2325 	if (!cfqq->next_rq)
2326 		return;
2327 
2328 	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2329 	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2330 				      blk_rq_pos(cfqq->next_rq), &parent, &p);
2331 	if (!__cfqq) {
2332 		rb_link_node(&cfqq->p_node, parent, p);
2333 		rb_insert_color(&cfqq->p_node, cfqq->p_root);
2334 	} else
2335 		cfqq->p_root = NULL;
2336 }
2337 
2338 /*
2339  * Update cfqq's position in the service tree.
2340  */
cfq_resort_rr_list(struct cfq_data * cfqd,struct cfq_queue * cfqq)2341 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2342 {
2343 	/*
2344 	 * Resorting requires the cfqq to be on the RR list already.
2345 	 */
2346 	if (cfq_cfqq_on_rr(cfqq)) {
2347 		cfq_service_tree_add(cfqd, cfqq, 0);
2348 		cfq_prio_tree_add(cfqd, cfqq);
2349 	}
2350 }
2351 
2352 /*
2353  * add to busy list of queues for service, trying to be fair in ordering
2354  * the pending list according to last request service
2355  */
cfq_add_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2356 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2357 {
2358 	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2359 	BUG_ON(cfq_cfqq_on_rr(cfqq));
2360 	cfq_mark_cfqq_on_rr(cfqq);
2361 	cfqd->busy_queues++;
2362 	if (cfq_cfqq_sync(cfqq))
2363 		cfqd->busy_sync_queues++;
2364 
2365 	cfq_resort_rr_list(cfqd, cfqq);
2366 }
2367 
2368 /*
2369  * Called when the cfqq no longer has requests pending, remove it from
2370  * the service tree.
2371  */
cfq_del_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2372 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2373 {
2374 	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2375 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2376 	cfq_clear_cfqq_on_rr(cfqq);
2377 
2378 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2379 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2380 		cfqq->service_tree = NULL;
2381 	}
2382 	if (cfqq->p_root) {
2383 		rb_erase(&cfqq->p_node, cfqq->p_root);
2384 		cfqq->p_root = NULL;
2385 	}
2386 
2387 	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2388 	BUG_ON(!cfqd->busy_queues);
2389 	cfqd->busy_queues--;
2390 	if (cfq_cfqq_sync(cfqq))
2391 		cfqd->busy_sync_queues--;
2392 }
2393 
2394 /*
2395  * rb tree support functions
2396  */
cfq_del_rq_rb(struct request * rq)2397 static void cfq_del_rq_rb(struct request *rq)
2398 {
2399 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2400 	const int sync = rq_is_sync(rq);
2401 
2402 	BUG_ON(!cfqq->queued[sync]);
2403 	cfqq->queued[sync]--;
2404 
2405 	elv_rb_del(&cfqq->sort_list, rq);
2406 
2407 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2408 		/*
2409 		 * Queue will be deleted from service tree when we actually
2410 		 * expire it later. Right now just remove it from prio tree
2411 		 * as it is empty.
2412 		 */
2413 		if (cfqq->p_root) {
2414 			rb_erase(&cfqq->p_node, cfqq->p_root);
2415 			cfqq->p_root = NULL;
2416 		}
2417 	}
2418 }
2419 
cfq_add_rq_rb(struct request * rq)2420 static void cfq_add_rq_rb(struct request *rq)
2421 {
2422 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2423 	struct cfq_data *cfqd = cfqq->cfqd;
2424 	struct request *prev;
2425 
2426 	cfqq->queued[rq_is_sync(rq)]++;
2427 
2428 	elv_rb_add(&cfqq->sort_list, rq);
2429 
2430 	if (!cfq_cfqq_on_rr(cfqq))
2431 		cfq_add_cfqq_rr(cfqd, cfqq);
2432 
2433 	/*
2434 	 * check if this request is a better next-serve candidate
2435 	 */
2436 	prev = cfqq->next_rq;
2437 	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2438 
2439 	/*
2440 	 * adjust priority tree position, if ->next_rq changes
2441 	 */
2442 	if (prev != cfqq->next_rq)
2443 		cfq_prio_tree_add(cfqd, cfqq);
2444 
2445 	BUG_ON(!cfqq->next_rq);
2446 }
2447 
cfq_reposition_rq_rb(struct cfq_queue * cfqq,struct request * rq)2448 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2449 {
2450 	elv_rb_del(&cfqq->sort_list, rq);
2451 	cfqq->queued[rq_is_sync(rq)]--;
2452 	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2453 	cfq_add_rq_rb(rq);
2454 	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2455 				 rq->cmd_flags);
2456 }
2457 
2458 static struct request *
cfq_find_rq_fmerge(struct cfq_data * cfqd,struct bio * bio)2459 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2460 {
2461 	struct task_struct *tsk = current;
2462 	struct cfq_io_cq *cic;
2463 	struct cfq_queue *cfqq;
2464 
2465 	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2466 	if (!cic)
2467 		return NULL;
2468 
2469 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2470 	if (cfqq)
2471 		return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2472 
2473 	return NULL;
2474 }
2475 
cfq_activate_request(struct request_queue * q,struct request * rq)2476 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2477 {
2478 	struct cfq_data *cfqd = q->elevator->elevator_data;
2479 
2480 	cfqd->rq_in_driver++;
2481 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2482 						cfqd->rq_in_driver);
2483 
2484 	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2485 }
2486 
cfq_deactivate_request(struct request_queue * q,struct request * rq)2487 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2488 {
2489 	struct cfq_data *cfqd = q->elevator->elevator_data;
2490 
2491 	WARN_ON(!cfqd->rq_in_driver);
2492 	cfqd->rq_in_driver--;
2493 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2494 						cfqd->rq_in_driver);
2495 }
2496 
cfq_remove_request(struct request * rq)2497 static void cfq_remove_request(struct request *rq)
2498 {
2499 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2500 
2501 	if (cfqq->next_rq == rq)
2502 		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2503 
2504 	list_del_init(&rq->queuelist);
2505 	cfq_del_rq_rb(rq);
2506 
2507 	cfqq->cfqd->rq_queued--;
2508 	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2509 	if (rq->cmd_flags & REQ_PRIO) {
2510 		WARN_ON(!cfqq->prio_pending);
2511 		cfqq->prio_pending--;
2512 	}
2513 }
2514 
cfq_merge(struct request_queue * q,struct request ** req,struct bio * bio)2515 static int cfq_merge(struct request_queue *q, struct request **req,
2516 		     struct bio *bio)
2517 {
2518 	struct cfq_data *cfqd = q->elevator->elevator_data;
2519 	struct request *__rq;
2520 
2521 	__rq = cfq_find_rq_fmerge(cfqd, bio);
2522 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
2523 		*req = __rq;
2524 		return ELEVATOR_FRONT_MERGE;
2525 	}
2526 
2527 	return ELEVATOR_NO_MERGE;
2528 }
2529 
cfq_merged_request(struct request_queue * q,struct request * req,int type)2530 static void cfq_merged_request(struct request_queue *q, struct request *req,
2531 			       int type)
2532 {
2533 	if (type == ELEVATOR_FRONT_MERGE) {
2534 		struct cfq_queue *cfqq = RQ_CFQQ(req);
2535 
2536 		cfq_reposition_rq_rb(cfqq, req);
2537 	}
2538 }
2539 
cfq_bio_merged(struct request_queue * q,struct request * req,struct bio * bio)2540 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2541 				struct bio *bio)
2542 {
2543 	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2544 }
2545 
2546 static void
cfq_merged_requests(struct request_queue * q,struct request * rq,struct request * next)2547 cfq_merged_requests(struct request_queue *q, struct request *rq,
2548 		    struct request *next)
2549 {
2550 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2551 	struct cfq_data *cfqd = q->elevator->elevator_data;
2552 
2553 	/*
2554 	 * reposition in fifo if next is older than rq
2555 	 */
2556 	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2557 	    time_before(next->fifo_time, rq->fifo_time) &&
2558 	    cfqq == RQ_CFQQ(next)) {
2559 		list_move(&rq->queuelist, &next->queuelist);
2560 		rq->fifo_time = next->fifo_time;
2561 	}
2562 
2563 	if (cfqq->next_rq == next)
2564 		cfqq->next_rq = rq;
2565 	cfq_remove_request(next);
2566 	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2567 
2568 	cfqq = RQ_CFQQ(next);
2569 	/*
2570 	 * all requests of this queue are merged to other queues, delete it
2571 	 * from the service tree. If it's the active_queue,
2572 	 * cfq_dispatch_requests() will choose to expire it or do idle
2573 	 */
2574 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2575 	    cfqq != cfqd->active_queue)
2576 		cfq_del_cfqq_rr(cfqd, cfqq);
2577 }
2578 
cfq_allow_merge(struct request_queue * q,struct request * rq,struct bio * bio)2579 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2580 			   struct bio *bio)
2581 {
2582 	struct cfq_data *cfqd = q->elevator->elevator_data;
2583 	struct cfq_io_cq *cic;
2584 	struct cfq_queue *cfqq;
2585 
2586 	/*
2587 	 * Disallow merge of a sync bio into an async request.
2588 	 */
2589 	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2590 		return false;
2591 
2592 	/*
2593 	 * Lookup the cfqq that this bio will be queued with and allow
2594 	 * merge only if rq is queued there.
2595 	 */
2596 	cic = cfq_cic_lookup(cfqd, current->io_context);
2597 	if (!cic)
2598 		return false;
2599 
2600 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2601 	return cfqq == RQ_CFQQ(rq);
2602 }
2603 
cfq_del_timer(struct cfq_data * cfqd,struct cfq_queue * cfqq)2604 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2605 {
2606 	del_timer(&cfqd->idle_slice_timer);
2607 	cfqg_stats_update_idle_time(cfqq->cfqg);
2608 }
2609 
__cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2610 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2611 				   struct cfq_queue *cfqq)
2612 {
2613 	if (cfqq) {
2614 		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2615 				cfqd->serving_wl_class, cfqd->serving_wl_type);
2616 		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2617 		cfqq->slice_start = 0;
2618 		cfqq->dispatch_start = jiffies;
2619 		cfqq->allocated_slice = 0;
2620 		cfqq->slice_end = 0;
2621 		cfqq->slice_dispatch = 0;
2622 		cfqq->nr_sectors = 0;
2623 
2624 		cfq_clear_cfqq_wait_request(cfqq);
2625 		cfq_clear_cfqq_must_dispatch(cfqq);
2626 		cfq_clear_cfqq_must_alloc_slice(cfqq);
2627 		cfq_clear_cfqq_fifo_expire(cfqq);
2628 		cfq_mark_cfqq_slice_new(cfqq);
2629 
2630 		cfq_del_timer(cfqd, cfqq);
2631 	}
2632 
2633 	cfqd->active_queue = cfqq;
2634 }
2635 
2636 /*
2637  * current cfqq expired its slice (or was too idle), select new one
2638  */
2639 static void
__cfq_slice_expired(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool timed_out)2640 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2641 		    bool timed_out)
2642 {
2643 	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2644 
2645 	if (cfq_cfqq_wait_request(cfqq))
2646 		cfq_del_timer(cfqd, cfqq);
2647 
2648 	cfq_clear_cfqq_wait_request(cfqq);
2649 	cfq_clear_cfqq_wait_busy(cfqq);
2650 
2651 	/*
2652 	 * If this cfqq is shared between multiple processes, check to
2653 	 * make sure that those processes are still issuing I/Os within
2654 	 * the mean seek distance.  If not, it may be time to break the
2655 	 * queues apart again.
2656 	 */
2657 	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2658 		cfq_mark_cfqq_split_coop(cfqq);
2659 
2660 	/*
2661 	 * store what was left of this slice, if the queue idled/timed out
2662 	 */
2663 	if (timed_out) {
2664 		if (cfq_cfqq_slice_new(cfqq))
2665 			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2666 		else
2667 			cfqq->slice_resid = cfqq->slice_end - jiffies;
2668 		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2669 	}
2670 
2671 	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2672 
2673 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2674 		cfq_del_cfqq_rr(cfqd, cfqq);
2675 
2676 	cfq_resort_rr_list(cfqd, cfqq);
2677 
2678 	if (cfqq == cfqd->active_queue)
2679 		cfqd->active_queue = NULL;
2680 
2681 	if (cfqd->active_cic) {
2682 		put_io_context(cfqd->active_cic->icq.ioc);
2683 		cfqd->active_cic = NULL;
2684 	}
2685 }
2686 
cfq_slice_expired(struct cfq_data * cfqd,bool timed_out)2687 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2688 {
2689 	struct cfq_queue *cfqq = cfqd->active_queue;
2690 
2691 	if (cfqq)
2692 		__cfq_slice_expired(cfqd, cfqq, timed_out);
2693 }
2694 
2695 /*
2696  * Get next queue for service. Unless we have a queue preemption,
2697  * we'll simply select the first cfqq in the service tree.
2698  */
cfq_get_next_queue(struct cfq_data * cfqd)2699 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2700 {
2701 	struct cfq_rb_root *st = st_for(cfqd->serving_group,
2702 			cfqd->serving_wl_class, cfqd->serving_wl_type);
2703 
2704 	if (!cfqd->rq_queued)
2705 		return NULL;
2706 
2707 	/* There is nothing to dispatch */
2708 	if (!st)
2709 		return NULL;
2710 	if (RB_EMPTY_ROOT(&st->rb))
2711 		return NULL;
2712 	return cfq_rb_first(st);
2713 }
2714 
cfq_get_next_queue_forced(struct cfq_data * cfqd)2715 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2716 {
2717 	struct cfq_group *cfqg;
2718 	struct cfq_queue *cfqq;
2719 	int i, j;
2720 	struct cfq_rb_root *st;
2721 
2722 	if (!cfqd->rq_queued)
2723 		return NULL;
2724 
2725 	cfqg = cfq_get_next_cfqg(cfqd);
2726 	if (!cfqg)
2727 		return NULL;
2728 
2729 	for_each_cfqg_st(cfqg, i, j, st)
2730 		if ((cfqq = cfq_rb_first(st)) != NULL)
2731 			return cfqq;
2732 	return NULL;
2733 }
2734 
2735 /*
2736  * Get and set a new active queue for service.
2737  */
cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2738 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2739 					      struct cfq_queue *cfqq)
2740 {
2741 	if (!cfqq)
2742 		cfqq = cfq_get_next_queue(cfqd);
2743 
2744 	__cfq_set_active_queue(cfqd, cfqq);
2745 	return cfqq;
2746 }
2747 
cfq_dist_from_last(struct cfq_data * cfqd,struct request * rq)2748 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2749 					  struct request *rq)
2750 {
2751 	if (blk_rq_pos(rq) >= cfqd->last_position)
2752 		return blk_rq_pos(rq) - cfqd->last_position;
2753 	else
2754 		return cfqd->last_position - blk_rq_pos(rq);
2755 }
2756 
cfq_rq_close(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)2757 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2758 			       struct request *rq)
2759 {
2760 	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2761 }
2762 
cfqq_close(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2763 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2764 				    struct cfq_queue *cur_cfqq)
2765 {
2766 	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2767 	struct rb_node *parent, *node;
2768 	struct cfq_queue *__cfqq;
2769 	sector_t sector = cfqd->last_position;
2770 
2771 	if (RB_EMPTY_ROOT(root))
2772 		return NULL;
2773 
2774 	/*
2775 	 * First, if we find a request starting at the end of the last
2776 	 * request, choose it.
2777 	 */
2778 	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2779 	if (__cfqq)
2780 		return __cfqq;
2781 
2782 	/*
2783 	 * If the exact sector wasn't found, the parent of the NULL leaf
2784 	 * will contain the closest sector.
2785 	 */
2786 	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2787 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2788 		return __cfqq;
2789 
2790 	if (blk_rq_pos(__cfqq->next_rq) < sector)
2791 		node = rb_next(&__cfqq->p_node);
2792 	else
2793 		node = rb_prev(&__cfqq->p_node);
2794 	if (!node)
2795 		return NULL;
2796 
2797 	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2798 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2799 		return __cfqq;
2800 
2801 	return NULL;
2802 }
2803 
2804 /*
2805  * cfqd - obvious
2806  * cur_cfqq - passed in so that we don't decide that the current queue is
2807  * 	      closely cooperating with itself.
2808  *
2809  * So, basically we're assuming that that cur_cfqq has dispatched at least
2810  * one request, and that cfqd->last_position reflects a position on the disk
2811  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2812  * assumption.
2813  */
cfq_close_cooperator(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2814 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2815 					      struct cfq_queue *cur_cfqq)
2816 {
2817 	struct cfq_queue *cfqq;
2818 
2819 	if (cfq_class_idle(cur_cfqq))
2820 		return NULL;
2821 	if (!cfq_cfqq_sync(cur_cfqq))
2822 		return NULL;
2823 	if (CFQQ_SEEKY(cur_cfqq))
2824 		return NULL;
2825 
2826 	/*
2827 	 * Don't search priority tree if it's the only queue in the group.
2828 	 */
2829 	if (cur_cfqq->cfqg->nr_cfqq == 1)
2830 		return NULL;
2831 
2832 	/*
2833 	 * We should notice if some of the queues are cooperating, eg
2834 	 * working closely on the same area of the disk. In that case,
2835 	 * we can group them together and don't waste time idling.
2836 	 */
2837 	cfqq = cfqq_close(cfqd, cur_cfqq);
2838 	if (!cfqq)
2839 		return NULL;
2840 
2841 	/* If new queue belongs to different cfq_group, don't choose it */
2842 	if (cur_cfqq->cfqg != cfqq->cfqg)
2843 		return NULL;
2844 
2845 	/*
2846 	 * It only makes sense to merge sync queues.
2847 	 */
2848 	if (!cfq_cfqq_sync(cfqq))
2849 		return NULL;
2850 	if (CFQQ_SEEKY(cfqq))
2851 		return NULL;
2852 
2853 	/*
2854 	 * Do not merge queues of different priority classes
2855 	 */
2856 	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2857 		return NULL;
2858 
2859 	return cfqq;
2860 }
2861 
2862 /*
2863  * Determine whether we should enforce idle window for this queue.
2864  */
2865 
cfq_should_idle(struct cfq_data * cfqd,struct cfq_queue * cfqq)2866 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2867 {
2868 	enum wl_class_t wl_class = cfqq_class(cfqq);
2869 	struct cfq_rb_root *st = cfqq->service_tree;
2870 
2871 	BUG_ON(!st);
2872 	BUG_ON(!st->count);
2873 
2874 	if (!cfqd->cfq_slice_idle)
2875 		return false;
2876 
2877 	/* We never do for idle class queues. */
2878 	if (wl_class == IDLE_WORKLOAD)
2879 		return false;
2880 
2881 	/* We do for queues that were marked with idle window flag. */
2882 	if (cfq_cfqq_idle_window(cfqq) &&
2883 	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2884 		return true;
2885 
2886 	/*
2887 	 * Otherwise, we do only if they are the last ones
2888 	 * in their service tree.
2889 	 */
2890 	if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2891 	   !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2892 		return true;
2893 	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2894 	return false;
2895 }
2896 
cfq_arm_slice_timer(struct cfq_data * cfqd)2897 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2898 {
2899 	struct cfq_queue *cfqq = cfqd->active_queue;
2900 	struct cfq_io_cq *cic;
2901 	unsigned long sl, group_idle = 0;
2902 
2903 	/*
2904 	 * SSD device without seek penalty, disable idling. But only do so
2905 	 * for devices that support queuing, otherwise we still have a problem
2906 	 * with sync vs async workloads.
2907 	 */
2908 	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
2909 		!cfqd->cfq_group_idle)
2910 		return;
2911 
2912 	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2913 	WARN_ON(cfq_cfqq_slice_new(cfqq));
2914 
2915 	/*
2916 	 * idle is disabled, either manually or by past process history
2917 	 */
2918 	if (!cfq_should_idle(cfqd, cfqq)) {
2919 		/* no queue idling. Check for group idling */
2920 		if (cfqd->cfq_group_idle)
2921 			group_idle = cfqd->cfq_group_idle;
2922 		else
2923 			return;
2924 	}
2925 
2926 	/*
2927 	 * still active requests from this queue, don't idle
2928 	 */
2929 	if (cfqq->dispatched)
2930 		return;
2931 
2932 	/*
2933 	 * task has exited, don't wait
2934 	 */
2935 	cic = cfqd->active_cic;
2936 	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2937 		return;
2938 
2939 	/*
2940 	 * If our average think time is larger than the remaining time
2941 	 * slice, then don't idle. This avoids overrunning the allotted
2942 	 * time slice.
2943 	 */
2944 	if (sample_valid(cic->ttime.ttime_samples) &&
2945 	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2946 		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2947 			     cic->ttime.ttime_mean);
2948 		return;
2949 	}
2950 
2951 	/* There are other queues in the group, don't do group idle */
2952 	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2953 		return;
2954 
2955 	cfq_mark_cfqq_wait_request(cfqq);
2956 
2957 	if (group_idle)
2958 		sl = cfqd->cfq_group_idle;
2959 	else
2960 		sl = cfqd->cfq_slice_idle;
2961 
2962 	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2963 	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2964 	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2965 			group_idle ? 1 : 0);
2966 }
2967 
2968 /*
2969  * Move request from internal lists to the request queue dispatch list.
2970  */
cfq_dispatch_insert(struct request_queue * q,struct request * rq)2971 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2972 {
2973 	struct cfq_data *cfqd = q->elevator->elevator_data;
2974 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2975 
2976 	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2977 
2978 	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2979 	cfq_remove_request(rq);
2980 	cfqq->dispatched++;
2981 	(RQ_CFQG(rq))->dispatched++;
2982 	elv_dispatch_sort(q, rq);
2983 
2984 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2985 	cfqq->nr_sectors += blk_rq_sectors(rq);
2986 }
2987 
2988 /*
2989  * return expired entry, or NULL to just start from scratch in rbtree
2990  */
cfq_check_fifo(struct cfq_queue * cfqq)2991 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2992 {
2993 	struct request *rq = NULL;
2994 
2995 	if (cfq_cfqq_fifo_expire(cfqq))
2996 		return NULL;
2997 
2998 	cfq_mark_cfqq_fifo_expire(cfqq);
2999 
3000 	if (list_empty(&cfqq->fifo))
3001 		return NULL;
3002 
3003 	rq = rq_entry_fifo(cfqq->fifo.next);
3004 	if (time_before(jiffies, rq->fifo_time))
3005 		rq = NULL;
3006 
3007 	return rq;
3008 }
3009 
3010 static inline int
cfq_prio_to_maxrq(struct cfq_data * cfqd,struct cfq_queue * cfqq)3011 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3012 {
3013 	const int base_rq = cfqd->cfq_slice_async_rq;
3014 
3015 	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3016 
3017 	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3018 }
3019 
3020 /*
3021  * Must be called with the queue_lock held.
3022  */
cfqq_process_refs(struct cfq_queue * cfqq)3023 static int cfqq_process_refs(struct cfq_queue *cfqq)
3024 {
3025 	int process_refs, io_refs;
3026 
3027 	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3028 	process_refs = cfqq->ref - io_refs;
3029 	BUG_ON(process_refs < 0);
3030 	return process_refs;
3031 }
3032 
cfq_setup_merge(struct cfq_queue * cfqq,struct cfq_queue * new_cfqq)3033 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3034 {
3035 	int process_refs, new_process_refs;
3036 	struct cfq_queue *__cfqq;
3037 
3038 	/*
3039 	 * If there are no process references on the new_cfqq, then it is
3040 	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3041 	 * chain may have dropped their last reference (not just their
3042 	 * last process reference).
3043 	 */
3044 	if (!cfqq_process_refs(new_cfqq))
3045 		return;
3046 
3047 	/* Avoid a circular list and skip interim queue merges */
3048 	while ((__cfqq = new_cfqq->new_cfqq)) {
3049 		if (__cfqq == cfqq)
3050 			return;
3051 		new_cfqq = __cfqq;
3052 	}
3053 
3054 	process_refs = cfqq_process_refs(cfqq);
3055 	new_process_refs = cfqq_process_refs(new_cfqq);
3056 	/*
3057 	 * If the process for the cfqq has gone away, there is no
3058 	 * sense in merging the queues.
3059 	 */
3060 	if (process_refs == 0 || new_process_refs == 0)
3061 		return;
3062 
3063 	/*
3064 	 * Merge in the direction of the lesser amount of work.
3065 	 */
3066 	if (new_process_refs >= process_refs) {
3067 		cfqq->new_cfqq = new_cfqq;
3068 		new_cfqq->ref += process_refs;
3069 	} else {
3070 		new_cfqq->new_cfqq = cfqq;
3071 		cfqq->ref += new_process_refs;
3072 	}
3073 }
3074 
cfq_choose_wl_type(struct cfq_data * cfqd,struct cfq_group * cfqg,enum wl_class_t wl_class)3075 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3076 			struct cfq_group *cfqg, enum wl_class_t wl_class)
3077 {
3078 	struct cfq_queue *queue;
3079 	int i;
3080 	bool key_valid = false;
3081 	unsigned long lowest_key = 0;
3082 	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3083 
3084 	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3085 		/* select the one with lowest rb_key */
3086 		queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3087 		if (queue &&
3088 		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
3089 			lowest_key = queue->rb_key;
3090 			cur_best = i;
3091 			key_valid = true;
3092 		}
3093 	}
3094 
3095 	return cur_best;
3096 }
3097 
3098 static void
choose_wl_class_and_type(struct cfq_data * cfqd,struct cfq_group * cfqg)3099 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3100 {
3101 	unsigned slice;
3102 	unsigned count;
3103 	struct cfq_rb_root *st;
3104 	unsigned group_slice;
3105 	enum wl_class_t original_class = cfqd->serving_wl_class;
3106 
3107 	/* Choose next priority. RT > BE > IDLE */
3108 	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3109 		cfqd->serving_wl_class = RT_WORKLOAD;
3110 	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3111 		cfqd->serving_wl_class = BE_WORKLOAD;
3112 	else {
3113 		cfqd->serving_wl_class = IDLE_WORKLOAD;
3114 		cfqd->workload_expires = jiffies + 1;
3115 		return;
3116 	}
3117 
3118 	if (original_class != cfqd->serving_wl_class)
3119 		goto new_workload;
3120 
3121 	/*
3122 	 * For RT and BE, we have to choose also the type
3123 	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3124 	 * expiration time
3125 	 */
3126 	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3127 	count = st->count;
3128 
3129 	/*
3130 	 * check workload expiration, and that we still have other queues ready
3131 	 */
3132 	if (count && !time_after(jiffies, cfqd->workload_expires))
3133 		return;
3134 
3135 new_workload:
3136 	/* otherwise select new workload type */
3137 	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3138 					cfqd->serving_wl_class);
3139 	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3140 	count = st->count;
3141 
3142 	/*
3143 	 * the workload slice is computed as a fraction of target latency
3144 	 * proportional to the number of queues in that workload, over
3145 	 * all the queues in the same priority class
3146 	 */
3147 	group_slice = cfq_group_slice(cfqd, cfqg);
3148 
3149 	slice = group_slice * count /
3150 		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3151 		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3152 					cfqg));
3153 
3154 	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3155 		unsigned int tmp;
3156 
3157 		/*
3158 		 * Async queues are currently system wide. Just taking
3159 		 * proportion of queues with-in same group will lead to higher
3160 		 * async ratio system wide as generally root group is going
3161 		 * to have higher weight. A more accurate thing would be to
3162 		 * calculate system wide asnc/sync ratio.
3163 		 */
3164 		tmp = cfqd->cfq_target_latency *
3165 			cfqg_busy_async_queues(cfqd, cfqg);
3166 		tmp = tmp/cfqd->busy_queues;
3167 		slice = min_t(unsigned, slice, tmp);
3168 
3169 		/* async workload slice is scaled down according to
3170 		 * the sync/async slice ratio. */
3171 		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3172 	} else
3173 		/* sync workload slice is at least 2 * cfq_slice_idle */
3174 		slice = max(slice, 2 * cfqd->cfq_slice_idle);
3175 
3176 	slice = max_t(unsigned, slice, CFQ_MIN_TT);
3177 	cfq_log(cfqd, "workload slice:%d", slice);
3178 	cfqd->workload_expires = jiffies + slice;
3179 }
3180 
cfq_get_next_cfqg(struct cfq_data * cfqd)3181 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3182 {
3183 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
3184 	struct cfq_group *cfqg;
3185 
3186 	if (RB_EMPTY_ROOT(&st->rb))
3187 		return NULL;
3188 	cfqg = cfq_rb_first_group(st);
3189 	update_min_vdisktime(st);
3190 	return cfqg;
3191 }
3192 
cfq_choose_cfqg(struct cfq_data * cfqd)3193 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3194 {
3195 	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3196 
3197 	cfqd->serving_group = cfqg;
3198 
3199 	/* Restore the workload type data */
3200 	if (cfqg->saved_wl_slice) {
3201 		cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3202 		cfqd->serving_wl_type = cfqg->saved_wl_type;
3203 		cfqd->serving_wl_class = cfqg->saved_wl_class;
3204 	} else
3205 		cfqd->workload_expires = jiffies - 1;
3206 
3207 	choose_wl_class_and_type(cfqd, cfqg);
3208 }
3209 
3210 /*
3211  * Select a queue for service. If we have a current active queue,
3212  * check whether to continue servicing it, or retrieve and set a new one.
3213  */
cfq_select_queue(struct cfq_data * cfqd)3214 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3215 {
3216 	struct cfq_queue *cfqq, *new_cfqq = NULL;
3217 
3218 	cfqq = cfqd->active_queue;
3219 	if (!cfqq)
3220 		goto new_queue;
3221 
3222 	if (!cfqd->rq_queued)
3223 		return NULL;
3224 
3225 	/*
3226 	 * We were waiting for group to get backlogged. Expire the queue
3227 	 */
3228 	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3229 		goto expire;
3230 
3231 	/*
3232 	 * The active queue has run out of time, expire it and select new.
3233 	 */
3234 	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3235 		/*
3236 		 * If slice had not expired at the completion of last request
3237 		 * we might not have turned on wait_busy flag. Don't expire
3238 		 * the queue yet. Allow the group to get backlogged.
3239 		 *
3240 		 * The very fact that we have used the slice, that means we
3241 		 * have been idling all along on this queue and it should be
3242 		 * ok to wait for this request to complete.
3243 		 */
3244 		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3245 		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3246 			cfqq = NULL;
3247 			goto keep_queue;
3248 		} else
3249 			goto check_group_idle;
3250 	}
3251 
3252 	/*
3253 	 * The active queue has requests and isn't expired, allow it to
3254 	 * dispatch.
3255 	 */
3256 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3257 		goto keep_queue;
3258 
3259 	/*
3260 	 * If another queue has a request waiting within our mean seek
3261 	 * distance, let it run.  The expire code will check for close
3262 	 * cooperators and put the close queue at the front of the service
3263 	 * tree.  If possible, merge the expiring queue with the new cfqq.
3264 	 */
3265 	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3266 	if (new_cfqq) {
3267 		if (!cfqq->new_cfqq)
3268 			cfq_setup_merge(cfqq, new_cfqq);
3269 		goto expire;
3270 	}
3271 
3272 	/*
3273 	 * No requests pending. If the active queue still has requests in
3274 	 * flight or is idling for a new request, allow either of these
3275 	 * conditions to happen (or time out) before selecting a new queue.
3276 	 */
3277 	if (timer_pending(&cfqd->idle_slice_timer)) {
3278 		cfqq = NULL;
3279 		goto keep_queue;
3280 	}
3281 
3282 	/*
3283 	 * This is a deep seek queue, but the device is much faster than
3284 	 * the queue can deliver, don't idle
3285 	 **/
3286 	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3287 	    (cfq_cfqq_slice_new(cfqq) ||
3288 	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3289 		cfq_clear_cfqq_deep(cfqq);
3290 		cfq_clear_cfqq_idle_window(cfqq);
3291 	}
3292 
3293 	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3294 		cfqq = NULL;
3295 		goto keep_queue;
3296 	}
3297 
3298 	/*
3299 	 * If group idle is enabled and there are requests dispatched from
3300 	 * this group, wait for requests to complete.
3301 	 */
3302 check_group_idle:
3303 	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3304 	    cfqq->cfqg->dispatched &&
3305 	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3306 		cfqq = NULL;
3307 		goto keep_queue;
3308 	}
3309 
3310 expire:
3311 	cfq_slice_expired(cfqd, 0);
3312 new_queue:
3313 	/*
3314 	 * Current queue expired. Check if we have to switch to a new
3315 	 * service tree
3316 	 */
3317 	if (!new_cfqq)
3318 		cfq_choose_cfqg(cfqd);
3319 
3320 	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3321 keep_queue:
3322 	return cfqq;
3323 }
3324 
__cfq_forced_dispatch_cfqq(struct cfq_queue * cfqq)3325 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3326 {
3327 	int dispatched = 0;
3328 
3329 	while (cfqq->next_rq) {
3330 		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3331 		dispatched++;
3332 	}
3333 
3334 	BUG_ON(!list_empty(&cfqq->fifo));
3335 
3336 	/* By default cfqq is not expired if it is empty. Do it explicitly */
3337 	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3338 	return dispatched;
3339 }
3340 
3341 /*
3342  * Drain our current requests. Used for barriers and when switching
3343  * io schedulers on-the-fly.
3344  */
cfq_forced_dispatch(struct cfq_data * cfqd)3345 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3346 {
3347 	struct cfq_queue *cfqq;
3348 	int dispatched = 0;
3349 
3350 	/* Expire the timeslice of the current active queue first */
3351 	cfq_slice_expired(cfqd, 0);
3352 	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3353 		__cfq_set_active_queue(cfqd, cfqq);
3354 		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3355 	}
3356 
3357 	BUG_ON(cfqd->busy_queues);
3358 
3359 	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3360 	return dispatched;
3361 }
3362 
cfq_slice_used_soon(struct cfq_data * cfqd,struct cfq_queue * cfqq)3363 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3364 	struct cfq_queue *cfqq)
3365 {
3366 	/* the queue hasn't finished any request, can't estimate */
3367 	if (cfq_cfqq_slice_new(cfqq))
3368 		return true;
3369 	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3370 		cfqq->slice_end))
3371 		return true;
3372 
3373 	return false;
3374 }
3375 
cfq_may_dispatch(struct cfq_data * cfqd,struct cfq_queue * cfqq)3376 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3377 {
3378 	unsigned int max_dispatch;
3379 
3380 	if (cfq_cfqq_must_dispatch(cfqq))
3381 		return true;
3382 
3383 	/*
3384 	 * Drain async requests before we start sync IO
3385 	 */
3386 	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3387 		return false;
3388 
3389 	/*
3390 	 * If this is an async queue and we have sync IO in flight, let it wait
3391 	 */
3392 	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3393 		return false;
3394 
3395 	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3396 	if (cfq_class_idle(cfqq))
3397 		max_dispatch = 1;
3398 
3399 	/*
3400 	 * Does this cfqq already have too much IO in flight?
3401 	 */
3402 	if (cfqq->dispatched >= max_dispatch) {
3403 		bool promote_sync = false;
3404 		/*
3405 		 * idle queue must always only have a single IO in flight
3406 		 */
3407 		if (cfq_class_idle(cfqq))
3408 			return false;
3409 
3410 		/*
3411 		 * If there is only one sync queue
3412 		 * we can ignore async queue here and give the sync
3413 		 * queue no dispatch limit. The reason is a sync queue can
3414 		 * preempt async queue, limiting the sync queue doesn't make
3415 		 * sense. This is useful for aiostress test.
3416 		 */
3417 		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3418 			promote_sync = true;
3419 
3420 		/*
3421 		 * We have other queues, don't allow more IO from this one
3422 		 */
3423 		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3424 				!promote_sync)
3425 			return false;
3426 
3427 		/*
3428 		 * Sole queue user, no limit
3429 		 */
3430 		if (cfqd->busy_queues == 1 || promote_sync)
3431 			max_dispatch = -1;
3432 		else
3433 			/*
3434 			 * Normally we start throttling cfqq when cfq_quantum/2
3435 			 * requests have been dispatched. But we can drive
3436 			 * deeper queue depths at the beginning of slice
3437 			 * subjected to upper limit of cfq_quantum.
3438 			 * */
3439 			max_dispatch = cfqd->cfq_quantum;
3440 	}
3441 
3442 	/*
3443 	 * Async queues must wait a bit before being allowed dispatch.
3444 	 * We also ramp up the dispatch depth gradually for async IO,
3445 	 * based on the last sync IO we serviced
3446 	 */
3447 	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3448 		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3449 		unsigned int depth;
3450 
3451 		depth = last_sync / cfqd->cfq_slice[1];
3452 		if (!depth && !cfqq->dispatched)
3453 			depth = 1;
3454 		if (depth < max_dispatch)
3455 			max_dispatch = depth;
3456 	}
3457 
3458 	/*
3459 	 * If we're below the current max, allow a dispatch
3460 	 */
3461 	return cfqq->dispatched < max_dispatch;
3462 }
3463 
3464 /*
3465  * Dispatch a request from cfqq, moving them to the request queue
3466  * dispatch list.
3467  */
cfq_dispatch_request(struct cfq_data * cfqd,struct cfq_queue * cfqq)3468 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3469 {
3470 	struct request *rq;
3471 
3472 	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3473 
3474 	rq = cfq_check_fifo(cfqq);
3475 	if (rq)
3476 		cfq_mark_cfqq_must_dispatch(cfqq);
3477 
3478 	if (!cfq_may_dispatch(cfqd, cfqq))
3479 		return false;
3480 
3481 	/*
3482 	 * follow expired path, else get first next available
3483 	 */
3484 	if (!rq)
3485 		rq = cfqq->next_rq;
3486 	else
3487 		cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3488 
3489 	/*
3490 	 * insert request into driver dispatch list
3491 	 */
3492 	cfq_dispatch_insert(cfqd->queue, rq);
3493 
3494 	if (!cfqd->active_cic) {
3495 		struct cfq_io_cq *cic = RQ_CIC(rq);
3496 
3497 		atomic_long_inc(&cic->icq.ioc->refcount);
3498 		cfqd->active_cic = cic;
3499 	}
3500 
3501 	return true;
3502 }
3503 
3504 /*
3505  * Find the cfqq that we need to service and move a request from that to the
3506  * dispatch list
3507  */
cfq_dispatch_requests(struct request_queue * q,int force)3508 static int cfq_dispatch_requests(struct request_queue *q, int force)
3509 {
3510 	struct cfq_data *cfqd = q->elevator->elevator_data;
3511 	struct cfq_queue *cfqq;
3512 
3513 	if (!cfqd->busy_queues)
3514 		return 0;
3515 
3516 	if (unlikely(force))
3517 		return cfq_forced_dispatch(cfqd);
3518 
3519 	cfqq = cfq_select_queue(cfqd);
3520 	if (!cfqq)
3521 		return 0;
3522 
3523 	/*
3524 	 * Dispatch a request from this cfqq, if it is allowed
3525 	 */
3526 	if (!cfq_dispatch_request(cfqd, cfqq))
3527 		return 0;
3528 
3529 	cfqq->slice_dispatch++;
3530 	cfq_clear_cfqq_must_dispatch(cfqq);
3531 
3532 	/*
3533 	 * expire an async queue immediately if it has used up its slice. idle
3534 	 * queue always expire after 1 dispatch round.
3535 	 */
3536 	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3537 	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3538 	    cfq_class_idle(cfqq))) {
3539 		cfqq->slice_end = jiffies + 1;
3540 		cfq_slice_expired(cfqd, 0);
3541 	}
3542 
3543 	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3544 	return 1;
3545 }
3546 
3547 /*
3548  * task holds one reference to the queue, dropped when task exits. each rq
3549  * in-flight on this queue also holds a reference, dropped when rq is freed.
3550  *
3551  * Each cfq queue took a reference on the parent group. Drop it now.
3552  * queue lock must be held here.
3553  */
cfq_put_queue(struct cfq_queue * cfqq)3554 static void cfq_put_queue(struct cfq_queue *cfqq)
3555 {
3556 	struct cfq_data *cfqd = cfqq->cfqd;
3557 	struct cfq_group *cfqg;
3558 
3559 	BUG_ON(cfqq->ref <= 0);
3560 
3561 	cfqq->ref--;
3562 	if (cfqq->ref)
3563 		return;
3564 
3565 	cfq_log_cfqq(cfqd, cfqq, "put_queue");
3566 	BUG_ON(rb_first(&cfqq->sort_list));
3567 	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3568 	cfqg = cfqq->cfqg;
3569 
3570 	if (unlikely(cfqd->active_queue == cfqq)) {
3571 		__cfq_slice_expired(cfqd, cfqq, 0);
3572 		cfq_schedule_dispatch(cfqd);
3573 	}
3574 
3575 	BUG_ON(cfq_cfqq_on_rr(cfqq));
3576 	kmem_cache_free(cfq_pool, cfqq);
3577 	cfqg_put(cfqg);
3578 }
3579 
cfq_put_cooperator(struct cfq_queue * cfqq)3580 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3581 {
3582 	struct cfq_queue *__cfqq, *next;
3583 
3584 	/*
3585 	 * If this queue was scheduled to merge with another queue, be
3586 	 * sure to drop the reference taken on that queue (and others in
3587 	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3588 	 */
3589 	__cfqq = cfqq->new_cfqq;
3590 	while (__cfqq) {
3591 		if (__cfqq == cfqq) {
3592 			WARN(1, "cfqq->new_cfqq loop detected\n");
3593 			break;
3594 		}
3595 		next = __cfqq->new_cfqq;
3596 		cfq_put_queue(__cfqq);
3597 		__cfqq = next;
3598 	}
3599 }
3600 
cfq_exit_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq)3601 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3602 {
3603 	if (unlikely(cfqq == cfqd->active_queue)) {
3604 		__cfq_slice_expired(cfqd, cfqq, 0);
3605 		cfq_schedule_dispatch(cfqd);
3606 	}
3607 
3608 	cfq_put_cooperator(cfqq);
3609 
3610 	cfq_put_queue(cfqq);
3611 }
3612 
cfq_init_icq(struct io_cq * icq)3613 static void cfq_init_icq(struct io_cq *icq)
3614 {
3615 	struct cfq_io_cq *cic = icq_to_cic(icq);
3616 
3617 	cic->ttime.last_end_request = jiffies;
3618 }
3619 
cfq_exit_icq(struct io_cq * icq)3620 static void cfq_exit_icq(struct io_cq *icq)
3621 {
3622 	struct cfq_io_cq *cic = icq_to_cic(icq);
3623 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3624 
3625 	if (cic_to_cfqq(cic, false)) {
3626 		cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3627 		cic_set_cfqq(cic, NULL, false);
3628 	}
3629 
3630 	if (cic_to_cfqq(cic, true)) {
3631 		cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3632 		cic_set_cfqq(cic, NULL, true);
3633 	}
3634 }
3635 
cfq_init_prio_data(struct cfq_queue * cfqq,struct cfq_io_cq * cic)3636 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3637 {
3638 	struct task_struct *tsk = current;
3639 	int ioprio_class;
3640 
3641 	if (!cfq_cfqq_prio_changed(cfqq))
3642 		return;
3643 
3644 	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3645 	switch (ioprio_class) {
3646 	default:
3647 		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3648 	case IOPRIO_CLASS_NONE:
3649 		/*
3650 		 * no prio set, inherit CPU scheduling settings
3651 		 */
3652 		cfqq->ioprio = task_nice_ioprio(tsk);
3653 		cfqq->ioprio_class = task_nice_ioclass(tsk);
3654 		break;
3655 	case IOPRIO_CLASS_RT:
3656 		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3657 		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3658 		break;
3659 	case IOPRIO_CLASS_BE:
3660 		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3661 		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3662 		break;
3663 	case IOPRIO_CLASS_IDLE:
3664 		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3665 		cfqq->ioprio = 7;
3666 		cfq_clear_cfqq_idle_window(cfqq);
3667 		break;
3668 	}
3669 
3670 	/*
3671 	 * keep track of original prio settings in case we have to temporarily
3672 	 * elevate the priority of this queue
3673 	 */
3674 	cfqq->org_ioprio = cfqq->ioprio;
3675 	cfq_clear_cfqq_prio_changed(cfqq);
3676 }
3677 
check_ioprio_changed(struct cfq_io_cq * cic,struct bio * bio)3678 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3679 {
3680 	int ioprio = cic->icq.ioc->ioprio;
3681 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3682 	struct cfq_queue *cfqq;
3683 
3684 	/*
3685 	 * Check whether ioprio has changed.  The condition may trigger
3686 	 * spuriously on a newly created cic but there's no harm.
3687 	 */
3688 	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3689 		return;
3690 
3691 	cfqq = cic_to_cfqq(cic, false);
3692 	if (cfqq) {
3693 		cfq_put_queue(cfqq);
3694 		cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3695 		cic_set_cfqq(cic, cfqq, false);
3696 	}
3697 
3698 	cfqq = cic_to_cfqq(cic, true);
3699 	if (cfqq)
3700 		cfq_mark_cfqq_prio_changed(cfqq);
3701 
3702 	cic->ioprio = ioprio;
3703 }
3704 
cfq_init_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq,pid_t pid,bool is_sync)3705 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3706 			  pid_t pid, bool is_sync)
3707 {
3708 	RB_CLEAR_NODE(&cfqq->rb_node);
3709 	RB_CLEAR_NODE(&cfqq->p_node);
3710 	INIT_LIST_HEAD(&cfqq->fifo);
3711 
3712 	cfqq->ref = 0;
3713 	cfqq->cfqd = cfqd;
3714 
3715 	cfq_mark_cfqq_prio_changed(cfqq);
3716 
3717 	if (is_sync) {
3718 		if (!cfq_class_idle(cfqq))
3719 			cfq_mark_cfqq_idle_window(cfqq);
3720 		cfq_mark_cfqq_sync(cfqq);
3721 	}
3722 	cfqq->pid = pid;
3723 }
3724 
3725 #ifdef CONFIG_CFQ_GROUP_IOSCHED
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3726 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3727 {
3728 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3729 	struct cfq_queue *cfqq;
3730 	uint64_t serial_nr;
3731 
3732 	rcu_read_lock();
3733 	serial_nr = bio_blkcg(bio)->css.serial_nr;
3734 	rcu_read_unlock();
3735 
3736 	/*
3737 	 * Check whether blkcg has changed.  The condition may trigger
3738 	 * spuriously on a newly created cic but there's no harm.
3739 	 */
3740 	if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3741 		return;
3742 
3743 	/*
3744 	 * Drop reference to queues.  New queues will be assigned in new
3745 	 * group upon arrival of fresh requests.
3746 	 */
3747 	cfqq = cic_to_cfqq(cic, false);
3748 	if (cfqq) {
3749 		cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3750 		cic_set_cfqq(cic, NULL, false);
3751 		cfq_put_queue(cfqq);
3752 	}
3753 
3754 	cfqq = cic_to_cfqq(cic, true);
3755 	if (cfqq) {
3756 		cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3757 		cic_set_cfqq(cic, NULL, true);
3758 		cfq_put_queue(cfqq);
3759 	}
3760 
3761 	cic->blkcg_serial_nr = serial_nr;
3762 }
3763 #else
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3764 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3765 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3766 
3767 static struct cfq_queue **
cfq_async_queue_prio(struct cfq_group * cfqg,int ioprio_class,int ioprio)3768 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3769 {
3770 	switch (ioprio_class) {
3771 	case IOPRIO_CLASS_RT:
3772 		return &cfqg->async_cfqq[0][ioprio];
3773 	case IOPRIO_CLASS_NONE:
3774 		ioprio = IOPRIO_NORM;
3775 		/* fall through */
3776 	case IOPRIO_CLASS_BE:
3777 		return &cfqg->async_cfqq[1][ioprio];
3778 	case IOPRIO_CLASS_IDLE:
3779 		return &cfqg->async_idle_cfqq;
3780 	default:
3781 		BUG();
3782 	}
3783 }
3784 
3785 static struct cfq_queue *
cfq_get_queue(struct cfq_data * cfqd,bool is_sync,struct cfq_io_cq * cic,struct bio * bio)3786 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3787 	      struct bio *bio)
3788 {
3789 	int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3790 	int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3791 	struct cfq_queue **async_cfqq = NULL;
3792 	struct cfq_queue *cfqq;
3793 	struct cfq_group *cfqg;
3794 
3795 	rcu_read_lock();
3796 	cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3797 	if (!cfqg) {
3798 		cfqq = &cfqd->oom_cfqq;
3799 		goto out;
3800 	}
3801 
3802 	if (!is_sync) {
3803 		if (!ioprio_valid(cic->ioprio)) {
3804 			struct task_struct *tsk = current;
3805 			ioprio = task_nice_ioprio(tsk);
3806 			ioprio_class = task_nice_ioclass(tsk);
3807 		}
3808 		async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3809 		cfqq = *async_cfqq;
3810 		if (cfqq)
3811 			goto out;
3812 	}
3813 
3814 	cfqq = kmem_cache_alloc_node(cfq_pool,
3815 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3816 				     cfqd->queue->node);
3817 	if (!cfqq) {
3818 		cfqq = &cfqd->oom_cfqq;
3819 		goto out;
3820 	}
3821 
3822 	cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3823 	cfq_init_prio_data(cfqq, cic);
3824 	cfq_link_cfqq_cfqg(cfqq, cfqg);
3825 	cfq_log_cfqq(cfqd, cfqq, "alloced");
3826 
3827 	if (async_cfqq) {
3828 		/* a new async queue is created, pin and remember */
3829 		cfqq->ref++;
3830 		*async_cfqq = cfqq;
3831 	}
3832 out:
3833 	cfqq->ref++;
3834 	rcu_read_unlock();
3835 	return cfqq;
3836 }
3837 
3838 static void
__cfq_update_io_thinktime(struct cfq_ttime * ttime,unsigned long slice_idle)3839 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3840 {
3841 	unsigned long elapsed = jiffies - ttime->last_end_request;
3842 	elapsed = min(elapsed, 2UL * slice_idle);
3843 
3844 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3845 	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3846 	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3847 }
3848 
3849 static void
cfq_update_io_thinktime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3850 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3851 			struct cfq_io_cq *cic)
3852 {
3853 	if (cfq_cfqq_sync(cfqq)) {
3854 		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3855 		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3856 			cfqd->cfq_slice_idle);
3857 	}
3858 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3859 	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3860 #endif
3861 }
3862 
3863 static void
cfq_update_io_seektime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)3864 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3865 		       struct request *rq)
3866 {
3867 	sector_t sdist = 0;
3868 	sector_t n_sec = blk_rq_sectors(rq);
3869 	if (cfqq->last_request_pos) {
3870 		if (cfqq->last_request_pos < blk_rq_pos(rq))
3871 			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3872 		else
3873 			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3874 	}
3875 
3876 	cfqq->seek_history <<= 1;
3877 	if (blk_queue_nonrot(cfqd->queue))
3878 		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3879 	else
3880 		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3881 }
3882 
3883 /*
3884  * Disable idle window if the process thinks too long or seeks so much that
3885  * it doesn't matter
3886  */
3887 static void
cfq_update_idle_window(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3888 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3889 		       struct cfq_io_cq *cic)
3890 {
3891 	int old_idle, enable_idle;
3892 
3893 	/*
3894 	 * Don't idle for async or idle io prio class
3895 	 */
3896 	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3897 		return;
3898 
3899 	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3900 
3901 	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3902 		cfq_mark_cfqq_deep(cfqq);
3903 
3904 	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3905 		enable_idle = 0;
3906 	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3907 		 !cfqd->cfq_slice_idle ||
3908 		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3909 		enable_idle = 0;
3910 	else if (sample_valid(cic->ttime.ttime_samples)) {
3911 		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3912 			enable_idle = 0;
3913 		else
3914 			enable_idle = 1;
3915 	}
3916 
3917 	if (old_idle != enable_idle) {
3918 		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3919 		if (enable_idle)
3920 			cfq_mark_cfqq_idle_window(cfqq);
3921 		else
3922 			cfq_clear_cfqq_idle_window(cfqq);
3923 	}
3924 }
3925 
3926 /*
3927  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3928  * no or if we aren't sure, a 1 will cause a preempt.
3929  */
3930 static bool
cfq_should_preempt(struct cfq_data * cfqd,struct cfq_queue * new_cfqq,struct request * rq)3931 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3932 		   struct request *rq)
3933 {
3934 	struct cfq_queue *cfqq;
3935 
3936 	cfqq = cfqd->active_queue;
3937 	if (!cfqq)
3938 		return false;
3939 
3940 	if (cfq_class_idle(new_cfqq))
3941 		return false;
3942 
3943 	if (cfq_class_idle(cfqq))
3944 		return true;
3945 
3946 	/*
3947 	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3948 	 */
3949 	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3950 		return false;
3951 
3952 	/*
3953 	 * if the new request is sync, but the currently running queue is
3954 	 * not, let the sync request have priority.
3955 	 */
3956 	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3957 		return true;
3958 
3959 	if (new_cfqq->cfqg != cfqq->cfqg)
3960 		return false;
3961 
3962 	if (cfq_slice_used(cfqq))
3963 		return true;
3964 
3965 	/* Allow preemption only if we are idling on sync-noidle tree */
3966 	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3967 	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3968 	    new_cfqq->service_tree->count == 2 &&
3969 	    RB_EMPTY_ROOT(&cfqq->sort_list))
3970 		return true;
3971 
3972 	/*
3973 	 * So both queues are sync. Let the new request get disk time if
3974 	 * it's a metadata request and the current queue is doing regular IO.
3975 	 */
3976 	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3977 		return true;
3978 
3979 	/*
3980 	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3981 	 */
3982 	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3983 		return true;
3984 
3985 	/* An idle queue should not be idle now for some reason */
3986 	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3987 		return true;
3988 
3989 	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3990 		return false;
3991 
3992 	/*
3993 	 * if this request is as-good as one we would expect from the
3994 	 * current cfqq, let it preempt
3995 	 */
3996 	if (cfq_rq_close(cfqd, cfqq, rq))
3997 		return true;
3998 
3999 	return false;
4000 }
4001 
4002 /*
4003  * cfqq preempts the active queue. if we allowed preempt with no slice left,
4004  * let it have half of its nominal slice.
4005  */
cfq_preempt_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)4006 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4007 {
4008 	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4009 
4010 	cfq_log_cfqq(cfqd, cfqq, "preempt");
4011 	cfq_slice_expired(cfqd, 1);
4012 
4013 	/*
4014 	 * workload type is changed, don't save slice, otherwise preempt
4015 	 * doesn't happen
4016 	 */
4017 	if (old_type != cfqq_type(cfqq))
4018 		cfqq->cfqg->saved_wl_slice = 0;
4019 
4020 	/*
4021 	 * Put the new queue at the front of the of the current list,
4022 	 * so we know that it will be selected next.
4023 	 */
4024 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
4025 
4026 	cfq_service_tree_add(cfqd, cfqq, 1);
4027 
4028 	cfqq->slice_end = 0;
4029 	cfq_mark_cfqq_slice_new(cfqq);
4030 }
4031 
4032 /*
4033  * Called when a new fs request (rq) is added (to cfqq). Check if there's
4034  * something we should do about it
4035  */
4036 static void
cfq_rq_enqueued(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)4037 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4038 		struct request *rq)
4039 {
4040 	struct cfq_io_cq *cic = RQ_CIC(rq);
4041 
4042 	cfqd->rq_queued++;
4043 	if (rq->cmd_flags & REQ_PRIO)
4044 		cfqq->prio_pending++;
4045 
4046 	cfq_update_io_thinktime(cfqd, cfqq, cic);
4047 	cfq_update_io_seektime(cfqd, cfqq, rq);
4048 	cfq_update_idle_window(cfqd, cfqq, cic);
4049 
4050 	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4051 
4052 	if (cfqq == cfqd->active_queue) {
4053 		/*
4054 		 * Remember that we saw a request from this process, but
4055 		 * don't start queuing just yet. Otherwise we risk seeing lots
4056 		 * of tiny requests, because we disrupt the normal plugging
4057 		 * and merging. If the request is already larger than a single
4058 		 * page, let it rip immediately. For that case we assume that
4059 		 * merging is already done. Ditto for a busy system that
4060 		 * has other work pending, don't risk delaying until the
4061 		 * idle timer unplug to continue working.
4062 		 */
4063 		if (cfq_cfqq_wait_request(cfqq)) {
4064 			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
4065 			    cfqd->busy_queues > 1) {
4066 				cfq_del_timer(cfqd, cfqq);
4067 				cfq_clear_cfqq_wait_request(cfqq);
4068 				__blk_run_queue(cfqd->queue);
4069 			} else {
4070 				cfqg_stats_update_idle_time(cfqq->cfqg);
4071 				cfq_mark_cfqq_must_dispatch(cfqq);
4072 			}
4073 		}
4074 	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4075 		/*
4076 		 * not the active queue - expire current slice if it is
4077 		 * idle and has expired it's mean thinktime or this new queue
4078 		 * has some old slice time left and is of higher priority or
4079 		 * this new queue is RT and the current one is BE
4080 		 */
4081 		cfq_preempt_queue(cfqd, cfqq);
4082 		__blk_run_queue(cfqd->queue);
4083 	}
4084 }
4085 
cfq_insert_request(struct request_queue * q,struct request * rq)4086 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4087 {
4088 	struct cfq_data *cfqd = q->elevator->elevator_data;
4089 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4090 
4091 	cfq_log_cfqq(cfqd, cfqq, "insert_request");
4092 	cfq_init_prio_data(cfqq, RQ_CIC(rq));
4093 
4094 	rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4095 	list_add_tail(&rq->queuelist, &cfqq->fifo);
4096 	cfq_add_rq_rb(rq);
4097 	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4098 				 rq->cmd_flags);
4099 	cfq_rq_enqueued(cfqd, cfqq, rq);
4100 }
4101 
4102 /*
4103  * Update hw_tag based on peak queue depth over 50 samples under
4104  * sufficient load.
4105  */
cfq_update_hw_tag(struct cfq_data * cfqd)4106 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4107 {
4108 	struct cfq_queue *cfqq = cfqd->active_queue;
4109 
4110 	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4111 		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4112 
4113 	if (cfqd->hw_tag == 1)
4114 		return;
4115 
4116 	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4117 	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4118 		return;
4119 
4120 	/*
4121 	 * If active queue hasn't enough requests and can idle, cfq might not
4122 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4123 	 * case
4124 	 */
4125 	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4126 	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4127 	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4128 		return;
4129 
4130 	if (cfqd->hw_tag_samples++ < 50)
4131 		return;
4132 
4133 	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4134 		cfqd->hw_tag = 1;
4135 	else
4136 		cfqd->hw_tag = 0;
4137 }
4138 
cfq_should_wait_busy(struct cfq_data * cfqd,struct cfq_queue * cfqq)4139 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4140 {
4141 	struct cfq_io_cq *cic = cfqd->active_cic;
4142 
4143 	/* If the queue already has requests, don't wait */
4144 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4145 		return false;
4146 
4147 	/* If there are other queues in the group, don't wait */
4148 	if (cfqq->cfqg->nr_cfqq > 1)
4149 		return false;
4150 
4151 	/* the only queue in the group, but think time is big */
4152 	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4153 		return false;
4154 
4155 	if (cfq_slice_used(cfqq))
4156 		return true;
4157 
4158 	/* if slice left is less than think time, wait busy */
4159 	if (cic && sample_valid(cic->ttime.ttime_samples)
4160 	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4161 		return true;
4162 
4163 	/*
4164 	 * If think times is less than a jiffy than ttime_mean=0 and above
4165 	 * will not be true. It might happen that slice has not expired yet
4166 	 * but will expire soon (4-5 ns) during select_queue(). To cover the
4167 	 * case where think time is less than a jiffy, mark the queue wait
4168 	 * busy if only 1 jiffy is left in the slice.
4169 	 */
4170 	if (cfqq->slice_end - jiffies == 1)
4171 		return true;
4172 
4173 	return false;
4174 }
4175 
cfq_completed_request(struct request_queue * q,struct request * rq)4176 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4177 {
4178 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4179 	struct cfq_data *cfqd = cfqq->cfqd;
4180 	const int sync = rq_is_sync(rq);
4181 	unsigned long now;
4182 
4183 	now = jiffies;
4184 	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4185 		     !!(rq->cmd_flags & REQ_NOIDLE));
4186 
4187 	cfq_update_hw_tag(cfqd);
4188 
4189 	WARN_ON(!cfqd->rq_in_driver);
4190 	WARN_ON(!cfqq->dispatched);
4191 	cfqd->rq_in_driver--;
4192 	cfqq->dispatched--;
4193 	(RQ_CFQG(rq))->dispatched--;
4194 	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4195 				     rq_io_start_time_ns(rq), rq->cmd_flags);
4196 
4197 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4198 
4199 	if (sync) {
4200 		struct cfq_rb_root *st;
4201 
4202 		RQ_CIC(rq)->ttime.last_end_request = now;
4203 
4204 		if (cfq_cfqq_on_rr(cfqq))
4205 			st = cfqq->service_tree;
4206 		else
4207 			st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4208 					cfqq_type(cfqq));
4209 
4210 		st->ttime.last_end_request = now;
4211 		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4212 			cfqd->last_delayed_sync = now;
4213 	}
4214 
4215 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4216 	cfqq->cfqg->ttime.last_end_request = now;
4217 #endif
4218 
4219 	/*
4220 	 * If this is the active queue, check if it needs to be expired,
4221 	 * or if we want to idle in case it has no pending requests.
4222 	 */
4223 	if (cfqd->active_queue == cfqq) {
4224 		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4225 
4226 		if (cfq_cfqq_slice_new(cfqq)) {
4227 			cfq_set_prio_slice(cfqd, cfqq);
4228 			cfq_clear_cfqq_slice_new(cfqq);
4229 		}
4230 
4231 		/*
4232 		 * Should we wait for next request to come in before we expire
4233 		 * the queue.
4234 		 */
4235 		if (cfq_should_wait_busy(cfqd, cfqq)) {
4236 			unsigned long extend_sl = cfqd->cfq_slice_idle;
4237 			if (!cfqd->cfq_slice_idle)
4238 				extend_sl = cfqd->cfq_group_idle;
4239 			cfqq->slice_end = jiffies + extend_sl;
4240 			cfq_mark_cfqq_wait_busy(cfqq);
4241 			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4242 		}
4243 
4244 		/*
4245 		 * Idling is not enabled on:
4246 		 * - expired queues
4247 		 * - idle-priority queues
4248 		 * - async queues
4249 		 * - queues with still some requests queued
4250 		 * - when there is a close cooperator
4251 		 */
4252 		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4253 			cfq_slice_expired(cfqd, 1);
4254 		else if (sync && cfqq_empty &&
4255 			 !cfq_close_cooperator(cfqd, cfqq)) {
4256 			cfq_arm_slice_timer(cfqd);
4257 		}
4258 	}
4259 
4260 	if (!cfqd->rq_in_driver)
4261 		cfq_schedule_dispatch(cfqd);
4262 }
4263 
__cfq_may_queue(struct cfq_queue * cfqq)4264 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4265 {
4266 	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4267 		cfq_mark_cfqq_must_alloc_slice(cfqq);
4268 		return ELV_MQUEUE_MUST;
4269 	}
4270 
4271 	return ELV_MQUEUE_MAY;
4272 }
4273 
cfq_may_queue(struct request_queue * q,int rw)4274 static int cfq_may_queue(struct request_queue *q, int rw)
4275 {
4276 	struct cfq_data *cfqd = q->elevator->elevator_data;
4277 	struct task_struct *tsk = current;
4278 	struct cfq_io_cq *cic;
4279 	struct cfq_queue *cfqq;
4280 
4281 	/*
4282 	 * don't force setup of a queue from here, as a call to may_queue
4283 	 * does not necessarily imply that a request actually will be queued.
4284 	 * so just lookup a possibly existing queue, or return 'may queue'
4285 	 * if that fails
4286 	 */
4287 	cic = cfq_cic_lookup(cfqd, tsk->io_context);
4288 	if (!cic)
4289 		return ELV_MQUEUE_MAY;
4290 
4291 	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4292 	if (cfqq) {
4293 		cfq_init_prio_data(cfqq, cic);
4294 
4295 		return __cfq_may_queue(cfqq);
4296 	}
4297 
4298 	return ELV_MQUEUE_MAY;
4299 }
4300 
4301 /*
4302  * queue lock held here
4303  */
cfq_put_request(struct request * rq)4304 static void cfq_put_request(struct request *rq)
4305 {
4306 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4307 
4308 	if (cfqq) {
4309 		const int rw = rq_data_dir(rq);
4310 
4311 		BUG_ON(!cfqq->allocated[rw]);
4312 		cfqq->allocated[rw]--;
4313 
4314 		/* Put down rq reference on cfqg */
4315 		cfqg_put(RQ_CFQG(rq));
4316 		rq->elv.priv[0] = NULL;
4317 		rq->elv.priv[1] = NULL;
4318 
4319 		cfq_put_queue(cfqq);
4320 	}
4321 }
4322 
4323 static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data * cfqd,struct cfq_io_cq * cic,struct cfq_queue * cfqq)4324 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4325 		struct cfq_queue *cfqq)
4326 {
4327 	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4328 	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4329 	cfq_mark_cfqq_coop(cfqq->new_cfqq);
4330 	cfq_put_queue(cfqq);
4331 	return cic_to_cfqq(cic, 1);
4332 }
4333 
4334 /*
4335  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4336  * was the last process referring to said cfqq.
4337  */
4338 static struct cfq_queue *
split_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq)4339 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4340 {
4341 	if (cfqq_process_refs(cfqq) == 1) {
4342 		cfqq->pid = current->pid;
4343 		cfq_clear_cfqq_coop(cfqq);
4344 		cfq_clear_cfqq_split_coop(cfqq);
4345 		return cfqq;
4346 	}
4347 
4348 	cic_set_cfqq(cic, NULL, 1);
4349 
4350 	cfq_put_cooperator(cfqq);
4351 
4352 	cfq_put_queue(cfqq);
4353 	return NULL;
4354 }
4355 /*
4356  * Allocate cfq data structures associated with this request.
4357  */
4358 static int
cfq_set_request(struct request_queue * q,struct request * rq,struct bio * bio,gfp_t gfp_mask)4359 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4360 		gfp_t gfp_mask)
4361 {
4362 	struct cfq_data *cfqd = q->elevator->elevator_data;
4363 	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4364 	const int rw = rq_data_dir(rq);
4365 	const bool is_sync = rq_is_sync(rq);
4366 	struct cfq_queue *cfqq;
4367 
4368 	spin_lock_irq(q->queue_lock);
4369 
4370 	check_ioprio_changed(cic, bio);
4371 	check_blkcg_changed(cic, bio);
4372 new_queue:
4373 	cfqq = cic_to_cfqq(cic, is_sync);
4374 	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4375 		if (cfqq)
4376 			cfq_put_queue(cfqq);
4377 		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4378 		cic_set_cfqq(cic, cfqq, is_sync);
4379 	} else {
4380 		/*
4381 		 * If the queue was seeky for too long, break it apart.
4382 		 */
4383 		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4384 			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4385 			cfqq = split_cfqq(cic, cfqq);
4386 			if (!cfqq)
4387 				goto new_queue;
4388 		}
4389 
4390 		/*
4391 		 * Check to see if this queue is scheduled to merge with
4392 		 * another, closely cooperating queue.  The merging of
4393 		 * queues happens here as it must be done in process context.
4394 		 * The reference on new_cfqq was taken in merge_cfqqs.
4395 		 */
4396 		if (cfqq->new_cfqq)
4397 			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4398 	}
4399 
4400 	cfqq->allocated[rw]++;
4401 
4402 	cfqq->ref++;
4403 	cfqg_get(cfqq->cfqg);
4404 	rq->elv.priv[0] = cfqq;
4405 	rq->elv.priv[1] = cfqq->cfqg;
4406 	spin_unlock_irq(q->queue_lock);
4407 	return 0;
4408 }
4409 
cfq_kick_queue(struct work_struct * work)4410 static void cfq_kick_queue(struct work_struct *work)
4411 {
4412 	struct cfq_data *cfqd =
4413 		container_of(work, struct cfq_data, unplug_work);
4414 	struct request_queue *q = cfqd->queue;
4415 
4416 	spin_lock_irq(q->queue_lock);
4417 	__blk_run_queue(cfqd->queue);
4418 	spin_unlock_irq(q->queue_lock);
4419 }
4420 
4421 /*
4422  * Timer running if the active_queue is currently idling inside its time slice
4423  */
cfq_idle_slice_timer(unsigned long data)4424 static void cfq_idle_slice_timer(unsigned long data)
4425 {
4426 	struct cfq_data *cfqd = (struct cfq_data *) data;
4427 	struct cfq_queue *cfqq;
4428 	unsigned long flags;
4429 	int timed_out = 1;
4430 
4431 	cfq_log(cfqd, "idle timer fired");
4432 
4433 	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4434 
4435 	cfqq = cfqd->active_queue;
4436 	if (cfqq) {
4437 		timed_out = 0;
4438 
4439 		/*
4440 		 * We saw a request before the queue expired, let it through
4441 		 */
4442 		if (cfq_cfqq_must_dispatch(cfqq))
4443 			goto out_kick;
4444 
4445 		/*
4446 		 * expired
4447 		 */
4448 		if (cfq_slice_used(cfqq))
4449 			goto expire;
4450 
4451 		/*
4452 		 * only expire and reinvoke request handler, if there are
4453 		 * other queues with pending requests
4454 		 */
4455 		if (!cfqd->busy_queues)
4456 			goto out_cont;
4457 
4458 		/*
4459 		 * not expired and it has a request pending, let it dispatch
4460 		 */
4461 		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4462 			goto out_kick;
4463 
4464 		/*
4465 		 * Queue depth flag is reset only when the idle didn't succeed
4466 		 */
4467 		cfq_clear_cfqq_deep(cfqq);
4468 	}
4469 expire:
4470 	cfq_slice_expired(cfqd, timed_out);
4471 out_kick:
4472 	cfq_schedule_dispatch(cfqd);
4473 out_cont:
4474 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4475 }
4476 
cfq_shutdown_timer_wq(struct cfq_data * cfqd)4477 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4478 {
4479 	del_timer_sync(&cfqd->idle_slice_timer);
4480 	cancel_work_sync(&cfqd->unplug_work);
4481 }
4482 
cfq_exit_queue(struct elevator_queue * e)4483 static void cfq_exit_queue(struct elevator_queue *e)
4484 {
4485 	struct cfq_data *cfqd = e->elevator_data;
4486 	struct request_queue *q = cfqd->queue;
4487 
4488 	cfq_shutdown_timer_wq(cfqd);
4489 
4490 	spin_lock_irq(q->queue_lock);
4491 
4492 	if (cfqd->active_queue)
4493 		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4494 
4495 	spin_unlock_irq(q->queue_lock);
4496 
4497 	cfq_shutdown_timer_wq(cfqd);
4498 
4499 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4500 	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4501 #else
4502 	kfree(cfqd->root_group);
4503 #endif
4504 	kfree(cfqd);
4505 }
4506 
cfq_init_queue(struct request_queue * q,struct elevator_type * e)4507 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4508 {
4509 	struct cfq_data *cfqd;
4510 	struct blkcg_gq *blkg __maybe_unused;
4511 	int i, ret;
4512 	struct elevator_queue *eq;
4513 
4514 	eq = elevator_alloc(q, e);
4515 	if (!eq)
4516 		return -ENOMEM;
4517 
4518 	cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4519 	if (!cfqd) {
4520 		kobject_put(&eq->kobj);
4521 		return -ENOMEM;
4522 	}
4523 	eq->elevator_data = cfqd;
4524 
4525 	cfqd->queue = q;
4526 	spin_lock_irq(q->queue_lock);
4527 	q->elevator = eq;
4528 	spin_unlock_irq(q->queue_lock);
4529 
4530 	/* Init root service tree */
4531 	cfqd->grp_service_tree = CFQ_RB_ROOT;
4532 
4533 	/* Init root group and prefer root group over other groups by default */
4534 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4535 	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4536 	if (ret)
4537 		goto out_free;
4538 
4539 	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4540 #else
4541 	ret = -ENOMEM;
4542 	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4543 					GFP_KERNEL, cfqd->queue->node);
4544 	if (!cfqd->root_group)
4545 		goto out_free;
4546 
4547 	cfq_init_cfqg_base(cfqd->root_group);
4548 	cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4549 	cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4550 #endif
4551 
4552 	/*
4553 	 * Not strictly needed (since RB_ROOT just clears the node and we
4554 	 * zeroed cfqd on alloc), but better be safe in case someone decides
4555 	 * to add magic to the rb code
4556 	 */
4557 	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4558 		cfqd->prio_trees[i] = RB_ROOT;
4559 
4560 	/*
4561 	 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4562 	 * Grab a permanent reference to it, so that the normal code flow
4563 	 * will not attempt to free it.  oom_cfqq is linked to root_group
4564 	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4565 	 * the reference from linking right away.
4566 	 */
4567 	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4568 	cfqd->oom_cfqq.ref++;
4569 
4570 	spin_lock_irq(q->queue_lock);
4571 	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4572 	cfqg_put(cfqd->root_group);
4573 	spin_unlock_irq(q->queue_lock);
4574 
4575 	init_timer(&cfqd->idle_slice_timer);
4576 	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4577 	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4578 
4579 	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4580 
4581 	cfqd->cfq_quantum = cfq_quantum;
4582 	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4583 	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4584 	cfqd->cfq_back_max = cfq_back_max;
4585 	cfqd->cfq_back_penalty = cfq_back_penalty;
4586 	cfqd->cfq_slice[0] = cfq_slice_async;
4587 	cfqd->cfq_slice[1] = cfq_slice_sync;
4588 	cfqd->cfq_target_latency = cfq_target_latency;
4589 	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4590 	cfqd->cfq_slice_idle = cfq_slice_idle;
4591 	cfqd->cfq_group_idle = cfq_group_idle;
4592 	cfqd->cfq_latency = 1;
4593 	cfqd->hw_tag = -1;
4594 	/*
4595 	 * we optimistically start assuming sync ops weren't delayed in last
4596 	 * second, in order to have larger depth for async operations.
4597 	 */
4598 	cfqd->last_delayed_sync = jiffies - HZ;
4599 	return 0;
4600 
4601 out_free:
4602 	kfree(cfqd);
4603 	kobject_put(&eq->kobj);
4604 	return ret;
4605 }
4606 
cfq_registered_queue(struct request_queue * q)4607 static void cfq_registered_queue(struct request_queue *q)
4608 {
4609 	struct elevator_queue *e = q->elevator;
4610 	struct cfq_data *cfqd = e->elevator_data;
4611 
4612 	/*
4613 	 * Default to IOPS mode with no idling for SSDs
4614 	 */
4615 	if (blk_queue_nonrot(q))
4616 		cfqd->cfq_slice_idle = 0;
4617 }
4618 
4619 /*
4620  * sysfs parts below -->
4621  */
4622 static ssize_t
cfq_var_show(unsigned int var,char * page)4623 cfq_var_show(unsigned int var, char *page)
4624 {
4625 	return sprintf(page, "%u\n", var);
4626 }
4627 
4628 static ssize_t
cfq_var_store(unsigned int * var,const char * page,size_t count)4629 cfq_var_store(unsigned int *var, const char *page, size_t count)
4630 {
4631 	char *p = (char *) page;
4632 
4633 	*var = simple_strtoul(p, &p, 10);
4634 	return count;
4635 }
4636 
4637 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4638 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4639 {									\
4640 	struct cfq_data *cfqd = e->elevator_data;			\
4641 	unsigned int __data = __VAR;					\
4642 	if (__CONV)							\
4643 		__data = jiffies_to_msecs(__data);			\
4644 	return cfq_var_show(__data, (page));				\
4645 }
4646 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4647 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4648 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4649 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4650 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4651 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4652 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4653 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4654 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4655 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4656 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4657 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4658 #undef SHOW_FUNCTION
4659 
4660 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4661 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4662 {									\
4663 	struct cfq_data *cfqd = e->elevator_data;			\
4664 	unsigned int __data;						\
4665 	int ret = cfq_var_store(&__data, (page), count);		\
4666 	if (__data < (MIN))						\
4667 		__data = (MIN);						\
4668 	else if (__data > (MAX))					\
4669 		__data = (MAX);						\
4670 	if (__CONV)							\
4671 		*(__PTR) = msecs_to_jiffies(__data);			\
4672 	else								\
4673 		*(__PTR) = __data;					\
4674 	return ret;							\
4675 }
4676 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4677 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4678 		UINT_MAX, 1);
4679 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4680 		UINT_MAX, 1);
4681 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4682 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4683 		UINT_MAX, 0);
4684 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4685 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4686 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4687 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4688 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4689 		UINT_MAX, 0);
4690 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4691 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4692 #undef STORE_FUNCTION
4693 
4694 #define CFQ_ATTR(name) \
4695 	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4696 
4697 static struct elv_fs_entry cfq_attrs[] = {
4698 	CFQ_ATTR(quantum),
4699 	CFQ_ATTR(fifo_expire_sync),
4700 	CFQ_ATTR(fifo_expire_async),
4701 	CFQ_ATTR(back_seek_max),
4702 	CFQ_ATTR(back_seek_penalty),
4703 	CFQ_ATTR(slice_sync),
4704 	CFQ_ATTR(slice_async),
4705 	CFQ_ATTR(slice_async_rq),
4706 	CFQ_ATTR(slice_idle),
4707 	CFQ_ATTR(group_idle),
4708 	CFQ_ATTR(low_latency),
4709 	CFQ_ATTR(target_latency),
4710 	__ATTR_NULL
4711 };
4712 
4713 static struct elevator_type iosched_cfq = {
4714 	.ops = {
4715 		.elevator_merge_fn = 		cfq_merge,
4716 		.elevator_merged_fn =		cfq_merged_request,
4717 		.elevator_merge_req_fn =	cfq_merged_requests,
4718 		.elevator_allow_merge_fn =	cfq_allow_merge,
4719 		.elevator_bio_merged_fn =	cfq_bio_merged,
4720 		.elevator_dispatch_fn =		cfq_dispatch_requests,
4721 		.elevator_add_req_fn =		cfq_insert_request,
4722 		.elevator_activate_req_fn =	cfq_activate_request,
4723 		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4724 		.elevator_completed_req_fn =	cfq_completed_request,
4725 		.elevator_former_req_fn =	elv_rb_former_request,
4726 		.elevator_latter_req_fn =	elv_rb_latter_request,
4727 		.elevator_init_icq_fn =		cfq_init_icq,
4728 		.elevator_exit_icq_fn =		cfq_exit_icq,
4729 		.elevator_set_req_fn =		cfq_set_request,
4730 		.elevator_put_req_fn =		cfq_put_request,
4731 		.elevator_may_queue_fn =	cfq_may_queue,
4732 		.elevator_init_fn =		cfq_init_queue,
4733 		.elevator_exit_fn =		cfq_exit_queue,
4734 		.elevator_registered_fn =	cfq_registered_queue,
4735 	},
4736 	.icq_size	=	sizeof(struct cfq_io_cq),
4737 	.icq_align	=	__alignof__(struct cfq_io_cq),
4738 	.elevator_attrs =	cfq_attrs,
4739 	.elevator_name	=	"cfq",
4740 	.elevator_owner =	THIS_MODULE,
4741 };
4742 
4743 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4744 static struct blkcg_policy blkcg_policy_cfq = {
4745 	.dfl_cftypes		= cfq_blkcg_files,
4746 	.legacy_cftypes		= cfq_blkcg_legacy_files,
4747 
4748 	.cpd_alloc_fn		= cfq_cpd_alloc,
4749 	.cpd_init_fn		= cfq_cpd_init,
4750 	.cpd_free_fn		= cfq_cpd_free,
4751 	.cpd_bind_fn		= cfq_cpd_bind,
4752 
4753 	.pd_alloc_fn		= cfq_pd_alloc,
4754 	.pd_init_fn		= cfq_pd_init,
4755 	.pd_offline_fn		= cfq_pd_offline,
4756 	.pd_free_fn		= cfq_pd_free,
4757 	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4758 };
4759 #endif
4760 
cfq_init(void)4761 static int __init cfq_init(void)
4762 {
4763 	int ret;
4764 
4765 	/*
4766 	 * could be 0 on HZ < 1000 setups
4767 	 */
4768 	if (!cfq_slice_async)
4769 		cfq_slice_async = 1;
4770 	if (!cfq_slice_idle)
4771 		cfq_slice_idle = 1;
4772 
4773 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4774 	if (!cfq_group_idle)
4775 		cfq_group_idle = 1;
4776 
4777 	ret = blkcg_policy_register(&blkcg_policy_cfq);
4778 	if (ret)
4779 		return ret;
4780 #else
4781 	cfq_group_idle = 0;
4782 #endif
4783 
4784 	ret = -ENOMEM;
4785 	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4786 	if (!cfq_pool)
4787 		goto err_pol_unreg;
4788 
4789 	ret = elv_register(&iosched_cfq);
4790 	if (ret)
4791 		goto err_free_pool;
4792 
4793 	return 0;
4794 
4795 err_free_pool:
4796 	kmem_cache_destroy(cfq_pool);
4797 err_pol_unreg:
4798 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4799 	blkcg_policy_unregister(&blkcg_policy_cfq);
4800 #endif
4801 	return ret;
4802 }
4803 
cfq_exit(void)4804 static void __exit cfq_exit(void)
4805 {
4806 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4807 	blkcg_policy_unregister(&blkcg_policy_cfq);
4808 #endif
4809 	elv_unregister(&iosched_cfq);
4810 	kmem_cache_destroy(cfq_pool);
4811 }
4812 
4813 module_init(cfq_init);
4814 module_exit(cfq_exit);
4815 
4816 MODULE_AUTHOR("Jens Axboe");
4817 MODULE_LICENSE("GPL");
4818 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4819