• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Software multibuffer async crypto daemon.
3  *
4  * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5  *
6  * Adapted from crypto daemon.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  */
14 
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/hardirq.h>
29 
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
32 
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34 				   unsigned int tail);
35 
36 struct mcryptd_flush_list {
37 	struct list_head list;
38 	struct mutex lock;
39 };
40 
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
42 
43 struct hashd_instance_ctx {
44 	struct crypto_shash_spawn spawn;
45 	struct mcryptd_queue *queue;
46 };
47 
48 static void mcryptd_queue_worker(struct work_struct *work);
49 
mcryptd_arm_flusher(struct mcryptd_alg_cstate * cstate,unsigned long delay)50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
51 {
52 	struct mcryptd_flush_list *flist;
53 
54 	if (!cstate->flusher_engaged) {
55 		/* put the flusher on the flush list */
56 		flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57 		mutex_lock(&flist->lock);
58 		list_add_tail(&cstate->flush_list, &flist->list);
59 		cstate->flusher_engaged = true;
60 		cstate->next_flush = jiffies + delay;
61 		queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62 			&cstate->flush, delay);
63 		mutex_unlock(&flist->lock);
64 	}
65 }
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
67 
mcryptd_init_queue(struct mcryptd_queue * queue,unsigned int max_cpu_qlen)68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69 			     unsigned int max_cpu_qlen)
70 {
71 	int cpu;
72 	struct mcryptd_cpu_queue *cpu_queue;
73 
74 	queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75 	pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76 	if (!queue->cpu_queue)
77 		return -ENOMEM;
78 	for_each_possible_cpu(cpu) {
79 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80 		pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82 		INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83 		spin_lock_init(&cpu_queue->q_lock);
84 	}
85 	return 0;
86 }
87 
mcryptd_fini_queue(struct mcryptd_queue * queue)88 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
89 {
90 	int cpu;
91 	struct mcryptd_cpu_queue *cpu_queue;
92 
93 	for_each_possible_cpu(cpu) {
94 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
95 		BUG_ON(cpu_queue->queue.qlen);
96 	}
97 	free_percpu(queue->cpu_queue);
98 }
99 
mcryptd_enqueue_request(struct mcryptd_queue * queue,struct crypto_async_request * request,struct mcryptd_hash_request_ctx * rctx)100 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
101 				  struct crypto_async_request *request,
102 				  struct mcryptd_hash_request_ctx *rctx)
103 {
104 	int cpu, err;
105 	struct mcryptd_cpu_queue *cpu_queue;
106 
107 	cpu_queue = raw_cpu_ptr(queue->cpu_queue);
108 	spin_lock(&cpu_queue->q_lock);
109 	cpu = smp_processor_id();
110 	rctx->tag.cpu = smp_processor_id();
111 
112 	err = crypto_enqueue_request(&cpu_queue->queue, request);
113 	pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
114 		 cpu, cpu_queue, request);
115 	spin_unlock(&cpu_queue->q_lock);
116 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
117 
118 	return err;
119 }
120 
121 /*
122  * Try to opportunisticlly flush the partially completed jobs if
123  * crypto daemon is the only task running.
124  */
mcryptd_opportunistic_flush(void)125 static void mcryptd_opportunistic_flush(void)
126 {
127 	struct mcryptd_flush_list *flist;
128 	struct mcryptd_alg_cstate *cstate;
129 
130 	flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
131 	while (single_task_running()) {
132 		mutex_lock(&flist->lock);
133 		if (list_empty(&flist->list)) {
134 			mutex_unlock(&flist->lock);
135 			return;
136 		}
137 		cstate = list_entry(flist->list.next,
138 				struct mcryptd_alg_cstate, flush_list);
139 		if (!cstate->flusher_engaged) {
140 			mutex_unlock(&flist->lock);
141 			return;
142 		}
143 		list_del(&cstate->flush_list);
144 		cstate->flusher_engaged = false;
145 		mutex_unlock(&flist->lock);
146 		cstate->alg_state->flusher(cstate);
147 	}
148 }
149 
150 /*
151  * Called in workqueue context, do one real cryption work (via
152  * req->complete) and reschedule itself if there are more work to
153  * do.
154  */
mcryptd_queue_worker(struct work_struct * work)155 static void mcryptd_queue_worker(struct work_struct *work)
156 {
157 	struct mcryptd_cpu_queue *cpu_queue;
158 	struct crypto_async_request *req, *backlog;
159 	int i;
160 
161 	/*
162 	 * Need to loop through more than once for multi-buffer to
163 	 * be effective.
164 	 */
165 
166 	cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
167 	i = 0;
168 	while (i < MCRYPTD_BATCH || single_task_running()) {
169 
170 		spin_lock_bh(&cpu_queue->q_lock);
171 		backlog = crypto_get_backlog(&cpu_queue->queue);
172 		req = crypto_dequeue_request(&cpu_queue->queue);
173 		spin_unlock_bh(&cpu_queue->q_lock);
174 
175 		if (!req) {
176 			mcryptd_opportunistic_flush();
177 			return;
178 		}
179 
180 		if (backlog)
181 			backlog->complete(backlog, -EINPROGRESS);
182 		req->complete(req, 0);
183 		if (!cpu_queue->queue.qlen)
184 			return;
185 		++i;
186 	}
187 	if (cpu_queue->queue.qlen)
188 		queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
189 }
190 
mcryptd_flusher(struct work_struct * __work)191 void mcryptd_flusher(struct work_struct *__work)
192 {
193 	struct	mcryptd_alg_cstate	*alg_cpu_state;
194 	struct	mcryptd_alg_state	*alg_state;
195 	struct	mcryptd_flush_list	*flist;
196 	int	cpu;
197 
198 	cpu = smp_processor_id();
199 	alg_cpu_state = container_of(to_delayed_work(__work),
200 				     struct mcryptd_alg_cstate, flush);
201 	alg_state = alg_cpu_state->alg_state;
202 	if (alg_cpu_state->cpu != cpu)
203 		pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
204 				cpu, alg_cpu_state->cpu);
205 
206 	if (alg_cpu_state->flusher_engaged) {
207 		flist = per_cpu_ptr(mcryptd_flist, cpu);
208 		mutex_lock(&flist->lock);
209 		list_del(&alg_cpu_state->flush_list);
210 		alg_cpu_state->flusher_engaged = false;
211 		mutex_unlock(&flist->lock);
212 		alg_state->flusher(alg_cpu_state);
213 	}
214 }
215 EXPORT_SYMBOL_GPL(mcryptd_flusher);
216 
mcryptd_get_queue(struct crypto_tfm * tfm)217 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
218 {
219 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
220 	struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
221 
222 	return ictx->queue;
223 }
224 
mcryptd_alloc_instance(struct crypto_alg * alg,unsigned int head,unsigned int tail)225 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
226 				   unsigned int tail)
227 {
228 	char *p;
229 	struct crypto_instance *inst;
230 	int err;
231 
232 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
233 	if (!p)
234 		return ERR_PTR(-ENOMEM);
235 
236 	inst = (void *)(p + head);
237 
238 	err = -ENAMETOOLONG;
239 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
240 		    "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
241 		goto out_free_inst;
242 
243 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
244 
245 	inst->alg.cra_priority = alg->cra_priority + 50;
246 	inst->alg.cra_blocksize = alg->cra_blocksize;
247 	inst->alg.cra_alignmask = alg->cra_alignmask;
248 
249 out:
250 	return p;
251 
252 out_free_inst:
253 	kfree(p);
254 	p = ERR_PTR(err);
255 	goto out;
256 }
257 
mcryptd_check_internal(struct rtattr ** tb,u32 * type,u32 * mask)258 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
259 					  u32 *mask)
260 {
261 	struct crypto_attr_type *algt;
262 
263 	algt = crypto_get_attr_type(tb);
264 	if (IS_ERR(algt))
265 		return false;
266 
267 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
268 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
269 
270 	if (*type & *mask & CRYPTO_ALG_INTERNAL)
271 		return true;
272 	else
273 		return false;
274 }
275 
mcryptd_hash_init_tfm(struct crypto_tfm * tfm)276 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
277 {
278 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
279 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
280 	struct crypto_shash_spawn *spawn = &ictx->spawn;
281 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
282 	struct crypto_shash *hash;
283 
284 	hash = crypto_spawn_shash(spawn);
285 	if (IS_ERR(hash))
286 		return PTR_ERR(hash);
287 
288 	ctx->child = hash;
289 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
290 				 sizeof(struct mcryptd_hash_request_ctx) +
291 				 crypto_shash_descsize(hash));
292 	return 0;
293 }
294 
mcryptd_hash_exit_tfm(struct crypto_tfm * tfm)295 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
296 {
297 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
298 
299 	crypto_free_shash(ctx->child);
300 }
301 
mcryptd_hash_setkey(struct crypto_ahash * parent,const u8 * key,unsigned int keylen)302 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
303 				   const u8 *key, unsigned int keylen)
304 {
305 	struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
306 	struct crypto_shash *child = ctx->child;
307 	int err;
308 
309 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
310 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
311 				      CRYPTO_TFM_REQ_MASK);
312 	err = crypto_shash_setkey(child, key, keylen);
313 	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
314 				       CRYPTO_TFM_RES_MASK);
315 	return err;
316 }
317 
mcryptd_hash_enqueue(struct ahash_request * req,crypto_completion_t complete)318 static int mcryptd_hash_enqueue(struct ahash_request *req,
319 				crypto_completion_t complete)
320 {
321 	int ret;
322 
323 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
324 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
325 	struct mcryptd_queue *queue =
326 		mcryptd_get_queue(crypto_ahash_tfm(tfm));
327 
328 	rctx->complete = req->base.complete;
329 	req->base.complete = complete;
330 
331 	ret = mcryptd_enqueue_request(queue, &req->base, rctx);
332 
333 	return ret;
334 }
335 
mcryptd_hash_init(struct crypto_async_request * req_async,int err)336 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
337 {
338 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
339 	struct crypto_shash *child = ctx->child;
340 	struct ahash_request *req = ahash_request_cast(req_async);
341 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
342 	struct shash_desc *desc = &rctx->desc;
343 
344 	if (unlikely(err == -EINPROGRESS))
345 		goto out;
346 
347 	desc->tfm = child;
348 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
349 
350 	err = crypto_shash_init(desc);
351 
352 	req->base.complete = rctx->complete;
353 
354 out:
355 	local_bh_disable();
356 	rctx->complete(&req->base, err);
357 	local_bh_enable();
358 }
359 
mcryptd_hash_init_enqueue(struct ahash_request * req)360 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
361 {
362 	return mcryptd_hash_enqueue(req, mcryptd_hash_init);
363 }
364 
mcryptd_hash_update(struct crypto_async_request * req_async,int err)365 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
366 {
367 	struct ahash_request *req = ahash_request_cast(req_async);
368 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
369 
370 	if (unlikely(err == -EINPROGRESS))
371 		goto out;
372 
373 	err = shash_ahash_mcryptd_update(req, &rctx->desc);
374 	if (err) {
375 		req->base.complete = rctx->complete;
376 		goto out;
377 	}
378 
379 	return;
380 out:
381 	local_bh_disable();
382 	rctx->complete(&req->base, err);
383 	local_bh_enable();
384 }
385 
mcryptd_hash_update_enqueue(struct ahash_request * req)386 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
387 {
388 	return mcryptd_hash_enqueue(req, mcryptd_hash_update);
389 }
390 
mcryptd_hash_final(struct crypto_async_request * req_async,int err)391 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
392 {
393 	struct ahash_request *req = ahash_request_cast(req_async);
394 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
395 
396 	if (unlikely(err == -EINPROGRESS))
397 		goto out;
398 
399 	err = shash_ahash_mcryptd_final(req, &rctx->desc);
400 	if (err) {
401 		req->base.complete = rctx->complete;
402 		goto out;
403 	}
404 
405 	return;
406 out:
407 	local_bh_disable();
408 	rctx->complete(&req->base, err);
409 	local_bh_enable();
410 }
411 
mcryptd_hash_final_enqueue(struct ahash_request * req)412 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
413 {
414 	return mcryptd_hash_enqueue(req, mcryptd_hash_final);
415 }
416 
mcryptd_hash_finup(struct crypto_async_request * req_async,int err)417 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
418 {
419 	struct ahash_request *req = ahash_request_cast(req_async);
420 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
421 
422 	if (unlikely(err == -EINPROGRESS))
423 		goto out;
424 
425 	err = shash_ahash_mcryptd_finup(req, &rctx->desc);
426 
427 	if (err) {
428 		req->base.complete = rctx->complete;
429 		goto out;
430 	}
431 
432 	return;
433 out:
434 	local_bh_disable();
435 	rctx->complete(&req->base, err);
436 	local_bh_enable();
437 }
438 
mcryptd_hash_finup_enqueue(struct ahash_request * req)439 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
440 {
441 	return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
442 }
443 
mcryptd_hash_digest(struct crypto_async_request * req_async,int err)444 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
445 {
446 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
447 	struct crypto_shash *child = ctx->child;
448 	struct ahash_request *req = ahash_request_cast(req_async);
449 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
450 	struct shash_desc *desc = &rctx->desc;
451 
452 	if (unlikely(err == -EINPROGRESS))
453 		goto out;
454 
455 	desc->tfm = child;
456 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;  /* check this again */
457 
458 	err = shash_ahash_mcryptd_digest(req, desc);
459 
460 	if (err) {
461 		req->base.complete = rctx->complete;
462 		goto out;
463 	}
464 
465 	return;
466 out:
467 	local_bh_disable();
468 	rctx->complete(&req->base, err);
469 	local_bh_enable();
470 }
471 
mcryptd_hash_digest_enqueue(struct ahash_request * req)472 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
473 {
474 	return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
475 }
476 
mcryptd_hash_export(struct ahash_request * req,void * out)477 static int mcryptd_hash_export(struct ahash_request *req, void *out)
478 {
479 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
480 
481 	return crypto_shash_export(&rctx->desc, out);
482 }
483 
mcryptd_hash_import(struct ahash_request * req,const void * in)484 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
485 {
486 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
487 
488 	return crypto_shash_import(&rctx->desc, in);
489 }
490 
mcryptd_create_hash(struct crypto_template * tmpl,struct rtattr ** tb,struct mcryptd_queue * queue)491 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
492 			      struct mcryptd_queue *queue)
493 {
494 	struct hashd_instance_ctx *ctx;
495 	struct ahash_instance *inst;
496 	struct shash_alg *salg;
497 	struct crypto_alg *alg;
498 	u32 type = 0;
499 	u32 mask = 0;
500 	int err;
501 
502 	if (!mcryptd_check_internal(tb, &type, &mask))
503 		return -EINVAL;
504 
505 	salg = shash_attr_alg(tb[1], type, mask);
506 	if (IS_ERR(salg))
507 		return PTR_ERR(salg);
508 
509 	alg = &salg->base;
510 	pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
511 	inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
512 					sizeof(*ctx));
513 	err = PTR_ERR(inst);
514 	if (IS_ERR(inst))
515 		goto out_put_alg;
516 
517 	ctx = ahash_instance_ctx(inst);
518 	ctx->queue = queue;
519 
520 	err = crypto_init_shash_spawn(&ctx->spawn, salg,
521 				      ahash_crypto_instance(inst));
522 	if (err)
523 		goto out_free_inst;
524 
525 	type = CRYPTO_ALG_ASYNC;
526 	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
527 		type |= CRYPTO_ALG_INTERNAL;
528 	inst->alg.halg.base.cra_flags = type;
529 
530 	inst->alg.halg.digestsize = salg->digestsize;
531 	inst->alg.halg.statesize = salg->statesize;
532 	inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
533 
534 	inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
535 	inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
536 
537 	inst->alg.init   = mcryptd_hash_init_enqueue;
538 	inst->alg.update = mcryptd_hash_update_enqueue;
539 	inst->alg.final  = mcryptd_hash_final_enqueue;
540 	inst->alg.finup  = mcryptd_hash_finup_enqueue;
541 	inst->alg.export = mcryptd_hash_export;
542 	inst->alg.import = mcryptd_hash_import;
543 	inst->alg.setkey = mcryptd_hash_setkey;
544 	inst->alg.digest = mcryptd_hash_digest_enqueue;
545 
546 	err = ahash_register_instance(tmpl, inst);
547 	if (err) {
548 		crypto_drop_shash(&ctx->spawn);
549 out_free_inst:
550 		kfree(inst);
551 	}
552 
553 out_put_alg:
554 	crypto_mod_put(alg);
555 	return err;
556 }
557 
558 static struct mcryptd_queue mqueue;
559 
mcryptd_create(struct crypto_template * tmpl,struct rtattr ** tb)560 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
561 {
562 	struct crypto_attr_type *algt;
563 
564 	algt = crypto_get_attr_type(tb);
565 	if (IS_ERR(algt))
566 		return PTR_ERR(algt);
567 
568 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
569 	case CRYPTO_ALG_TYPE_DIGEST:
570 		return mcryptd_create_hash(tmpl, tb, &mqueue);
571 	break;
572 	}
573 
574 	return -EINVAL;
575 }
576 
mcryptd_free(struct crypto_instance * inst)577 static void mcryptd_free(struct crypto_instance *inst)
578 {
579 	struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
580 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
581 
582 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
583 	case CRYPTO_ALG_TYPE_AHASH:
584 		crypto_drop_shash(&hctx->spawn);
585 		kfree(ahash_instance(inst));
586 		return;
587 	default:
588 		crypto_drop_spawn(&ctx->spawn);
589 		kfree(inst);
590 	}
591 }
592 
593 static struct crypto_template mcryptd_tmpl = {
594 	.name = "mcryptd",
595 	.create = mcryptd_create,
596 	.free = mcryptd_free,
597 	.module = THIS_MODULE,
598 };
599 
mcryptd_alloc_ahash(const char * alg_name,u32 type,u32 mask)600 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
601 					u32 type, u32 mask)
602 {
603 	char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
604 	struct crypto_ahash *tfm;
605 
606 	if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
607 		     "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
608 		return ERR_PTR(-EINVAL);
609 	tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
610 	if (IS_ERR(tfm))
611 		return ERR_CAST(tfm);
612 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
613 		crypto_free_ahash(tfm);
614 		return ERR_PTR(-EINVAL);
615 	}
616 
617 	return __mcryptd_ahash_cast(tfm);
618 }
619 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
620 
shash_ahash_mcryptd_digest(struct ahash_request * req,struct shash_desc * desc)621 int shash_ahash_mcryptd_digest(struct ahash_request *req,
622 			       struct shash_desc *desc)
623 {
624 	int err;
625 
626 	err = crypto_shash_init(desc) ?:
627 	      shash_ahash_mcryptd_finup(req, desc);
628 
629 	return err;
630 }
631 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
632 
shash_ahash_mcryptd_update(struct ahash_request * req,struct shash_desc * desc)633 int shash_ahash_mcryptd_update(struct ahash_request *req,
634 			       struct shash_desc *desc)
635 {
636 	struct crypto_shash *tfm = desc->tfm;
637 	struct shash_alg *shash = crypto_shash_alg(tfm);
638 
639 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
640 
641 	return shash->update(desc, NULL, 0);
642 }
643 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
644 
shash_ahash_mcryptd_finup(struct ahash_request * req,struct shash_desc * desc)645 int shash_ahash_mcryptd_finup(struct ahash_request *req,
646 			      struct shash_desc *desc)
647 {
648 	struct crypto_shash *tfm = desc->tfm;
649 	struct shash_alg *shash = crypto_shash_alg(tfm);
650 
651 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
652 
653 	return shash->finup(desc, NULL, 0, req->result);
654 }
655 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
656 
shash_ahash_mcryptd_final(struct ahash_request * req,struct shash_desc * desc)657 int shash_ahash_mcryptd_final(struct ahash_request *req,
658 			      struct shash_desc *desc)
659 {
660 	struct crypto_shash *tfm = desc->tfm;
661 	struct shash_alg *shash = crypto_shash_alg(tfm);
662 
663 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
664 
665 	return shash->final(desc, req->result);
666 }
667 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
668 
mcryptd_ahash_child(struct mcryptd_ahash * tfm)669 struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
670 {
671 	struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
672 
673 	return ctx->child;
674 }
675 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
676 
mcryptd_shash_desc(struct ahash_request * req)677 struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
678 {
679 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
680 	return &rctx->desc;
681 }
682 EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
683 
mcryptd_free_ahash(struct mcryptd_ahash * tfm)684 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
685 {
686 	crypto_free_ahash(&tfm->base);
687 }
688 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
689 
690 
mcryptd_init(void)691 static int __init mcryptd_init(void)
692 {
693 	int err, cpu;
694 	struct mcryptd_flush_list *flist;
695 
696 	mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
697 	for_each_possible_cpu(cpu) {
698 		flist = per_cpu_ptr(mcryptd_flist, cpu);
699 		INIT_LIST_HEAD(&flist->list);
700 		mutex_init(&flist->lock);
701 	}
702 
703 	err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
704 	if (err) {
705 		free_percpu(mcryptd_flist);
706 		return err;
707 	}
708 
709 	err = crypto_register_template(&mcryptd_tmpl);
710 	if (err) {
711 		mcryptd_fini_queue(&mqueue);
712 		free_percpu(mcryptd_flist);
713 	}
714 
715 	return err;
716 }
717 
mcryptd_exit(void)718 static void __exit mcryptd_exit(void)
719 {
720 	mcryptd_fini_queue(&mqueue);
721 	crypto_unregister_template(&mcryptd_tmpl);
722 	free_percpu(mcryptd_flist);
723 }
724 
725 subsys_initcall(mcryptd_init);
726 module_exit(mcryptd_exit);
727 
728 MODULE_LICENSE("GPL");
729 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
730 MODULE_ALIAS_CRYPTO("mcryptd");
731