1 /*
2 * Driver for the Octeon bootbus compact flash.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2005 - 2012 Cavium Inc.
9 * Copyright (C) 2008 Wind River Systems
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/hrtimer.h>
16 #include <linux/slab.h>
17 #include <linux/irq.h>
18 #include <linux/of.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <scsi/scsi_host.h>
22
23 #include <asm/byteorder.h>
24 #include <asm/octeon/octeon.h>
25
26 /*
27 * The Octeon bootbus compact flash interface is connected in at least
28 * 3 different configurations on various evaluation boards:
29 *
30 * -- 8 bits no irq, no DMA
31 * -- 16 bits no irq, no DMA
32 * -- 16 bits True IDE mode with DMA, but no irq.
33 *
34 * In the last case the DMA engine can generate an interrupt when the
35 * transfer is complete. For the first two cases only PIO is supported.
36 *
37 */
38
39 #define DRV_NAME "pata_octeon_cf"
40 #define DRV_VERSION "2.2"
41
42 /* Poll interval in nS. */
43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000
44
45 #define DMA_CFG 0
46 #define DMA_TIM 0x20
47 #define DMA_INT 0x38
48 #define DMA_INT_EN 0x50
49
50 struct octeon_cf_port {
51 struct hrtimer delayed_finish;
52 struct ata_port *ap;
53 int dma_finished;
54 void *c0;
55 unsigned int cs0;
56 unsigned int cs1;
57 bool is_true_ide;
58 u64 dma_base;
59 };
60
61 static struct scsi_host_template octeon_cf_sht = {
62 ATA_PIO_SHT(DRV_NAME),
63 };
64
65 static int enable_dma;
66 module_param(enable_dma, int, 0444);
67 MODULE_PARM_DESC(enable_dma,
68 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
69
70 /**
71 * Convert nanosecond based time to setting used in the
72 * boot bus timing register, based on timing multiple
73 */
ns_to_tim_reg(unsigned int tim_mult,unsigned int nsecs)74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
75 {
76 unsigned int val;
77
78 /*
79 * Compute # of eclock periods to get desired duration in
80 * nanoseconds.
81 */
82 val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
83 1000 * tim_mult);
84
85 return val;
86 }
87
octeon_cf_set_boot_reg_cfg(int cs,unsigned int multiplier)88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
89 {
90 union cvmx_mio_boot_reg_cfgx reg_cfg;
91 unsigned int tim_mult;
92
93 switch (multiplier) {
94 case 8:
95 tim_mult = 3;
96 break;
97 case 4:
98 tim_mult = 0;
99 break;
100 case 2:
101 tim_mult = 2;
102 break;
103 default:
104 tim_mult = 1;
105 break;
106 }
107
108 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
109 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
110 reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */
111 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
112 reg_cfg.s.sam = 0; /* Don't combine write and output enable */
113 reg_cfg.s.we_ext = 0; /* No write enable extension */
114 reg_cfg.s.oe_ext = 0; /* No read enable extension */
115 reg_cfg.s.en = 1; /* Enable this region */
116 reg_cfg.s.orbit = 0; /* Don't combine with previous region */
117 reg_cfg.s.ale = 0; /* Don't do address multiplexing */
118 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
119 }
120
121 /**
122 * Called after libata determines the needed PIO mode. This
123 * function programs the Octeon bootbus regions to support the
124 * timing requirements of the PIO mode.
125 *
126 * @ap: ATA port information
127 * @dev: ATA device
128 */
octeon_cf_set_piomode(struct ata_port * ap,struct ata_device * dev)129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
130 {
131 struct octeon_cf_port *cf_port = ap->private_data;
132 union cvmx_mio_boot_reg_timx reg_tim;
133 int T;
134 struct ata_timing timing;
135
136 unsigned int div;
137 int use_iordy;
138 int trh;
139 int pause;
140 /* These names are timing parameters from the ATA spec */
141 int t1;
142 int t2;
143 int t2i;
144
145 /*
146 * A divisor value of four will overflow the timing fields at
147 * clock rates greater than 800MHz
148 */
149 if (octeon_get_io_clock_rate() <= 800000000)
150 div = 4;
151 else
152 div = 8;
153 T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
154
155 if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
156 BUG();
157
158 t1 = timing.setup;
159 if (t1)
160 t1--;
161 t2 = timing.active;
162 if (t2)
163 t2--;
164 t2i = timing.act8b;
165 if (t2i)
166 t2i--;
167
168 trh = ns_to_tim_reg(div, 20);
169 if (trh)
170 trh--;
171
172 pause = (int)timing.cycle - (int)timing.active -
173 (int)timing.setup - trh;
174 if (pause < 0)
175 pause = 0;
176 if (pause)
177 pause--;
178
179 octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
180 if (cf_port->is_true_ide)
181 /* True IDE mode, program both chip selects. */
182 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
183
184
185 use_iordy = ata_pio_need_iordy(dev);
186
187 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
188 /* Disable page mode */
189 reg_tim.s.pagem = 0;
190 /* Enable dynamic timing */
191 reg_tim.s.waitm = use_iordy;
192 /* Pages are disabled */
193 reg_tim.s.pages = 0;
194 /* We don't use multiplexed address mode */
195 reg_tim.s.ale = 0;
196 /* Not used */
197 reg_tim.s.page = 0;
198 /* Time after IORDY to coninue to assert the data */
199 reg_tim.s.wait = 0;
200 /* Time to wait to complete the cycle. */
201 reg_tim.s.pause = pause;
202 /* How long to hold after a write to de-assert CE. */
203 reg_tim.s.wr_hld = trh;
204 /* How long to wait after a read to de-assert CE. */
205 reg_tim.s.rd_hld = trh;
206 /* How long write enable is asserted */
207 reg_tim.s.we = t2;
208 /* How long read enable is asserted */
209 reg_tim.s.oe = t2;
210 /* Time after CE that read/write starts */
211 reg_tim.s.ce = ns_to_tim_reg(div, 5);
212 /* Time before CE that address is valid */
213 reg_tim.s.adr = 0;
214
215 /* Program the bootbus region timing for the data port chip select. */
216 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
217 if (cf_port->is_true_ide)
218 /* True IDE mode, program both chip selects. */
219 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
220 reg_tim.u64);
221 }
222
octeon_cf_set_dmamode(struct ata_port * ap,struct ata_device * dev)223 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
224 {
225 struct octeon_cf_port *cf_port = ap->private_data;
226 union cvmx_mio_boot_pin_defs pin_defs;
227 union cvmx_mio_boot_dma_timx dma_tim;
228 unsigned int oe_a;
229 unsigned int oe_n;
230 unsigned int dma_ackh;
231 unsigned int dma_arq;
232 unsigned int pause;
233 unsigned int T0, Tkr, Td;
234 unsigned int tim_mult;
235 int c;
236
237 const struct ata_timing *timing;
238
239 timing = ata_timing_find_mode(dev->dma_mode);
240 T0 = timing->cycle;
241 Td = timing->active;
242 Tkr = timing->recover;
243 dma_ackh = timing->dmack_hold;
244
245 dma_tim.u64 = 0;
246 /* dma_tim.s.tim_mult = 0 --> 4x */
247 tim_mult = 4;
248
249 /* not spec'ed, value in eclocks, not affected by tim_mult */
250 dma_arq = 8;
251 pause = 25 - dma_arq * 1000 /
252 (octeon_get_io_clock_rate() / 1000000); /* Tz */
253
254 oe_a = Td;
255 /* Tkr from cf spec, lengthened to meet T0 */
256 oe_n = max(T0 - oe_a, Tkr);
257
258 pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
259
260 /* DMA channel number. */
261 c = (cf_port->dma_base & 8) >> 3;
262
263 /* Invert the polarity if the default is 0*/
264 dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
265
266 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
267 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
268
269 /*
270 * This is tI, C.F. spec. says 0, but Sony CF card requires
271 * more, we use 20 nS.
272 */
273 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
274 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
275
276 dma_tim.s.dmarq = dma_arq;
277 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
278
279 dma_tim.s.rd_dly = 0; /* Sample right on edge */
280
281 /* writes only */
282 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
283 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
284
285 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
286 ns_to_tim_reg(tim_mult, 60));
287 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
288 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
289 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
290
291 cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
292 }
293
294 /**
295 * Handle an 8 bit I/O request.
296 *
297 * @dev: Device to access
298 * @buffer: Data buffer
299 * @buflen: Length of the buffer.
300 * @rw: True to write.
301 */
octeon_cf_data_xfer8(struct ata_device * dev,unsigned char * buffer,unsigned int buflen,int rw)302 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
303 unsigned char *buffer,
304 unsigned int buflen,
305 int rw)
306 {
307 struct ata_port *ap = dev->link->ap;
308 void __iomem *data_addr = ap->ioaddr.data_addr;
309 unsigned long words;
310 int count;
311
312 words = buflen;
313 if (rw) {
314 count = 16;
315 while (words--) {
316 iowrite8(*buffer, data_addr);
317 buffer++;
318 /*
319 * Every 16 writes do a read so the bootbus
320 * FIFO doesn't fill up.
321 */
322 if (--count == 0) {
323 ioread8(ap->ioaddr.altstatus_addr);
324 count = 16;
325 }
326 }
327 } else {
328 ioread8_rep(data_addr, buffer, words);
329 }
330 return buflen;
331 }
332
333 /**
334 * Handle a 16 bit I/O request.
335 *
336 * @dev: Device to access
337 * @buffer: Data buffer
338 * @buflen: Length of the buffer.
339 * @rw: True to write.
340 */
octeon_cf_data_xfer16(struct ata_device * dev,unsigned char * buffer,unsigned int buflen,int rw)341 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
342 unsigned char *buffer,
343 unsigned int buflen,
344 int rw)
345 {
346 struct ata_port *ap = dev->link->ap;
347 void __iomem *data_addr = ap->ioaddr.data_addr;
348 unsigned long words;
349 int count;
350
351 words = buflen / 2;
352 if (rw) {
353 count = 16;
354 while (words--) {
355 iowrite16(*(uint16_t *)buffer, data_addr);
356 buffer += sizeof(uint16_t);
357 /*
358 * Every 16 writes do a read so the bootbus
359 * FIFO doesn't fill up.
360 */
361 if (--count == 0) {
362 ioread8(ap->ioaddr.altstatus_addr);
363 count = 16;
364 }
365 }
366 } else {
367 while (words--) {
368 *(uint16_t *)buffer = ioread16(data_addr);
369 buffer += sizeof(uint16_t);
370 }
371 }
372 /* Transfer trailing 1 byte, if any. */
373 if (unlikely(buflen & 0x01)) {
374 __le16 align_buf[1] = { 0 };
375
376 if (rw == READ) {
377 align_buf[0] = cpu_to_le16(ioread16(data_addr));
378 memcpy(buffer, align_buf, 1);
379 } else {
380 memcpy(align_buf, buffer, 1);
381 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
382 }
383 words++;
384 }
385 return buflen;
386 }
387
388 /**
389 * Read the taskfile for 16bit non-True IDE only.
390 */
octeon_cf_tf_read16(struct ata_port * ap,struct ata_taskfile * tf)391 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
392 {
393 u16 blob;
394 /* The base of the registers is at ioaddr.data_addr. */
395 void __iomem *base = ap->ioaddr.data_addr;
396
397 blob = __raw_readw(base + 0xc);
398 tf->feature = blob >> 8;
399
400 blob = __raw_readw(base + 2);
401 tf->nsect = blob & 0xff;
402 tf->lbal = blob >> 8;
403
404 blob = __raw_readw(base + 4);
405 tf->lbam = blob & 0xff;
406 tf->lbah = blob >> 8;
407
408 blob = __raw_readw(base + 6);
409 tf->device = blob & 0xff;
410 tf->command = blob >> 8;
411
412 if (tf->flags & ATA_TFLAG_LBA48) {
413 if (likely(ap->ioaddr.ctl_addr)) {
414 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
415
416 blob = __raw_readw(base + 0xc);
417 tf->hob_feature = blob >> 8;
418
419 blob = __raw_readw(base + 2);
420 tf->hob_nsect = blob & 0xff;
421 tf->hob_lbal = blob >> 8;
422
423 blob = __raw_readw(base + 4);
424 tf->hob_lbam = blob & 0xff;
425 tf->hob_lbah = blob >> 8;
426
427 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
428 ap->last_ctl = tf->ctl;
429 } else {
430 WARN_ON(1);
431 }
432 }
433 }
434
octeon_cf_check_status16(struct ata_port * ap)435 static u8 octeon_cf_check_status16(struct ata_port *ap)
436 {
437 u16 blob;
438 void __iomem *base = ap->ioaddr.data_addr;
439
440 blob = __raw_readw(base + 6);
441 return blob >> 8;
442 }
443
octeon_cf_softreset16(struct ata_link * link,unsigned int * classes,unsigned long deadline)444 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
445 unsigned long deadline)
446 {
447 struct ata_port *ap = link->ap;
448 void __iomem *base = ap->ioaddr.data_addr;
449 int rc;
450 u8 err;
451
452 DPRINTK("about to softreset\n");
453 __raw_writew(ap->ctl, base + 0xe);
454 udelay(20);
455 __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
456 udelay(20);
457 __raw_writew(ap->ctl, base + 0xe);
458
459 rc = ata_sff_wait_after_reset(link, 1, deadline);
460 if (rc) {
461 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
462 return rc;
463 }
464
465 /* determine by signature whether we have ATA or ATAPI devices */
466 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
467 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
468 return 0;
469 }
470
471 /**
472 * Load the taskfile for 16bit non-True IDE only. The device_addr is
473 * not loaded, we do this as part of octeon_cf_exec_command16.
474 */
octeon_cf_tf_load16(struct ata_port * ap,const struct ata_taskfile * tf)475 static void octeon_cf_tf_load16(struct ata_port *ap,
476 const struct ata_taskfile *tf)
477 {
478 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
479 /* The base of the registers is at ioaddr.data_addr. */
480 void __iomem *base = ap->ioaddr.data_addr;
481
482 if (tf->ctl != ap->last_ctl) {
483 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
484 ap->last_ctl = tf->ctl;
485 ata_wait_idle(ap);
486 }
487 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
488 __raw_writew(tf->hob_feature << 8, base + 0xc);
489 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
490 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
491 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
492 tf->hob_feature,
493 tf->hob_nsect,
494 tf->hob_lbal,
495 tf->hob_lbam,
496 tf->hob_lbah);
497 }
498 if (is_addr) {
499 __raw_writew(tf->feature << 8, base + 0xc);
500 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
501 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
502 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
503 tf->feature,
504 tf->nsect,
505 tf->lbal,
506 tf->lbam,
507 tf->lbah);
508 }
509 ata_wait_idle(ap);
510 }
511
512
octeon_cf_dev_select(struct ata_port * ap,unsigned int device)513 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
514 {
515 /* There is only one device, do nothing. */
516 return;
517 }
518
519 /*
520 * Issue ATA command to host controller. The device_addr is also sent
521 * as it must be written in a combined write with the command.
522 */
octeon_cf_exec_command16(struct ata_port * ap,const struct ata_taskfile * tf)523 static void octeon_cf_exec_command16(struct ata_port *ap,
524 const struct ata_taskfile *tf)
525 {
526 /* The base of the registers is at ioaddr.data_addr. */
527 void __iomem *base = ap->ioaddr.data_addr;
528 u16 blob;
529
530 if (tf->flags & ATA_TFLAG_DEVICE) {
531 VPRINTK("device 0x%X\n", tf->device);
532 blob = tf->device;
533 } else {
534 blob = 0;
535 }
536
537 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
538 blob |= (tf->command << 8);
539 __raw_writew(blob, base + 6);
540
541
542 ata_wait_idle(ap);
543 }
544
octeon_cf_ata_port_noaction(struct ata_port * ap)545 static void octeon_cf_ata_port_noaction(struct ata_port *ap)
546 {
547 }
548
octeon_cf_dma_setup(struct ata_queued_cmd * qc)549 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
550 {
551 struct ata_port *ap = qc->ap;
552 struct octeon_cf_port *cf_port;
553
554 cf_port = ap->private_data;
555 DPRINTK("ENTER\n");
556 /* issue r/w command */
557 qc->cursg = qc->sg;
558 cf_port->dma_finished = 0;
559 ap->ops->sff_exec_command(ap, &qc->tf);
560 DPRINTK("EXIT\n");
561 }
562
563 /**
564 * Start a DMA transfer that was already setup
565 *
566 * @qc: Information about the DMA
567 */
octeon_cf_dma_start(struct ata_queued_cmd * qc)568 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
569 {
570 struct octeon_cf_port *cf_port = qc->ap->private_data;
571 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
572 union cvmx_mio_boot_dma_intx mio_boot_dma_int;
573 struct scatterlist *sg;
574
575 VPRINTK("%d scatterlists\n", qc->n_elem);
576
577 /* Get the scatter list entry we need to DMA into */
578 sg = qc->cursg;
579 BUG_ON(!sg);
580
581 /*
582 * Clear the DMA complete status.
583 */
584 mio_boot_dma_int.u64 = 0;
585 mio_boot_dma_int.s.done = 1;
586 cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
587
588 /* Enable the interrupt. */
589 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
590
591 /* Set the direction of the DMA */
592 mio_boot_dma_cfg.u64 = 0;
593 #ifdef __LITTLE_ENDIAN
594 mio_boot_dma_cfg.s.endian = 1;
595 #endif
596 mio_boot_dma_cfg.s.en = 1;
597 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
598
599 /*
600 * Don't stop the DMA if the device deasserts DMARQ. Many
601 * compact flashes deassert DMARQ for a short time between
602 * sectors. Instead of stopping and restarting the DMA, we'll
603 * let the hardware do it. If the DMA is really stopped early
604 * due to an error condition, a later timeout will force us to
605 * stop.
606 */
607 mio_boot_dma_cfg.s.clr = 0;
608
609 /* Size is specified in 16bit words and minus one notation */
610 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
611
612 /* We need to swap the high and low bytes of every 16 bits */
613 mio_boot_dma_cfg.s.swap8 = 1;
614
615 mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
616
617 VPRINTK("%s %d bytes address=%p\n",
618 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
619 (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
620
621 cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
622 }
623
624 /**
625 *
626 * LOCKING:
627 * spin_lock_irqsave(host lock)
628 *
629 */
octeon_cf_dma_finished(struct ata_port * ap,struct ata_queued_cmd * qc)630 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
631 struct ata_queued_cmd *qc)
632 {
633 struct ata_eh_info *ehi = &ap->link.eh_info;
634 struct octeon_cf_port *cf_port = ap->private_data;
635 union cvmx_mio_boot_dma_cfgx dma_cfg;
636 union cvmx_mio_boot_dma_intx dma_int;
637 u8 status;
638
639 VPRINTK("ata%u: protocol %d task_state %d\n",
640 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
641
642
643 if (ap->hsm_task_state != HSM_ST_LAST)
644 return 0;
645
646 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
647 if (dma_cfg.s.size != 0xfffff) {
648 /* Error, the transfer was not complete. */
649 qc->err_mask |= AC_ERR_HOST_BUS;
650 ap->hsm_task_state = HSM_ST_ERR;
651 }
652
653 /* Stop and clear the dma engine. */
654 dma_cfg.u64 = 0;
655 dma_cfg.s.size = -1;
656 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
657
658 /* Disable the interrupt. */
659 dma_int.u64 = 0;
660 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
661
662 /* Clear the DMA complete status */
663 dma_int.s.done = 1;
664 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
665
666 status = ap->ops->sff_check_status(ap);
667
668 ata_sff_hsm_move(ap, qc, status, 0);
669
670 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
671 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
672
673 return 1;
674 }
675
676 /*
677 * Check if any queued commands have more DMAs, if so start the next
678 * transfer, else do end of transfer handling.
679 */
octeon_cf_interrupt(int irq,void * dev_instance)680 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
681 {
682 struct ata_host *host = dev_instance;
683 struct octeon_cf_port *cf_port;
684 int i;
685 unsigned int handled = 0;
686 unsigned long flags;
687
688 spin_lock_irqsave(&host->lock, flags);
689
690 DPRINTK("ENTER\n");
691 for (i = 0; i < host->n_ports; i++) {
692 u8 status;
693 struct ata_port *ap;
694 struct ata_queued_cmd *qc;
695 union cvmx_mio_boot_dma_intx dma_int;
696 union cvmx_mio_boot_dma_cfgx dma_cfg;
697
698 ap = host->ports[i];
699 cf_port = ap->private_data;
700
701 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
702 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
703
704 qc = ata_qc_from_tag(ap, ap->link.active_tag);
705
706 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
707 continue;
708
709 if (dma_int.s.done && !dma_cfg.s.en) {
710 if (!sg_is_last(qc->cursg)) {
711 qc->cursg = sg_next(qc->cursg);
712 handled = 1;
713 octeon_cf_dma_start(qc);
714 continue;
715 } else {
716 cf_port->dma_finished = 1;
717 }
718 }
719 if (!cf_port->dma_finished)
720 continue;
721 status = ioread8(ap->ioaddr.altstatus_addr);
722 if (status & (ATA_BUSY | ATA_DRQ)) {
723 /*
724 * We are busy, try to handle it later. This
725 * is the DMA finished interrupt, and it could
726 * take a little while for the card to be
727 * ready for more commands.
728 */
729 /* Clear DMA irq. */
730 dma_int.u64 = 0;
731 dma_int.s.done = 1;
732 cvmx_write_csr(cf_port->dma_base + DMA_INT,
733 dma_int.u64);
734 hrtimer_start_range_ns(&cf_port->delayed_finish,
735 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
736 OCTEON_CF_BUSY_POLL_INTERVAL / 5,
737 HRTIMER_MODE_REL);
738 handled = 1;
739 } else {
740 handled |= octeon_cf_dma_finished(ap, qc);
741 }
742 }
743 spin_unlock_irqrestore(&host->lock, flags);
744 DPRINTK("EXIT\n");
745 return IRQ_RETVAL(handled);
746 }
747
octeon_cf_delayed_finish(struct hrtimer * hrt)748 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
749 {
750 struct octeon_cf_port *cf_port = container_of(hrt,
751 struct octeon_cf_port,
752 delayed_finish);
753 struct ata_port *ap = cf_port->ap;
754 struct ata_host *host = ap->host;
755 struct ata_queued_cmd *qc;
756 unsigned long flags;
757 u8 status;
758 enum hrtimer_restart rv = HRTIMER_NORESTART;
759
760 spin_lock_irqsave(&host->lock, flags);
761
762 /*
763 * If the port is not waiting for completion, it must have
764 * handled it previously. The hsm_task_state is
765 * protected by host->lock.
766 */
767 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
768 goto out;
769
770 status = ioread8(ap->ioaddr.altstatus_addr);
771 if (status & (ATA_BUSY | ATA_DRQ)) {
772 /* Still busy, try again. */
773 hrtimer_forward_now(hrt,
774 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
775 rv = HRTIMER_RESTART;
776 goto out;
777 }
778 qc = ata_qc_from_tag(ap, ap->link.active_tag);
779 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
780 octeon_cf_dma_finished(ap, qc);
781 out:
782 spin_unlock_irqrestore(&host->lock, flags);
783 return rv;
784 }
785
octeon_cf_dev_config(struct ata_device * dev)786 static void octeon_cf_dev_config(struct ata_device *dev)
787 {
788 /*
789 * A maximum of 2^20 - 1 16 bit transfers are possible with
790 * the bootbus DMA. So we need to throttle max_sectors to
791 * (2^12 - 1 == 4095) to assure that this can never happen.
792 */
793 dev->max_sectors = min(dev->max_sectors, 4095U);
794 }
795
796 /*
797 * We don't do ATAPI DMA so return 0.
798 */
octeon_cf_check_atapi_dma(struct ata_queued_cmd * qc)799 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
800 {
801 return 0;
802 }
803
octeon_cf_qc_issue(struct ata_queued_cmd * qc)804 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
805 {
806 struct ata_port *ap = qc->ap;
807
808 switch (qc->tf.protocol) {
809 case ATA_PROT_DMA:
810 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
811
812 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
813 octeon_cf_dma_setup(qc); /* set up dma */
814 octeon_cf_dma_start(qc); /* initiate dma */
815 ap->hsm_task_state = HSM_ST_LAST;
816 break;
817
818 case ATAPI_PROT_DMA:
819 dev_err(ap->dev, "Error, ATAPI not supported\n");
820 BUG();
821
822 default:
823 return ata_sff_qc_issue(qc);
824 }
825
826 return 0;
827 }
828
829 static struct ata_port_operations octeon_cf_ops = {
830 .inherits = &ata_sff_port_ops,
831 .check_atapi_dma = octeon_cf_check_atapi_dma,
832 .qc_prep = ata_noop_qc_prep,
833 .qc_issue = octeon_cf_qc_issue,
834 .sff_dev_select = octeon_cf_dev_select,
835 .sff_irq_on = octeon_cf_ata_port_noaction,
836 .sff_irq_clear = octeon_cf_ata_port_noaction,
837 .cable_detect = ata_cable_40wire,
838 .set_piomode = octeon_cf_set_piomode,
839 .set_dmamode = octeon_cf_set_dmamode,
840 .dev_config = octeon_cf_dev_config,
841 };
842
octeon_cf_probe(struct platform_device * pdev)843 static int octeon_cf_probe(struct platform_device *pdev)
844 {
845 struct resource *res_cs0, *res_cs1;
846
847 bool is_16bit;
848 const __be32 *cs_num;
849 struct property *reg_prop;
850 int n_addr, n_size, reg_len;
851 struct device_node *node;
852 const void *prop;
853 void __iomem *cs0;
854 void __iomem *cs1 = NULL;
855 struct ata_host *host;
856 struct ata_port *ap;
857 int irq = 0;
858 irq_handler_t irq_handler = NULL;
859 void __iomem *base;
860 struct octeon_cf_port *cf_port;
861 int rv = -ENOMEM;
862
863
864 node = pdev->dev.of_node;
865 if (node == NULL)
866 return -EINVAL;
867
868 cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
869 if (!cf_port)
870 return -ENOMEM;
871
872 cf_port->is_true_ide = (of_find_property(node, "cavium,true-ide", NULL) != NULL);
873
874 prop = of_get_property(node, "cavium,bus-width", NULL);
875 if (prop)
876 is_16bit = (be32_to_cpup(prop) == 16);
877 else
878 is_16bit = false;
879
880 n_addr = of_n_addr_cells(node);
881 n_size = of_n_size_cells(node);
882
883 reg_prop = of_find_property(node, "reg", ®_len);
884 if (!reg_prop || reg_len < sizeof(__be32))
885 return -EINVAL;
886
887 cs_num = reg_prop->value;
888 cf_port->cs0 = be32_to_cpup(cs_num);
889
890 if (cf_port->is_true_ide) {
891 struct device_node *dma_node;
892 dma_node = of_parse_phandle(node,
893 "cavium,dma-engine-handle", 0);
894 if (dma_node) {
895 struct platform_device *dma_dev;
896 dma_dev = of_find_device_by_node(dma_node);
897 if (dma_dev) {
898 struct resource *res_dma;
899 int i;
900 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
901 if (!res_dma) {
902 of_node_put(dma_node);
903 return -EINVAL;
904 }
905 cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start,
906 resource_size(res_dma));
907 if (!cf_port->dma_base) {
908 of_node_put(dma_node);
909 return -EINVAL;
910 }
911
912 i = platform_get_irq(dma_dev, 0);
913 if (i > 0) {
914 irq = i;
915 irq_handler = octeon_cf_interrupt;
916 }
917 }
918 of_node_put(dma_node);
919 }
920 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
921 if (!res_cs1)
922 return -EINVAL;
923
924 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
925 resource_size(res_cs1));
926 if (!cs1)
927 return rv;
928
929 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
930 return -EINVAL;
931
932 cs_num += n_addr + n_size;
933 cf_port->cs1 = be32_to_cpup(cs_num);
934 }
935
936 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
937 if (!res_cs0)
938 return -EINVAL;
939
940 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
941 resource_size(res_cs0));
942 if (!cs0)
943 return rv;
944
945 /* allocate host */
946 host = ata_host_alloc(&pdev->dev, 1);
947 if (!host)
948 return rv;
949
950 ap = host->ports[0];
951 ap->private_data = cf_port;
952 pdev->dev.platform_data = cf_port;
953 cf_port->ap = ap;
954 ap->ops = &octeon_cf_ops;
955 ap->pio_mask = ATA_PIO6;
956 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
957
958 if (!is_16bit) {
959 base = cs0 + 0x800;
960 ap->ioaddr.cmd_addr = base;
961 ata_sff_std_ports(&ap->ioaddr);
962
963 ap->ioaddr.altstatus_addr = base + 0xe;
964 ap->ioaddr.ctl_addr = base + 0xe;
965 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
966 } else if (cf_port->is_true_ide) {
967 base = cs0;
968 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
969 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
970 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
971 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
972 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
973 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
974 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
975 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
976 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
977 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
978 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
979 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
980 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
981 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
982
983 ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0;
984
985 /* True IDE mode needs a timer to poll for not-busy. */
986 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
987 HRTIMER_MODE_REL);
988 cf_port->delayed_finish.function = octeon_cf_delayed_finish;
989 } else {
990 /* 16 bit but not True IDE */
991 base = cs0 + 0x800;
992 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
993 octeon_cf_ops.softreset = octeon_cf_softreset16;
994 octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
995 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
996 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
997 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
998
999 ap->ioaddr.data_addr = base + ATA_REG_DATA;
1000 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
1001 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
1002 ap->ioaddr.ctl_addr = base + 0xe;
1003 ap->ioaddr.altstatus_addr = base + 0xe;
1004 }
1005 cf_port->c0 = ap->ioaddr.ctl_addr;
1006
1007 rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1008 if (rv)
1009 return rv;
1010
1011 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
1012
1013 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
1014 is_16bit ? 16 : 8,
1015 cf_port->is_true_ide ? ", True IDE" : "");
1016
1017 return ata_host_activate(host, irq, irq_handler,
1018 IRQF_SHARED, &octeon_cf_sht);
1019 }
1020
octeon_cf_shutdown(struct device * dev)1021 static void octeon_cf_shutdown(struct device *dev)
1022 {
1023 union cvmx_mio_boot_dma_cfgx dma_cfg;
1024 union cvmx_mio_boot_dma_intx dma_int;
1025
1026 struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1027
1028 if (cf_port->dma_base) {
1029 /* Stop and clear the dma engine. */
1030 dma_cfg.u64 = 0;
1031 dma_cfg.s.size = -1;
1032 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
1033
1034 /* Disable the interrupt. */
1035 dma_int.u64 = 0;
1036 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
1037
1038 /* Clear the DMA complete status */
1039 dma_int.s.done = 1;
1040 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1041
1042 __raw_writeb(0, cf_port->c0);
1043 udelay(20);
1044 __raw_writeb(ATA_SRST, cf_port->c0);
1045 udelay(20);
1046 __raw_writeb(0, cf_port->c0);
1047 mdelay(100);
1048 }
1049 }
1050
1051 static struct of_device_id octeon_cf_match[] = {
1052 {
1053 .compatible = "cavium,ebt3000-compact-flash",
1054 },
1055 {},
1056 };
1057 MODULE_DEVICE_TABLE(of, octeon_cf_match);
1058
1059 static struct platform_driver octeon_cf_driver = {
1060 .probe = octeon_cf_probe,
1061 .driver = {
1062 .name = DRV_NAME,
1063 .of_match_table = octeon_cf_match,
1064 .shutdown = octeon_cf_shutdown
1065 },
1066 };
1067
octeon_cf_init(void)1068 static int __init octeon_cf_init(void)
1069 {
1070 return platform_driver_register(&octeon_cf_driver);
1071 }
1072
1073
1074 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1075 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1076 MODULE_LICENSE("GPL");
1077 MODULE_VERSION(DRV_VERSION);
1078 MODULE_ALIAS("platform:" DRV_NAME);
1079
1080 module_init(octeon_cf_init);
1081