• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 
27 #include <linux/module.h>
28 #include <linux/acpi.h>
29 #include <linux/dmi.h>
30 #include <linux/sched.h>       /* need_resched() */
31 #include <linux/sort.h>
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/syscore_ops.h>
35 #include <acpi/processor.h>
36 
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46 
47 #define PREFIX "ACPI: "
48 
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
51 ACPI_MODULE_NAME("processor_idle");
52 
53 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
54 module_param(max_cstate, uint, 0000);
55 static unsigned int nocst __read_mostly;
56 module_param(nocst, uint, 0000);
57 static int bm_check_disable __read_mostly;
58 module_param(bm_check_disable, uint, 0000);
59 
60 static unsigned int latency_factor __read_mostly = 2;
61 module_param(latency_factor, uint, 0644);
62 
63 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
64 
65 static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
66 								acpi_cstate);
67 
disabled_by_idle_boot_param(void)68 static int disabled_by_idle_boot_param(void)
69 {
70 	return boot_option_idle_override == IDLE_POLL ||
71 		boot_option_idle_override == IDLE_HALT;
72 }
73 
74 /*
75  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
76  * For now disable this. Probably a bug somewhere else.
77  *
78  * To skip this limit, boot/load with a large max_cstate limit.
79  */
set_max_cstate(const struct dmi_system_id * id)80 static int set_max_cstate(const struct dmi_system_id *id)
81 {
82 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
83 		return 0;
84 
85 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
86 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
87 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
88 
89 	max_cstate = (long)id->driver_data;
90 
91 	return 0;
92 }
93 
94 static const struct dmi_system_id processor_power_dmi_table[] = {
95 	{ set_max_cstate, "Clevo 5600D", {
96 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
97 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
98 	 (void *)2},
99 	{ set_max_cstate, "Pavilion zv5000", {
100 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
101 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
102 	 (void *)1},
103 	{ set_max_cstate, "Asus L8400B", {
104 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
105 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
106 	 (void *)1},
107 	{},
108 };
109 
110 
111 /*
112  * Callers should disable interrupts before the call and enable
113  * interrupts after return.
114  */
acpi_safe_halt(void)115 static void acpi_safe_halt(void)
116 {
117 	if (!tif_need_resched()) {
118 		safe_halt();
119 		local_irq_disable();
120 	}
121 }
122 
123 #ifdef ARCH_APICTIMER_STOPS_ON_C3
124 
125 /*
126  * Some BIOS implementations switch to C3 in the published C2 state.
127  * This seems to be a common problem on AMD boxen, but other vendors
128  * are affected too. We pick the most conservative approach: we assume
129  * that the local APIC stops in both C2 and C3.
130  */
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cx)131 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
132 				   struct acpi_processor_cx *cx)
133 {
134 	struct acpi_processor_power *pwr = &pr->power;
135 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
136 
137 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
138 		return;
139 
140 	if (amd_e400_c1e_detected)
141 		type = ACPI_STATE_C1;
142 
143 	/*
144 	 * Check, if one of the previous states already marked the lapic
145 	 * unstable
146 	 */
147 	if (pwr->timer_broadcast_on_state < state)
148 		return;
149 
150 	if (cx->type >= type)
151 		pr->power.timer_broadcast_on_state = state;
152 }
153 
__lapic_timer_propagate_broadcast(void * arg)154 static void __lapic_timer_propagate_broadcast(void *arg)
155 {
156 	struct acpi_processor *pr = (struct acpi_processor *) arg;
157 
158 	if (pr->power.timer_broadcast_on_state < INT_MAX)
159 		tick_broadcast_enable();
160 	else
161 		tick_broadcast_disable();
162 }
163 
lapic_timer_propagate_broadcast(struct acpi_processor * pr)164 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
165 {
166 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
167 				 (void *)pr, 1);
168 }
169 
170 /* Power(C) State timer broadcast control */
lapic_timer_state_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx,int broadcast)171 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
172 				       struct acpi_processor_cx *cx,
173 				       int broadcast)
174 {
175 	int state = cx - pr->power.states;
176 
177 	if (state >= pr->power.timer_broadcast_on_state) {
178 		if (broadcast)
179 			tick_broadcast_enter();
180 		else
181 			tick_broadcast_exit();
182 	}
183 }
184 
185 #else
186 
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cstate)187 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
188 				   struct acpi_processor_cx *cstate) { }
lapic_timer_propagate_broadcast(struct acpi_processor * pr)189 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
lapic_timer_state_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx,int broadcast)190 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
191 				       struct acpi_processor_cx *cx,
192 				       int broadcast)
193 {
194 }
195 
196 #endif
197 
198 #ifdef CONFIG_PM_SLEEP
199 static u32 saved_bm_rld;
200 
acpi_processor_suspend(void)201 static int acpi_processor_suspend(void)
202 {
203 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
204 	return 0;
205 }
206 
acpi_processor_resume(void)207 static void acpi_processor_resume(void)
208 {
209 	u32 resumed_bm_rld = 0;
210 
211 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
212 	if (resumed_bm_rld == saved_bm_rld)
213 		return;
214 
215 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
216 }
217 
218 static struct syscore_ops acpi_processor_syscore_ops = {
219 	.suspend = acpi_processor_suspend,
220 	.resume = acpi_processor_resume,
221 };
222 
acpi_processor_syscore_init(void)223 void acpi_processor_syscore_init(void)
224 {
225 	register_syscore_ops(&acpi_processor_syscore_ops);
226 }
227 
acpi_processor_syscore_exit(void)228 void acpi_processor_syscore_exit(void)
229 {
230 	unregister_syscore_ops(&acpi_processor_syscore_ops);
231 }
232 #endif /* CONFIG_PM_SLEEP */
233 
234 #if defined(CONFIG_X86)
tsc_check_state(int state)235 static void tsc_check_state(int state)
236 {
237 	switch (boot_cpu_data.x86_vendor) {
238 	case X86_VENDOR_AMD:
239 	case X86_VENDOR_INTEL:
240 		/*
241 		 * AMD Fam10h TSC will tick in all
242 		 * C/P/S0/S1 states when this bit is set.
243 		 */
244 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
245 			return;
246 
247 		/*FALL THROUGH*/
248 	default:
249 		/* TSC could halt in idle, so notify users */
250 		if (state > ACPI_STATE_C1)
251 			mark_tsc_unstable("TSC halts in idle");
252 	}
253 }
254 #else
tsc_check_state(int state)255 static void tsc_check_state(int state) { return; }
256 #endif
257 
acpi_processor_get_power_info_fadt(struct acpi_processor * pr)258 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
259 {
260 
261 	if (!pr->pblk)
262 		return -ENODEV;
263 
264 	/* if info is obtained from pblk/fadt, type equals state */
265 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
266 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
267 
268 #ifndef CONFIG_HOTPLUG_CPU
269 	/*
270 	 * Check for P_LVL2_UP flag before entering C2 and above on
271 	 * an SMP system.
272 	 */
273 	if ((num_online_cpus() > 1) &&
274 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
275 		return -ENODEV;
276 #endif
277 
278 	/* determine C2 and C3 address from pblk */
279 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
280 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
281 
282 	/* determine latencies from FADT */
283 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
284 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
285 
286 	/*
287 	 * FADT specified C2 latency must be less than or equal to
288 	 * 100 microseconds.
289 	 */
290 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
291 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
292 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
293 		/* invalidate C2 */
294 		pr->power.states[ACPI_STATE_C2].address = 0;
295 	}
296 
297 	/*
298 	 * FADT supplied C3 latency must be less than or equal to
299 	 * 1000 microseconds.
300 	 */
301 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
302 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
303 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
304 		/* invalidate C3 */
305 		pr->power.states[ACPI_STATE_C3].address = 0;
306 	}
307 
308 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
309 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
310 			  pr->power.states[ACPI_STATE_C2].address,
311 			  pr->power.states[ACPI_STATE_C3].address));
312 
313 	return 0;
314 }
315 
acpi_processor_get_power_info_default(struct acpi_processor * pr)316 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
317 {
318 	if (!pr->power.states[ACPI_STATE_C1].valid) {
319 		/* set the first C-State to C1 */
320 		/* all processors need to support C1 */
321 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
322 		pr->power.states[ACPI_STATE_C1].valid = 1;
323 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
324 	}
325 	/* the C0 state only exists as a filler in our array */
326 	pr->power.states[ACPI_STATE_C0].valid = 1;
327 	return 0;
328 }
329 
acpi_processor_get_power_info_cst(struct acpi_processor * pr)330 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
331 {
332 	acpi_status status;
333 	u64 count;
334 	int current_count;
335 	int i, ret = 0;
336 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
337 	union acpi_object *cst;
338 
339 
340 	if (nocst)
341 		return -ENODEV;
342 
343 	current_count = 0;
344 
345 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
346 	if (ACPI_FAILURE(status)) {
347 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
348 		return -ENODEV;
349 	}
350 
351 	cst = buffer.pointer;
352 
353 	/* There must be at least 2 elements */
354 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
355 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
356 		ret = -EFAULT;
357 		goto end;
358 	}
359 
360 	count = cst->package.elements[0].integer.value;
361 
362 	/* Validate number of power states. */
363 	if (count < 1 || count != cst->package.count - 1) {
364 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
365 		ret = -EFAULT;
366 		goto end;
367 	}
368 
369 	/* Tell driver that at least _CST is supported. */
370 	pr->flags.has_cst = 1;
371 
372 	for (i = 1; i <= count; i++) {
373 		union acpi_object *element;
374 		union acpi_object *obj;
375 		struct acpi_power_register *reg;
376 		struct acpi_processor_cx cx;
377 
378 		memset(&cx, 0, sizeof(cx));
379 
380 		element = &(cst->package.elements[i]);
381 		if (element->type != ACPI_TYPE_PACKAGE)
382 			continue;
383 
384 		if (element->package.count != 4)
385 			continue;
386 
387 		obj = &(element->package.elements[0]);
388 
389 		if (obj->type != ACPI_TYPE_BUFFER)
390 			continue;
391 
392 		reg = (struct acpi_power_register *)obj->buffer.pointer;
393 
394 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
395 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
396 			continue;
397 
398 		/* There should be an easy way to extract an integer... */
399 		obj = &(element->package.elements[1]);
400 		if (obj->type != ACPI_TYPE_INTEGER)
401 			continue;
402 
403 		cx.type = obj->integer.value;
404 		/*
405 		 * Some buggy BIOSes won't list C1 in _CST -
406 		 * Let acpi_processor_get_power_info_default() handle them later
407 		 */
408 		if (i == 1 && cx.type != ACPI_STATE_C1)
409 			current_count++;
410 
411 		cx.address = reg->address;
412 		cx.index = current_count + 1;
413 
414 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
415 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
416 			if (acpi_processor_ffh_cstate_probe
417 					(pr->id, &cx, reg) == 0) {
418 				cx.entry_method = ACPI_CSTATE_FFH;
419 			} else if (cx.type == ACPI_STATE_C1) {
420 				/*
421 				 * C1 is a special case where FIXED_HARDWARE
422 				 * can be handled in non-MWAIT way as well.
423 				 * In that case, save this _CST entry info.
424 				 * Otherwise, ignore this info and continue.
425 				 */
426 				cx.entry_method = ACPI_CSTATE_HALT;
427 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
428 			} else {
429 				continue;
430 			}
431 			if (cx.type == ACPI_STATE_C1 &&
432 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
433 				/*
434 				 * In most cases the C1 space_id obtained from
435 				 * _CST object is FIXED_HARDWARE access mode.
436 				 * But when the option of idle=halt is added,
437 				 * the entry_method type should be changed from
438 				 * CSTATE_FFH to CSTATE_HALT.
439 				 * When the option of idle=nomwait is added,
440 				 * the C1 entry_method type should be
441 				 * CSTATE_HALT.
442 				 */
443 				cx.entry_method = ACPI_CSTATE_HALT;
444 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
445 			}
446 		} else {
447 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
448 				 cx.address);
449 		}
450 
451 		if (cx.type == ACPI_STATE_C1) {
452 			cx.valid = 1;
453 		}
454 
455 		obj = &(element->package.elements[2]);
456 		if (obj->type != ACPI_TYPE_INTEGER)
457 			continue;
458 
459 		cx.latency = obj->integer.value;
460 
461 		obj = &(element->package.elements[3]);
462 		if (obj->type != ACPI_TYPE_INTEGER)
463 			continue;
464 
465 		current_count++;
466 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
467 
468 		/*
469 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
470 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
471 		 */
472 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
473 			printk(KERN_WARNING
474 			       "Limiting number of power states to max (%d)\n",
475 			       ACPI_PROCESSOR_MAX_POWER);
476 			printk(KERN_WARNING
477 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
478 			break;
479 		}
480 	}
481 
482 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
483 			  current_count));
484 
485 	/* Validate number of power states discovered */
486 	if (current_count < 2)
487 		ret = -EFAULT;
488 
489       end:
490 	kfree(buffer.pointer);
491 
492 	return ret;
493 }
494 
acpi_processor_power_verify_c3(struct acpi_processor * pr,struct acpi_processor_cx * cx)495 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
496 					   struct acpi_processor_cx *cx)
497 {
498 	static int bm_check_flag = -1;
499 	static int bm_control_flag = -1;
500 
501 
502 	if (!cx->address)
503 		return;
504 
505 	/*
506 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
507 	 * DMA transfers are used by any ISA device to avoid livelock.
508 	 * Note that we could disable Type-F DMA (as recommended by
509 	 * the erratum), but this is known to disrupt certain ISA
510 	 * devices thus we take the conservative approach.
511 	 */
512 	else if (errata.piix4.fdma) {
513 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
514 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
515 		return;
516 	}
517 
518 	/* All the logic here assumes flags.bm_check is same across all CPUs */
519 	if (bm_check_flag == -1) {
520 		/* Determine whether bm_check is needed based on CPU  */
521 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
522 		bm_check_flag = pr->flags.bm_check;
523 		bm_control_flag = pr->flags.bm_control;
524 	} else {
525 		pr->flags.bm_check = bm_check_flag;
526 		pr->flags.bm_control = bm_control_flag;
527 	}
528 
529 	if (pr->flags.bm_check) {
530 		if (!pr->flags.bm_control) {
531 			if (pr->flags.has_cst != 1) {
532 				/* bus mastering control is necessary */
533 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
534 					"C3 support requires BM control\n"));
535 				return;
536 			} else {
537 				/* Here we enter C3 without bus mastering */
538 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
539 					"C3 support without BM control\n"));
540 			}
541 		}
542 	} else {
543 		/*
544 		 * WBINVD should be set in fadt, for C3 state to be
545 		 * supported on when bm_check is not required.
546 		 */
547 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
548 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
549 					  "Cache invalidation should work properly"
550 					  " for C3 to be enabled on SMP systems\n"));
551 			return;
552 		}
553 	}
554 
555 	/*
556 	 * Otherwise we've met all of our C3 requirements.
557 	 * Normalize the C3 latency to expidite policy.  Enable
558 	 * checking of bus mastering status (bm_check) so we can
559 	 * use this in our C3 policy
560 	 */
561 	cx->valid = 1;
562 
563 	/*
564 	 * On older chipsets, BM_RLD needs to be set
565 	 * in order for Bus Master activity to wake the
566 	 * system from C3.  Newer chipsets handle DMA
567 	 * during C3 automatically and BM_RLD is a NOP.
568 	 * In either case, the proper way to
569 	 * handle BM_RLD is to set it and leave it set.
570 	 */
571 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
572 
573 	return;
574 }
575 
acpi_cst_latency_cmp(const void * a,const void * b)576 static int acpi_cst_latency_cmp(const void *a, const void *b)
577 {
578 	const struct acpi_processor_cx *x = a, *y = b;
579 
580 	if (!(x->valid && y->valid))
581 		return 0;
582 	if (x->latency > y->latency)
583 		return 1;
584 	if (x->latency < y->latency)
585 		return -1;
586 	return 0;
587 }
acpi_cst_latency_swap(void * a,void * b,int n)588 static void acpi_cst_latency_swap(void *a, void *b, int n)
589 {
590 	struct acpi_processor_cx *x = a, *y = b;
591 	u32 tmp;
592 
593 	if (!(x->valid && y->valid))
594 		return;
595 	tmp = x->latency;
596 	x->latency = y->latency;
597 	y->latency = tmp;
598 }
599 
acpi_processor_power_verify(struct acpi_processor * pr)600 static int acpi_processor_power_verify(struct acpi_processor *pr)
601 {
602 	unsigned int i;
603 	unsigned int working = 0;
604 	unsigned int last_latency = 0;
605 	unsigned int last_type = 0;
606 	bool buggy_latency = false;
607 
608 	pr->power.timer_broadcast_on_state = INT_MAX;
609 
610 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
611 		struct acpi_processor_cx *cx = &pr->power.states[i];
612 
613 		switch (cx->type) {
614 		case ACPI_STATE_C1:
615 			cx->valid = 1;
616 			break;
617 
618 		case ACPI_STATE_C2:
619 			if (!cx->address)
620 				break;
621 			cx->valid = 1;
622 			break;
623 
624 		case ACPI_STATE_C3:
625 			acpi_processor_power_verify_c3(pr, cx);
626 			break;
627 		}
628 		if (!cx->valid)
629 			continue;
630 		if (cx->type >= last_type && cx->latency < last_latency)
631 			buggy_latency = true;
632 		last_latency = cx->latency;
633 		last_type = cx->type;
634 
635 		lapic_timer_check_state(i, pr, cx);
636 		tsc_check_state(cx->type);
637 		working++;
638 	}
639 
640 	if (buggy_latency) {
641 		pr_notice("FW issue: working around C-state latencies out of order\n");
642 		sort(&pr->power.states[1], max_cstate,
643 		     sizeof(struct acpi_processor_cx),
644 		     acpi_cst_latency_cmp,
645 		     acpi_cst_latency_swap);
646 	}
647 
648 	lapic_timer_propagate_broadcast(pr);
649 
650 	return (working);
651 }
652 
acpi_processor_get_power_info(struct acpi_processor * pr)653 static int acpi_processor_get_power_info(struct acpi_processor *pr)
654 {
655 	unsigned int i;
656 	int result;
657 
658 
659 	/* NOTE: the idle thread may not be running while calling
660 	 * this function */
661 
662 	/* Zero initialize all the C-states info. */
663 	memset(pr->power.states, 0, sizeof(pr->power.states));
664 
665 	result = acpi_processor_get_power_info_cst(pr);
666 	if (result == -ENODEV)
667 		result = acpi_processor_get_power_info_fadt(pr);
668 
669 	if (result)
670 		return result;
671 
672 	acpi_processor_get_power_info_default(pr);
673 
674 	pr->power.count = acpi_processor_power_verify(pr);
675 
676 	/*
677 	 * if one state of type C2 or C3 is available, mark this
678 	 * CPU as being "idle manageable"
679 	 */
680 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
681 		if (pr->power.states[i].valid) {
682 			pr->power.count = i;
683 			if (pr->power.states[i].type >= ACPI_STATE_C2)
684 				pr->flags.power = 1;
685 		}
686 	}
687 
688 	return 0;
689 }
690 
691 /**
692  * acpi_idle_bm_check - checks if bus master activity was detected
693  */
acpi_idle_bm_check(void)694 static int acpi_idle_bm_check(void)
695 {
696 	u32 bm_status = 0;
697 
698 	if (bm_check_disable)
699 		return 0;
700 
701 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
702 	if (bm_status)
703 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
704 	/*
705 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
706 	 * the true state of bus mastering activity; forcing us to
707 	 * manually check the BMIDEA bit of each IDE channel.
708 	 */
709 	else if (errata.piix4.bmisx) {
710 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
711 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
712 			bm_status = 1;
713 	}
714 	return bm_status;
715 }
716 
717 /**
718  * acpi_idle_do_entry - enter idle state using the appropriate method
719  * @cx: cstate data
720  *
721  * Caller disables interrupt before call and enables interrupt after return.
722  */
acpi_idle_do_entry(struct acpi_processor_cx * cx)723 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
724 {
725 	if (cx->entry_method == ACPI_CSTATE_FFH) {
726 		/* Call into architectural FFH based C-state */
727 		acpi_processor_ffh_cstate_enter(cx);
728 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
729 		acpi_safe_halt();
730 	} else {
731 		/* IO port based C-state */
732 		inb(cx->address);
733 		/* Dummy wait op - must do something useless after P_LVL2 read
734 		   because chipsets cannot guarantee that STPCLK# signal
735 		   gets asserted in time to freeze execution properly. */
736 		inl(acpi_gbl_FADT.xpm_timer_block.address);
737 	}
738 }
739 
740 /**
741  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
742  * @dev: the target CPU
743  * @index: the index of suggested state
744  */
acpi_idle_play_dead(struct cpuidle_device * dev,int index)745 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
746 {
747 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
748 
749 	ACPI_FLUSH_CPU_CACHE();
750 
751 	while (1) {
752 
753 		if (cx->entry_method == ACPI_CSTATE_HALT)
754 			safe_halt();
755 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
756 			inb(cx->address);
757 			/* See comment in acpi_idle_do_entry() */
758 			inl(acpi_gbl_FADT.xpm_timer_block.address);
759 		} else
760 			return -ENODEV;
761 	}
762 
763 	/* Never reached */
764 	return 0;
765 }
766 
acpi_idle_fallback_to_c1(struct acpi_processor * pr)767 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
768 {
769 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
770 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
771 }
772 
773 static int c3_cpu_count;
774 static DEFINE_RAW_SPINLOCK(c3_lock);
775 
776 /**
777  * acpi_idle_enter_bm - enters C3 with proper BM handling
778  * @pr: Target processor
779  * @cx: Target state context
780  * @timer_bc: Whether or not to change timer mode to broadcast
781  */
acpi_idle_enter_bm(struct acpi_processor * pr,struct acpi_processor_cx * cx,bool timer_bc)782 static void acpi_idle_enter_bm(struct acpi_processor *pr,
783 			       struct acpi_processor_cx *cx, bool timer_bc)
784 {
785 	acpi_unlazy_tlb(smp_processor_id());
786 
787 	/*
788 	 * Must be done before busmaster disable as we might need to
789 	 * access HPET !
790 	 */
791 	if (timer_bc)
792 		lapic_timer_state_broadcast(pr, cx, 1);
793 
794 	/*
795 	 * disable bus master
796 	 * bm_check implies we need ARB_DIS
797 	 * bm_control implies whether we can do ARB_DIS
798 	 *
799 	 * That leaves a case where bm_check is set and bm_control is
800 	 * not set. In that case we cannot do much, we enter C3
801 	 * without doing anything.
802 	 */
803 	if (pr->flags.bm_control) {
804 		raw_spin_lock(&c3_lock);
805 		c3_cpu_count++;
806 		/* Disable bus master arbitration when all CPUs are in C3 */
807 		if (c3_cpu_count == num_online_cpus())
808 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
809 		raw_spin_unlock(&c3_lock);
810 	}
811 
812 	acpi_idle_do_entry(cx);
813 
814 	/* Re-enable bus master arbitration */
815 	if (pr->flags.bm_control) {
816 		raw_spin_lock(&c3_lock);
817 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
818 		c3_cpu_count--;
819 		raw_spin_unlock(&c3_lock);
820 	}
821 
822 	if (timer_bc)
823 		lapic_timer_state_broadcast(pr, cx, 0);
824 }
825 
acpi_idle_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)826 static int acpi_idle_enter(struct cpuidle_device *dev,
827 			   struct cpuidle_driver *drv, int index)
828 {
829 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
830 	struct acpi_processor *pr;
831 
832 	pr = __this_cpu_read(processors);
833 	if (unlikely(!pr))
834 		return -EINVAL;
835 
836 	if (cx->type != ACPI_STATE_C1) {
837 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
838 			index = CPUIDLE_DRIVER_STATE_START;
839 			cx = per_cpu(acpi_cstate[index], dev->cpu);
840 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
841 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
842 				acpi_idle_enter_bm(pr, cx, true);
843 				return index;
844 			} else if (drv->safe_state_index >= 0) {
845 				index = drv->safe_state_index;
846 				cx = per_cpu(acpi_cstate[index], dev->cpu);
847 			} else {
848 				acpi_safe_halt();
849 				return -EBUSY;
850 			}
851 		}
852 	}
853 
854 	lapic_timer_state_broadcast(pr, cx, 1);
855 
856 	if (cx->type == ACPI_STATE_C3)
857 		ACPI_FLUSH_CPU_CACHE();
858 
859 	acpi_idle_do_entry(cx);
860 
861 	lapic_timer_state_broadcast(pr, cx, 0);
862 
863 	return index;
864 }
865 
acpi_idle_enter_freeze(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)866 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
867 				   struct cpuidle_driver *drv, int index)
868 {
869 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
870 
871 	if (cx->type == ACPI_STATE_C3) {
872 		struct acpi_processor *pr = __this_cpu_read(processors);
873 
874 		if (unlikely(!pr))
875 			return;
876 
877 		if (pr->flags.bm_check) {
878 			acpi_idle_enter_bm(pr, cx, false);
879 			return;
880 		} else {
881 			ACPI_FLUSH_CPU_CACHE();
882 		}
883 	}
884 	acpi_idle_do_entry(cx);
885 }
886 
887 struct cpuidle_driver acpi_idle_driver = {
888 	.name =		"acpi_idle",
889 	.owner =	THIS_MODULE,
890 };
891 
892 /**
893  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
894  * device i.e. per-cpu data
895  *
896  * @pr: the ACPI processor
897  * @dev : the cpuidle device
898  */
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)899 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
900 					   struct cpuidle_device *dev)
901 {
902 	int i, count = CPUIDLE_DRIVER_STATE_START;
903 	struct acpi_processor_cx *cx;
904 
905 	if (!pr->flags.power_setup_done)
906 		return -EINVAL;
907 
908 	if (pr->flags.power == 0) {
909 		return -EINVAL;
910 	}
911 
912 	if (!dev)
913 		return -EINVAL;
914 
915 	dev->cpu = pr->id;
916 
917 	if (max_cstate == 0)
918 		max_cstate = 1;
919 
920 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
921 		cx = &pr->power.states[i];
922 
923 		if (!cx->valid)
924 			continue;
925 
926 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
927 
928 		count++;
929 		if (count == CPUIDLE_STATE_MAX)
930 			break;
931 	}
932 
933 	if (!count)
934 		return -EINVAL;
935 
936 	return 0;
937 }
938 
939 /**
940  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
941  * global state data i.e. idle routines
942  *
943  * @pr: the ACPI processor
944  */
acpi_processor_setup_cpuidle_states(struct acpi_processor * pr)945 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
946 {
947 	int i, count = CPUIDLE_DRIVER_STATE_START;
948 	struct acpi_processor_cx *cx;
949 	struct cpuidle_state *state;
950 	struct cpuidle_driver *drv = &acpi_idle_driver;
951 
952 	if (!pr->flags.power_setup_done)
953 		return -EINVAL;
954 
955 	if (pr->flags.power == 0)
956 		return -EINVAL;
957 
958 	drv->safe_state_index = -1;
959 	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
960 		drv->states[i].name[0] = '\0';
961 		drv->states[i].desc[0] = '\0';
962 	}
963 
964 	if (max_cstate == 0)
965 		max_cstate = 1;
966 
967 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
968 		cx = &pr->power.states[i];
969 
970 		if (!cx->valid)
971 			continue;
972 
973 		state = &drv->states[count];
974 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
975 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
976 		state->exit_latency = cx->latency;
977 		state->target_residency = cx->latency * latency_factor;
978 		state->enter = acpi_idle_enter;
979 
980 		state->flags = 0;
981 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
982 			state->enter_dead = acpi_idle_play_dead;
983 			drv->safe_state_index = count;
984 		}
985 		/*
986 		 * Halt-induced C1 is not good for ->enter_freeze, because it
987 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
988 		 * particularly interesting from the suspend-to-idle angle, so
989 		 * avoid C1 and the situations in which we may need to fall back
990 		 * to it altogether.
991 		 */
992 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
993 			state->enter_freeze = acpi_idle_enter_freeze;
994 
995 		count++;
996 		if (count == CPUIDLE_STATE_MAX)
997 			break;
998 	}
999 
1000 	drv->state_count = count;
1001 
1002 	if (!count)
1003 		return -EINVAL;
1004 
1005 	return 0;
1006 }
1007 
acpi_processor_hotplug(struct acpi_processor * pr)1008 int acpi_processor_hotplug(struct acpi_processor *pr)
1009 {
1010 	int ret = 0;
1011 	struct cpuidle_device *dev;
1012 
1013 	if (disabled_by_idle_boot_param())
1014 		return 0;
1015 
1016 	if (nocst)
1017 		return -ENODEV;
1018 
1019 	if (!pr->flags.power_setup_done)
1020 		return -ENODEV;
1021 
1022 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1023 	cpuidle_pause_and_lock();
1024 	cpuidle_disable_device(dev);
1025 	acpi_processor_get_power_info(pr);
1026 	if (pr->flags.power) {
1027 		acpi_processor_setup_cpuidle_cx(pr, dev);
1028 		ret = cpuidle_enable_device(dev);
1029 	}
1030 	cpuidle_resume_and_unlock();
1031 
1032 	return ret;
1033 }
1034 
acpi_processor_cst_has_changed(struct acpi_processor * pr)1035 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1036 {
1037 	int cpu;
1038 	struct acpi_processor *_pr;
1039 	struct cpuidle_device *dev;
1040 
1041 	if (disabled_by_idle_boot_param())
1042 		return 0;
1043 
1044 	if (nocst)
1045 		return -ENODEV;
1046 
1047 	if (!pr->flags.power_setup_done)
1048 		return -ENODEV;
1049 
1050 	/*
1051 	 * FIXME:  Design the ACPI notification to make it once per
1052 	 * system instead of once per-cpu.  This condition is a hack
1053 	 * to make the code that updates C-States be called once.
1054 	 */
1055 
1056 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1057 
1058 		/* Protect against cpu-hotplug */
1059 		get_online_cpus();
1060 		cpuidle_pause_and_lock();
1061 
1062 		/* Disable all cpuidle devices */
1063 		for_each_online_cpu(cpu) {
1064 			_pr = per_cpu(processors, cpu);
1065 			if (!_pr || !_pr->flags.power_setup_done)
1066 				continue;
1067 			dev = per_cpu(acpi_cpuidle_device, cpu);
1068 			cpuidle_disable_device(dev);
1069 		}
1070 
1071 		/* Populate Updated C-state information */
1072 		acpi_processor_get_power_info(pr);
1073 		acpi_processor_setup_cpuidle_states(pr);
1074 
1075 		/* Enable all cpuidle devices */
1076 		for_each_online_cpu(cpu) {
1077 			_pr = per_cpu(processors, cpu);
1078 			if (!_pr || !_pr->flags.power_setup_done)
1079 				continue;
1080 			acpi_processor_get_power_info(_pr);
1081 			if (_pr->flags.power) {
1082 				dev = per_cpu(acpi_cpuidle_device, cpu);
1083 				acpi_processor_setup_cpuidle_cx(_pr, dev);
1084 				cpuidle_enable_device(dev);
1085 			}
1086 		}
1087 		cpuidle_resume_and_unlock();
1088 		put_online_cpus();
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 static int acpi_processor_registered;
1095 
acpi_processor_power_init(struct acpi_processor * pr)1096 int acpi_processor_power_init(struct acpi_processor *pr)
1097 {
1098 	acpi_status status;
1099 	int retval;
1100 	struct cpuidle_device *dev;
1101 	static int first_run;
1102 
1103 	if (disabled_by_idle_boot_param())
1104 		return 0;
1105 
1106 	if (!first_run) {
1107 		dmi_check_system(processor_power_dmi_table);
1108 		max_cstate = acpi_processor_cstate_check(max_cstate);
1109 		if (max_cstate < ACPI_C_STATES_MAX)
1110 			printk(KERN_NOTICE
1111 			       "ACPI: processor limited to max C-state %d\n",
1112 			       max_cstate);
1113 		first_run++;
1114 	}
1115 
1116 	if (acpi_gbl_FADT.cst_control && !nocst) {
1117 		status =
1118 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1119 		if (ACPI_FAILURE(status)) {
1120 			ACPI_EXCEPTION((AE_INFO, status,
1121 					"Notifying BIOS of _CST ability failed"));
1122 		}
1123 	}
1124 
1125 	acpi_processor_get_power_info(pr);
1126 	pr->flags.power_setup_done = 1;
1127 
1128 	/*
1129 	 * Install the idle handler if processor power management is supported.
1130 	 * Note that we use previously set idle handler will be used on
1131 	 * platforms that only support C1.
1132 	 */
1133 	if (pr->flags.power) {
1134 		/* Register acpi_idle_driver if not already registered */
1135 		if (!acpi_processor_registered) {
1136 			acpi_processor_setup_cpuidle_states(pr);
1137 			retval = cpuidle_register_driver(&acpi_idle_driver);
1138 			if (retval)
1139 				return retval;
1140 			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1141 					acpi_idle_driver.name);
1142 		}
1143 
1144 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1145 		if (!dev)
1146 			return -ENOMEM;
1147 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1148 
1149 		acpi_processor_setup_cpuidle_cx(pr, dev);
1150 
1151 		/* Register per-cpu cpuidle_device. Cpuidle driver
1152 		 * must already be registered before registering device
1153 		 */
1154 		retval = cpuidle_register_device(dev);
1155 		if (retval) {
1156 			if (acpi_processor_registered == 0)
1157 				cpuidle_unregister_driver(&acpi_idle_driver);
1158 			return retval;
1159 		}
1160 		acpi_processor_registered++;
1161 	}
1162 	return 0;
1163 }
1164 
acpi_processor_power_exit(struct acpi_processor * pr)1165 int acpi_processor_power_exit(struct acpi_processor *pr)
1166 {
1167 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1168 
1169 	if (disabled_by_idle_boot_param())
1170 		return 0;
1171 
1172 	if (pr->flags.power) {
1173 		cpuidle_unregister_device(dev);
1174 		acpi_processor_registered--;
1175 		if (acpi_processor_registered == 0)
1176 			cpuidle_unregister_driver(&acpi_idle_driver);
1177 	}
1178 
1179 	pr->flags.power_setup_done = 0;
1180 	return 0;
1181 }
1182