• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 
24 #include "blk.h"
25 
26 static DEFINE_MUTEX(block_class_lock);
27 struct kobject *block_depr;
28 
29 /* for extended dynamic devt allocation, currently only one major is used */
30 #define NR_EXT_DEVT		(1 << MINORBITS)
31 
32 /* For extended devt allocation.  ext_devt_lock prevents look up
33  * results from going away underneath its user.
34  */
35 static DEFINE_SPINLOCK(ext_devt_lock);
36 static DEFINE_IDR(ext_devt_idr);
37 
38 static struct device_type disk_type;
39 
40 static void disk_check_events(struct disk_events *ev,
41 			      unsigned int *clearing_ptr);
42 static void disk_alloc_events(struct gendisk *disk);
43 static void disk_add_events(struct gendisk *disk);
44 static void disk_del_events(struct gendisk *disk);
45 static void disk_release_events(struct gendisk *disk);
46 
47 /**
48  * disk_get_part - get partition
49  * @disk: disk to look partition from
50  * @partno: partition number
51  *
52  * Look for partition @partno from @disk.  If found, increment
53  * reference count and return it.
54  *
55  * CONTEXT:
56  * Don't care.
57  *
58  * RETURNS:
59  * Pointer to the found partition on success, NULL if not found.
60  */
disk_get_part(struct gendisk * disk,int partno)61 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
62 {
63 	struct hd_struct *part = NULL;
64 	struct disk_part_tbl *ptbl;
65 
66 	if (unlikely(partno < 0))
67 		return NULL;
68 
69 	rcu_read_lock();
70 
71 	ptbl = rcu_dereference(disk->part_tbl);
72 	if (likely(partno < ptbl->len)) {
73 		part = rcu_dereference(ptbl->part[partno]);
74 		if (part)
75 			get_device(part_to_dev(part));
76 	}
77 
78 	rcu_read_unlock();
79 
80 	return part;
81 }
82 EXPORT_SYMBOL_GPL(disk_get_part);
83 
84 /**
85  * disk_part_iter_init - initialize partition iterator
86  * @piter: iterator to initialize
87  * @disk: disk to iterate over
88  * @flags: DISK_PITER_* flags
89  *
90  * Initialize @piter so that it iterates over partitions of @disk.
91  *
92  * CONTEXT:
93  * Don't care.
94  */
disk_part_iter_init(struct disk_part_iter * piter,struct gendisk * disk,unsigned int flags)95 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
96 			  unsigned int flags)
97 {
98 	struct disk_part_tbl *ptbl;
99 
100 	rcu_read_lock();
101 	ptbl = rcu_dereference(disk->part_tbl);
102 
103 	piter->disk = disk;
104 	piter->part = NULL;
105 
106 	if (flags & DISK_PITER_REVERSE)
107 		piter->idx = ptbl->len - 1;
108 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
109 		piter->idx = 0;
110 	else
111 		piter->idx = 1;
112 
113 	piter->flags = flags;
114 
115 	rcu_read_unlock();
116 }
117 EXPORT_SYMBOL_GPL(disk_part_iter_init);
118 
119 /**
120  * disk_part_iter_next - proceed iterator to the next partition and return it
121  * @piter: iterator of interest
122  *
123  * Proceed @piter to the next partition and return it.
124  *
125  * CONTEXT:
126  * Don't care.
127  */
disk_part_iter_next(struct disk_part_iter * piter)128 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
129 {
130 	struct disk_part_tbl *ptbl;
131 	int inc, end;
132 
133 	/* put the last partition */
134 	disk_put_part(piter->part);
135 	piter->part = NULL;
136 
137 	/* get part_tbl */
138 	rcu_read_lock();
139 	ptbl = rcu_dereference(piter->disk->part_tbl);
140 
141 	/* determine iteration parameters */
142 	if (piter->flags & DISK_PITER_REVERSE) {
143 		inc = -1;
144 		if (piter->flags & (DISK_PITER_INCL_PART0 |
145 				    DISK_PITER_INCL_EMPTY_PART0))
146 			end = -1;
147 		else
148 			end = 0;
149 	} else {
150 		inc = 1;
151 		end = ptbl->len;
152 	}
153 
154 	/* iterate to the next partition */
155 	for (; piter->idx != end; piter->idx += inc) {
156 		struct hd_struct *part;
157 
158 		part = rcu_dereference(ptbl->part[piter->idx]);
159 		if (!part)
160 			continue;
161 		get_device(part_to_dev(part));
162 		piter->part = part;
163 		if (!part_nr_sects_read(part) &&
164 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
165 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
166 		      piter->idx == 0)) {
167 			put_device(part_to_dev(part));
168 			piter->part = NULL;
169 			continue;
170 		}
171 
172 		piter->idx += inc;
173 		break;
174 	}
175 
176 	rcu_read_unlock();
177 
178 	return piter->part;
179 }
180 EXPORT_SYMBOL_GPL(disk_part_iter_next);
181 
182 /**
183  * disk_part_iter_exit - finish up partition iteration
184  * @piter: iter of interest
185  *
186  * Called when iteration is over.  Cleans up @piter.
187  *
188  * CONTEXT:
189  * Don't care.
190  */
disk_part_iter_exit(struct disk_part_iter * piter)191 void disk_part_iter_exit(struct disk_part_iter *piter)
192 {
193 	disk_put_part(piter->part);
194 	piter->part = NULL;
195 }
196 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
197 
sector_in_part(struct hd_struct * part,sector_t sector)198 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
199 {
200 	return part->start_sect <= sector &&
201 		sector < part->start_sect + part_nr_sects_read(part);
202 }
203 
204 /**
205  * disk_map_sector_rcu - map sector to partition
206  * @disk: gendisk of interest
207  * @sector: sector to map
208  *
209  * Find out which partition @sector maps to on @disk.  This is
210  * primarily used for stats accounting.
211  *
212  * CONTEXT:
213  * RCU read locked.  The returned partition pointer is valid only
214  * while preemption is disabled.
215  *
216  * RETURNS:
217  * Found partition on success, part0 is returned if no partition matches
218  */
disk_map_sector_rcu(struct gendisk * disk,sector_t sector)219 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
220 {
221 	struct disk_part_tbl *ptbl;
222 	struct hd_struct *part;
223 	int i;
224 
225 	ptbl = rcu_dereference(disk->part_tbl);
226 
227 	part = rcu_dereference(ptbl->last_lookup);
228 	if (part && sector_in_part(part, sector))
229 		return part;
230 
231 	for (i = 1; i < ptbl->len; i++) {
232 		part = rcu_dereference(ptbl->part[i]);
233 
234 		if (part && sector_in_part(part, sector)) {
235 			rcu_assign_pointer(ptbl->last_lookup, part);
236 			return part;
237 		}
238 	}
239 	return &disk->part0;
240 }
241 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
242 
243 /*
244  * Can be deleted altogether. Later.
245  *
246  */
247 static struct blk_major_name {
248 	struct blk_major_name *next;
249 	int major;
250 	char name[16];
251 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
252 
253 /* index in the above - for now: assume no multimajor ranges */
major_to_index(unsigned major)254 static inline int major_to_index(unsigned major)
255 {
256 	return major % BLKDEV_MAJOR_HASH_SIZE;
257 }
258 
259 #ifdef CONFIG_PROC_FS
blkdev_show(struct seq_file * seqf,off_t offset)260 void blkdev_show(struct seq_file *seqf, off_t offset)
261 {
262 	struct blk_major_name *dp;
263 
264 	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
265 		mutex_lock(&block_class_lock);
266 		for (dp = major_names[offset]; dp; dp = dp->next)
267 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
268 		mutex_unlock(&block_class_lock);
269 	}
270 }
271 #endif /* CONFIG_PROC_FS */
272 
273 /**
274  * register_blkdev - register a new block device
275  *
276  * @major: the requested major device number [1..255]. If @major=0, try to
277  *         allocate any unused major number.
278  * @name: the name of the new block device as a zero terminated string
279  *
280  * The @name must be unique within the system.
281  *
282  * The return value depends on the @major input parameter.
283  *  - if a major device number was requested in range [1..255] then the
284  *    function returns zero on success, or a negative error code
285  *  - if any unused major number was requested with @major=0 parameter
286  *    then the return value is the allocated major number in range
287  *    [1..255] or a negative error code otherwise
288  */
register_blkdev(unsigned int major,const char * name)289 int register_blkdev(unsigned int major, const char *name)
290 {
291 	struct blk_major_name **n, *p;
292 	int index, ret = 0;
293 
294 	mutex_lock(&block_class_lock);
295 
296 	/* temporary */
297 	if (major == 0) {
298 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
299 			if (major_names[index] == NULL)
300 				break;
301 		}
302 
303 		if (index == 0) {
304 			printk("register_blkdev: failed to get major for %s\n",
305 			       name);
306 			ret = -EBUSY;
307 			goto out;
308 		}
309 		major = index;
310 		ret = major;
311 	}
312 
313 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
314 	if (p == NULL) {
315 		ret = -ENOMEM;
316 		goto out;
317 	}
318 
319 	p->major = major;
320 	strlcpy(p->name, name, sizeof(p->name));
321 	p->next = NULL;
322 	index = major_to_index(major);
323 
324 	for (n = &major_names[index]; *n; n = &(*n)->next) {
325 		if ((*n)->major == major)
326 			break;
327 	}
328 	if (!*n)
329 		*n = p;
330 	else
331 		ret = -EBUSY;
332 
333 	if (ret < 0) {
334 		printk("register_blkdev: cannot get major %d for %s\n",
335 		       major, name);
336 		kfree(p);
337 	}
338 out:
339 	mutex_unlock(&block_class_lock);
340 	return ret;
341 }
342 
343 EXPORT_SYMBOL(register_blkdev);
344 
unregister_blkdev(unsigned int major,const char * name)345 void unregister_blkdev(unsigned int major, const char *name)
346 {
347 	struct blk_major_name **n;
348 	struct blk_major_name *p = NULL;
349 	int index = major_to_index(major);
350 
351 	mutex_lock(&block_class_lock);
352 	for (n = &major_names[index]; *n; n = &(*n)->next)
353 		if ((*n)->major == major)
354 			break;
355 	if (!*n || strcmp((*n)->name, name)) {
356 		WARN_ON(1);
357 	} else {
358 		p = *n;
359 		*n = p->next;
360 	}
361 	mutex_unlock(&block_class_lock);
362 	kfree(p);
363 }
364 
365 EXPORT_SYMBOL(unregister_blkdev);
366 
367 static struct kobj_map *bdev_map;
368 
369 /**
370  * blk_mangle_minor - scatter minor numbers apart
371  * @minor: minor number to mangle
372  *
373  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
374  * is enabled.  Mangling twice gives the original value.
375  *
376  * RETURNS:
377  * Mangled value.
378  *
379  * CONTEXT:
380  * Don't care.
381  */
blk_mangle_minor(int minor)382 static int blk_mangle_minor(int minor)
383 {
384 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
385 	int i;
386 
387 	for (i = 0; i < MINORBITS / 2; i++) {
388 		int low = minor & (1 << i);
389 		int high = minor & (1 << (MINORBITS - 1 - i));
390 		int distance = MINORBITS - 1 - 2 * i;
391 
392 		minor ^= low | high;	/* clear both bits */
393 		low <<= distance;	/* swap the positions */
394 		high >>= distance;
395 		minor |= low | high;	/* and set */
396 	}
397 #endif
398 	return minor;
399 }
400 
401 /**
402  * blk_alloc_devt - allocate a dev_t for a partition
403  * @part: partition to allocate dev_t for
404  * @devt: out parameter for resulting dev_t
405  *
406  * Allocate a dev_t for block device.
407  *
408  * RETURNS:
409  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
410  * failure.
411  *
412  * CONTEXT:
413  * Might sleep.
414  */
blk_alloc_devt(struct hd_struct * part,dev_t * devt)415 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
416 {
417 	struct gendisk *disk = part_to_disk(part);
418 	int idx;
419 
420 	/* in consecutive minor range? */
421 	if (part->partno < disk->minors) {
422 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
423 		return 0;
424 	}
425 
426 	/* allocate ext devt */
427 	idr_preload(GFP_KERNEL);
428 
429 	spin_lock_bh(&ext_devt_lock);
430 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
431 	spin_unlock_bh(&ext_devt_lock);
432 
433 	idr_preload_end();
434 	if (idx < 0)
435 		return idx == -ENOSPC ? -EBUSY : idx;
436 
437 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
438 	return 0;
439 }
440 
441 /**
442  * blk_free_devt - free a dev_t
443  * @devt: dev_t to free
444  *
445  * Free @devt which was allocated using blk_alloc_devt().
446  *
447  * CONTEXT:
448  * Might sleep.
449  */
blk_free_devt(dev_t devt)450 void blk_free_devt(dev_t devt)
451 {
452 	if (devt == MKDEV(0, 0))
453 		return;
454 
455 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
456 		spin_lock_bh(&ext_devt_lock);
457 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
458 		spin_unlock_bh(&ext_devt_lock);
459 	}
460 }
461 
bdevt_str(dev_t devt,char * buf)462 static char *bdevt_str(dev_t devt, char *buf)
463 {
464 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
465 		char tbuf[BDEVT_SIZE];
466 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
467 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
468 	} else
469 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
470 
471 	return buf;
472 }
473 
474 /*
475  * Register device numbers dev..(dev+range-1)
476  * range must be nonzero
477  * The hash chain is sorted on range, so that subranges can override.
478  */
blk_register_region(dev_t devt,unsigned long range,struct module * module,struct kobject * (* probe)(dev_t,int *,void *),int (* lock)(dev_t,void *),void * data)479 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
480 			 struct kobject *(*probe)(dev_t, int *, void *),
481 			 int (*lock)(dev_t, void *), void *data)
482 {
483 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
484 }
485 
486 EXPORT_SYMBOL(blk_register_region);
487 
blk_unregister_region(dev_t devt,unsigned long range)488 void blk_unregister_region(dev_t devt, unsigned long range)
489 {
490 	kobj_unmap(bdev_map, devt, range);
491 }
492 
493 EXPORT_SYMBOL(blk_unregister_region);
494 
exact_match(dev_t devt,int * partno,void * data)495 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
496 {
497 	struct gendisk *p = data;
498 
499 	return &disk_to_dev(p)->kobj;
500 }
501 
exact_lock(dev_t devt,void * data)502 static int exact_lock(dev_t devt, void *data)
503 {
504 	struct gendisk *p = data;
505 
506 	if (!get_disk(p))
507 		return -1;
508 	return 0;
509 }
510 
register_disk(struct gendisk * disk)511 static void register_disk(struct gendisk *disk)
512 {
513 	struct device *ddev = disk_to_dev(disk);
514 	struct block_device *bdev;
515 	struct disk_part_iter piter;
516 	struct hd_struct *part;
517 	int err;
518 
519 	ddev->parent = disk->driverfs_dev;
520 
521 	dev_set_name(ddev, "%s", disk->disk_name);
522 
523 	/* delay uevents, until we scanned partition table */
524 	dev_set_uevent_suppress(ddev, 1);
525 
526 	if (device_add(ddev))
527 		return;
528 	if (!sysfs_deprecated) {
529 		err = sysfs_create_link(block_depr, &ddev->kobj,
530 					kobject_name(&ddev->kobj));
531 		if (err) {
532 			device_del(ddev);
533 			return;
534 		}
535 	}
536 
537 	/*
538 	 * avoid probable deadlock caused by allocating memory with
539 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
540 	 * devices
541 	 */
542 	pm_runtime_set_memalloc_noio(ddev, true);
543 
544 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
545 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
546 
547 	/* No minors to use for partitions */
548 	if (!disk_part_scan_enabled(disk))
549 		goto exit;
550 
551 	/* No such device (e.g., media were just removed) */
552 	if (!get_capacity(disk))
553 		goto exit;
554 
555 	bdev = bdget_disk(disk, 0);
556 	if (!bdev)
557 		goto exit;
558 
559 	bdev->bd_invalidated = 1;
560 	err = blkdev_get(bdev, FMODE_READ, NULL);
561 	if (err < 0)
562 		goto exit;
563 	blkdev_put(bdev, FMODE_READ);
564 
565 exit:
566 	/* announce disk after possible partitions are created */
567 	dev_set_uevent_suppress(ddev, 0);
568 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
569 
570 	/* announce possible partitions */
571 	disk_part_iter_init(&piter, disk, 0);
572 	while ((part = disk_part_iter_next(&piter)))
573 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
574 	disk_part_iter_exit(&piter);
575 }
576 
577 /**
578  * add_disk - add partitioning information to kernel list
579  * @disk: per-device partitioning information
580  *
581  * This function registers the partitioning information in @disk
582  * with the kernel.
583  *
584  * FIXME: error handling
585  */
add_disk(struct gendisk * disk)586 void add_disk(struct gendisk *disk)
587 {
588 	struct backing_dev_info *bdi;
589 	dev_t devt;
590 	int retval;
591 
592 	/* minors == 0 indicates to use ext devt from part0 and should
593 	 * be accompanied with EXT_DEVT flag.  Make sure all
594 	 * parameters make sense.
595 	 */
596 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
597 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
598 
599 	disk->flags |= GENHD_FL_UP;
600 
601 	retval = blk_alloc_devt(&disk->part0, &devt);
602 	if (retval) {
603 		WARN_ON(1);
604 		return;
605 	}
606 	disk_to_dev(disk)->devt = devt;
607 
608 	/* ->major and ->first_minor aren't supposed to be
609 	 * dereferenced from here on, but set them just in case.
610 	 */
611 	disk->major = MAJOR(devt);
612 	disk->first_minor = MINOR(devt);
613 
614 	disk_alloc_events(disk);
615 
616 	/* Register BDI before referencing it from bdev */
617 	bdi = &disk->queue->backing_dev_info;
618 	bdi_register_owner(bdi, disk_to_dev(disk));
619 
620 	blk_register_region(disk_devt(disk), disk->minors, NULL,
621 			    exact_match, exact_lock, disk);
622 	register_disk(disk);
623 	blk_register_queue(disk);
624 
625 	/*
626 	 * Take an extra ref on queue which will be put on disk_release()
627 	 * so that it sticks around as long as @disk is there.
628 	 */
629 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
630 
631 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
632 				   "bdi");
633 	WARN_ON(retval);
634 
635 	disk_add_events(disk);
636 	blk_integrity_add(disk);
637 }
638 EXPORT_SYMBOL(add_disk);
639 
del_gendisk(struct gendisk * disk)640 void del_gendisk(struct gendisk *disk)
641 {
642 	struct disk_part_iter piter;
643 	struct hd_struct *part;
644 
645 	blk_integrity_del(disk);
646 	disk_del_events(disk);
647 
648 	/* invalidate stuff */
649 	disk_part_iter_init(&piter, disk,
650 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
651 	while ((part = disk_part_iter_next(&piter))) {
652 		invalidate_partition(disk, part->partno);
653 		delete_partition(disk, part->partno);
654 	}
655 	disk_part_iter_exit(&piter);
656 
657 	invalidate_partition(disk, 0);
658 	set_capacity(disk, 0);
659 	disk->flags &= ~GENHD_FL_UP;
660 
661 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
662 	blk_unregister_queue(disk);
663 	blk_unregister_region(disk_devt(disk), disk->minors);
664 
665 	part_stat_set_all(&disk->part0, 0);
666 	disk->part0.stamp = 0;
667 
668 	kobject_put(disk->part0.holder_dir);
669 	kobject_put(disk->slave_dir);
670 	if (!sysfs_deprecated)
671 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
672 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
673 	device_del(disk_to_dev(disk));
674 }
675 EXPORT_SYMBOL(del_gendisk);
676 
677 /**
678  * get_gendisk - get partitioning information for a given device
679  * @devt: device to get partitioning information for
680  * @partno: returned partition index
681  *
682  * This function gets the structure containing partitioning
683  * information for the given device @devt.
684  */
get_gendisk(dev_t devt,int * partno)685 struct gendisk *get_gendisk(dev_t devt, int *partno)
686 {
687 	struct gendisk *disk = NULL;
688 
689 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
690 		struct kobject *kobj;
691 
692 		kobj = kobj_lookup(bdev_map, devt, partno);
693 		if (kobj)
694 			disk = dev_to_disk(kobj_to_dev(kobj));
695 	} else {
696 		struct hd_struct *part;
697 
698 		spin_lock_bh(&ext_devt_lock);
699 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
700 		if (part && get_disk(part_to_disk(part))) {
701 			*partno = part->partno;
702 			disk = part_to_disk(part);
703 		}
704 		spin_unlock_bh(&ext_devt_lock);
705 	}
706 
707 	return disk;
708 }
709 EXPORT_SYMBOL(get_gendisk);
710 
711 /**
712  * bdget_disk - do bdget() by gendisk and partition number
713  * @disk: gendisk of interest
714  * @partno: partition number
715  *
716  * Find partition @partno from @disk, do bdget() on it.
717  *
718  * CONTEXT:
719  * Don't care.
720  *
721  * RETURNS:
722  * Resulting block_device on success, NULL on failure.
723  */
bdget_disk(struct gendisk * disk,int partno)724 struct block_device *bdget_disk(struct gendisk *disk, int partno)
725 {
726 	struct hd_struct *part;
727 	struct block_device *bdev = NULL;
728 
729 	part = disk_get_part(disk, partno);
730 	if (part)
731 		bdev = bdget(part_devt(part));
732 	disk_put_part(part);
733 
734 	return bdev;
735 }
736 EXPORT_SYMBOL(bdget_disk);
737 
738 /*
739  * print a full list of all partitions - intended for places where the root
740  * filesystem can't be mounted and thus to give the victim some idea of what
741  * went wrong
742  */
printk_all_partitions(void)743 void __init printk_all_partitions(void)
744 {
745 	struct class_dev_iter iter;
746 	struct device *dev;
747 
748 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
749 	while ((dev = class_dev_iter_next(&iter))) {
750 		struct gendisk *disk = dev_to_disk(dev);
751 		struct disk_part_iter piter;
752 		struct hd_struct *part;
753 		char name_buf[BDEVNAME_SIZE];
754 		char devt_buf[BDEVT_SIZE];
755 
756 		/*
757 		 * Don't show empty devices or things that have been
758 		 * suppressed
759 		 */
760 		if (get_capacity(disk) == 0 ||
761 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
762 			continue;
763 
764 		/*
765 		 * Note, unlike /proc/partitions, I am showing the
766 		 * numbers in hex - the same format as the root=
767 		 * option takes.
768 		 */
769 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
770 		while ((part = disk_part_iter_next(&piter))) {
771 			bool is_part0 = part == &disk->part0;
772 
773 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
774 			       bdevt_str(part_devt(part), devt_buf),
775 			       (unsigned long long)part_nr_sects_read(part) >> 1
776 			       , disk_name(disk, part->partno, name_buf),
777 			       part->info ? part->info->uuid : "");
778 			if (is_part0) {
779 				if (disk->driverfs_dev != NULL &&
780 				    disk->driverfs_dev->driver != NULL)
781 					printk(" driver: %s\n",
782 					      disk->driverfs_dev->driver->name);
783 				else
784 					printk(" (driver?)\n");
785 			} else
786 				printk("\n");
787 		}
788 		disk_part_iter_exit(&piter);
789 	}
790 	class_dev_iter_exit(&iter);
791 }
792 
793 #ifdef CONFIG_PROC_FS
794 /* iterator */
disk_seqf_start(struct seq_file * seqf,loff_t * pos)795 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
796 {
797 	loff_t skip = *pos;
798 	struct class_dev_iter *iter;
799 	struct device *dev;
800 
801 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
802 	if (!iter)
803 		return ERR_PTR(-ENOMEM);
804 
805 	seqf->private = iter;
806 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
807 	do {
808 		dev = class_dev_iter_next(iter);
809 		if (!dev)
810 			return NULL;
811 	} while (skip--);
812 
813 	return dev_to_disk(dev);
814 }
815 
disk_seqf_next(struct seq_file * seqf,void * v,loff_t * pos)816 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
817 {
818 	struct device *dev;
819 
820 	(*pos)++;
821 	dev = class_dev_iter_next(seqf->private);
822 	if (dev)
823 		return dev_to_disk(dev);
824 
825 	return NULL;
826 }
827 
disk_seqf_stop(struct seq_file * seqf,void * v)828 static void disk_seqf_stop(struct seq_file *seqf, void *v)
829 {
830 	struct class_dev_iter *iter = seqf->private;
831 
832 	/* stop is called even after start failed :-( */
833 	if (iter) {
834 		class_dev_iter_exit(iter);
835 		kfree(iter);
836 		seqf->private = NULL;
837 	}
838 }
839 
show_partition_start(struct seq_file * seqf,loff_t * pos)840 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
841 {
842 	void *p;
843 
844 	p = disk_seqf_start(seqf, pos);
845 	if (!IS_ERR_OR_NULL(p) && !*pos)
846 		seq_puts(seqf, "major minor  #blocks  name\n\n");
847 	return p;
848 }
849 
show_partition(struct seq_file * seqf,void * v)850 static int show_partition(struct seq_file *seqf, void *v)
851 {
852 	struct gendisk *sgp = v;
853 	struct disk_part_iter piter;
854 	struct hd_struct *part;
855 	char buf[BDEVNAME_SIZE];
856 
857 	/* Don't show non-partitionable removeable devices or empty devices */
858 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
859 				   (sgp->flags & GENHD_FL_REMOVABLE)))
860 		return 0;
861 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
862 		return 0;
863 
864 	/* show the full disk and all non-0 size partitions of it */
865 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
866 	while ((part = disk_part_iter_next(&piter)))
867 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
868 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
869 			   (unsigned long long)part_nr_sects_read(part) >> 1,
870 			   disk_name(sgp, part->partno, buf));
871 	disk_part_iter_exit(&piter);
872 
873 	return 0;
874 }
875 
876 static const struct seq_operations partitions_op = {
877 	.start	= show_partition_start,
878 	.next	= disk_seqf_next,
879 	.stop	= disk_seqf_stop,
880 	.show	= show_partition
881 };
882 
partitions_open(struct inode * inode,struct file * file)883 static int partitions_open(struct inode *inode, struct file *file)
884 {
885 	return seq_open(file, &partitions_op);
886 }
887 
888 static const struct file_operations proc_partitions_operations = {
889 	.open		= partitions_open,
890 	.read		= seq_read,
891 	.llseek		= seq_lseek,
892 	.release	= seq_release,
893 };
894 #endif
895 
896 
base_probe(dev_t devt,int * partno,void * data)897 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
898 {
899 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
900 		/* Make old-style 2.4 aliases work */
901 		request_module("block-major-%d", MAJOR(devt));
902 	return NULL;
903 }
904 
genhd_device_init(void)905 static int __init genhd_device_init(void)
906 {
907 	int error;
908 
909 	block_class.dev_kobj = sysfs_dev_block_kobj;
910 	error = class_register(&block_class);
911 	if (unlikely(error))
912 		return error;
913 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
914 	blk_dev_init();
915 
916 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
917 
918 	/* create top-level block dir */
919 	if (!sysfs_deprecated)
920 		block_depr = kobject_create_and_add("block", NULL);
921 	return 0;
922 }
923 
924 subsys_initcall(genhd_device_init);
925 
disk_range_show(struct device * dev,struct device_attribute * attr,char * buf)926 static ssize_t disk_range_show(struct device *dev,
927 			       struct device_attribute *attr, char *buf)
928 {
929 	struct gendisk *disk = dev_to_disk(dev);
930 
931 	return sprintf(buf, "%d\n", disk->minors);
932 }
933 
disk_ext_range_show(struct device * dev,struct device_attribute * attr,char * buf)934 static ssize_t disk_ext_range_show(struct device *dev,
935 				   struct device_attribute *attr, char *buf)
936 {
937 	struct gendisk *disk = dev_to_disk(dev);
938 
939 	return sprintf(buf, "%d\n", disk_max_parts(disk));
940 }
941 
disk_removable_show(struct device * dev,struct device_attribute * attr,char * buf)942 static ssize_t disk_removable_show(struct device *dev,
943 				   struct device_attribute *attr, char *buf)
944 {
945 	struct gendisk *disk = dev_to_disk(dev);
946 
947 	return sprintf(buf, "%d\n",
948 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
949 }
950 
disk_ro_show(struct device * dev,struct device_attribute * attr,char * buf)951 static ssize_t disk_ro_show(struct device *dev,
952 				   struct device_attribute *attr, char *buf)
953 {
954 	struct gendisk *disk = dev_to_disk(dev);
955 
956 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
957 }
958 
disk_capability_show(struct device * dev,struct device_attribute * attr,char * buf)959 static ssize_t disk_capability_show(struct device *dev,
960 				    struct device_attribute *attr, char *buf)
961 {
962 	struct gendisk *disk = dev_to_disk(dev);
963 
964 	return sprintf(buf, "%x\n", disk->flags);
965 }
966 
disk_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)967 static ssize_t disk_alignment_offset_show(struct device *dev,
968 					  struct device_attribute *attr,
969 					  char *buf)
970 {
971 	struct gendisk *disk = dev_to_disk(dev);
972 
973 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
974 }
975 
disk_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)976 static ssize_t disk_discard_alignment_show(struct device *dev,
977 					   struct device_attribute *attr,
978 					   char *buf)
979 {
980 	struct gendisk *disk = dev_to_disk(dev);
981 
982 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
983 }
984 
985 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
986 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
987 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
988 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
989 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
990 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
991 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
992 		   NULL);
993 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
994 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
995 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
996 #ifdef CONFIG_FAIL_MAKE_REQUEST
997 static struct device_attribute dev_attr_fail =
998 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
999 #endif
1000 #ifdef CONFIG_FAIL_IO_TIMEOUT
1001 static struct device_attribute dev_attr_fail_timeout =
1002 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1003 		part_timeout_store);
1004 #endif
1005 
1006 static struct attribute *disk_attrs[] = {
1007 	&dev_attr_range.attr,
1008 	&dev_attr_ext_range.attr,
1009 	&dev_attr_removable.attr,
1010 	&dev_attr_ro.attr,
1011 	&dev_attr_size.attr,
1012 	&dev_attr_alignment_offset.attr,
1013 	&dev_attr_discard_alignment.attr,
1014 	&dev_attr_capability.attr,
1015 	&dev_attr_stat.attr,
1016 	&dev_attr_inflight.attr,
1017 #ifdef CONFIG_FAIL_MAKE_REQUEST
1018 	&dev_attr_fail.attr,
1019 #endif
1020 #ifdef CONFIG_FAIL_IO_TIMEOUT
1021 	&dev_attr_fail_timeout.attr,
1022 #endif
1023 	NULL
1024 };
1025 
1026 static struct attribute_group disk_attr_group = {
1027 	.attrs = disk_attrs,
1028 };
1029 
1030 static const struct attribute_group *disk_attr_groups[] = {
1031 	&disk_attr_group,
1032 	NULL
1033 };
1034 
1035 /**
1036  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1037  * @disk: disk to replace part_tbl for
1038  * @new_ptbl: new part_tbl to install
1039  *
1040  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1041  * original ptbl is freed using RCU callback.
1042  *
1043  * LOCKING:
1044  * Matching bd_mutx locked.
1045  */
disk_replace_part_tbl(struct gendisk * disk,struct disk_part_tbl * new_ptbl)1046 static void disk_replace_part_tbl(struct gendisk *disk,
1047 				  struct disk_part_tbl *new_ptbl)
1048 {
1049 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1050 
1051 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1052 
1053 	if (old_ptbl) {
1054 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1055 		kfree_rcu(old_ptbl, rcu_head);
1056 	}
1057 }
1058 
1059 /**
1060  * disk_expand_part_tbl - expand disk->part_tbl
1061  * @disk: disk to expand part_tbl for
1062  * @partno: expand such that this partno can fit in
1063  *
1064  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1065  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1066  *
1067  * LOCKING:
1068  * Matching bd_mutex locked, might sleep.
1069  *
1070  * RETURNS:
1071  * 0 on success, -errno on failure.
1072  */
disk_expand_part_tbl(struct gendisk * disk,int partno)1073 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1074 {
1075 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1076 	struct disk_part_tbl *new_ptbl;
1077 	int len = old_ptbl ? old_ptbl->len : 0;
1078 	int i, target;
1079 	size_t size;
1080 
1081 	/*
1082 	 * check for int overflow, since we can get here from blkpg_ioctl()
1083 	 * with a user passed 'partno'.
1084 	 */
1085 	target = partno + 1;
1086 	if (target < 0)
1087 		return -EINVAL;
1088 
1089 	/* disk_max_parts() is zero during initialization, ignore if so */
1090 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1091 		return -EINVAL;
1092 
1093 	if (target <= len)
1094 		return 0;
1095 
1096 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1097 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1098 	if (!new_ptbl)
1099 		return -ENOMEM;
1100 
1101 	new_ptbl->len = target;
1102 
1103 	for (i = 0; i < len; i++)
1104 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1105 
1106 	disk_replace_part_tbl(disk, new_ptbl);
1107 	return 0;
1108 }
1109 
disk_release(struct device * dev)1110 static void disk_release(struct device *dev)
1111 {
1112 	struct gendisk *disk = dev_to_disk(dev);
1113 
1114 	blk_free_devt(dev->devt);
1115 	disk_release_events(disk);
1116 	kfree(disk->random);
1117 	disk_replace_part_tbl(disk, NULL);
1118 	hd_free_part(&disk->part0);
1119 	if (disk->queue)
1120 		blk_put_queue(disk->queue);
1121 	kfree(disk);
1122 }
1123 
disk_uevent(struct device * dev,struct kobj_uevent_env * env)1124 static int disk_uevent(struct device *dev, struct kobj_uevent_env *env)
1125 {
1126 	struct gendisk *disk = dev_to_disk(dev);
1127 	struct disk_part_iter piter;
1128 	struct hd_struct *part;
1129 	int cnt = 0;
1130 
1131 	disk_part_iter_init(&piter, disk, 0);
1132 	while((part = disk_part_iter_next(&piter)))
1133 		cnt++;
1134 	disk_part_iter_exit(&piter);
1135 	add_uevent_var(env, "NPARTS=%u", cnt);
1136 	return 0;
1137 }
1138 
1139 struct class block_class = {
1140 	.name		= "block",
1141 };
1142 
block_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)1143 static char *block_devnode(struct device *dev, umode_t *mode,
1144 			   kuid_t *uid, kgid_t *gid)
1145 {
1146 	struct gendisk *disk = dev_to_disk(dev);
1147 
1148 	if (disk->devnode)
1149 		return disk->devnode(disk, mode);
1150 	return NULL;
1151 }
1152 
1153 static struct device_type disk_type = {
1154 	.name		= "disk",
1155 	.groups		= disk_attr_groups,
1156 	.release	= disk_release,
1157 	.devnode	= block_devnode,
1158 	.uevent		= disk_uevent,
1159 };
1160 
1161 #ifdef CONFIG_PROC_FS
1162 /*
1163  * aggregate disk stat collector.  Uses the same stats that the sysfs
1164  * entries do, above, but makes them available through one seq_file.
1165  *
1166  * The output looks suspiciously like /proc/partitions with a bunch of
1167  * extra fields.
1168  */
diskstats_show(struct seq_file * seqf,void * v)1169 static int diskstats_show(struct seq_file *seqf, void *v)
1170 {
1171 	struct gendisk *gp = v;
1172 	struct disk_part_iter piter;
1173 	struct hd_struct *hd;
1174 	char buf[BDEVNAME_SIZE];
1175 	int cpu;
1176 
1177 	/*
1178 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1179 		seq_puts(seqf,	"major minor name"
1180 				"     rio rmerge rsect ruse wio wmerge "
1181 				"wsect wuse running use aveq"
1182 				"\n\n");
1183 	*/
1184 
1185 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1186 	while ((hd = disk_part_iter_next(&piter))) {
1187 		cpu = part_stat_lock();
1188 		part_round_stats(cpu, hd);
1189 		part_stat_unlock();
1190 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1191 			   "%u %lu %lu %lu %u %u %u %u\n",
1192 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1193 			   disk_name(gp, hd->partno, buf),
1194 			   part_stat_read(hd, ios[READ]),
1195 			   part_stat_read(hd, merges[READ]),
1196 			   part_stat_read(hd, sectors[READ]),
1197 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1198 			   part_stat_read(hd, ios[WRITE]),
1199 			   part_stat_read(hd, merges[WRITE]),
1200 			   part_stat_read(hd, sectors[WRITE]),
1201 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1202 			   part_in_flight(hd),
1203 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1204 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1205 			);
1206 	}
1207 	disk_part_iter_exit(&piter);
1208 
1209 	return 0;
1210 }
1211 
1212 static const struct seq_operations diskstats_op = {
1213 	.start	= disk_seqf_start,
1214 	.next	= disk_seqf_next,
1215 	.stop	= disk_seqf_stop,
1216 	.show	= diskstats_show
1217 };
1218 
diskstats_open(struct inode * inode,struct file * file)1219 static int diskstats_open(struct inode *inode, struct file *file)
1220 {
1221 	return seq_open(file, &diskstats_op);
1222 }
1223 
1224 static const struct file_operations proc_diskstats_operations = {
1225 	.open		= diskstats_open,
1226 	.read		= seq_read,
1227 	.llseek		= seq_lseek,
1228 	.release	= seq_release,
1229 };
1230 
proc_genhd_init(void)1231 static int __init proc_genhd_init(void)
1232 {
1233 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1234 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1235 	return 0;
1236 }
1237 module_init(proc_genhd_init);
1238 #endif /* CONFIG_PROC_FS */
1239 
blk_lookup_devt(const char * name,int partno)1240 dev_t blk_lookup_devt(const char *name, int partno)
1241 {
1242 	dev_t devt = MKDEV(0, 0);
1243 	struct class_dev_iter iter;
1244 	struct device *dev;
1245 
1246 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1247 	while ((dev = class_dev_iter_next(&iter))) {
1248 		struct gendisk *disk = dev_to_disk(dev);
1249 		struct hd_struct *part;
1250 
1251 		if (strcmp(dev_name(dev), name))
1252 			continue;
1253 
1254 		if (partno < disk->minors) {
1255 			/* We need to return the right devno, even
1256 			 * if the partition doesn't exist yet.
1257 			 */
1258 			devt = MKDEV(MAJOR(dev->devt),
1259 				     MINOR(dev->devt) + partno);
1260 			break;
1261 		}
1262 		part = disk_get_part(disk, partno);
1263 		if (part) {
1264 			devt = part_devt(part);
1265 			disk_put_part(part);
1266 			break;
1267 		}
1268 		disk_put_part(part);
1269 	}
1270 	class_dev_iter_exit(&iter);
1271 	return devt;
1272 }
1273 EXPORT_SYMBOL(blk_lookup_devt);
1274 
alloc_disk(int minors)1275 struct gendisk *alloc_disk(int minors)
1276 {
1277 	return alloc_disk_node(minors, NUMA_NO_NODE);
1278 }
1279 EXPORT_SYMBOL(alloc_disk);
1280 
alloc_disk_node(int minors,int node_id)1281 struct gendisk *alloc_disk_node(int minors, int node_id)
1282 {
1283 	struct gendisk *disk;
1284 
1285 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1286 	if (disk) {
1287 		if (!init_part_stats(&disk->part0)) {
1288 			kfree(disk);
1289 			return NULL;
1290 		}
1291 		disk->node_id = node_id;
1292 		if (disk_expand_part_tbl(disk, 0)) {
1293 			free_part_stats(&disk->part0);
1294 			kfree(disk);
1295 			return NULL;
1296 		}
1297 		disk->part_tbl->part[0] = &disk->part0;
1298 
1299 		/*
1300 		 * set_capacity() and get_capacity() currently don't use
1301 		 * seqcounter to read/update the part0->nr_sects. Still init
1302 		 * the counter as we can read the sectors in IO submission
1303 		 * patch using seqence counters.
1304 		 *
1305 		 * TODO: Ideally set_capacity() and get_capacity() should be
1306 		 * converted to make use of bd_mutex and sequence counters.
1307 		 */
1308 		seqcount_init(&disk->part0.nr_sects_seq);
1309 		if (hd_ref_init(&disk->part0)) {
1310 			hd_free_part(&disk->part0);
1311 			kfree(disk);
1312 			return NULL;
1313 		}
1314 
1315 		disk->minors = minors;
1316 		rand_initialize_disk(disk);
1317 		disk_to_dev(disk)->class = &block_class;
1318 		disk_to_dev(disk)->type = &disk_type;
1319 		device_initialize(disk_to_dev(disk));
1320 	}
1321 	return disk;
1322 }
1323 EXPORT_SYMBOL(alloc_disk_node);
1324 
get_disk(struct gendisk * disk)1325 struct kobject *get_disk(struct gendisk *disk)
1326 {
1327 	struct module *owner;
1328 	struct kobject *kobj;
1329 
1330 	if (!disk->fops)
1331 		return NULL;
1332 	owner = disk->fops->owner;
1333 	if (owner && !try_module_get(owner))
1334 		return NULL;
1335 	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1336 	if (kobj == NULL) {
1337 		module_put(owner);
1338 		return NULL;
1339 	}
1340 	return kobj;
1341 
1342 }
1343 
1344 EXPORT_SYMBOL(get_disk);
1345 
put_disk(struct gendisk * disk)1346 void put_disk(struct gendisk *disk)
1347 {
1348 	if (disk)
1349 		kobject_put(&disk_to_dev(disk)->kobj);
1350 }
1351 
1352 EXPORT_SYMBOL(put_disk);
1353 
set_disk_ro_uevent(struct gendisk * gd,int ro)1354 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1355 {
1356 	char event[] = "DISK_RO=1";
1357 	char *envp[] = { event, NULL };
1358 
1359 	if (!ro)
1360 		event[8] = '0';
1361 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1362 }
1363 
set_device_ro(struct block_device * bdev,int flag)1364 void set_device_ro(struct block_device *bdev, int flag)
1365 {
1366 	bdev->bd_part->policy = flag;
1367 }
1368 
1369 EXPORT_SYMBOL(set_device_ro);
1370 
set_disk_ro(struct gendisk * disk,int flag)1371 void set_disk_ro(struct gendisk *disk, int flag)
1372 {
1373 	struct disk_part_iter piter;
1374 	struct hd_struct *part;
1375 
1376 	if (disk->part0.policy != flag) {
1377 		set_disk_ro_uevent(disk, flag);
1378 		disk->part0.policy = flag;
1379 	}
1380 
1381 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1382 	while ((part = disk_part_iter_next(&piter)))
1383 		part->policy = flag;
1384 	disk_part_iter_exit(&piter);
1385 }
1386 
1387 EXPORT_SYMBOL(set_disk_ro);
1388 
bdev_read_only(struct block_device * bdev)1389 int bdev_read_only(struct block_device *bdev)
1390 {
1391 	if (!bdev)
1392 		return 0;
1393 	return bdev->bd_part->policy;
1394 }
1395 
1396 EXPORT_SYMBOL(bdev_read_only);
1397 
invalidate_partition(struct gendisk * disk,int partno)1398 int invalidate_partition(struct gendisk *disk, int partno)
1399 {
1400 	int res = 0;
1401 	struct block_device *bdev = bdget_disk(disk, partno);
1402 	if (bdev) {
1403 		fsync_bdev(bdev);
1404 		res = __invalidate_device(bdev, true);
1405 		bdput(bdev);
1406 	}
1407 	return res;
1408 }
1409 
1410 EXPORT_SYMBOL(invalidate_partition);
1411 
1412 /*
1413  * Disk events - monitor disk events like media change and eject request.
1414  */
1415 struct disk_events {
1416 	struct list_head	node;		/* all disk_event's */
1417 	struct gendisk		*disk;		/* the associated disk */
1418 	spinlock_t		lock;
1419 
1420 	struct mutex		block_mutex;	/* protects blocking */
1421 	int			block;		/* event blocking depth */
1422 	unsigned int		pending;	/* events already sent out */
1423 	unsigned int		clearing;	/* events being cleared */
1424 
1425 	long			poll_msecs;	/* interval, -1 for default */
1426 	struct delayed_work	dwork;
1427 };
1428 
1429 static const char *disk_events_strs[] = {
1430 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1431 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1432 };
1433 
1434 static char *disk_uevents[] = {
1435 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1436 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1437 };
1438 
1439 /* list of all disk_events */
1440 static DEFINE_MUTEX(disk_events_mutex);
1441 static LIST_HEAD(disk_events);
1442 
1443 /* disable in-kernel polling by default */
1444 static unsigned long disk_events_dfl_poll_msecs	= 0;
1445 
disk_events_poll_jiffies(struct gendisk * disk)1446 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1447 {
1448 	struct disk_events *ev = disk->ev;
1449 	long intv_msecs = 0;
1450 
1451 	/*
1452 	 * If device-specific poll interval is set, always use it.  If
1453 	 * the default is being used, poll iff there are events which
1454 	 * can't be monitored asynchronously.
1455 	 */
1456 	if (ev->poll_msecs >= 0)
1457 		intv_msecs = ev->poll_msecs;
1458 	else if (disk->events & ~disk->async_events)
1459 		intv_msecs = disk_events_dfl_poll_msecs;
1460 
1461 	return msecs_to_jiffies(intv_msecs);
1462 }
1463 
1464 /**
1465  * disk_block_events - block and flush disk event checking
1466  * @disk: disk to block events for
1467  *
1468  * On return from this function, it is guaranteed that event checking
1469  * isn't in progress and won't happen until unblocked by
1470  * disk_unblock_events().  Events blocking is counted and the actual
1471  * unblocking happens after the matching number of unblocks are done.
1472  *
1473  * Note that this intentionally does not block event checking from
1474  * disk_clear_events().
1475  *
1476  * CONTEXT:
1477  * Might sleep.
1478  */
disk_block_events(struct gendisk * disk)1479 void disk_block_events(struct gendisk *disk)
1480 {
1481 	struct disk_events *ev = disk->ev;
1482 	unsigned long flags;
1483 	bool cancel;
1484 
1485 	if (!ev)
1486 		return;
1487 
1488 	/*
1489 	 * Outer mutex ensures that the first blocker completes canceling
1490 	 * the event work before further blockers are allowed to finish.
1491 	 */
1492 	mutex_lock(&ev->block_mutex);
1493 
1494 	spin_lock_irqsave(&ev->lock, flags);
1495 	cancel = !ev->block++;
1496 	spin_unlock_irqrestore(&ev->lock, flags);
1497 
1498 	if (cancel)
1499 		cancel_delayed_work_sync(&disk->ev->dwork);
1500 
1501 	mutex_unlock(&ev->block_mutex);
1502 }
1503 
__disk_unblock_events(struct gendisk * disk,bool check_now)1504 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1505 {
1506 	struct disk_events *ev = disk->ev;
1507 	unsigned long intv;
1508 	unsigned long flags;
1509 
1510 	spin_lock_irqsave(&ev->lock, flags);
1511 
1512 	if (WARN_ON_ONCE(ev->block <= 0))
1513 		goto out_unlock;
1514 
1515 	if (--ev->block)
1516 		goto out_unlock;
1517 
1518 	/*
1519 	 * Not exactly a latency critical operation, set poll timer
1520 	 * slack to 25% and kick event check.
1521 	 */
1522 	intv = disk_events_poll_jiffies(disk);
1523 	set_timer_slack(&ev->dwork.timer, intv / 4);
1524 	if (check_now)
1525 		queue_delayed_work(system_freezable_power_efficient_wq,
1526 				&ev->dwork, 0);
1527 	else if (intv)
1528 		queue_delayed_work(system_freezable_power_efficient_wq,
1529 				&ev->dwork, intv);
1530 out_unlock:
1531 	spin_unlock_irqrestore(&ev->lock, flags);
1532 }
1533 
1534 /**
1535  * disk_unblock_events - unblock disk event checking
1536  * @disk: disk to unblock events for
1537  *
1538  * Undo disk_block_events().  When the block count reaches zero, it
1539  * starts events polling if configured.
1540  *
1541  * CONTEXT:
1542  * Don't care.  Safe to call from irq context.
1543  */
disk_unblock_events(struct gendisk * disk)1544 void disk_unblock_events(struct gendisk *disk)
1545 {
1546 	if (disk->ev)
1547 		__disk_unblock_events(disk, false);
1548 }
1549 
1550 /**
1551  * disk_flush_events - schedule immediate event checking and flushing
1552  * @disk: disk to check and flush events for
1553  * @mask: events to flush
1554  *
1555  * Schedule immediate event checking on @disk if not blocked.  Events in
1556  * @mask are scheduled to be cleared from the driver.  Note that this
1557  * doesn't clear the events from @disk->ev.
1558  *
1559  * CONTEXT:
1560  * If @mask is non-zero must be called with bdev->bd_mutex held.
1561  */
disk_flush_events(struct gendisk * disk,unsigned int mask)1562 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1563 {
1564 	struct disk_events *ev = disk->ev;
1565 
1566 	if (!ev)
1567 		return;
1568 
1569 	spin_lock_irq(&ev->lock);
1570 	ev->clearing |= mask;
1571 	if (!ev->block)
1572 		mod_delayed_work(system_freezable_power_efficient_wq,
1573 				&ev->dwork, 0);
1574 	spin_unlock_irq(&ev->lock);
1575 }
1576 
1577 /**
1578  * disk_clear_events - synchronously check, clear and return pending events
1579  * @disk: disk to fetch and clear events from
1580  * @mask: mask of events to be fetched and cleared
1581  *
1582  * Disk events are synchronously checked and pending events in @mask
1583  * are cleared and returned.  This ignores the block count.
1584  *
1585  * CONTEXT:
1586  * Might sleep.
1587  */
disk_clear_events(struct gendisk * disk,unsigned int mask)1588 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1589 {
1590 	const struct block_device_operations *bdops = disk->fops;
1591 	struct disk_events *ev = disk->ev;
1592 	unsigned int pending;
1593 	unsigned int clearing = mask;
1594 
1595 	if (!ev) {
1596 		/* for drivers still using the old ->media_changed method */
1597 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1598 		    bdops->media_changed && bdops->media_changed(disk))
1599 			return DISK_EVENT_MEDIA_CHANGE;
1600 		return 0;
1601 	}
1602 
1603 	disk_block_events(disk);
1604 
1605 	/*
1606 	 * store the union of mask and ev->clearing on the stack so that the
1607 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1608 	 * can still be modified even if events are blocked).
1609 	 */
1610 	spin_lock_irq(&ev->lock);
1611 	clearing |= ev->clearing;
1612 	ev->clearing = 0;
1613 	spin_unlock_irq(&ev->lock);
1614 
1615 	disk_check_events(ev, &clearing);
1616 	/*
1617 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1618 	 * middle of this function, so we want to run the workfn without delay.
1619 	 */
1620 	__disk_unblock_events(disk, ev->clearing ? true : false);
1621 
1622 	/* then, fetch and clear pending events */
1623 	spin_lock_irq(&ev->lock);
1624 	pending = ev->pending & mask;
1625 	ev->pending &= ~mask;
1626 	spin_unlock_irq(&ev->lock);
1627 	WARN_ON_ONCE(clearing & mask);
1628 
1629 	return pending;
1630 }
1631 
1632 /*
1633  * Separate this part out so that a different pointer for clearing_ptr can be
1634  * passed in for disk_clear_events.
1635  */
disk_events_workfn(struct work_struct * work)1636 static void disk_events_workfn(struct work_struct *work)
1637 {
1638 	struct delayed_work *dwork = to_delayed_work(work);
1639 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1640 
1641 	disk_check_events(ev, &ev->clearing);
1642 }
1643 
disk_check_events(struct disk_events * ev,unsigned int * clearing_ptr)1644 static void disk_check_events(struct disk_events *ev,
1645 			      unsigned int *clearing_ptr)
1646 {
1647 	struct gendisk *disk = ev->disk;
1648 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1649 	unsigned int clearing = *clearing_ptr;
1650 	unsigned int events;
1651 	unsigned long intv;
1652 	int nr_events = 0, i;
1653 
1654 	/* check events */
1655 	events = disk->fops->check_events(disk, clearing);
1656 
1657 	/* accumulate pending events and schedule next poll if necessary */
1658 	spin_lock_irq(&ev->lock);
1659 
1660 	events &= ~ev->pending;
1661 	ev->pending |= events;
1662 	*clearing_ptr &= ~clearing;
1663 
1664 	intv = disk_events_poll_jiffies(disk);
1665 	if (!ev->block && intv)
1666 		queue_delayed_work(system_freezable_power_efficient_wq,
1667 				&ev->dwork, intv);
1668 
1669 	spin_unlock_irq(&ev->lock);
1670 
1671 	/*
1672 	 * Tell userland about new events.  Only the events listed in
1673 	 * @disk->events are reported.  Unlisted events are processed the
1674 	 * same internally but never get reported to userland.
1675 	 */
1676 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1677 		if (events & disk->events & (1 << i))
1678 			envp[nr_events++] = disk_uevents[i];
1679 
1680 	if (nr_events)
1681 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1682 }
1683 
1684 /*
1685  * A disk events enabled device has the following sysfs nodes under
1686  * its /sys/block/X/ directory.
1687  *
1688  * events		: list of all supported events
1689  * events_async		: list of events which can be detected w/o polling
1690  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1691  */
__disk_events_show(unsigned int events,char * buf)1692 static ssize_t __disk_events_show(unsigned int events, char *buf)
1693 {
1694 	const char *delim = "";
1695 	ssize_t pos = 0;
1696 	int i;
1697 
1698 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1699 		if (events & (1 << i)) {
1700 			pos += sprintf(buf + pos, "%s%s",
1701 				       delim, disk_events_strs[i]);
1702 			delim = " ";
1703 		}
1704 	if (pos)
1705 		pos += sprintf(buf + pos, "\n");
1706 	return pos;
1707 }
1708 
disk_events_show(struct device * dev,struct device_attribute * attr,char * buf)1709 static ssize_t disk_events_show(struct device *dev,
1710 				struct device_attribute *attr, char *buf)
1711 {
1712 	struct gendisk *disk = dev_to_disk(dev);
1713 
1714 	return __disk_events_show(disk->events, buf);
1715 }
1716 
disk_events_async_show(struct device * dev,struct device_attribute * attr,char * buf)1717 static ssize_t disk_events_async_show(struct device *dev,
1718 				      struct device_attribute *attr, char *buf)
1719 {
1720 	struct gendisk *disk = dev_to_disk(dev);
1721 
1722 	return __disk_events_show(disk->async_events, buf);
1723 }
1724 
disk_events_poll_msecs_show(struct device * dev,struct device_attribute * attr,char * buf)1725 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1726 					   struct device_attribute *attr,
1727 					   char *buf)
1728 {
1729 	struct gendisk *disk = dev_to_disk(dev);
1730 
1731 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1732 }
1733 
disk_events_poll_msecs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1734 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1735 					    struct device_attribute *attr,
1736 					    const char *buf, size_t count)
1737 {
1738 	struct gendisk *disk = dev_to_disk(dev);
1739 	long intv;
1740 
1741 	if (!count || !sscanf(buf, "%ld", &intv))
1742 		return -EINVAL;
1743 
1744 	if (intv < 0 && intv != -1)
1745 		return -EINVAL;
1746 
1747 	disk_block_events(disk);
1748 	disk->ev->poll_msecs = intv;
1749 	__disk_unblock_events(disk, true);
1750 
1751 	return count;
1752 }
1753 
1754 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1755 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1756 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1757 			 disk_events_poll_msecs_show,
1758 			 disk_events_poll_msecs_store);
1759 
1760 static const struct attribute *disk_events_attrs[] = {
1761 	&dev_attr_events.attr,
1762 	&dev_attr_events_async.attr,
1763 	&dev_attr_events_poll_msecs.attr,
1764 	NULL,
1765 };
1766 
1767 /*
1768  * The default polling interval can be specified by the kernel
1769  * parameter block.events_dfl_poll_msecs which defaults to 0
1770  * (disable).  This can also be modified runtime by writing to
1771  * /sys/module/block/events_dfl_poll_msecs.
1772  */
disk_events_set_dfl_poll_msecs(const char * val,const struct kernel_param * kp)1773 static int disk_events_set_dfl_poll_msecs(const char *val,
1774 					  const struct kernel_param *kp)
1775 {
1776 	struct disk_events *ev;
1777 	int ret;
1778 
1779 	ret = param_set_ulong(val, kp);
1780 	if (ret < 0)
1781 		return ret;
1782 
1783 	mutex_lock(&disk_events_mutex);
1784 
1785 	list_for_each_entry(ev, &disk_events, node)
1786 		disk_flush_events(ev->disk, 0);
1787 
1788 	mutex_unlock(&disk_events_mutex);
1789 
1790 	return 0;
1791 }
1792 
1793 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1794 	.set	= disk_events_set_dfl_poll_msecs,
1795 	.get	= param_get_ulong,
1796 };
1797 
1798 #undef MODULE_PARAM_PREFIX
1799 #define MODULE_PARAM_PREFIX	"block."
1800 
1801 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1802 		&disk_events_dfl_poll_msecs, 0644);
1803 
1804 /*
1805  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1806  */
disk_alloc_events(struct gendisk * disk)1807 static void disk_alloc_events(struct gendisk *disk)
1808 {
1809 	struct disk_events *ev;
1810 
1811 	if (!disk->fops->check_events)
1812 		return;
1813 
1814 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1815 	if (!ev) {
1816 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1817 		return;
1818 	}
1819 
1820 	INIT_LIST_HEAD(&ev->node);
1821 	ev->disk = disk;
1822 	spin_lock_init(&ev->lock);
1823 	mutex_init(&ev->block_mutex);
1824 	ev->block = 1;
1825 	ev->poll_msecs = -1;
1826 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1827 
1828 	disk->ev = ev;
1829 }
1830 
disk_add_events(struct gendisk * disk)1831 static void disk_add_events(struct gendisk *disk)
1832 {
1833 	if (!disk->ev)
1834 		return;
1835 
1836 	/* FIXME: error handling */
1837 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1838 		pr_warn("%s: failed to create sysfs files for events\n",
1839 			disk->disk_name);
1840 
1841 	mutex_lock(&disk_events_mutex);
1842 	list_add_tail(&disk->ev->node, &disk_events);
1843 	mutex_unlock(&disk_events_mutex);
1844 
1845 	/*
1846 	 * Block count is initialized to 1 and the following initial
1847 	 * unblock kicks it into action.
1848 	 */
1849 	__disk_unblock_events(disk, true);
1850 }
1851 
disk_del_events(struct gendisk * disk)1852 static void disk_del_events(struct gendisk *disk)
1853 {
1854 	if (!disk->ev)
1855 		return;
1856 
1857 	disk_block_events(disk);
1858 
1859 	mutex_lock(&disk_events_mutex);
1860 	list_del_init(&disk->ev->node);
1861 	mutex_unlock(&disk_events_mutex);
1862 
1863 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1864 }
1865 
disk_release_events(struct gendisk * disk)1866 static void disk_release_events(struct gendisk *disk)
1867 {
1868 	/* the block count should be 1 from disk_del_events() */
1869 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1870 	kfree(disk->ev);
1871 }
1872