• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * HEH: Hash-Encrypt-Hash mode
3  *
4  * Copyright (c) 2016 Google Inc.
5  *
6  * Authors:
7  *	Alex Cope <alexcope@google.com>
8  *	Eric Biggers <ebiggers@google.com>
9  */
10 
11 /*
12  * Hash-Encrypt-Hash (HEH) is a proposed block cipher mode of operation which
13  * extends the strong pseudo-random permutation (SPRP) property of block ciphers
14  * (e.g. AES) to arbitrary length input strings.  It uses two keyed invertible
15  * hash functions with a layer of ECB encryption applied in-between.  The
16  * algorithm is specified by the following Internet Draft:
17  *
18  *	https://tools.ietf.org/html/draft-cope-heh-01
19  *
20  * Although HEH can be used as either a regular symmetric cipher or as an AEAD,
21  * currently this module only provides it as a symmetric cipher.  Additionally,
22  * only 16-byte nonces are supported.
23  */
24 
25 #include <crypto/gf128mul.h>
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/scatterwalk.h>
29 #include <crypto/skcipher.h>
30 #include "internal.h"
31 
32 /*
33  * The block size is the size of GF(2^128) elements and also the required block
34  * size of the underlying block cipher.
35  */
36 #define HEH_BLOCK_SIZE		16
37 
38 struct heh_instance_ctx {
39 	struct crypto_shash_spawn cmac;
40 	struct crypto_shash_spawn poly_hash;
41 	struct crypto_skcipher_spawn ecb;
42 };
43 
44 struct heh_tfm_ctx {
45 	struct crypto_shash *cmac;
46 	struct crypto_shash *poly_hash; /* keyed with tau_key */
47 	struct crypto_ablkcipher *ecb;
48 };
49 
50 struct heh_cmac_data {
51 	u8 nonce[HEH_BLOCK_SIZE];
52 	__le32 nonce_length;
53 	__le32 aad_length;
54 	__le32 message_length;
55 	__le32 padding;
56 };
57 
58 struct heh_req_ctx { /* aligned to alignmask */
59 	be128 beta1_key;
60 	be128 beta2_key;
61 	union {
62 		struct {
63 			struct heh_cmac_data data;
64 			struct shash_desc desc;
65 			/* + crypto_shash_descsize(cmac) */
66 		} cmac;
67 		struct {
68 			struct shash_desc desc;
69 			/* + crypto_shash_descsize(poly_hash) */
70 		} poly_hash;
71 		struct {
72 			u8 keystream[HEH_BLOCK_SIZE];
73 			u8 tmp[HEH_BLOCK_SIZE];
74 			struct scatterlist tmp_sgl[2];
75 			struct ablkcipher_request req;
76 			/* + crypto_ablkcipher_reqsize(ecb) */
77 		} ecb;
78 	} u;
79 };
80 
81 /*
82  * Get the offset in bytes to the last full block, or equivalently the length of
83  * all full blocks excluding the last
84  */
get_tail_offset(unsigned int len)85 static inline unsigned int get_tail_offset(unsigned int len)
86 {
87 	len -= len % HEH_BLOCK_SIZE;
88 	return len - HEH_BLOCK_SIZE;
89 }
90 
heh_req_ctx(struct ablkcipher_request * req)91 static inline struct heh_req_ctx *heh_req_ctx(struct ablkcipher_request *req)
92 {
93 	unsigned int alignmask = crypto_ablkcipher_alignmask(
94 						crypto_ablkcipher_reqtfm(req));
95 
96 	return (void *)PTR_ALIGN((u8 *)ablkcipher_request_ctx(req),
97 				 alignmask + 1);
98 }
99 
async_done(struct crypto_async_request * areq,int err,int (* next_step)(struct ablkcipher_request *,u32))100 static inline void async_done(struct crypto_async_request *areq, int err,
101 			      int (*next_step)(struct ablkcipher_request *,
102 					       u32))
103 {
104 	struct ablkcipher_request *req = areq->data;
105 
106 	if (err)
107 		goto out;
108 
109 	err = next_step(req, req->base.flags & ~CRYPTO_TFM_REQ_MAY_SLEEP);
110 	if (err == -EINPROGRESS ||
111 	    (err == -EBUSY && (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
112 		return;
113 out:
114 	ablkcipher_request_complete(req, err);
115 }
116 
117 /*
118  * Generate the per-message "beta" keys used by the hashing layers of HEH.  The
119  * first beta key is the CMAC of the nonce, the additional authenticated data
120  * (AAD), and the lengths in bytes of the nonce, AAD, and message.  The nonce
121  * and AAD are each zero-padded to the next 16-byte block boundary, and the
122  * lengths are serialized as 4-byte little endian integers and zero-padded to
123  * the next 16-byte block boundary.
124  * The second beta key is the first one interpreted as an element in GF(2^128)
125  * and multiplied by x.
126  *
127  * Note that because the nonce and AAD may, in general, be variable-length, the
128  * key generation must be done by a pseudo-random function (PRF) on
129  * variable-length inputs.  CBC-MAC does not satisfy this, as it is only a PRF
130  * on fixed-length inputs.  CMAC remedies this flaw.  Including the lengths of
131  * the nonce, AAD, and message is also critical to avoid collisions.
132  *
133  * That being said, this implementation does not yet operate as an AEAD and
134  * therefore there is never any AAD, nor are variable-length nonces supported.
135  */
generate_betas(struct ablkcipher_request * req,be128 * beta1_key,be128 * beta2_key)136 static int generate_betas(struct ablkcipher_request *req,
137 			  be128 *beta1_key, be128 *beta2_key)
138 {
139 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
140 	struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
141 	struct heh_req_ctx *rctx = heh_req_ctx(req);
142 	struct heh_cmac_data *data = &rctx->u.cmac.data;
143 	struct shash_desc *desc = &rctx->u.cmac.desc;
144 	int err;
145 
146 	BUILD_BUG_ON(sizeof(*data) != 2 * HEH_BLOCK_SIZE);
147 	memcpy(data->nonce, req->info, HEH_BLOCK_SIZE);
148 	data->nonce_length = cpu_to_le32(HEH_BLOCK_SIZE);
149 	data->aad_length = cpu_to_le32(0);
150 	data->message_length = cpu_to_le32(req->nbytes);
151 	data->padding = cpu_to_le32(0);
152 
153 	desc->tfm = ctx->cmac;
154 	desc->flags = req->base.flags;
155 
156 	err = crypto_shash_digest(desc, (const u8 *)data, sizeof(*data),
157 				  (u8 *)beta1_key);
158 	if (err)
159 		return err;
160 
161 	gf128mul_x_ble(beta2_key, beta1_key);
162 	return 0;
163 }
164 
165 /*****************************************************************************/
166 
167 /*
168  * This is the generic version of poly_hash.  It does the GF(2^128)
169  * multiplication by 'tau_key' using a precomputed table, without using any
170  * special CPU instructions.  On some platforms, an accelerated version (with
171  * higher cra_priority) may be used instead.
172  */
173 
174 struct poly_hash_tfm_ctx {
175 	struct gf128mul_4k *tau_key;
176 };
177 
178 struct poly_hash_desc_ctx {
179 	be128 digest;
180 	unsigned int count;
181 };
182 
poly_hash_setkey(struct crypto_shash * tfm,const u8 * key,unsigned int keylen)183 static int poly_hash_setkey(struct crypto_shash *tfm,
184 			    const u8 *key, unsigned int keylen)
185 {
186 	struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(tfm);
187 	be128 key128;
188 
189 	if (keylen != HEH_BLOCK_SIZE) {
190 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
191 		return -EINVAL;
192 	}
193 
194 	if (tctx->tau_key)
195 		gf128mul_free_4k(tctx->tau_key);
196 	memcpy(&key128, key, HEH_BLOCK_SIZE);
197 	tctx->tau_key = gf128mul_init_4k_ble(&key128);
198 	if (!tctx->tau_key)
199 		return -ENOMEM;
200 	return 0;
201 }
202 
poly_hash_init(struct shash_desc * desc)203 static int poly_hash_init(struct shash_desc *desc)
204 {
205 	struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
206 
207 	ctx->digest = (be128) { 0 };
208 	ctx->count = 0;
209 	return 0;
210 }
211 
poly_hash_update(struct shash_desc * desc,const u8 * src,unsigned int len)212 static int poly_hash_update(struct shash_desc *desc, const u8 *src,
213 			    unsigned int len)
214 {
215 	struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
216 	struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
217 	unsigned int partial = ctx->count % HEH_BLOCK_SIZE;
218 	u8 *dst = (u8 *)&ctx->digest + partial;
219 
220 	ctx->count += len;
221 
222 	/* Finishing at least one block? */
223 	if (partial + len >= HEH_BLOCK_SIZE) {
224 
225 		if (partial) {
226 			/* Finish the pending block. */
227 			unsigned int n = HEH_BLOCK_SIZE - partial;
228 
229 			len -= n;
230 			do {
231 				*dst++ ^= *src++;
232 			} while (--n);
233 
234 			gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
235 		}
236 
237 		/* Process zero or more full blocks. */
238 		while (len >= HEH_BLOCK_SIZE) {
239 			be128 coeff;
240 
241 			memcpy(&coeff, src, HEH_BLOCK_SIZE);
242 			be128_xor(&ctx->digest, &ctx->digest, &coeff);
243 			src += HEH_BLOCK_SIZE;
244 			len -= HEH_BLOCK_SIZE;
245 			gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
246 		}
247 		dst = (u8 *)&ctx->digest;
248 	}
249 
250 	/* Continue adding the next block to 'digest'. */
251 	while (len--)
252 		*dst++ ^= *src++;
253 	return 0;
254 }
255 
poly_hash_final(struct shash_desc * desc,u8 * out)256 static int poly_hash_final(struct shash_desc *desc, u8 *out)
257 {
258 	struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
259 
260 	/* Finish the last block if needed. */
261 	if (ctx->count % HEH_BLOCK_SIZE) {
262 		struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
263 
264 		gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
265 	}
266 
267 	memcpy(out, &ctx->digest, HEH_BLOCK_SIZE);
268 	return 0;
269 }
270 
poly_hash_exit(struct crypto_tfm * tfm)271 static void poly_hash_exit(struct crypto_tfm *tfm)
272 {
273 	struct poly_hash_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
274 
275 	gf128mul_free_4k(tctx->tau_key);
276 }
277 
278 static struct shash_alg poly_hash_alg = {
279 	.digestsize	= HEH_BLOCK_SIZE,
280 	.init		= poly_hash_init,
281 	.update		= poly_hash_update,
282 	.final		= poly_hash_final,
283 	.setkey		= poly_hash_setkey,
284 	.descsize	= sizeof(struct poly_hash_desc_ctx),
285 	.base		= {
286 		.cra_name		= "poly_hash",
287 		.cra_driver_name	= "poly_hash-generic",
288 		.cra_priority		= 100,
289 		.cra_ctxsize		= sizeof(struct poly_hash_tfm_ctx),
290 		.cra_exit		= poly_hash_exit,
291 		.cra_module		= THIS_MODULE,
292 	},
293 };
294 
295 /*****************************************************************************/
296 
297 /*
298  * Split the message into 16 byte blocks, padding out the last block, and use
299  * the blocks as coefficients in the evaluation of a polynomial over GF(2^128)
300  * at the secret point 'tau_key'. For ease of implementing the higher-level
301  * heh_hash_inv() function, the constant and degree-1 coefficients are swapped
302  * if there is a partial block.
303  *
304  * Mathematically, compute:
305  *   if (no partial block)
306  *     k^{N-1} * m_0 + ... + k * m_{N-2} + m_{N-1}
307  *   else if (partial block)
308  *     k^N * m_0 + ... + k^2 * m_{N-2} + k * m_N + m_{N-1}
309  *
310  * where:
311  *	t is tau_key
312  *	N is the number of full blocks in the message
313  *	m_i is the i-th full block in the message for i = 0 to N-1 inclusive
314  *	m_N is the partial block of the message zero-padded up to 16 bytes
315  *
316  * Note that most of this is now separated out into its own keyed hash
317  * algorithm, to allow optimized implementations.  However, we still handle the
318  * swapping of the last two coefficients here in the HEH template because this
319  * simplifies the poly_hash algorithms: they don't have to buffer an extra
320  * block, don't have to duplicate as much code, and are more similar to GHASH.
321  */
poly_hash(struct ablkcipher_request * req,struct scatterlist * sgl,be128 * hash)322 static int poly_hash(struct ablkcipher_request *req, struct scatterlist *sgl,
323 		     be128 *hash)
324 {
325 	struct heh_req_ctx *rctx = heh_req_ctx(req);
326 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
327 	struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
328 	struct shash_desc *desc = &rctx->u.poly_hash.desc;
329 	unsigned int tail_offset = get_tail_offset(req->nbytes);
330 	unsigned int tail_len = req->nbytes - tail_offset;
331 	be128 tail[2];
332 	unsigned int i, n;
333 	struct sg_mapping_iter miter;
334 	int err;
335 
336 	desc->tfm = ctx->poly_hash;
337 	desc->flags = req->base.flags;
338 
339 	/* Handle all full blocks except the last */
340 	err = crypto_shash_init(desc);
341 	sg_miter_start(&miter, sgl, sg_nents(sgl),
342 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
343 	for (i = 0; i < tail_offset && !err; i += n) {
344 		sg_miter_next(&miter);
345 		n = min_t(unsigned int, miter.length, tail_offset - i);
346 		err = crypto_shash_update(desc, miter.addr, n);
347 	}
348 	sg_miter_stop(&miter);
349 	if (err)
350 		return err;
351 
352 	/* Handle the last full block and the partial block */
353 	scatterwalk_map_and_copy(tail, sgl, tail_offset, tail_len, 0);
354 
355 	if (tail_len != HEH_BLOCK_SIZE) {
356 		/* handle the partial block */
357 		memset((u8 *)tail + tail_len, 0, sizeof(tail) - tail_len);
358 		err = crypto_shash_update(desc, (u8 *)&tail[1], HEH_BLOCK_SIZE);
359 		if (err)
360 			return err;
361 	}
362 	err = crypto_shash_final(desc, (u8 *)hash);
363 	if (err)
364 		return err;
365 	be128_xor(hash, hash, &tail[0]);
366 	return 0;
367 }
368 
369 /*
370  * Transform all full blocks except the last.
371  * This is used by both the hash and inverse hash phases.
372  */
heh_tfm_blocks(struct ablkcipher_request * req,struct scatterlist * src_sgl,struct scatterlist * dst_sgl,unsigned int len,const be128 * hash,const be128 * beta_key)373 static int heh_tfm_blocks(struct ablkcipher_request *req,
374 			  struct scatterlist *src_sgl,
375 			  struct scatterlist *dst_sgl, unsigned int len,
376 			  const be128 *hash, const be128 *beta_key)
377 {
378 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
379 	struct blkcipher_desc desc = { .flags = req->base.flags };
380 	struct blkcipher_walk walk;
381 	be128 e = *beta_key;
382 	int err;
383 	unsigned int nbytes;
384 
385 	blkcipher_walk_init(&walk, dst_sgl, src_sgl, len);
386 
387 	err = blkcipher_ablkcipher_walk_virt(&desc, &walk, tfm);
388 
389 	while ((nbytes = walk.nbytes)) {
390 		const be128 *src = (be128 *)walk.src.virt.addr;
391 		be128 *dst = (be128 *)walk.dst.virt.addr;
392 
393 		do {
394 			gf128mul_x_ble(&e, &e);
395 			be128_xor(dst, src, hash);
396 			be128_xor(dst, dst, &e);
397 			src++;
398 			dst++;
399 		} while ((nbytes -= HEH_BLOCK_SIZE) >= HEH_BLOCK_SIZE);
400 		err = blkcipher_walk_done(&desc, &walk, nbytes);
401 	}
402 	return err;
403 }
404 
405 /*
406  * The hash phase of HEH.  Given a message, compute:
407  *
408  *     (m_0 + H, ..., m_{N-2} + H, H, m_N) + (xb, x^2b, ..., x^{N-1}b, b, 0)
409  *
410  * where:
411  *	N is the number of full blocks in the message
412  *	m_i is the i-th full block in the message for i = 0 to N-1 inclusive
413  *	m_N is the unpadded partial block, possibly empty
414  *	H is the poly_hash() of the message, keyed by tau_key
415  *	b is beta_key
416  *	x is the element x in our representation of GF(2^128)
417  *
418  * Note that the partial block remains unchanged, but it does affect the result
419  * of poly_hash() and therefore the transformation of all the full blocks.
420  */
heh_hash(struct ablkcipher_request * req,const be128 * beta_key)421 static int heh_hash(struct ablkcipher_request *req, const be128 *beta_key)
422 {
423 	be128 hash;
424 	unsigned int tail_offset = get_tail_offset(req->nbytes);
425 	unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE;
426 	int err;
427 
428 	/* poly_hash() the full message including the partial block */
429 	err = poly_hash(req, req->src, &hash);
430 	if (err)
431 		return err;
432 
433 	/* Transform all full blocks except the last */
434 	err = heh_tfm_blocks(req, req->src, req->dst, tail_offset, &hash,
435 			     beta_key);
436 	if (err)
437 		return err;
438 
439 	/* Set the last full block to hash XOR beta_key */
440 	be128_xor(&hash, &hash, beta_key);
441 	scatterwalk_map_and_copy(&hash, req->dst, tail_offset, HEH_BLOCK_SIZE,
442 				 1);
443 
444 	/* Copy the partial block if needed */
445 	if (partial_len != 0 && req->src != req->dst) {
446 		unsigned int offs = tail_offset + HEH_BLOCK_SIZE;
447 
448 		scatterwalk_map_and_copy(&hash, req->src, offs, partial_len, 0);
449 		scatterwalk_map_and_copy(&hash, req->dst, offs, partial_len, 1);
450 	}
451 	return 0;
452 }
453 
454 /*
455  * The inverse hash phase of HEH.  This undoes the result of heh_hash().
456  */
heh_hash_inv(struct ablkcipher_request * req,const be128 * beta_key)457 static int heh_hash_inv(struct ablkcipher_request *req, const be128 *beta_key)
458 {
459 	be128 hash;
460 	be128 tmp;
461 	struct scatterlist tmp_sgl[2];
462 	struct scatterlist *tail_sgl;
463 	unsigned int tail_offset = get_tail_offset(req->nbytes);
464 	struct scatterlist *sgl = req->dst;
465 	int err;
466 
467 	/*
468 	 * The last full block was computed as hash XOR beta_key, so XOR it with
469 	 * beta_key to recover hash.
470 	 */
471 	tail_sgl = scatterwalk_ffwd(tmp_sgl, sgl, tail_offset);
472 	scatterwalk_map_and_copy(&hash, tail_sgl, 0, HEH_BLOCK_SIZE, 0);
473 	be128_xor(&hash, &hash, beta_key);
474 
475 	/* Transform all full blocks except the last */
476 	err = heh_tfm_blocks(req, sgl, sgl, tail_offset, &hash, beta_key);
477 	if (err)
478 		return err;
479 
480 	/*
481 	 * Recover the last full block.  We know 'hash', i.e. the poly_hash() of
482 	 * the the original message.  The last full block was the constant term
483 	 * of the polynomial.  To recover the last full block, temporarily zero
484 	 * it, compute the poly_hash(), and take the difference from 'hash'.
485 	 */
486 	memset(&tmp, 0, sizeof(tmp));
487 	scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1);
488 	err = poly_hash(req, sgl, &tmp);
489 	if (err)
490 		return err;
491 	be128_xor(&tmp, &tmp, &hash);
492 	scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1);
493 	return 0;
494 }
495 
heh_hash_inv_step(struct ablkcipher_request * req,u32 flags)496 static int heh_hash_inv_step(struct ablkcipher_request *req, u32 flags)
497 {
498 	struct heh_req_ctx *rctx = heh_req_ctx(req);
499 
500 	return heh_hash_inv(req, &rctx->beta2_key);
501 }
502 
heh_ecb_step_3(struct ablkcipher_request * req,u32 flags)503 static int heh_ecb_step_3(struct ablkcipher_request *req, u32 flags)
504 {
505 	struct heh_req_ctx *rctx = heh_req_ctx(req);
506 	u8 partial_block[HEH_BLOCK_SIZE] __aligned(__alignof__(u32));
507 	unsigned int tail_offset = get_tail_offset(req->nbytes);
508 	unsigned int partial_offset = tail_offset + HEH_BLOCK_SIZE;
509 	unsigned int partial_len = req->nbytes - partial_offset;
510 
511 	/*
512 	 * Extract the pad in req->dst at tail_offset, and xor the partial block
513 	 * with it to create encrypted partial block
514 	 */
515 	scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
516 				 HEH_BLOCK_SIZE, 0);
517 	scatterwalk_map_and_copy(partial_block, req->dst, partial_offset,
518 				 partial_len, 0);
519 	crypto_xor(partial_block, rctx->u.ecb.keystream, partial_len);
520 
521 	/*
522 	 * Store the encrypted final block and partial block back in dst_sg
523 	 */
524 	scatterwalk_map_and_copy(&rctx->u.ecb.tmp, req->dst, tail_offset,
525 				 HEH_BLOCK_SIZE, 1);
526 	scatterwalk_map_and_copy(partial_block, req->dst, partial_offset,
527 				 partial_len, 1);
528 
529 	return heh_hash_inv_step(req, flags);
530 }
531 
heh_ecb_step_2_done(struct crypto_async_request * areq,int err)532 static void heh_ecb_step_2_done(struct crypto_async_request *areq, int err)
533 {
534 	return async_done(areq, err, heh_ecb_step_3);
535 }
536 
heh_ecb_step_2(struct ablkcipher_request * req,u32 flags)537 static int heh_ecb_step_2(struct ablkcipher_request *req, u32 flags)
538 {
539 	struct heh_req_ctx *rctx = heh_req_ctx(req);
540 	unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE;
541 	struct scatterlist *tmp_sgl;
542 	int err;
543 	unsigned int tail_offset = get_tail_offset(req->nbytes);
544 
545 	if (partial_len == 0)
546 		return heh_hash_inv_step(req, flags);
547 
548 	/*
549 	 * Extract the final full block, store it in tmp, and then xor that with
550 	 * the value saved in u.ecb.keystream
551 	 */
552 	scatterwalk_map_and_copy(rctx->u.ecb.tmp, req->dst, tail_offset,
553 				 HEH_BLOCK_SIZE, 0);
554 	crypto_xor(rctx->u.ecb.keystream, rctx->u.ecb.tmp, HEH_BLOCK_SIZE);
555 
556 	/*
557 	 * Encrypt the value in rctx->u.ecb.keystream to create the pad for the
558 	 * partial block.
559 	 * We cannot encrypt stack buffers, so re-use the dst_sg to do this
560 	 * encryption to avoid a malloc. The value at tail_offset is stored in
561 	 * tmp, and will be restored later.
562 	 */
563 	scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
564 				 HEH_BLOCK_SIZE, 1);
565 	tmp_sgl = scatterwalk_ffwd(rctx->u.ecb.tmp_sgl, req->dst, tail_offset);
566 	ablkcipher_request_set_callback(&rctx->u.ecb.req, flags,
567 					heh_ecb_step_2_done, req);
568 	ablkcipher_request_set_crypt(&rctx->u.ecb.req, tmp_sgl, tmp_sgl,
569 				     HEH_BLOCK_SIZE, NULL);
570 	err = crypto_ablkcipher_encrypt(&rctx->u.ecb.req);
571 	if (err)
572 		return err;
573 	return heh_ecb_step_3(req, flags);
574 }
575 
heh_ecb_full_done(struct crypto_async_request * areq,int err)576 static void heh_ecb_full_done(struct crypto_async_request *areq, int err)
577 {
578 	return async_done(areq, err, heh_ecb_step_2);
579 }
580 
581 /*
582  * The encrypt phase of HEH.  This uses ECB encryption, with special handling
583  * for the partial block at the end if any.  The source data is already in
584  * req->dst, so the encryption happens in-place.
585  *
586  * After the encrypt phase we continue on to the inverse hash phase.  The
587  * functions calls are chained to support asynchronous ECB algorithms.
588  */
heh_ecb(struct ablkcipher_request * req,bool decrypt)589 static int heh_ecb(struct ablkcipher_request *req, bool decrypt)
590 {
591 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
592 	struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
593 	struct heh_req_ctx *rctx = heh_req_ctx(req);
594 	struct ablkcipher_request *ecb_req = &rctx->u.ecb.req;
595 	unsigned int tail_offset = get_tail_offset(req->nbytes);
596 	unsigned int full_len = tail_offset + HEH_BLOCK_SIZE;
597 	int err;
598 
599 	/*
600 	 * Save the last full block before it is encrypted/decrypted. This will
601 	 * be used later to encrypt/decrypt the partial block
602 	 */
603 	scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
604 				 HEH_BLOCK_SIZE, 0);
605 
606 	/* Encrypt/decrypt all full blocks */
607 	ablkcipher_request_set_tfm(ecb_req, ctx->ecb);
608 	ablkcipher_request_set_callback(ecb_req, req->base.flags,
609 				      heh_ecb_full_done, req);
610 	ablkcipher_request_set_crypt(ecb_req, req->dst, req->dst, full_len,
611 				     NULL);
612 	if (decrypt)
613 		err = crypto_ablkcipher_decrypt(ecb_req);
614 	else
615 		err = crypto_ablkcipher_encrypt(ecb_req);
616 	if (err)
617 		return err;
618 
619 	return heh_ecb_step_2(req, req->base.flags);
620 }
621 
heh_crypt(struct ablkcipher_request * req,bool decrypt)622 static int heh_crypt(struct ablkcipher_request *req, bool decrypt)
623 {
624 	struct heh_req_ctx *rctx = heh_req_ctx(req);
625 	int err;
626 
627 	/* Inputs must be at least one full block */
628 	if (req->nbytes < HEH_BLOCK_SIZE)
629 		return -EINVAL;
630 
631 	err = generate_betas(req, &rctx->beta1_key, &rctx->beta2_key);
632 	if (err)
633 		return err;
634 
635 	if (decrypt)
636 		swap(rctx->beta1_key, rctx->beta2_key);
637 
638 	err = heh_hash(req, &rctx->beta1_key);
639 	if (err)
640 		return err;
641 
642 	return heh_ecb(req, decrypt);
643 }
644 
heh_encrypt(struct ablkcipher_request * req)645 static int heh_encrypt(struct ablkcipher_request *req)
646 {
647 	return heh_crypt(req, false);
648 }
649 
heh_decrypt(struct ablkcipher_request * req)650 static int heh_decrypt(struct ablkcipher_request *req)
651 {
652 	return heh_crypt(req, true);
653 }
654 
heh_setkey(struct crypto_ablkcipher * parent,const u8 * key,unsigned int keylen)655 static int heh_setkey(struct crypto_ablkcipher *parent, const u8 *key,
656 		      unsigned int keylen)
657 {
658 	struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(parent);
659 	struct crypto_shash *cmac = ctx->cmac;
660 	struct crypto_ablkcipher *ecb = ctx->ecb;
661 	SHASH_DESC_ON_STACK(desc, cmac);
662 	u8 *derived_keys;
663 	u8 digest[HEH_BLOCK_SIZE];
664 	unsigned int i;
665 	int err;
666 
667 	/* set prf_key = key */
668 	crypto_shash_clear_flags(cmac, CRYPTO_TFM_REQ_MASK);
669 	crypto_shash_set_flags(cmac, crypto_ablkcipher_get_flags(parent) &
670 				     CRYPTO_TFM_REQ_MASK);
671 	err = crypto_shash_setkey(cmac, key, keylen);
672 	crypto_ablkcipher_set_flags(parent, crypto_shash_get_flags(cmac) &
673 					    CRYPTO_TFM_RES_MASK);
674 	if (err)
675 		return err;
676 
677 	/*
678 	 * Generate tau_key and ecb_key as follows:
679 	 * tau_key = cmac(prf_key, 0x00...01)
680 	 * ecb_key = cmac(prf_key, 0x00...02) || cmac(prf_key, 0x00...03) || ...
681 	 *           truncated to keylen bytes
682 	 */
683 	derived_keys = kzalloc(round_up(HEH_BLOCK_SIZE + keylen,
684 					HEH_BLOCK_SIZE), GFP_KERNEL);
685 	if (!derived_keys)
686 		return -ENOMEM;
687 	desc->tfm = cmac;
688 	desc->flags = (crypto_shash_get_flags(cmac) & CRYPTO_TFM_REQ_MASK);
689 	for (i = 0; i < keylen + HEH_BLOCK_SIZE; i += HEH_BLOCK_SIZE) {
690 		derived_keys[i + HEH_BLOCK_SIZE - 1] =
691 					0x01 + i / HEH_BLOCK_SIZE;
692 		err = crypto_shash_digest(desc, derived_keys + i,
693 					  HEH_BLOCK_SIZE, digest);
694 		if (err)
695 			goto out;
696 		memcpy(derived_keys + i, digest, HEH_BLOCK_SIZE);
697 	}
698 
699 	err = crypto_shash_setkey(ctx->poly_hash, derived_keys, HEH_BLOCK_SIZE);
700 	if (err)
701 		goto out;
702 
703 	crypto_ablkcipher_clear_flags(ecb, CRYPTO_TFM_REQ_MASK);
704 	crypto_ablkcipher_set_flags(ecb, crypto_ablkcipher_get_flags(parent) &
705 					 CRYPTO_TFM_REQ_MASK);
706 	err = crypto_ablkcipher_setkey(ecb, derived_keys + HEH_BLOCK_SIZE,
707 				       keylen);
708 	crypto_ablkcipher_set_flags(parent, crypto_ablkcipher_get_flags(ecb) &
709 					    CRYPTO_TFM_RES_MASK);
710 out:
711 	kzfree(derived_keys);
712 	return err;
713 }
714 
heh_init_tfm(struct crypto_tfm * tfm)715 static int heh_init_tfm(struct crypto_tfm *tfm)
716 {
717 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
718 	struct heh_instance_ctx *ictx = crypto_instance_ctx(inst);
719 	struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
720 	struct crypto_shash *cmac;
721 	struct crypto_shash *poly_hash;
722 	struct crypto_ablkcipher *ecb;
723 	unsigned int reqsize;
724 	int err;
725 
726 	cmac = crypto_spawn_shash(&ictx->cmac);
727 	if (IS_ERR(cmac))
728 		return PTR_ERR(cmac);
729 
730 	poly_hash = crypto_spawn_shash(&ictx->poly_hash);
731 	err = PTR_ERR(poly_hash);
732 	if (IS_ERR(poly_hash))
733 		goto err_free_cmac;
734 
735 	ecb = crypto_spawn_skcipher(&ictx->ecb);
736 	err = PTR_ERR(ecb);
737 	if (IS_ERR(ecb))
738 		goto err_free_poly_hash;
739 
740 	ctx->cmac = cmac;
741 	ctx->poly_hash = poly_hash;
742 	ctx->ecb = ecb;
743 
744 	reqsize = crypto_tfm_alg_alignmask(tfm) &
745 		  ~(crypto_tfm_ctx_alignment() - 1);
746 	reqsize += max3(offsetof(struct heh_req_ctx, u.cmac.desc) +
747 			  sizeof(struct shash_desc) +
748 			  crypto_shash_descsize(cmac),
749 			offsetof(struct heh_req_ctx, u.poly_hash.desc) +
750 			  sizeof(struct shash_desc) +
751 			  crypto_shash_descsize(poly_hash),
752 			offsetof(struct heh_req_ctx, u.ecb.req) +
753 			  sizeof(struct ablkcipher_request) +
754 			  crypto_ablkcipher_reqsize(ecb));
755 	tfm->crt_ablkcipher.reqsize = reqsize;
756 
757 	return 0;
758 
759 err_free_poly_hash:
760 	crypto_free_shash(poly_hash);
761 err_free_cmac:
762 	crypto_free_shash(cmac);
763 	return err;
764 }
765 
heh_exit_tfm(struct crypto_tfm * tfm)766 static void heh_exit_tfm(struct crypto_tfm *tfm)
767 {
768 	struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
769 
770 	crypto_free_shash(ctx->cmac);
771 	crypto_free_shash(ctx->poly_hash);
772 	crypto_free_ablkcipher(ctx->ecb);
773 }
774 
heh_free_instance(struct crypto_instance * inst)775 static void heh_free_instance(struct crypto_instance *inst)
776 {
777 	struct heh_instance_ctx *ctx = crypto_instance_ctx(inst);
778 
779 	crypto_drop_shash(&ctx->cmac);
780 	crypto_drop_shash(&ctx->poly_hash);
781 	crypto_drop_skcipher(&ctx->ecb);
782 	kfree(inst);
783 }
784 
785 /*
786  * Create an instance of HEH as a ablkcipher.
787  *
788  * This relies on underlying CMAC and ECB algorithms, usually cmac(aes) and
789  * ecb(aes).  For performance reasons we support asynchronous ECB algorithms.
790  * However, we do not yet support asynchronous CMAC algorithms because CMAC is
791  * only used on a small fixed amount of data per request, independent of the
792  * request length.  This would change if AEAD or variable-length nonce support
793  * were to be exposed.
794  */
heh_create_common(struct crypto_template * tmpl,struct rtattr ** tb,const char * full_name,const char * cmac_name,const char * poly_hash_name,const char * ecb_name)795 static int heh_create_common(struct crypto_template *tmpl, struct rtattr **tb,
796 			     const char *full_name, const char *cmac_name,
797 			     const char *poly_hash_name, const char *ecb_name)
798 {
799 	struct crypto_attr_type *algt;
800 	struct crypto_instance *inst;
801 	struct heh_instance_ctx *ctx;
802 	struct shash_alg *cmac;
803 	struct shash_alg *poly_hash;
804 	struct crypto_alg *ecb;
805 	int err;
806 
807 	algt = crypto_get_attr_type(tb);
808 	if (IS_ERR(algt))
809 		return PTR_ERR(algt);
810 
811 	/* User must be asking for something compatible with ablkcipher */
812 	if ((algt->type ^ CRYPTO_ALG_TYPE_ABLKCIPHER) & algt->mask)
813 		return -EINVAL;
814 
815 	/* Allocate the ablkcipher instance */
816 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
817 	if (!inst)
818 		return -ENOMEM;
819 
820 	ctx = crypto_instance_ctx(inst);
821 
822 	/* Set up the cmac spawn */
823 	ctx->cmac.base.inst = inst;
824 	err = crypto_grab_shash(&ctx->cmac, cmac_name, 0, 0);
825 	if (err)
826 		goto err_free_inst;
827 	cmac = crypto_spawn_shash_alg(&ctx->cmac);
828 	err = -EINVAL;
829 	if (cmac->digestsize != HEH_BLOCK_SIZE)
830 		goto err_drop_cmac;
831 
832 	/* Set up the poly_hash spawn */
833 	ctx->poly_hash.base.inst = inst;
834 	err = crypto_grab_shash(&ctx->poly_hash, poly_hash_name, 0, 0);
835 	if (err)
836 		goto err_drop_cmac;
837 	poly_hash = crypto_spawn_shash_alg(&ctx->poly_hash);
838 	err = -EINVAL;
839 	if (poly_hash->digestsize != HEH_BLOCK_SIZE)
840 		goto err_drop_poly_hash;
841 
842 	/* Set up the ecb spawn */
843 	ctx->ecb.base.inst = inst;
844 	err = crypto_grab_skcipher(&ctx->ecb, ecb_name, 0,
845 				   crypto_requires_sync(algt->type,
846 							algt->mask));
847 	if (err)
848 		goto err_drop_poly_hash;
849 	ecb = crypto_skcipher_spawn_alg(&ctx->ecb);
850 
851 	/* HEH only supports block ciphers with 16 byte block size */
852 	err = -EINVAL;
853 	if (ecb->cra_blocksize != HEH_BLOCK_SIZE)
854 		goto err_drop_ecb;
855 
856 	/* The underlying "ECB" algorithm must not require an IV */
857 	err = -EINVAL;
858 	if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) {
859 		if (ecb->cra_blkcipher.ivsize != 0)
860 			goto err_drop_ecb;
861 	} else {
862 		if (ecb->cra_ablkcipher.ivsize != 0)
863 			goto err_drop_ecb;
864 	}
865 
866 	/* Set the instance names */
867 	err = -ENAMETOOLONG;
868 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
869 		     "heh_base(%s,%s,%s)", cmac->base.cra_driver_name,
870 		     poly_hash->base.cra_driver_name,
871 		     ecb->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
872 		goto err_drop_ecb;
873 
874 	err = -ENAMETOOLONG;
875 	if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
876 		     "%s", full_name) >= CRYPTO_MAX_ALG_NAME)
877 		goto err_drop_ecb;
878 
879 	/* Finish initializing the instance */
880 
881 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
882 				(ecb->cra_flags & CRYPTO_ALG_ASYNC);
883 	inst->alg.cra_blocksize = HEH_BLOCK_SIZE;
884 	inst->alg.cra_ctxsize = sizeof(struct heh_tfm_ctx);
885 	inst->alg.cra_alignmask = ecb->cra_alignmask | (__alignof__(be128) - 1);
886 	inst->alg.cra_priority = ecb->cra_priority;
887 	inst->alg.cra_type = &crypto_ablkcipher_type;
888 	inst->alg.cra_init = heh_init_tfm;
889 	inst->alg.cra_exit = heh_exit_tfm;
890 
891 	inst->alg.cra_ablkcipher.setkey = heh_setkey;
892 	inst->alg.cra_ablkcipher.encrypt = heh_encrypt;
893 	inst->alg.cra_ablkcipher.decrypt = heh_decrypt;
894 	if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) {
895 		inst->alg.cra_ablkcipher.min_keysize = ecb->cra_blkcipher.min_keysize;
896 		inst->alg.cra_ablkcipher.max_keysize = ecb->cra_blkcipher.max_keysize;
897 	} else {
898 		inst->alg.cra_ablkcipher.min_keysize = ecb->cra_ablkcipher.min_keysize;
899 		inst->alg.cra_ablkcipher.max_keysize = ecb->cra_ablkcipher.max_keysize;
900 	}
901 	inst->alg.cra_ablkcipher.ivsize = HEH_BLOCK_SIZE;
902 
903 	/* Register the instance */
904 	err = crypto_register_instance(tmpl, inst);
905 	if (err)
906 		goto err_drop_ecb;
907 	return 0;
908 
909 err_drop_ecb:
910 	crypto_drop_skcipher(&ctx->ecb);
911 err_drop_poly_hash:
912 	crypto_drop_shash(&ctx->poly_hash);
913 err_drop_cmac:
914 	crypto_drop_shash(&ctx->cmac);
915 err_free_inst:
916 	kfree(inst);
917 	return err;
918 }
919 
heh_create(struct crypto_template * tmpl,struct rtattr ** tb)920 static int heh_create(struct crypto_template *tmpl, struct rtattr **tb)
921 {
922 	const char *cipher_name;
923 	char full_name[CRYPTO_MAX_ALG_NAME];
924 	char cmac_name[CRYPTO_MAX_ALG_NAME];
925 	char ecb_name[CRYPTO_MAX_ALG_NAME];
926 
927 	/* Get the name of the requested block cipher (e.g. aes) */
928 	cipher_name = crypto_attr_alg_name(tb[1]);
929 	if (IS_ERR(cipher_name))
930 		return PTR_ERR(cipher_name);
931 
932 	if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh(%s)", cipher_name) >=
933 	    CRYPTO_MAX_ALG_NAME)
934 		return -ENAMETOOLONG;
935 
936 	if (snprintf(cmac_name, CRYPTO_MAX_ALG_NAME, "cmac(%s)", cipher_name) >=
937 	    CRYPTO_MAX_ALG_NAME)
938 		return -ENAMETOOLONG;
939 
940 	if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", cipher_name) >=
941 	    CRYPTO_MAX_ALG_NAME)
942 		return -ENAMETOOLONG;
943 
944 	return heh_create_common(tmpl, tb, full_name, cmac_name, "poly_hash",
945 				 ecb_name);
946 }
947 
948 static struct crypto_template heh_tmpl = {
949 	.name = "heh",
950 	.create = heh_create,
951 	.free = heh_free_instance,
952 	.module = THIS_MODULE,
953 };
954 
heh_base_create(struct crypto_template * tmpl,struct rtattr ** tb)955 static int heh_base_create(struct crypto_template *tmpl, struct rtattr **tb)
956 {
957 	char full_name[CRYPTO_MAX_ALG_NAME];
958 	const char *cmac_name;
959 	const char *poly_hash_name;
960 	const char *ecb_name;
961 
962 	cmac_name = crypto_attr_alg_name(tb[1]);
963 	if (IS_ERR(cmac_name))
964 		return PTR_ERR(cmac_name);
965 
966 	poly_hash_name = crypto_attr_alg_name(tb[2]);
967 	if (IS_ERR(poly_hash_name))
968 		return PTR_ERR(poly_hash_name);
969 
970 	ecb_name = crypto_attr_alg_name(tb[3]);
971 	if (IS_ERR(ecb_name))
972 		return PTR_ERR(ecb_name);
973 
974 	if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh_base(%s,%s,%s)",
975 		     cmac_name, poly_hash_name, ecb_name) >=
976 	    CRYPTO_MAX_ALG_NAME)
977 		return -ENAMETOOLONG;
978 
979 	return heh_create_common(tmpl, tb, full_name, cmac_name, poly_hash_name,
980 				 ecb_name);
981 }
982 
983 /*
984  * If HEH is instantiated as "heh_base" instead of "heh", then specific
985  * implementations of cmac, poly_hash, and ecb can be specified instead of just
986  * the cipher.
987  */
988 static struct crypto_template heh_base_tmpl = {
989 	.name = "heh_base",
990 	.create = heh_base_create,
991 	.free = heh_free_instance,
992 	.module = THIS_MODULE,
993 };
994 
heh_module_init(void)995 static int __init heh_module_init(void)
996 {
997 	int err;
998 
999 	err = crypto_register_template(&heh_tmpl);
1000 	if (err)
1001 		return err;
1002 
1003 	err = crypto_register_template(&heh_base_tmpl);
1004 	if (err)
1005 		goto out_undo_heh;
1006 
1007 	err = crypto_register_shash(&poly_hash_alg);
1008 	if (err)
1009 		goto out_undo_heh_base;
1010 
1011 	return 0;
1012 
1013 out_undo_heh_base:
1014 	crypto_unregister_template(&heh_base_tmpl);
1015 out_undo_heh:
1016 	crypto_unregister_template(&heh_tmpl);
1017 	return err;
1018 }
1019 
heh_module_exit(void)1020 static void __exit heh_module_exit(void)
1021 {
1022 	crypto_unregister_template(&heh_tmpl);
1023 	crypto_unregister_template(&heh_base_tmpl);
1024 	crypto_unregister_shash(&poly_hash_alg);
1025 }
1026 
1027 module_init(heh_module_init);
1028 module_exit(heh_module_exit);
1029 
1030 MODULE_LICENSE("GPL");
1031 MODULE_DESCRIPTION("Hash-Encrypt-Hash block cipher mode");
1032 MODULE_ALIAS_CRYPTO("heh");
1033 MODULE_ALIAS_CRYPTO("heh_base");
1034