• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    drbd.c
3 
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5 
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9 
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12 
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17 
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 
27  */
28 
29 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <asm/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55 
56 #include <linux/drbd_limits.h>
57 #include "drbd_int.h"
58 #include "drbd_protocol.h"
59 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
60 #include "drbd_vli.h"
61 #include "drbd_debugfs.h"
62 
63 static DEFINE_MUTEX(drbd_main_mutex);
64 static int drbd_open(struct block_device *bdev, fmode_t mode);
65 static void drbd_release(struct gendisk *gd, fmode_t mode);
66 static void md_sync_timer_fn(unsigned long data);
67 static int w_bitmap_io(struct drbd_work *w, int unused);
68 
69 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
70 	      "Lars Ellenberg <lars@linbit.com>");
71 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
72 MODULE_VERSION(REL_VERSION);
73 MODULE_LICENSE("GPL");
74 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
75 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
76 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
77 
78 #include <linux/moduleparam.h>
79 /* allow_open_on_secondary */
80 MODULE_PARM_DESC(allow_oos, "DONT USE!");
81 /* thanks to these macros, if compiled into the kernel (not-module),
82  * this becomes the boot parameter drbd.minor_count */
83 module_param(minor_count, uint, 0444);
84 module_param(disable_sendpage, bool, 0644);
85 module_param(allow_oos, bool, 0);
86 module_param(proc_details, int, 0644);
87 
88 #ifdef CONFIG_DRBD_FAULT_INJECTION
89 int enable_faults;
90 int fault_rate;
91 static int fault_count;
92 int fault_devs;
93 /* bitmap of enabled faults */
94 module_param(enable_faults, int, 0664);
95 /* fault rate % value - applies to all enabled faults */
96 module_param(fault_rate, int, 0664);
97 /* count of faults inserted */
98 module_param(fault_count, int, 0664);
99 /* bitmap of devices to insert faults on */
100 module_param(fault_devs, int, 0644);
101 #endif
102 
103 /* module parameter, defined */
104 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
105 bool disable_sendpage;
106 bool allow_oos;
107 int proc_details;       /* Detail level in proc drbd*/
108 
109 /* Module parameter for setting the user mode helper program
110  * to run. Default is /sbin/drbdadm */
111 char usermode_helper[80] = "/sbin/drbdadm";
112 
113 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
114 
115 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
116  * as member "struct gendisk *vdisk;"
117  */
118 struct idr drbd_devices;
119 struct list_head drbd_resources;
120 
121 struct kmem_cache *drbd_request_cache;
122 struct kmem_cache *drbd_ee_cache;	/* peer requests */
123 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
124 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
125 mempool_t *drbd_request_mempool;
126 mempool_t *drbd_ee_mempool;
127 mempool_t *drbd_md_io_page_pool;
128 struct bio_set *drbd_md_io_bio_set;
129 
130 /* I do not use a standard mempool, because:
131    1) I want to hand out the pre-allocated objects first.
132    2) I want to be able to interrupt sleeping allocation with a signal.
133    Note: This is a single linked list, the next pointer is the private
134 	 member of struct page.
135  */
136 struct page *drbd_pp_pool;
137 spinlock_t   drbd_pp_lock;
138 int          drbd_pp_vacant;
139 wait_queue_head_t drbd_pp_wait;
140 
141 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
142 
143 static const struct block_device_operations drbd_ops = {
144 	.owner =   THIS_MODULE,
145 	.open =    drbd_open,
146 	.release = drbd_release,
147 };
148 
bio_alloc_drbd(gfp_t gfp_mask)149 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
150 {
151 	struct bio *bio;
152 
153 	if (!drbd_md_io_bio_set)
154 		return bio_alloc(gfp_mask, 1);
155 
156 	bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
157 	if (!bio)
158 		return NULL;
159 	return bio;
160 }
161 
162 #ifdef __CHECKER__
163 /* When checking with sparse, and this is an inline function, sparse will
164    give tons of false positives. When this is a real functions sparse works.
165  */
_get_ldev_if_state(struct drbd_device * device,enum drbd_disk_state mins)166 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
167 {
168 	int io_allowed;
169 
170 	atomic_inc(&device->local_cnt);
171 	io_allowed = (device->state.disk >= mins);
172 	if (!io_allowed) {
173 		if (atomic_dec_and_test(&device->local_cnt))
174 			wake_up(&device->misc_wait);
175 	}
176 	return io_allowed;
177 }
178 
179 #endif
180 
181 /**
182  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
183  * @connection:	DRBD connection.
184  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
185  * @set_size:	Expected number of requests before that barrier.
186  *
187  * In case the passed barrier_nr or set_size does not match the oldest
188  * epoch of not yet barrier-acked requests, this function will cause a
189  * termination of the connection.
190  */
tl_release(struct drbd_connection * connection,unsigned int barrier_nr,unsigned int set_size)191 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
192 		unsigned int set_size)
193 {
194 	struct drbd_request *r;
195 	struct drbd_request *req = NULL;
196 	int expect_epoch = 0;
197 	int expect_size = 0;
198 
199 	spin_lock_irq(&connection->resource->req_lock);
200 
201 	/* find oldest not yet barrier-acked write request,
202 	 * count writes in its epoch. */
203 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
204 		const unsigned s = r->rq_state;
205 		if (!req) {
206 			if (!(s & RQ_WRITE))
207 				continue;
208 			if (!(s & RQ_NET_MASK))
209 				continue;
210 			if (s & RQ_NET_DONE)
211 				continue;
212 			req = r;
213 			expect_epoch = req->epoch;
214 			expect_size ++;
215 		} else {
216 			if (r->epoch != expect_epoch)
217 				break;
218 			if (!(s & RQ_WRITE))
219 				continue;
220 			/* if (s & RQ_DONE): not expected */
221 			/* if (!(s & RQ_NET_MASK)): not expected */
222 			expect_size++;
223 		}
224 	}
225 
226 	/* first some paranoia code */
227 	if (req == NULL) {
228 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
229 			 barrier_nr);
230 		goto bail;
231 	}
232 	if (expect_epoch != barrier_nr) {
233 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
234 			 barrier_nr, expect_epoch);
235 		goto bail;
236 	}
237 
238 	if (expect_size != set_size) {
239 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
240 			 barrier_nr, set_size, expect_size);
241 		goto bail;
242 	}
243 
244 	/* Clean up list of requests processed during current epoch. */
245 	/* this extra list walk restart is paranoia,
246 	 * to catch requests being barrier-acked "unexpectedly".
247 	 * It usually should find the same req again, or some READ preceding it. */
248 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
249 		if (req->epoch == expect_epoch)
250 			break;
251 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
252 		if (req->epoch != expect_epoch)
253 			break;
254 		_req_mod(req, BARRIER_ACKED);
255 	}
256 	spin_unlock_irq(&connection->resource->req_lock);
257 
258 	return;
259 
260 bail:
261 	spin_unlock_irq(&connection->resource->req_lock);
262 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
263 }
264 
265 
266 /**
267  * _tl_restart() - Walks the transfer log, and applies an action to all requests
268  * @connection:	DRBD connection to operate on.
269  * @what:       The action/event to perform with all request objects
270  *
271  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
272  * RESTART_FROZEN_DISK_IO.
273  */
274 /* must hold resource->req_lock */
_tl_restart(struct drbd_connection * connection,enum drbd_req_event what)275 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
276 {
277 	struct drbd_request *req, *r;
278 
279 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
280 		_req_mod(req, what);
281 }
282 
tl_restart(struct drbd_connection * connection,enum drbd_req_event what)283 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
284 {
285 	spin_lock_irq(&connection->resource->req_lock);
286 	_tl_restart(connection, what);
287 	spin_unlock_irq(&connection->resource->req_lock);
288 }
289 
290 /**
291  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
292  * @device:	DRBD device.
293  *
294  * This is called after the connection to the peer was lost. The storage covered
295  * by the requests on the transfer gets marked as our of sync. Called from the
296  * receiver thread and the worker thread.
297  */
tl_clear(struct drbd_connection * connection)298 void tl_clear(struct drbd_connection *connection)
299 {
300 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
301 }
302 
303 /**
304  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
305  * @device:	DRBD device.
306  */
tl_abort_disk_io(struct drbd_device * device)307 void tl_abort_disk_io(struct drbd_device *device)
308 {
309 	struct drbd_connection *connection = first_peer_device(device)->connection;
310 	struct drbd_request *req, *r;
311 
312 	spin_lock_irq(&connection->resource->req_lock);
313 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
314 		if (!(req->rq_state & RQ_LOCAL_PENDING))
315 			continue;
316 		if (req->device != device)
317 			continue;
318 		_req_mod(req, ABORT_DISK_IO);
319 	}
320 	spin_unlock_irq(&connection->resource->req_lock);
321 }
322 
drbd_thread_setup(void * arg)323 static int drbd_thread_setup(void *arg)
324 {
325 	struct drbd_thread *thi = (struct drbd_thread *) arg;
326 	struct drbd_resource *resource = thi->resource;
327 	unsigned long flags;
328 	int retval;
329 
330 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
331 		 thi->name[0],
332 		 resource->name);
333 
334 	allow_kernel_signal(DRBD_SIGKILL);
335 	allow_kernel_signal(SIGXCPU);
336 restart:
337 	retval = thi->function(thi);
338 
339 	spin_lock_irqsave(&thi->t_lock, flags);
340 
341 	/* if the receiver has been "EXITING", the last thing it did
342 	 * was set the conn state to "StandAlone",
343 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
344 	 * and receiver thread will be "started".
345 	 * drbd_thread_start needs to set "RESTARTING" in that case.
346 	 * t_state check and assignment needs to be within the same spinlock,
347 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
348 	 * or thread_start see NONE, and can proceed as normal.
349 	 */
350 
351 	if (thi->t_state == RESTARTING) {
352 		drbd_info(resource, "Restarting %s thread\n", thi->name);
353 		thi->t_state = RUNNING;
354 		spin_unlock_irqrestore(&thi->t_lock, flags);
355 		goto restart;
356 	}
357 
358 	thi->task = NULL;
359 	thi->t_state = NONE;
360 	smp_mb();
361 	complete_all(&thi->stop);
362 	spin_unlock_irqrestore(&thi->t_lock, flags);
363 
364 	drbd_info(resource, "Terminating %s\n", current->comm);
365 
366 	/* Release mod reference taken when thread was started */
367 
368 	if (thi->connection)
369 		kref_put(&thi->connection->kref, drbd_destroy_connection);
370 	kref_put(&resource->kref, drbd_destroy_resource);
371 	module_put(THIS_MODULE);
372 	return retval;
373 }
374 
drbd_thread_init(struct drbd_resource * resource,struct drbd_thread * thi,int (* func)(struct drbd_thread *),const char * name)375 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
376 			     int (*func) (struct drbd_thread *), const char *name)
377 {
378 	spin_lock_init(&thi->t_lock);
379 	thi->task    = NULL;
380 	thi->t_state = NONE;
381 	thi->function = func;
382 	thi->resource = resource;
383 	thi->connection = NULL;
384 	thi->name = name;
385 }
386 
drbd_thread_start(struct drbd_thread * thi)387 int drbd_thread_start(struct drbd_thread *thi)
388 {
389 	struct drbd_resource *resource = thi->resource;
390 	struct task_struct *nt;
391 	unsigned long flags;
392 
393 	/* is used from state engine doing drbd_thread_stop_nowait,
394 	 * while holding the req lock irqsave */
395 	spin_lock_irqsave(&thi->t_lock, flags);
396 
397 	switch (thi->t_state) {
398 	case NONE:
399 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
400 			 thi->name, current->comm, current->pid);
401 
402 		/* Get ref on module for thread - this is released when thread exits */
403 		if (!try_module_get(THIS_MODULE)) {
404 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
405 			spin_unlock_irqrestore(&thi->t_lock, flags);
406 			return false;
407 		}
408 
409 		kref_get(&resource->kref);
410 		if (thi->connection)
411 			kref_get(&thi->connection->kref);
412 
413 		init_completion(&thi->stop);
414 		thi->reset_cpu_mask = 1;
415 		thi->t_state = RUNNING;
416 		spin_unlock_irqrestore(&thi->t_lock, flags);
417 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
418 
419 		nt = kthread_create(drbd_thread_setup, (void *) thi,
420 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
421 
422 		if (IS_ERR(nt)) {
423 			drbd_err(resource, "Couldn't start thread\n");
424 
425 			if (thi->connection)
426 				kref_put(&thi->connection->kref, drbd_destroy_connection);
427 			kref_put(&resource->kref, drbd_destroy_resource);
428 			module_put(THIS_MODULE);
429 			return false;
430 		}
431 		spin_lock_irqsave(&thi->t_lock, flags);
432 		thi->task = nt;
433 		thi->t_state = RUNNING;
434 		spin_unlock_irqrestore(&thi->t_lock, flags);
435 		wake_up_process(nt);
436 		break;
437 	case EXITING:
438 		thi->t_state = RESTARTING;
439 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
440 				thi->name, current->comm, current->pid);
441 		/* fall through */
442 	case RUNNING:
443 	case RESTARTING:
444 	default:
445 		spin_unlock_irqrestore(&thi->t_lock, flags);
446 		break;
447 	}
448 
449 	return true;
450 }
451 
452 
_drbd_thread_stop(struct drbd_thread * thi,int restart,int wait)453 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
454 {
455 	unsigned long flags;
456 
457 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
458 
459 	/* may be called from state engine, holding the req lock irqsave */
460 	spin_lock_irqsave(&thi->t_lock, flags);
461 
462 	if (thi->t_state == NONE) {
463 		spin_unlock_irqrestore(&thi->t_lock, flags);
464 		if (restart)
465 			drbd_thread_start(thi);
466 		return;
467 	}
468 
469 	if (thi->t_state != ns) {
470 		if (thi->task == NULL) {
471 			spin_unlock_irqrestore(&thi->t_lock, flags);
472 			return;
473 		}
474 
475 		thi->t_state = ns;
476 		smp_mb();
477 		init_completion(&thi->stop);
478 		if (thi->task != current)
479 			force_sig(DRBD_SIGKILL, thi->task);
480 	}
481 
482 	spin_unlock_irqrestore(&thi->t_lock, flags);
483 
484 	if (wait)
485 		wait_for_completion(&thi->stop);
486 }
487 
conn_lowest_minor(struct drbd_connection * connection)488 int conn_lowest_minor(struct drbd_connection *connection)
489 {
490 	struct drbd_peer_device *peer_device;
491 	int vnr = 0, minor = -1;
492 
493 	rcu_read_lock();
494 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
495 	if (peer_device)
496 		minor = device_to_minor(peer_device->device);
497 	rcu_read_unlock();
498 
499 	return minor;
500 }
501 
502 #ifdef CONFIG_SMP
503 /**
504  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
505  *
506  * Forces all threads of a resource onto the same CPU. This is beneficial for
507  * DRBD's performance. May be overwritten by user's configuration.
508  */
drbd_calc_cpu_mask(cpumask_var_t * cpu_mask)509 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
510 {
511 	unsigned int *resources_per_cpu, min_index = ~0;
512 
513 	resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
514 	if (resources_per_cpu) {
515 		struct drbd_resource *resource;
516 		unsigned int cpu, min = ~0;
517 
518 		rcu_read_lock();
519 		for_each_resource_rcu(resource, &drbd_resources) {
520 			for_each_cpu(cpu, resource->cpu_mask)
521 				resources_per_cpu[cpu]++;
522 		}
523 		rcu_read_unlock();
524 		for_each_online_cpu(cpu) {
525 			if (resources_per_cpu[cpu] < min) {
526 				min = resources_per_cpu[cpu];
527 				min_index = cpu;
528 			}
529 		}
530 		kfree(resources_per_cpu);
531 	}
532 	if (min_index == ~0) {
533 		cpumask_setall(*cpu_mask);
534 		return;
535 	}
536 	cpumask_set_cpu(min_index, *cpu_mask);
537 }
538 
539 /**
540  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
541  * @device:	DRBD device.
542  * @thi:	drbd_thread object
543  *
544  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
545  * prematurely.
546  */
drbd_thread_current_set_cpu(struct drbd_thread * thi)547 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
548 {
549 	struct drbd_resource *resource = thi->resource;
550 	struct task_struct *p = current;
551 
552 	if (!thi->reset_cpu_mask)
553 		return;
554 	thi->reset_cpu_mask = 0;
555 	set_cpus_allowed_ptr(p, resource->cpu_mask);
556 }
557 #else
558 #define drbd_calc_cpu_mask(A) ({})
559 #endif
560 
561 /**
562  * drbd_header_size  -  size of a packet header
563  *
564  * The header size is a multiple of 8, so any payload following the header is
565  * word aligned on 64-bit architectures.  (The bitmap send and receive code
566  * relies on this.)
567  */
drbd_header_size(struct drbd_connection * connection)568 unsigned int drbd_header_size(struct drbd_connection *connection)
569 {
570 	if (connection->agreed_pro_version >= 100) {
571 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
572 		return sizeof(struct p_header100);
573 	} else {
574 		BUILD_BUG_ON(sizeof(struct p_header80) !=
575 			     sizeof(struct p_header95));
576 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
577 		return sizeof(struct p_header80);
578 	}
579 }
580 
prepare_header80(struct p_header80 * h,enum drbd_packet cmd,int size)581 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
582 {
583 	h->magic   = cpu_to_be32(DRBD_MAGIC);
584 	h->command = cpu_to_be16(cmd);
585 	h->length  = cpu_to_be16(size);
586 	return sizeof(struct p_header80);
587 }
588 
prepare_header95(struct p_header95 * h,enum drbd_packet cmd,int size)589 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
590 {
591 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
592 	h->command = cpu_to_be16(cmd);
593 	h->length = cpu_to_be32(size);
594 	return sizeof(struct p_header95);
595 }
596 
prepare_header100(struct p_header100 * h,enum drbd_packet cmd,int size,int vnr)597 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
598 				      int size, int vnr)
599 {
600 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
601 	h->volume = cpu_to_be16(vnr);
602 	h->command = cpu_to_be16(cmd);
603 	h->length = cpu_to_be32(size);
604 	h->pad = 0;
605 	return sizeof(struct p_header100);
606 }
607 
prepare_header(struct drbd_connection * connection,int vnr,void * buffer,enum drbd_packet cmd,int size)608 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
609 				   void *buffer, enum drbd_packet cmd, int size)
610 {
611 	if (connection->agreed_pro_version >= 100)
612 		return prepare_header100(buffer, cmd, size, vnr);
613 	else if (connection->agreed_pro_version >= 95 &&
614 		 size > DRBD_MAX_SIZE_H80_PACKET)
615 		return prepare_header95(buffer, cmd, size);
616 	else
617 		return prepare_header80(buffer, cmd, size);
618 }
619 
__conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)620 static void *__conn_prepare_command(struct drbd_connection *connection,
621 				    struct drbd_socket *sock)
622 {
623 	if (!sock->socket)
624 		return NULL;
625 	return sock->sbuf + drbd_header_size(connection);
626 }
627 
conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)628 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
629 {
630 	void *p;
631 
632 	mutex_lock(&sock->mutex);
633 	p = __conn_prepare_command(connection, sock);
634 	if (!p)
635 		mutex_unlock(&sock->mutex);
636 
637 	return p;
638 }
639 
drbd_prepare_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock)640 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
641 {
642 	return conn_prepare_command(peer_device->connection, sock);
643 }
644 
__send_command(struct drbd_connection * connection,int vnr,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)645 static int __send_command(struct drbd_connection *connection, int vnr,
646 			  struct drbd_socket *sock, enum drbd_packet cmd,
647 			  unsigned int header_size, void *data,
648 			  unsigned int size)
649 {
650 	int msg_flags;
651 	int err;
652 
653 	/*
654 	 * Called with @data == NULL and the size of the data blocks in @size
655 	 * for commands that send data blocks.  For those commands, omit the
656 	 * MSG_MORE flag: this will increase the likelihood that data blocks
657 	 * which are page aligned on the sender will end up page aligned on the
658 	 * receiver.
659 	 */
660 	msg_flags = data ? MSG_MORE : 0;
661 
662 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
663 				      header_size + size);
664 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
665 			    msg_flags);
666 	if (data && !err)
667 		err = drbd_send_all(connection, sock->socket, data, size, 0);
668 	/* DRBD protocol "pings" are latency critical.
669 	 * This is supposed to trigger tcp_push_pending_frames() */
670 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
671 		drbd_tcp_nodelay(sock->socket);
672 
673 	return err;
674 }
675 
__conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)676 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677 			       enum drbd_packet cmd, unsigned int header_size,
678 			       void *data, unsigned int size)
679 {
680 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
681 }
682 
conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)683 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
684 		      enum drbd_packet cmd, unsigned int header_size,
685 		      void *data, unsigned int size)
686 {
687 	int err;
688 
689 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
690 	mutex_unlock(&sock->mutex);
691 	return err;
692 }
693 
drbd_send_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)694 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
695 		      enum drbd_packet cmd, unsigned int header_size,
696 		      void *data, unsigned int size)
697 {
698 	int err;
699 
700 	err = __send_command(peer_device->connection, peer_device->device->vnr,
701 			     sock, cmd, header_size, data, size);
702 	mutex_unlock(&sock->mutex);
703 	return err;
704 }
705 
drbd_send_ping(struct drbd_connection * connection)706 int drbd_send_ping(struct drbd_connection *connection)
707 {
708 	struct drbd_socket *sock;
709 
710 	sock = &connection->meta;
711 	if (!conn_prepare_command(connection, sock))
712 		return -EIO;
713 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
714 }
715 
drbd_send_ping_ack(struct drbd_connection * connection)716 int drbd_send_ping_ack(struct drbd_connection *connection)
717 {
718 	struct drbd_socket *sock;
719 
720 	sock = &connection->meta;
721 	if (!conn_prepare_command(connection, sock))
722 		return -EIO;
723 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
724 }
725 
drbd_send_sync_param(struct drbd_peer_device * peer_device)726 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
727 {
728 	struct drbd_socket *sock;
729 	struct p_rs_param_95 *p;
730 	int size;
731 	const int apv = peer_device->connection->agreed_pro_version;
732 	enum drbd_packet cmd;
733 	struct net_conf *nc;
734 	struct disk_conf *dc;
735 
736 	sock = &peer_device->connection->data;
737 	p = drbd_prepare_command(peer_device, sock);
738 	if (!p)
739 		return -EIO;
740 
741 	rcu_read_lock();
742 	nc = rcu_dereference(peer_device->connection->net_conf);
743 
744 	size = apv <= 87 ? sizeof(struct p_rs_param)
745 		: apv == 88 ? sizeof(struct p_rs_param)
746 			+ strlen(nc->verify_alg) + 1
747 		: apv <= 94 ? sizeof(struct p_rs_param_89)
748 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
749 
750 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
751 
752 	/* initialize verify_alg and csums_alg */
753 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
754 
755 	if (get_ldev(peer_device->device)) {
756 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
757 		p->resync_rate = cpu_to_be32(dc->resync_rate);
758 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
759 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
760 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
761 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
762 		put_ldev(peer_device->device);
763 	} else {
764 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
765 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
766 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
767 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
768 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
769 	}
770 
771 	if (apv >= 88)
772 		strcpy(p->verify_alg, nc->verify_alg);
773 	if (apv >= 89)
774 		strcpy(p->csums_alg, nc->csums_alg);
775 	rcu_read_unlock();
776 
777 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
778 }
779 
__drbd_send_protocol(struct drbd_connection * connection,enum drbd_packet cmd)780 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
781 {
782 	struct drbd_socket *sock;
783 	struct p_protocol *p;
784 	struct net_conf *nc;
785 	int size, cf;
786 
787 	sock = &connection->data;
788 	p = __conn_prepare_command(connection, sock);
789 	if (!p)
790 		return -EIO;
791 
792 	rcu_read_lock();
793 	nc = rcu_dereference(connection->net_conf);
794 
795 	if (nc->tentative && connection->agreed_pro_version < 92) {
796 		rcu_read_unlock();
797 		drbd_err(connection, "--dry-run is not supported by peer");
798 		return -EOPNOTSUPP;
799 	}
800 
801 	size = sizeof(*p);
802 	if (connection->agreed_pro_version >= 87)
803 		size += strlen(nc->integrity_alg) + 1;
804 
805 	p->protocol      = cpu_to_be32(nc->wire_protocol);
806 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
807 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
808 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
809 	p->two_primaries = cpu_to_be32(nc->two_primaries);
810 	cf = 0;
811 	if (nc->discard_my_data)
812 		cf |= CF_DISCARD_MY_DATA;
813 	if (nc->tentative)
814 		cf |= CF_DRY_RUN;
815 	p->conn_flags    = cpu_to_be32(cf);
816 
817 	if (connection->agreed_pro_version >= 87)
818 		strcpy(p->integrity_alg, nc->integrity_alg);
819 	rcu_read_unlock();
820 
821 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
822 }
823 
drbd_send_protocol(struct drbd_connection * connection)824 int drbd_send_protocol(struct drbd_connection *connection)
825 {
826 	int err;
827 
828 	mutex_lock(&connection->data.mutex);
829 	err = __drbd_send_protocol(connection, P_PROTOCOL);
830 	mutex_unlock(&connection->data.mutex);
831 
832 	return err;
833 }
834 
_drbd_send_uuids(struct drbd_peer_device * peer_device,u64 uuid_flags)835 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
836 {
837 	struct drbd_device *device = peer_device->device;
838 	struct drbd_socket *sock;
839 	struct p_uuids *p;
840 	int i;
841 
842 	if (!get_ldev_if_state(device, D_NEGOTIATING))
843 		return 0;
844 
845 	sock = &peer_device->connection->data;
846 	p = drbd_prepare_command(peer_device, sock);
847 	if (!p) {
848 		put_ldev(device);
849 		return -EIO;
850 	}
851 	spin_lock_irq(&device->ldev->md.uuid_lock);
852 	for (i = UI_CURRENT; i < UI_SIZE; i++)
853 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
854 	spin_unlock_irq(&device->ldev->md.uuid_lock);
855 
856 	device->comm_bm_set = drbd_bm_total_weight(device);
857 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
858 	rcu_read_lock();
859 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
860 	rcu_read_unlock();
861 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
862 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
863 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
864 
865 	put_ldev(device);
866 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
867 }
868 
drbd_send_uuids(struct drbd_peer_device * peer_device)869 int drbd_send_uuids(struct drbd_peer_device *peer_device)
870 {
871 	return _drbd_send_uuids(peer_device, 0);
872 }
873 
drbd_send_uuids_skip_initial_sync(struct drbd_peer_device * peer_device)874 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
875 {
876 	return _drbd_send_uuids(peer_device, 8);
877 }
878 
drbd_print_uuids(struct drbd_device * device,const char * text)879 void drbd_print_uuids(struct drbd_device *device, const char *text)
880 {
881 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
882 		u64 *uuid = device->ldev->md.uuid;
883 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
884 		     text,
885 		     (unsigned long long)uuid[UI_CURRENT],
886 		     (unsigned long long)uuid[UI_BITMAP],
887 		     (unsigned long long)uuid[UI_HISTORY_START],
888 		     (unsigned long long)uuid[UI_HISTORY_END]);
889 		put_ldev(device);
890 	} else {
891 		drbd_info(device, "%s effective data uuid: %016llX\n",
892 				text,
893 				(unsigned long long)device->ed_uuid);
894 	}
895 }
896 
drbd_gen_and_send_sync_uuid(struct drbd_peer_device * peer_device)897 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
898 {
899 	struct drbd_device *device = peer_device->device;
900 	struct drbd_socket *sock;
901 	struct p_rs_uuid *p;
902 	u64 uuid;
903 
904 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
905 
906 	uuid = device->ldev->md.uuid[UI_BITMAP];
907 	if (uuid && uuid != UUID_JUST_CREATED)
908 		uuid = uuid + UUID_NEW_BM_OFFSET;
909 	else
910 		get_random_bytes(&uuid, sizeof(u64));
911 	drbd_uuid_set(device, UI_BITMAP, uuid);
912 	drbd_print_uuids(device, "updated sync UUID");
913 	drbd_md_sync(device);
914 
915 	sock = &peer_device->connection->data;
916 	p = drbd_prepare_command(peer_device, sock);
917 	if (p) {
918 		p->uuid = cpu_to_be64(uuid);
919 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
920 	}
921 }
922 
drbd_send_sizes(struct drbd_peer_device * peer_device,int trigger_reply,enum dds_flags flags)923 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
924 {
925 	struct drbd_device *device = peer_device->device;
926 	struct drbd_socket *sock;
927 	struct p_sizes *p;
928 	sector_t d_size, u_size;
929 	int q_order_type;
930 	unsigned int max_bio_size;
931 
932 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
933 		D_ASSERT(device, device->ldev->backing_bdev);
934 		d_size = drbd_get_max_capacity(device->ldev);
935 		rcu_read_lock();
936 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
937 		rcu_read_unlock();
938 		q_order_type = drbd_queue_order_type(device);
939 		max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
940 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
941 		put_ldev(device);
942 	} else {
943 		d_size = 0;
944 		u_size = 0;
945 		q_order_type = QUEUE_ORDERED_NONE;
946 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
947 	}
948 
949 	sock = &peer_device->connection->data;
950 	p = drbd_prepare_command(peer_device, sock);
951 	if (!p)
952 		return -EIO;
953 
954 	if (peer_device->connection->agreed_pro_version <= 94)
955 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
956 	else if (peer_device->connection->agreed_pro_version < 100)
957 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
958 
959 	p->d_size = cpu_to_be64(d_size);
960 	p->u_size = cpu_to_be64(u_size);
961 	p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
962 	p->max_bio_size = cpu_to_be32(max_bio_size);
963 	p->queue_order_type = cpu_to_be16(q_order_type);
964 	p->dds_flags = cpu_to_be16(flags);
965 	return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
966 }
967 
968 /**
969  * drbd_send_current_state() - Sends the drbd state to the peer
970  * @peer_device:	DRBD peer device.
971  */
drbd_send_current_state(struct drbd_peer_device * peer_device)972 int drbd_send_current_state(struct drbd_peer_device *peer_device)
973 {
974 	struct drbd_socket *sock;
975 	struct p_state *p;
976 
977 	sock = &peer_device->connection->data;
978 	p = drbd_prepare_command(peer_device, sock);
979 	if (!p)
980 		return -EIO;
981 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
982 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
983 }
984 
985 /**
986  * drbd_send_state() - After a state change, sends the new state to the peer
987  * @peer_device:      DRBD peer device.
988  * @state:     the state to send, not necessarily the current state.
989  *
990  * Each state change queues an "after_state_ch" work, which will eventually
991  * send the resulting new state to the peer. If more state changes happen
992  * between queuing and processing of the after_state_ch work, we still
993  * want to send each intermediary state in the order it occurred.
994  */
drbd_send_state(struct drbd_peer_device * peer_device,union drbd_state state)995 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
996 {
997 	struct drbd_socket *sock;
998 	struct p_state *p;
999 
1000 	sock = &peer_device->connection->data;
1001 	p = drbd_prepare_command(peer_device, sock);
1002 	if (!p)
1003 		return -EIO;
1004 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1005 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1006 }
1007 
drbd_send_state_req(struct drbd_peer_device * peer_device,union drbd_state mask,union drbd_state val)1008 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1009 {
1010 	struct drbd_socket *sock;
1011 	struct p_req_state *p;
1012 
1013 	sock = &peer_device->connection->data;
1014 	p = drbd_prepare_command(peer_device, sock);
1015 	if (!p)
1016 		return -EIO;
1017 	p->mask = cpu_to_be32(mask.i);
1018 	p->val = cpu_to_be32(val.i);
1019 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1020 }
1021 
conn_send_state_req(struct drbd_connection * connection,union drbd_state mask,union drbd_state val)1022 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1023 {
1024 	enum drbd_packet cmd;
1025 	struct drbd_socket *sock;
1026 	struct p_req_state *p;
1027 
1028 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1029 	sock = &connection->data;
1030 	p = conn_prepare_command(connection, sock);
1031 	if (!p)
1032 		return -EIO;
1033 	p->mask = cpu_to_be32(mask.i);
1034 	p->val = cpu_to_be32(val.i);
1035 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1036 }
1037 
drbd_send_sr_reply(struct drbd_peer_device * peer_device,enum drbd_state_rv retcode)1038 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1039 {
1040 	struct drbd_socket *sock;
1041 	struct p_req_state_reply *p;
1042 
1043 	sock = &peer_device->connection->meta;
1044 	p = drbd_prepare_command(peer_device, sock);
1045 	if (p) {
1046 		p->retcode = cpu_to_be32(retcode);
1047 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1048 	}
1049 }
1050 
conn_send_sr_reply(struct drbd_connection * connection,enum drbd_state_rv retcode)1051 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1052 {
1053 	struct drbd_socket *sock;
1054 	struct p_req_state_reply *p;
1055 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1056 
1057 	sock = &connection->meta;
1058 	p = conn_prepare_command(connection, sock);
1059 	if (p) {
1060 		p->retcode = cpu_to_be32(retcode);
1061 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1062 	}
1063 }
1064 
dcbp_set_code(struct p_compressed_bm * p,enum drbd_bitmap_code code)1065 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1066 {
1067 	BUG_ON(code & ~0xf);
1068 	p->encoding = (p->encoding & ~0xf) | code;
1069 }
1070 
dcbp_set_start(struct p_compressed_bm * p,int set)1071 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1072 {
1073 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1074 }
1075 
dcbp_set_pad_bits(struct p_compressed_bm * p,int n)1076 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1077 {
1078 	BUG_ON(n & ~0x7);
1079 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1080 }
1081 
fill_bitmap_rle_bits(struct drbd_device * device,struct p_compressed_bm * p,unsigned int size,struct bm_xfer_ctx * c)1082 static int fill_bitmap_rle_bits(struct drbd_device *device,
1083 			 struct p_compressed_bm *p,
1084 			 unsigned int size,
1085 			 struct bm_xfer_ctx *c)
1086 {
1087 	struct bitstream bs;
1088 	unsigned long plain_bits;
1089 	unsigned long tmp;
1090 	unsigned long rl;
1091 	unsigned len;
1092 	unsigned toggle;
1093 	int bits, use_rle;
1094 
1095 	/* may we use this feature? */
1096 	rcu_read_lock();
1097 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1098 	rcu_read_unlock();
1099 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1100 		return 0;
1101 
1102 	if (c->bit_offset >= c->bm_bits)
1103 		return 0; /* nothing to do. */
1104 
1105 	/* use at most thus many bytes */
1106 	bitstream_init(&bs, p->code, size, 0);
1107 	memset(p->code, 0, size);
1108 	/* plain bits covered in this code string */
1109 	plain_bits = 0;
1110 
1111 	/* p->encoding & 0x80 stores whether the first run length is set.
1112 	 * bit offset is implicit.
1113 	 * start with toggle == 2 to be able to tell the first iteration */
1114 	toggle = 2;
1115 
1116 	/* see how much plain bits we can stuff into one packet
1117 	 * using RLE and VLI. */
1118 	do {
1119 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1120 				    : _drbd_bm_find_next(device, c->bit_offset);
1121 		if (tmp == -1UL)
1122 			tmp = c->bm_bits;
1123 		rl = tmp - c->bit_offset;
1124 
1125 		if (toggle == 2) { /* first iteration */
1126 			if (rl == 0) {
1127 				/* the first checked bit was set,
1128 				 * store start value, */
1129 				dcbp_set_start(p, 1);
1130 				/* but skip encoding of zero run length */
1131 				toggle = !toggle;
1132 				continue;
1133 			}
1134 			dcbp_set_start(p, 0);
1135 		}
1136 
1137 		/* paranoia: catch zero runlength.
1138 		 * can only happen if bitmap is modified while we scan it. */
1139 		if (rl == 0) {
1140 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1141 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1142 			return -1;
1143 		}
1144 
1145 		bits = vli_encode_bits(&bs, rl);
1146 		if (bits == -ENOBUFS) /* buffer full */
1147 			break;
1148 		if (bits <= 0) {
1149 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1150 			return 0;
1151 		}
1152 
1153 		toggle = !toggle;
1154 		plain_bits += rl;
1155 		c->bit_offset = tmp;
1156 	} while (c->bit_offset < c->bm_bits);
1157 
1158 	len = bs.cur.b - p->code + !!bs.cur.bit;
1159 
1160 	if (plain_bits < (len << 3)) {
1161 		/* incompressible with this method.
1162 		 * we need to rewind both word and bit position. */
1163 		c->bit_offset -= plain_bits;
1164 		bm_xfer_ctx_bit_to_word_offset(c);
1165 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1166 		return 0;
1167 	}
1168 
1169 	/* RLE + VLI was able to compress it just fine.
1170 	 * update c->word_offset. */
1171 	bm_xfer_ctx_bit_to_word_offset(c);
1172 
1173 	/* store pad_bits */
1174 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1175 
1176 	return len;
1177 }
1178 
1179 /**
1180  * send_bitmap_rle_or_plain
1181  *
1182  * Return 0 when done, 1 when another iteration is needed, and a negative error
1183  * code upon failure.
1184  */
1185 static int
send_bitmap_rle_or_plain(struct drbd_device * device,struct bm_xfer_ctx * c)1186 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1187 {
1188 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1189 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1190 	struct p_compressed_bm *p = sock->sbuf + header_size;
1191 	int len, err;
1192 
1193 	len = fill_bitmap_rle_bits(device, p,
1194 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1195 	if (len < 0)
1196 		return -EIO;
1197 
1198 	if (len) {
1199 		dcbp_set_code(p, RLE_VLI_Bits);
1200 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1201 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1202 				     NULL, 0);
1203 		c->packets[0]++;
1204 		c->bytes[0] += header_size + sizeof(*p) + len;
1205 
1206 		if (c->bit_offset >= c->bm_bits)
1207 			len = 0; /* DONE */
1208 	} else {
1209 		/* was not compressible.
1210 		 * send a buffer full of plain text bits instead. */
1211 		unsigned int data_size;
1212 		unsigned long num_words;
1213 		unsigned long *p = sock->sbuf + header_size;
1214 
1215 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1216 		num_words = min_t(size_t, data_size / sizeof(*p),
1217 				  c->bm_words - c->word_offset);
1218 		len = num_words * sizeof(*p);
1219 		if (len)
1220 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1221 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1222 		c->word_offset += num_words;
1223 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1224 
1225 		c->packets[1]++;
1226 		c->bytes[1] += header_size + len;
1227 
1228 		if (c->bit_offset > c->bm_bits)
1229 			c->bit_offset = c->bm_bits;
1230 	}
1231 	if (!err) {
1232 		if (len == 0) {
1233 			INFO_bm_xfer_stats(device, "send", c);
1234 			return 0;
1235 		} else
1236 			return 1;
1237 	}
1238 	return -EIO;
1239 }
1240 
1241 /* See the comment at receive_bitmap() */
_drbd_send_bitmap(struct drbd_device * device)1242 static int _drbd_send_bitmap(struct drbd_device *device)
1243 {
1244 	struct bm_xfer_ctx c;
1245 	int err;
1246 
1247 	if (!expect(device->bitmap))
1248 		return false;
1249 
1250 	if (get_ldev(device)) {
1251 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1252 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1253 			drbd_bm_set_all(device);
1254 			if (drbd_bm_write(device)) {
1255 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1256 				 * but otherwise process as per normal - need to tell other
1257 				 * side that a full resync is required! */
1258 				drbd_err(device, "Failed to write bitmap to disk!\n");
1259 			} else {
1260 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1261 				drbd_md_sync(device);
1262 			}
1263 		}
1264 		put_ldev(device);
1265 	}
1266 
1267 	c = (struct bm_xfer_ctx) {
1268 		.bm_bits = drbd_bm_bits(device),
1269 		.bm_words = drbd_bm_words(device),
1270 	};
1271 
1272 	do {
1273 		err = send_bitmap_rle_or_plain(device, &c);
1274 	} while (err > 0);
1275 
1276 	return err == 0;
1277 }
1278 
drbd_send_bitmap(struct drbd_device * device)1279 int drbd_send_bitmap(struct drbd_device *device)
1280 {
1281 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1282 	int err = -1;
1283 
1284 	mutex_lock(&sock->mutex);
1285 	if (sock->socket)
1286 		err = !_drbd_send_bitmap(device);
1287 	mutex_unlock(&sock->mutex);
1288 	return err;
1289 }
1290 
drbd_send_b_ack(struct drbd_connection * connection,u32 barrier_nr,u32 set_size)1291 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1292 {
1293 	struct drbd_socket *sock;
1294 	struct p_barrier_ack *p;
1295 
1296 	if (connection->cstate < C_WF_REPORT_PARAMS)
1297 		return;
1298 
1299 	sock = &connection->meta;
1300 	p = conn_prepare_command(connection, sock);
1301 	if (!p)
1302 		return;
1303 	p->barrier = barrier_nr;
1304 	p->set_size = cpu_to_be32(set_size);
1305 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1306 }
1307 
1308 /**
1309  * _drbd_send_ack() - Sends an ack packet
1310  * @device:	DRBD device.
1311  * @cmd:	Packet command code.
1312  * @sector:	sector, needs to be in big endian byte order
1313  * @blksize:	size in byte, needs to be in big endian byte order
1314  * @block_id:	Id, big endian byte order
1315  */
_drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,u64 sector,u32 blksize,u64 block_id)1316 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1317 			  u64 sector, u32 blksize, u64 block_id)
1318 {
1319 	struct drbd_socket *sock;
1320 	struct p_block_ack *p;
1321 
1322 	if (peer_device->device->state.conn < C_CONNECTED)
1323 		return -EIO;
1324 
1325 	sock = &peer_device->connection->meta;
1326 	p = drbd_prepare_command(peer_device, sock);
1327 	if (!p)
1328 		return -EIO;
1329 	p->sector = sector;
1330 	p->block_id = block_id;
1331 	p->blksize = blksize;
1332 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1333 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1334 }
1335 
1336 /* dp->sector and dp->block_id already/still in network byte order,
1337  * data_size is payload size according to dp->head,
1338  * and may need to be corrected for digest size. */
drbd_send_ack_dp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_data * dp,int data_size)1339 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1340 		      struct p_data *dp, int data_size)
1341 {
1342 	if (peer_device->connection->peer_integrity_tfm)
1343 		data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm);
1344 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1345 		       dp->block_id);
1346 }
1347 
drbd_send_ack_rp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_block_req * rp)1348 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1349 		      struct p_block_req *rp)
1350 {
1351 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1352 }
1353 
1354 /**
1355  * drbd_send_ack() - Sends an ack packet
1356  * @device:	DRBD device
1357  * @cmd:	packet command code
1358  * @peer_req:	peer request
1359  */
drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1360 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1361 		  struct drbd_peer_request *peer_req)
1362 {
1363 	return _drbd_send_ack(peer_device, cmd,
1364 			      cpu_to_be64(peer_req->i.sector),
1365 			      cpu_to_be32(peer_req->i.size),
1366 			      peer_req->block_id);
1367 }
1368 
1369 /* This function misuses the block_id field to signal if the blocks
1370  * are is sync or not. */
drbd_send_ack_ex(struct drbd_peer_device * peer_device,enum drbd_packet cmd,sector_t sector,int blksize,u64 block_id)1371 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1372 		     sector_t sector, int blksize, u64 block_id)
1373 {
1374 	return _drbd_send_ack(peer_device, cmd,
1375 			      cpu_to_be64(sector),
1376 			      cpu_to_be32(blksize),
1377 			      cpu_to_be64(block_id));
1378 }
1379 
drbd_send_drequest(struct drbd_peer_device * peer_device,int cmd,sector_t sector,int size,u64 block_id)1380 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1381 		       sector_t sector, int size, u64 block_id)
1382 {
1383 	struct drbd_socket *sock;
1384 	struct p_block_req *p;
1385 
1386 	sock = &peer_device->connection->data;
1387 	p = drbd_prepare_command(peer_device, sock);
1388 	if (!p)
1389 		return -EIO;
1390 	p->sector = cpu_to_be64(sector);
1391 	p->block_id = block_id;
1392 	p->blksize = cpu_to_be32(size);
1393 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1394 }
1395 
drbd_send_drequest_csum(struct drbd_peer_device * peer_device,sector_t sector,int size,void * digest,int digest_size,enum drbd_packet cmd)1396 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1397 			    void *digest, int digest_size, enum drbd_packet cmd)
1398 {
1399 	struct drbd_socket *sock;
1400 	struct p_block_req *p;
1401 
1402 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1403 
1404 	sock = &peer_device->connection->data;
1405 	p = drbd_prepare_command(peer_device, sock);
1406 	if (!p)
1407 		return -EIO;
1408 	p->sector = cpu_to_be64(sector);
1409 	p->block_id = ID_SYNCER /* unused */;
1410 	p->blksize = cpu_to_be32(size);
1411 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1412 }
1413 
drbd_send_ov_request(struct drbd_peer_device * peer_device,sector_t sector,int size)1414 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1415 {
1416 	struct drbd_socket *sock;
1417 	struct p_block_req *p;
1418 
1419 	sock = &peer_device->connection->data;
1420 	p = drbd_prepare_command(peer_device, sock);
1421 	if (!p)
1422 		return -EIO;
1423 	p->sector = cpu_to_be64(sector);
1424 	p->block_id = ID_SYNCER /* unused */;
1425 	p->blksize = cpu_to_be32(size);
1426 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1427 }
1428 
1429 /* called on sndtimeo
1430  * returns false if we should retry,
1431  * true if we think connection is dead
1432  */
we_should_drop_the_connection(struct drbd_connection * connection,struct socket * sock)1433 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1434 {
1435 	int drop_it;
1436 	/* long elapsed = (long)(jiffies - device->last_received); */
1437 
1438 	drop_it =   connection->meta.socket == sock
1439 		|| !connection->asender.task
1440 		|| get_t_state(&connection->asender) != RUNNING
1441 		|| connection->cstate < C_WF_REPORT_PARAMS;
1442 
1443 	if (drop_it)
1444 		return true;
1445 
1446 	drop_it = !--connection->ko_count;
1447 	if (!drop_it) {
1448 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1449 			 current->comm, current->pid, connection->ko_count);
1450 		request_ping(connection);
1451 	}
1452 
1453 	return drop_it; /* && (device->state == R_PRIMARY) */;
1454 }
1455 
drbd_update_congested(struct drbd_connection * connection)1456 static void drbd_update_congested(struct drbd_connection *connection)
1457 {
1458 	struct sock *sk = connection->data.socket->sk;
1459 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1460 		set_bit(NET_CONGESTED, &connection->flags);
1461 }
1462 
1463 /* The idea of sendpage seems to be to put some kind of reference
1464  * to the page into the skb, and to hand it over to the NIC. In
1465  * this process get_page() gets called.
1466  *
1467  * As soon as the page was really sent over the network put_page()
1468  * gets called by some part of the network layer. [ NIC driver? ]
1469  *
1470  * [ get_page() / put_page() increment/decrement the count. If count
1471  *   reaches 0 the page will be freed. ]
1472  *
1473  * This works nicely with pages from FSs.
1474  * But this means that in protocol A we might signal IO completion too early!
1475  *
1476  * In order not to corrupt data during a resync we must make sure
1477  * that we do not reuse our own buffer pages (EEs) to early, therefore
1478  * we have the net_ee list.
1479  *
1480  * XFS seems to have problems, still, it submits pages with page_count == 0!
1481  * As a workaround, we disable sendpage on pages
1482  * with page_count == 0 or PageSlab.
1483  */
_drbd_no_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1484 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1485 			      int offset, size_t size, unsigned msg_flags)
1486 {
1487 	struct socket *socket;
1488 	void *addr;
1489 	int err;
1490 
1491 	socket = peer_device->connection->data.socket;
1492 	addr = kmap(page) + offset;
1493 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1494 	kunmap(page);
1495 	if (!err)
1496 		peer_device->device->send_cnt += size >> 9;
1497 	return err;
1498 }
1499 
_drbd_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1500 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1501 		    int offset, size_t size, unsigned msg_flags)
1502 {
1503 	struct socket *socket = peer_device->connection->data.socket;
1504 	mm_segment_t oldfs = get_fs();
1505 	int len = size;
1506 	int err = -EIO;
1507 
1508 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1509 	 * page_count of 0 and/or have PageSlab() set.
1510 	 * we cannot use send_page for those, as that does get_page();
1511 	 * put_page(); and would cause either a VM_BUG directly, or
1512 	 * __page_cache_release a page that would actually still be referenced
1513 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1514 	if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1515 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1516 
1517 	msg_flags |= MSG_NOSIGNAL;
1518 	drbd_update_congested(peer_device->connection);
1519 	set_fs(KERNEL_DS);
1520 	do {
1521 		int sent;
1522 
1523 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1524 		if (sent <= 0) {
1525 			if (sent == -EAGAIN) {
1526 				if (we_should_drop_the_connection(peer_device->connection, socket))
1527 					break;
1528 				continue;
1529 			}
1530 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1531 			     __func__, (int)size, len, sent);
1532 			if (sent < 0)
1533 				err = sent;
1534 			break;
1535 		}
1536 		len    -= sent;
1537 		offset += sent;
1538 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1539 	set_fs(oldfs);
1540 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1541 
1542 	if (len == 0) {
1543 		err = 0;
1544 		peer_device->device->send_cnt += size >> 9;
1545 	}
1546 	return err;
1547 }
1548 
_drbd_send_bio(struct drbd_peer_device * peer_device,struct bio * bio)1549 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1550 {
1551 	struct bio_vec bvec;
1552 	struct bvec_iter iter;
1553 
1554 	/* hint all but last page with MSG_MORE */
1555 	bio_for_each_segment(bvec, bio, iter) {
1556 		int err;
1557 
1558 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1559 					 bvec.bv_offset, bvec.bv_len,
1560 					 bio_iter_last(bvec, iter)
1561 					 ? 0 : MSG_MORE);
1562 		if (err)
1563 			return err;
1564 	}
1565 	return 0;
1566 }
1567 
_drbd_send_zc_bio(struct drbd_peer_device * peer_device,struct bio * bio)1568 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1569 {
1570 	struct bio_vec bvec;
1571 	struct bvec_iter iter;
1572 
1573 	/* hint all but last page with MSG_MORE */
1574 	bio_for_each_segment(bvec, bio, iter) {
1575 		int err;
1576 
1577 		err = _drbd_send_page(peer_device, bvec.bv_page,
1578 				      bvec.bv_offset, bvec.bv_len,
1579 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1580 		if (err)
1581 			return err;
1582 	}
1583 	return 0;
1584 }
1585 
_drbd_send_zc_ee(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1586 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1587 			    struct drbd_peer_request *peer_req)
1588 {
1589 	struct page *page = peer_req->pages;
1590 	unsigned len = peer_req->i.size;
1591 	int err;
1592 
1593 	/* hint all but last page with MSG_MORE */
1594 	page_chain_for_each(page) {
1595 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1596 
1597 		err = _drbd_send_page(peer_device, page, 0, l,
1598 				      page_chain_next(page) ? MSG_MORE : 0);
1599 		if (err)
1600 			return err;
1601 		len -= l;
1602 	}
1603 	return 0;
1604 }
1605 
bio_flags_to_wire(struct drbd_connection * connection,unsigned long bi_rw)1606 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1607 {
1608 	if (connection->agreed_pro_version >= 95)
1609 		return  (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1610 			(bi_rw & REQ_FUA ? DP_FUA : 0) |
1611 			(bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1612 			(bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1613 	else
1614 		return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1615 }
1616 
1617 /* Used to send write or TRIM aka REQ_DISCARD requests
1618  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1619  */
drbd_send_dblock(struct drbd_peer_device * peer_device,struct drbd_request * req)1620 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1621 {
1622 	struct drbd_device *device = peer_device->device;
1623 	struct drbd_socket *sock;
1624 	struct p_data *p;
1625 	unsigned int dp_flags = 0;
1626 	int digest_size;
1627 	int err;
1628 
1629 	sock = &peer_device->connection->data;
1630 	p = drbd_prepare_command(peer_device, sock);
1631 	digest_size = peer_device->connection->integrity_tfm ?
1632 		      crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1633 
1634 	if (!p)
1635 		return -EIO;
1636 	p->sector = cpu_to_be64(req->i.sector);
1637 	p->block_id = (unsigned long)req;
1638 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1639 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1640 	if (device->state.conn >= C_SYNC_SOURCE &&
1641 	    device->state.conn <= C_PAUSED_SYNC_T)
1642 		dp_flags |= DP_MAY_SET_IN_SYNC;
1643 	if (peer_device->connection->agreed_pro_version >= 100) {
1644 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1645 			dp_flags |= DP_SEND_RECEIVE_ACK;
1646 		/* During resync, request an explicit write ack,
1647 		 * even in protocol != C */
1648 		if (req->rq_state & RQ_EXP_WRITE_ACK
1649 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1650 			dp_flags |= DP_SEND_WRITE_ACK;
1651 	}
1652 	p->dp_flags = cpu_to_be32(dp_flags);
1653 
1654 	if (dp_flags & DP_DISCARD) {
1655 		struct p_trim *t = (struct p_trim*)p;
1656 		t->size = cpu_to_be32(req->i.size);
1657 		err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1658 		goto out;
1659 	}
1660 
1661 	/* our digest is still only over the payload.
1662 	 * TRIM does not carry any payload. */
1663 	if (digest_size)
1664 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1665 	err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + digest_size, NULL, req->i.size);
1666 	if (!err) {
1667 		/* For protocol A, we have to memcpy the payload into
1668 		 * socket buffers, as we may complete right away
1669 		 * as soon as we handed it over to tcp, at which point the data
1670 		 * pages may become invalid.
1671 		 *
1672 		 * For data-integrity enabled, we copy it as well, so we can be
1673 		 * sure that even if the bio pages may still be modified, it
1674 		 * won't change the data on the wire, thus if the digest checks
1675 		 * out ok after sending on this side, but does not fit on the
1676 		 * receiving side, we sure have detected corruption elsewhere.
1677 		 */
1678 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1679 			err = _drbd_send_bio(peer_device, req->master_bio);
1680 		else
1681 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1682 
1683 		/* double check digest, sometimes buffers have been modified in flight. */
1684 		if (digest_size > 0 && digest_size <= 64) {
1685 			/* 64 byte, 512 bit, is the largest digest size
1686 			 * currently supported in kernel crypto. */
1687 			unsigned char digest[64];
1688 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1689 			if (memcmp(p + 1, digest, digest_size)) {
1690 				drbd_warn(device,
1691 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1692 					(unsigned long long)req->i.sector, req->i.size);
1693 			}
1694 		} /* else if (digest_size > 64) {
1695 		     ... Be noisy about digest too large ...
1696 		} */
1697 	}
1698 out:
1699 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1700 
1701 	return err;
1702 }
1703 
1704 /* answer packet, used to send data back for read requests:
1705  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1706  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1707  */
drbd_send_block(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1708 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1709 		    struct drbd_peer_request *peer_req)
1710 {
1711 	struct drbd_device *device = peer_device->device;
1712 	struct drbd_socket *sock;
1713 	struct p_data *p;
1714 	int err;
1715 	int digest_size;
1716 
1717 	sock = &peer_device->connection->data;
1718 	p = drbd_prepare_command(peer_device, sock);
1719 
1720 	digest_size = peer_device->connection->integrity_tfm ?
1721 		      crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1722 
1723 	if (!p)
1724 		return -EIO;
1725 	p->sector = cpu_to_be64(peer_req->i.sector);
1726 	p->block_id = peer_req->block_id;
1727 	p->seq_num = 0;  /* unused */
1728 	p->dp_flags = 0;
1729 	if (digest_size)
1730 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1731 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1732 	if (!err)
1733 		err = _drbd_send_zc_ee(peer_device, peer_req);
1734 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1735 
1736 	return err;
1737 }
1738 
drbd_send_out_of_sync(struct drbd_peer_device * peer_device,struct drbd_request * req)1739 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1740 {
1741 	struct drbd_socket *sock;
1742 	struct p_block_desc *p;
1743 
1744 	sock = &peer_device->connection->data;
1745 	p = drbd_prepare_command(peer_device, sock);
1746 	if (!p)
1747 		return -EIO;
1748 	p->sector = cpu_to_be64(req->i.sector);
1749 	p->blksize = cpu_to_be32(req->i.size);
1750 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1751 }
1752 
1753 /*
1754   drbd_send distinguishes two cases:
1755 
1756   Packets sent via the data socket "sock"
1757   and packets sent via the meta data socket "msock"
1758 
1759 		    sock                      msock
1760   -----------------+-------------------------+------------------------------
1761   timeout           conf.timeout / 2          conf.timeout / 2
1762   timeout action    send a ping via msock     Abort communication
1763 					      and close all sockets
1764 */
1765 
1766 /*
1767  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1768  */
drbd_send(struct drbd_connection * connection,struct socket * sock,void * buf,size_t size,unsigned msg_flags)1769 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1770 	      void *buf, size_t size, unsigned msg_flags)
1771 {
1772 	struct kvec iov;
1773 	struct msghdr msg;
1774 	int rv, sent = 0;
1775 
1776 	if (!sock)
1777 		return -EBADR;
1778 
1779 	/* THINK  if (signal_pending) return ... ? */
1780 
1781 	iov.iov_base = buf;
1782 	iov.iov_len  = size;
1783 
1784 	msg.msg_name       = NULL;
1785 	msg.msg_namelen    = 0;
1786 	msg.msg_control    = NULL;
1787 	msg.msg_controllen = 0;
1788 	msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1789 
1790 	if (sock == connection->data.socket) {
1791 		rcu_read_lock();
1792 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1793 		rcu_read_unlock();
1794 		drbd_update_congested(connection);
1795 	}
1796 	do {
1797 		/* STRANGE
1798 		 * tcp_sendmsg does _not_ use its size parameter at all ?
1799 		 *
1800 		 * -EAGAIN on timeout, -EINTR on signal.
1801 		 */
1802 /* THINK
1803  * do we need to block DRBD_SIG if sock == &meta.socket ??
1804  * otherwise wake_asender() might interrupt some send_*Ack !
1805  */
1806 		rv = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
1807 		if (rv == -EAGAIN) {
1808 			if (we_should_drop_the_connection(connection, sock))
1809 				break;
1810 			else
1811 				continue;
1812 		}
1813 		if (rv == -EINTR) {
1814 			flush_signals(current);
1815 			rv = 0;
1816 		}
1817 		if (rv < 0)
1818 			break;
1819 		sent += rv;
1820 		iov.iov_base += rv;
1821 		iov.iov_len  -= rv;
1822 	} while (sent < size);
1823 
1824 	if (sock == connection->data.socket)
1825 		clear_bit(NET_CONGESTED, &connection->flags);
1826 
1827 	if (rv <= 0) {
1828 		if (rv != -EAGAIN) {
1829 			drbd_err(connection, "%s_sendmsg returned %d\n",
1830 				 sock == connection->meta.socket ? "msock" : "sock",
1831 				 rv);
1832 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1833 		} else
1834 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1835 	}
1836 
1837 	return sent;
1838 }
1839 
1840 /**
1841  * drbd_send_all  -  Send an entire buffer
1842  *
1843  * Returns 0 upon success and a negative error value otherwise.
1844  */
drbd_send_all(struct drbd_connection * connection,struct socket * sock,void * buffer,size_t size,unsigned msg_flags)1845 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1846 		  size_t size, unsigned msg_flags)
1847 {
1848 	int err;
1849 
1850 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1851 	if (err < 0)
1852 		return err;
1853 	if (err != size)
1854 		return -EIO;
1855 	return 0;
1856 }
1857 
drbd_open(struct block_device * bdev,fmode_t mode)1858 static int drbd_open(struct block_device *bdev, fmode_t mode)
1859 {
1860 	struct drbd_device *device = bdev->bd_disk->private_data;
1861 	unsigned long flags;
1862 	int rv = 0;
1863 
1864 	mutex_lock(&drbd_main_mutex);
1865 	spin_lock_irqsave(&device->resource->req_lock, flags);
1866 	/* to have a stable device->state.role
1867 	 * and no race with updating open_cnt */
1868 
1869 	if (device->state.role != R_PRIMARY) {
1870 		if (mode & FMODE_WRITE)
1871 			rv = -EROFS;
1872 		else if (!allow_oos)
1873 			rv = -EMEDIUMTYPE;
1874 	}
1875 
1876 	if (!rv)
1877 		device->open_cnt++;
1878 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1879 	mutex_unlock(&drbd_main_mutex);
1880 
1881 	return rv;
1882 }
1883 
drbd_release(struct gendisk * gd,fmode_t mode)1884 static void drbd_release(struct gendisk *gd, fmode_t mode)
1885 {
1886 	struct drbd_device *device = gd->private_data;
1887 	mutex_lock(&drbd_main_mutex);
1888 	device->open_cnt--;
1889 	mutex_unlock(&drbd_main_mutex);
1890 }
1891 
drbd_set_defaults(struct drbd_device * device)1892 static void drbd_set_defaults(struct drbd_device *device)
1893 {
1894 	/* Beware! The actual layout differs
1895 	 * between big endian and little endian */
1896 	device->state = (union drbd_dev_state) {
1897 		{ .role = R_SECONDARY,
1898 		  .peer = R_UNKNOWN,
1899 		  .conn = C_STANDALONE,
1900 		  .disk = D_DISKLESS,
1901 		  .pdsk = D_UNKNOWN,
1902 		} };
1903 }
1904 
drbd_init_set_defaults(struct drbd_device * device)1905 void drbd_init_set_defaults(struct drbd_device *device)
1906 {
1907 	/* the memset(,0,) did most of this.
1908 	 * note: only assignments, no allocation in here */
1909 
1910 	drbd_set_defaults(device);
1911 
1912 	atomic_set(&device->ap_bio_cnt, 0);
1913 	atomic_set(&device->ap_actlog_cnt, 0);
1914 	atomic_set(&device->ap_pending_cnt, 0);
1915 	atomic_set(&device->rs_pending_cnt, 0);
1916 	atomic_set(&device->unacked_cnt, 0);
1917 	atomic_set(&device->local_cnt, 0);
1918 	atomic_set(&device->pp_in_use_by_net, 0);
1919 	atomic_set(&device->rs_sect_in, 0);
1920 	atomic_set(&device->rs_sect_ev, 0);
1921 	atomic_set(&device->ap_in_flight, 0);
1922 	atomic_set(&device->md_io.in_use, 0);
1923 
1924 	mutex_init(&device->own_state_mutex);
1925 	device->state_mutex = &device->own_state_mutex;
1926 
1927 	spin_lock_init(&device->al_lock);
1928 	spin_lock_init(&device->peer_seq_lock);
1929 
1930 	INIT_LIST_HEAD(&device->active_ee);
1931 	INIT_LIST_HEAD(&device->sync_ee);
1932 	INIT_LIST_HEAD(&device->done_ee);
1933 	INIT_LIST_HEAD(&device->read_ee);
1934 	INIT_LIST_HEAD(&device->net_ee);
1935 	INIT_LIST_HEAD(&device->resync_reads);
1936 	INIT_LIST_HEAD(&device->resync_work.list);
1937 	INIT_LIST_HEAD(&device->unplug_work.list);
1938 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
1939 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
1940 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
1941 	INIT_LIST_HEAD(&device->pending_completion[0]);
1942 	INIT_LIST_HEAD(&device->pending_completion[1]);
1943 
1944 	device->resync_work.cb  = w_resync_timer;
1945 	device->unplug_work.cb  = w_send_write_hint;
1946 	device->bm_io_work.w.cb = w_bitmap_io;
1947 
1948 	init_timer(&device->resync_timer);
1949 	init_timer(&device->md_sync_timer);
1950 	init_timer(&device->start_resync_timer);
1951 	init_timer(&device->request_timer);
1952 	device->resync_timer.function = resync_timer_fn;
1953 	device->resync_timer.data = (unsigned long) device;
1954 	device->md_sync_timer.function = md_sync_timer_fn;
1955 	device->md_sync_timer.data = (unsigned long) device;
1956 	device->start_resync_timer.function = start_resync_timer_fn;
1957 	device->start_resync_timer.data = (unsigned long) device;
1958 	device->request_timer.function = request_timer_fn;
1959 	device->request_timer.data = (unsigned long) device;
1960 
1961 	init_waitqueue_head(&device->misc_wait);
1962 	init_waitqueue_head(&device->state_wait);
1963 	init_waitqueue_head(&device->ee_wait);
1964 	init_waitqueue_head(&device->al_wait);
1965 	init_waitqueue_head(&device->seq_wait);
1966 
1967 	device->resync_wenr = LC_FREE;
1968 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1969 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1970 }
1971 
drbd_device_cleanup(struct drbd_device * device)1972 void drbd_device_cleanup(struct drbd_device *device)
1973 {
1974 	int i;
1975 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
1976 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1977 				first_peer_device(device)->connection->receiver.t_state);
1978 
1979 	device->al_writ_cnt  =
1980 	device->bm_writ_cnt  =
1981 	device->read_cnt     =
1982 	device->recv_cnt     =
1983 	device->send_cnt     =
1984 	device->writ_cnt     =
1985 	device->p_size       =
1986 	device->rs_start     =
1987 	device->rs_total     =
1988 	device->rs_failed    = 0;
1989 	device->rs_last_events = 0;
1990 	device->rs_last_sect_ev = 0;
1991 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1992 		device->rs_mark_left[i] = 0;
1993 		device->rs_mark_time[i] = 0;
1994 	}
1995 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1996 
1997 	drbd_set_my_capacity(device, 0);
1998 	if (device->bitmap) {
1999 		/* maybe never allocated. */
2000 		drbd_bm_resize(device, 0, 1);
2001 		drbd_bm_cleanup(device);
2002 	}
2003 
2004 	drbd_free_ldev(device->ldev);
2005 	device->ldev = NULL;
2006 
2007 	clear_bit(AL_SUSPENDED, &device->flags);
2008 
2009 	D_ASSERT(device, list_empty(&device->active_ee));
2010 	D_ASSERT(device, list_empty(&device->sync_ee));
2011 	D_ASSERT(device, list_empty(&device->done_ee));
2012 	D_ASSERT(device, list_empty(&device->read_ee));
2013 	D_ASSERT(device, list_empty(&device->net_ee));
2014 	D_ASSERT(device, list_empty(&device->resync_reads));
2015 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2016 	D_ASSERT(device, list_empty(&device->resync_work.list));
2017 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2018 
2019 	drbd_set_defaults(device);
2020 }
2021 
2022 
drbd_destroy_mempools(void)2023 static void drbd_destroy_mempools(void)
2024 {
2025 	struct page *page;
2026 
2027 	while (drbd_pp_pool) {
2028 		page = drbd_pp_pool;
2029 		drbd_pp_pool = (struct page *)page_private(page);
2030 		__free_page(page);
2031 		drbd_pp_vacant--;
2032 	}
2033 
2034 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2035 
2036 	if (drbd_md_io_bio_set)
2037 		bioset_free(drbd_md_io_bio_set);
2038 	if (drbd_md_io_page_pool)
2039 		mempool_destroy(drbd_md_io_page_pool);
2040 	if (drbd_ee_mempool)
2041 		mempool_destroy(drbd_ee_mempool);
2042 	if (drbd_request_mempool)
2043 		mempool_destroy(drbd_request_mempool);
2044 	if (drbd_ee_cache)
2045 		kmem_cache_destroy(drbd_ee_cache);
2046 	if (drbd_request_cache)
2047 		kmem_cache_destroy(drbd_request_cache);
2048 	if (drbd_bm_ext_cache)
2049 		kmem_cache_destroy(drbd_bm_ext_cache);
2050 	if (drbd_al_ext_cache)
2051 		kmem_cache_destroy(drbd_al_ext_cache);
2052 
2053 	drbd_md_io_bio_set   = NULL;
2054 	drbd_md_io_page_pool = NULL;
2055 	drbd_ee_mempool      = NULL;
2056 	drbd_request_mempool = NULL;
2057 	drbd_ee_cache        = NULL;
2058 	drbd_request_cache   = NULL;
2059 	drbd_bm_ext_cache    = NULL;
2060 	drbd_al_ext_cache    = NULL;
2061 
2062 	return;
2063 }
2064 
drbd_create_mempools(void)2065 static int drbd_create_mempools(void)
2066 {
2067 	struct page *page;
2068 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2069 	int i;
2070 
2071 	/* prepare our caches and mempools */
2072 	drbd_request_mempool = NULL;
2073 	drbd_ee_cache        = NULL;
2074 	drbd_request_cache   = NULL;
2075 	drbd_bm_ext_cache    = NULL;
2076 	drbd_al_ext_cache    = NULL;
2077 	drbd_pp_pool         = NULL;
2078 	drbd_md_io_page_pool = NULL;
2079 	drbd_md_io_bio_set   = NULL;
2080 
2081 	/* caches */
2082 	drbd_request_cache = kmem_cache_create(
2083 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2084 	if (drbd_request_cache == NULL)
2085 		goto Enomem;
2086 
2087 	drbd_ee_cache = kmem_cache_create(
2088 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2089 	if (drbd_ee_cache == NULL)
2090 		goto Enomem;
2091 
2092 	drbd_bm_ext_cache = kmem_cache_create(
2093 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2094 	if (drbd_bm_ext_cache == NULL)
2095 		goto Enomem;
2096 
2097 	drbd_al_ext_cache = kmem_cache_create(
2098 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2099 	if (drbd_al_ext_cache == NULL)
2100 		goto Enomem;
2101 
2102 	/* mempools */
2103 	drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2104 	if (drbd_md_io_bio_set == NULL)
2105 		goto Enomem;
2106 
2107 	drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2108 	if (drbd_md_io_page_pool == NULL)
2109 		goto Enomem;
2110 
2111 	drbd_request_mempool = mempool_create_slab_pool(number,
2112 		drbd_request_cache);
2113 	if (drbd_request_mempool == NULL)
2114 		goto Enomem;
2115 
2116 	drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2117 	if (drbd_ee_mempool == NULL)
2118 		goto Enomem;
2119 
2120 	/* drbd's page pool */
2121 	spin_lock_init(&drbd_pp_lock);
2122 
2123 	for (i = 0; i < number; i++) {
2124 		page = alloc_page(GFP_HIGHUSER);
2125 		if (!page)
2126 			goto Enomem;
2127 		set_page_private(page, (unsigned long)drbd_pp_pool);
2128 		drbd_pp_pool = page;
2129 	}
2130 	drbd_pp_vacant = number;
2131 
2132 	return 0;
2133 
2134 Enomem:
2135 	drbd_destroy_mempools(); /* in case we allocated some */
2136 	return -ENOMEM;
2137 }
2138 
drbd_release_all_peer_reqs(struct drbd_device * device)2139 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2140 {
2141 	int rr;
2142 
2143 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2144 	if (rr)
2145 		drbd_err(device, "%d EEs in active list found!\n", rr);
2146 
2147 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2148 	if (rr)
2149 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2150 
2151 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2152 	if (rr)
2153 		drbd_err(device, "%d EEs in read list found!\n", rr);
2154 
2155 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2156 	if (rr)
2157 		drbd_err(device, "%d EEs in done list found!\n", rr);
2158 
2159 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2160 	if (rr)
2161 		drbd_err(device, "%d EEs in net list found!\n", rr);
2162 }
2163 
2164 /* caution. no locking. */
drbd_destroy_device(struct kref * kref)2165 void drbd_destroy_device(struct kref *kref)
2166 {
2167 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2168 	struct drbd_resource *resource = device->resource;
2169 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2170 
2171 	del_timer_sync(&device->request_timer);
2172 
2173 	/* paranoia asserts */
2174 	D_ASSERT(device, device->open_cnt == 0);
2175 	/* end paranoia asserts */
2176 
2177 	/* cleanup stuff that may have been allocated during
2178 	 * device (re-)configuration or state changes */
2179 
2180 	if (device->this_bdev)
2181 		bdput(device->this_bdev);
2182 
2183 	drbd_free_ldev(device->ldev);
2184 	device->ldev = NULL;
2185 
2186 	drbd_release_all_peer_reqs(device);
2187 
2188 	lc_destroy(device->act_log);
2189 	lc_destroy(device->resync);
2190 
2191 	kfree(device->p_uuid);
2192 	/* device->p_uuid = NULL; */
2193 
2194 	if (device->bitmap) /* should no longer be there. */
2195 		drbd_bm_cleanup(device);
2196 	__free_page(device->md_io.page);
2197 	put_disk(device->vdisk);
2198 	blk_cleanup_queue(device->rq_queue);
2199 	kfree(device->rs_plan_s);
2200 
2201 	/* not for_each_connection(connection, resource):
2202 	 * those may have been cleaned up and disassociated already.
2203 	 */
2204 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2205 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2206 		kfree(peer_device);
2207 	}
2208 	memset(device, 0xfd, sizeof(*device));
2209 	kfree(device);
2210 	kref_put(&resource->kref, drbd_destroy_resource);
2211 }
2212 
2213 /* One global retry thread, if we need to push back some bio and have it
2214  * reinserted through our make request function.
2215  */
2216 static struct retry_worker {
2217 	struct workqueue_struct *wq;
2218 	struct work_struct worker;
2219 
2220 	spinlock_t lock;
2221 	struct list_head writes;
2222 } retry;
2223 
do_retry(struct work_struct * ws)2224 static void do_retry(struct work_struct *ws)
2225 {
2226 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2227 	LIST_HEAD(writes);
2228 	struct drbd_request *req, *tmp;
2229 
2230 	spin_lock_irq(&retry->lock);
2231 	list_splice_init(&retry->writes, &writes);
2232 	spin_unlock_irq(&retry->lock);
2233 
2234 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2235 		struct drbd_device *device = req->device;
2236 		struct bio *bio = req->master_bio;
2237 		unsigned long start_jif = req->start_jif;
2238 		bool expected;
2239 
2240 		expected =
2241 			expect(atomic_read(&req->completion_ref) == 0) &&
2242 			expect(req->rq_state & RQ_POSTPONED) &&
2243 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2244 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2245 
2246 		if (!expected)
2247 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2248 				req, atomic_read(&req->completion_ref),
2249 				req->rq_state);
2250 
2251 		/* We still need to put one kref associated with the
2252 		 * "completion_ref" going zero in the code path that queued it
2253 		 * here.  The request object may still be referenced by a
2254 		 * frozen local req->private_bio, in case we force-detached.
2255 		 */
2256 		kref_put(&req->kref, drbd_req_destroy);
2257 
2258 		/* A single suspended or otherwise blocking device may stall
2259 		 * all others as well.  Fortunately, this code path is to
2260 		 * recover from a situation that "should not happen":
2261 		 * concurrent writes in multi-primary setup.
2262 		 * In a "normal" lifecycle, this workqueue is supposed to be
2263 		 * destroyed without ever doing anything.
2264 		 * If it turns out to be an issue anyways, we can do per
2265 		 * resource (replication group) or per device (minor) retry
2266 		 * workqueues instead.
2267 		 */
2268 
2269 		/* We are not just doing generic_make_request(),
2270 		 * as we want to keep the start_time information. */
2271 		inc_ap_bio(device);
2272 		__drbd_make_request(device, bio, start_jif);
2273 	}
2274 }
2275 
2276 /* called via drbd_req_put_completion_ref(),
2277  * holds resource->req_lock */
drbd_restart_request(struct drbd_request * req)2278 void drbd_restart_request(struct drbd_request *req)
2279 {
2280 	unsigned long flags;
2281 	spin_lock_irqsave(&retry.lock, flags);
2282 	list_move_tail(&req->tl_requests, &retry.writes);
2283 	spin_unlock_irqrestore(&retry.lock, flags);
2284 
2285 	/* Drop the extra reference that would otherwise
2286 	 * have been dropped by complete_master_bio.
2287 	 * do_retry() needs to grab a new one. */
2288 	dec_ap_bio(req->device);
2289 
2290 	queue_work(retry.wq, &retry.worker);
2291 }
2292 
drbd_destroy_resource(struct kref * kref)2293 void drbd_destroy_resource(struct kref *kref)
2294 {
2295 	struct drbd_resource *resource =
2296 		container_of(kref, struct drbd_resource, kref);
2297 
2298 	idr_destroy(&resource->devices);
2299 	free_cpumask_var(resource->cpu_mask);
2300 	kfree(resource->name);
2301 	memset(resource, 0xf2, sizeof(*resource));
2302 	kfree(resource);
2303 }
2304 
drbd_free_resource(struct drbd_resource * resource)2305 void drbd_free_resource(struct drbd_resource *resource)
2306 {
2307 	struct drbd_connection *connection, *tmp;
2308 
2309 	for_each_connection_safe(connection, tmp, resource) {
2310 		list_del(&connection->connections);
2311 		drbd_debugfs_connection_cleanup(connection);
2312 		kref_put(&connection->kref, drbd_destroy_connection);
2313 	}
2314 	drbd_debugfs_resource_cleanup(resource);
2315 	kref_put(&resource->kref, drbd_destroy_resource);
2316 }
2317 
drbd_cleanup(void)2318 static void drbd_cleanup(void)
2319 {
2320 	unsigned int i;
2321 	struct drbd_device *device;
2322 	struct drbd_resource *resource, *tmp;
2323 
2324 	/* first remove proc,
2325 	 * drbdsetup uses it's presence to detect
2326 	 * whether DRBD is loaded.
2327 	 * If we would get stuck in proc removal,
2328 	 * but have netlink already deregistered,
2329 	 * some drbdsetup commands may wait forever
2330 	 * for an answer.
2331 	 */
2332 	if (drbd_proc)
2333 		remove_proc_entry("drbd", NULL);
2334 
2335 	if (retry.wq)
2336 		destroy_workqueue(retry.wq);
2337 
2338 	drbd_genl_unregister();
2339 	drbd_debugfs_cleanup();
2340 
2341 	idr_for_each_entry(&drbd_devices, device, i)
2342 		drbd_delete_device(device);
2343 
2344 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2345 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2346 		list_del(&resource->resources);
2347 		drbd_free_resource(resource);
2348 	}
2349 
2350 	drbd_destroy_mempools();
2351 	unregister_blkdev(DRBD_MAJOR, "drbd");
2352 
2353 	idr_destroy(&drbd_devices);
2354 
2355 	pr_info("module cleanup done.\n");
2356 }
2357 
2358 /**
2359  * drbd_congested() - Callback for the flusher thread
2360  * @congested_data:	User data
2361  * @bdi_bits:		Bits the BDI flusher thread is currently interested in
2362  *
2363  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2364  */
drbd_congested(void * congested_data,int bdi_bits)2365 static int drbd_congested(void *congested_data, int bdi_bits)
2366 {
2367 	struct drbd_device *device = congested_data;
2368 	struct request_queue *q;
2369 	char reason = '-';
2370 	int r = 0;
2371 
2372 	if (!may_inc_ap_bio(device)) {
2373 		/* DRBD has frozen IO */
2374 		r = bdi_bits;
2375 		reason = 'd';
2376 		goto out;
2377 	}
2378 
2379 	if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2380 		r |= (1 << WB_async_congested);
2381 		/* Without good local data, we would need to read from remote,
2382 		 * and that would need the worker thread as well, which is
2383 		 * currently blocked waiting for that usermode helper to
2384 		 * finish.
2385 		 */
2386 		if (!get_ldev_if_state(device, D_UP_TO_DATE))
2387 			r |= (1 << WB_sync_congested);
2388 		else
2389 			put_ldev(device);
2390 		r &= bdi_bits;
2391 		reason = 'c';
2392 		goto out;
2393 	}
2394 
2395 	if (get_ldev(device)) {
2396 		q = bdev_get_queue(device->ldev->backing_bdev);
2397 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
2398 		put_ldev(device);
2399 		if (r)
2400 			reason = 'b';
2401 	}
2402 
2403 	if (bdi_bits & (1 << WB_async_congested) &&
2404 	    test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2405 		r |= (1 << WB_async_congested);
2406 		reason = reason == 'b' ? 'a' : 'n';
2407 	}
2408 
2409 out:
2410 	device->congestion_reason = reason;
2411 	return r;
2412 }
2413 
drbd_init_workqueue(struct drbd_work_queue * wq)2414 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2415 {
2416 	spin_lock_init(&wq->q_lock);
2417 	INIT_LIST_HEAD(&wq->q);
2418 	init_waitqueue_head(&wq->q_wait);
2419 }
2420 
2421 struct completion_work {
2422 	struct drbd_work w;
2423 	struct completion done;
2424 };
2425 
w_complete(struct drbd_work * w,int cancel)2426 static int w_complete(struct drbd_work *w, int cancel)
2427 {
2428 	struct completion_work *completion_work =
2429 		container_of(w, struct completion_work, w);
2430 
2431 	complete(&completion_work->done);
2432 	return 0;
2433 }
2434 
drbd_flush_workqueue(struct drbd_work_queue * work_queue)2435 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2436 {
2437 	struct completion_work completion_work;
2438 
2439 	completion_work.w.cb = w_complete;
2440 	init_completion(&completion_work.done);
2441 	drbd_queue_work(work_queue, &completion_work.w);
2442 	wait_for_completion(&completion_work.done);
2443 }
2444 
drbd_find_resource(const char * name)2445 struct drbd_resource *drbd_find_resource(const char *name)
2446 {
2447 	struct drbd_resource *resource;
2448 
2449 	if (!name || !name[0])
2450 		return NULL;
2451 
2452 	rcu_read_lock();
2453 	for_each_resource_rcu(resource, &drbd_resources) {
2454 		if (!strcmp(resource->name, name)) {
2455 			kref_get(&resource->kref);
2456 			goto found;
2457 		}
2458 	}
2459 	resource = NULL;
2460 found:
2461 	rcu_read_unlock();
2462 	return resource;
2463 }
2464 
conn_get_by_addrs(void * my_addr,int my_addr_len,void * peer_addr,int peer_addr_len)2465 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2466 				     void *peer_addr, int peer_addr_len)
2467 {
2468 	struct drbd_resource *resource;
2469 	struct drbd_connection *connection;
2470 
2471 	rcu_read_lock();
2472 	for_each_resource_rcu(resource, &drbd_resources) {
2473 		for_each_connection_rcu(connection, resource) {
2474 			if (connection->my_addr_len == my_addr_len &&
2475 			    connection->peer_addr_len == peer_addr_len &&
2476 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2477 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2478 				kref_get(&connection->kref);
2479 				goto found;
2480 			}
2481 		}
2482 	}
2483 	connection = NULL;
2484 found:
2485 	rcu_read_unlock();
2486 	return connection;
2487 }
2488 
drbd_alloc_socket(struct drbd_socket * socket)2489 static int drbd_alloc_socket(struct drbd_socket *socket)
2490 {
2491 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2492 	if (!socket->rbuf)
2493 		return -ENOMEM;
2494 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2495 	if (!socket->sbuf)
2496 		return -ENOMEM;
2497 	return 0;
2498 }
2499 
drbd_free_socket(struct drbd_socket * socket)2500 static void drbd_free_socket(struct drbd_socket *socket)
2501 {
2502 	free_page((unsigned long) socket->sbuf);
2503 	free_page((unsigned long) socket->rbuf);
2504 }
2505 
conn_free_crypto(struct drbd_connection * connection)2506 void conn_free_crypto(struct drbd_connection *connection)
2507 {
2508 	drbd_free_sock(connection);
2509 
2510 	crypto_free_hash(connection->csums_tfm);
2511 	crypto_free_hash(connection->verify_tfm);
2512 	crypto_free_hash(connection->cram_hmac_tfm);
2513 	crypto_free_hash(connection->integrity_tfm);
2514 	crypto_free_hash(connection->peer_integrity_tfm);
2515 	kfree(connection->int_dig_in);
2516 	kfree(connection->int_dig_vv);
2517 
2518 	connection->csums_tfm = NULL;
2519 	connection->verify_tfm = NULL;
2520 	connection->cram_hmac_tfm = NULL;
2521 	connection->integrity_tfm = NULL;
2522 	connection->peer_integrity_tfm = NULL;
2523 	connection->int_dig_in = NULL;
2524 	connection->int_dig_vv = NULL;
2525 }
2526 
set_resource_options(struct drbd_resource * resource,struct res_opts * res_opts)2527 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2528 {
2529 	struct drbd_connection *connection;
2530 	cpumask_var_t new_cpu_mask;
2531 	int err;
2532 
2533 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2534 		return -ENOMEM;
2535 
2536 	/* silently ignore cpu mask on UP kernel */
2537 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2538 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2539 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2540 		if (err == -EOVERFLOW) {
2541 			/* So what. mask it out. */
2542 			cpumask_var_t tmp_cpu_mask;
2543 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2544 				cpumask_setall(tmp_cpu_mask);
2545 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2546 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2547 					res_opts->cpu_mask,
2548 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2549 					nr_cpu_ids);
2550 				free_cpumask_var(tmp_cpu_mask);
2551 				err = 0;
2552 			}
2553 		}
2554 		if (err) {
2555 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2556 			/* retcode = ERR_CPU_MASK_PARSE; */
2557 			goto fail;
2558 		}
2559 	}
2560 	resource->res_opts = *res_opts;
2561 	if (cpumask_empty(new_cpu_mask))
2562 		drbd_calc_cpu_mask(&new_cpu_mask);
2563 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2564 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2565 		for_each_connection_rcu(connection, resource) {
2566 			connection->receiver.reset_cpu_mask = 1;
2567 			connection->asender.reset_cpu_mask = 1;
2568 			connection->worker.reset_cpu_mask = 1;
2569 		}
2570 	}
2571 	err = 0;
2572 
2573 fail:
2574 	free_cpumask_var(new_cpu_mask);
2575 	return err;
2576 
2577 }
2578 
drbd_create_resource(const char * name)2579 struct drbd_resource *drbd_create_resource(const char *name)
2580 {
2581 	struct drbd_resource *resource;
2582 
2583 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2584 	if (!resource)
2585 		goto fail;
2586 	resource->name = kstrdup(name, GFP_KERNEL);
2587 	if (!resource->name)
2588 		goto fail_free_resource;
2589 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2590 		goto fail_free_name;
2591 	kref_init(&resource->kref);
2592 	idr_init(&resource->devices);
2593 	INIT_LIST_HEAD(&resource->connections);
2594 	resource->write_ordering = WO_bdev_flush;
2595 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2596 	mutex_init(&resource->conf_update);
2597 	mutex_init(&resource->adm_mutex);
2598 	spin_lock_init(&resource->req_lock);
2599 	drbd_debugfs_resource_add(resource);
2600 	return resource;
2601 
2602 fail_free_name:
2603 	kfree(resource->name);
2604 fail_free_resource:
2605 	kfree(resource);
2606 fail:
2607 	return NULL;
2608 }
2609 
2610 /* caller must be under adm_mutex */
conn_create(const char * name,struct res_opts * res_opts)2611 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2612 {
2613 	struct drbd_resource *resource;
2614 	struct drbd_connection *connection;
2615 
2616 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2617 	if (!connection)
2618 		return NULL;
2619 
2620 	if (drbd_alloc_socket(&connection->data))
2621 		goto fail;
2622 	if (drbd_alloc_socket(&connection->meta))
2623 		goto fail;
2624 
2625 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2626 	if (!connection->current_epoch)
2627 		goto fail;
2628 
2629 	INIT_LIST_HEAD(&connection->transfer_log);
2630 
2631 	INIT_LIST_HEAD(&connection->current_epoch->list);
2632 	connection->epochs = 1;
2633 	spin_lock_init(&connection->epoch_lock);
2634 
2635 	connection->send.seen_any_write_yet = false;
2636 	connection->send.current_epoch_nr = 0;
2637 	connection->send.current_epoch_writes = 0;
2638 
2639 	resource = drbd_create_resource(name);
2640 	if (!resource)
2641 		goto fail;
2642 
2643 	connection->cstate = C_STANDALONE;
2644 	mutex_init(&connection->cstate_mutex);
2645 	init_waitqueue_head(&connection->ping_wait);
2646 	idr_init(&connection->peer_devices);
2647 
2648 	drbd_init_workqueue(&connection->sender_work);
2649 	mutex_init(&connection->data.mutex);
2650 	mutex_init(&connection->meta.mutex);
2651 
2652 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2653 	connection->receiver.connection = connection;
2654 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2655 	connection->worker.connection = connection;
2656 	drbd_thread_init(resource, &connection->asender, drbd_asender, "asender");
2657 	connection->asender.connection = connection;
2658 
2659 	kref_init(&connection->kref);
2660 
2661 	connection->resource = resource;
2662 
2663 	if (set_resource_options(resource, res_opts))
2664 		goto fail_resource;
2665 
2666 	kref_get(&resource->kref);
2667 	list_add_tail_rcu(&connection->connections, &resource->connections);
2668 	drbd_debugfs_connection_add(connection);
2669 	return connection;
2670 
2671 fail_resource:
2672 	list_del(&resource->resources);
2673 	drbd_free_resource(resource);
2674 fail:
2675 	kfree(connection->current_epoch);
2676 	drbd_free_socket(&connection->meta);
2677 	drbd_free_socket(&connection->data);
2678 	kfree(connection);
2679 	return NULL;
2680 }
2681 
drbd_destroy_connection(struct kref * kref)2682 void drbd_destroy_connection(struct kref *kref)
2683 {
2684 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2685 	struct drbd_resource *resource = connection->resource;
2686 
2687 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2688 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2689 	kfree(connection->current_epoch);
2690 
2691 	idr_destroy(&connection->peer_devices);
2692 
2693 	drbd_free_socket(&connection->meta);
2694 	drbd_free_socket(&connection->data);
2695 	kfree(connection->int_dig_in);
2696 	kfree(connection->int_dig_vv);
2697 	memset(connection, 0xfc, sizeof(*connection));
2698 	kfree(connection);
2699 	kref_put(&resource->kref, drbd_destroy_resource);
2700 }
2701 
init_submitter(struct drbd_device * device)2702 static int init_submitter(struct drbd_device *device)
2703 {
2704 	/* opencoded create_singlethread_workqueue(),
2705 	 * to be able to say "drbd%d", ..., minor */
2706 	device->submit.wq = alloc_workqueue("drbd%u_submit",
2707 			WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2708 	if (!device->submit.wq)
2709 		return -ENOMEM;
2710 
2711 	INIT_WORK(&device->submit.worker, do_submit);
2712 	INIT_LIST_HEAD(&device->submit.writes);
2713 	return 0;
2714 }
2715 
drbd_create_device(struct drbd_config_context * adm_ctx,unsigned int minor)2716 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2717 {
2718 	struct drbd_resource *resource = adm_ctx->resource;
2719 	struct drbd_connection *connection;
2720 	struct drbd_device *device;
2721 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2722 	struct gendisk *disk;
2723 	struct request_queue *q;
2724 	int id;
2725 	int vnr = adm_ctx->volume;
2726 	enum drbd_ret_code err = ERR_NOMEM;
2727 
2728 	device = minor_to_device(minor);
2729 	if (device)
2730 		return ERR_MINOR_OR_VOLUME_EXISTS;
2731 
2732 	/* GFP_KERNEL, we are outside of all write-out paths */
2733 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2734 	if (!device)
2735 		return ERR_NOMEM;
2736 	kref_init(&device->kref);
2737 
2738 	kref_get(&resource->kref);
2739 	device->resource = resource;
2740 	device->minor = minor;
2741 	device->vnr = vnr;
2742 
2743 	drbd_init_set_defaults(device);
2744 
2745 	q = blk_alloc_queue(GFP_KERNEL);
2746 	if (!q)
2747 		goto out_no_q;
2748 	device->rq_queue = q;
2749 	q->queuedata   = device;
2750 
2751 	disk = alloc_disk(1);
2752 	if (!disk)
2753 		goto out_no_disk;
2754 	device->vdisk = disk;
2755 
2756 	set_disk_ro(disk, true);
2757 
2758 	disk->queue = q;
2759 	disk->major = DRBD_MAJOR;
2760 	disk->first_minor = minor;
2761 	disk->fops = &drbd_ops;
2762 	sprintf(disk->disk_name, "drbd%d", minor);
2763 	disk->private_data = device;
2764 
2765 	device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2766 	/* we have no partitions. we contain only ourselves. */
2767 	device->this_bdev->bd_contains = device->this_bdev;
2768 
2769 	q->backing_dev_info.congested_fn = drbd_congested;
2770 	q->backing_dev_info.congested_data = device;
2771 
2772 	blk_queue_make_request(q, drbd_make_request);
2773 	blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2774 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2775 	   This triggers a max_bio_size message upon first attach or connect */
2776 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2777 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2778 	q->queue_lock = &resource->req_lock;
2779 
2780 	device->md_io.page = alloc_page(GFP_KERNEL);
2781 	if (!device->md_io.page)
2782 		goto out_no_io_page;
2783 
2784 	if (drbd_bm_init(device))
2785 		goto out_no_bitmap;
2786 	device->read_requests = RB_ROOT;
2787 	device->write_requests = RB_ROOT;
2788 
2789 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2790 	if (id < 0) {
2791 		if (id == -ENOSPC)
2792 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2793 		goto out_no_minor_idr;
2794 	}
2795 	kref_get(&device->kref);
2796 
2797 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2798 	if (id < 0) {
2799 		if (id == -ENOSPC)
2800 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2801 		goto out_idr_remove_minor;
2802 	}
2803 	kref_get(&device->kref);
2804 
2805 	INIT_LIST_HEAD(&device->peer_devices);
2806 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2807 	for_each_connection(connection, resource) {
2808 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2809 		if (!peer_device)
2810 			goto out_idr_remove_from_resource;
2811 		peer_device->connection = connection;
2812 		peer_device->device = device;
2813 
2814 		list_add(&peer_device->peer_devices, &device->peer_devices);
2815 		kref_get(&device->kref);
2816 
2817 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2818 		if (id < 0) {
2819 			if (id == -ENOSPC)
2820 				err = ERR_INVALID_REQUEST;
2821 			goto out_idr_remove_from_resource;
2822 		}
2823 		kref_get(&connection->kref);
2824 	}
2825 
2826 	if (init_submitter(device)) {
2827 		err = ERR_NOMEM;
2828 		goto out_idr_remove_vol;
2829 	}
2830 
2831 	add_disk(disk);
2832 
2833 	/* inherit the connection state */
2834 	device->state.conn = first_connection(resource)->cstate;
2835 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2836 		for_each_peer_device(peer_device, device)
2837 			drbd_connected(peer_device);
2838 	}
2839 	/* move to create_peer_device() */
2840 	for_each_peer_device(peer_device, device)
2841 		drbd_debugfs_peer_device_add(peer_device);
2842 	drbd_debugfs_device_add(device);
2843 	return NO_ERROR;
2844 
2845 out_idr_remove_vol:
2846 	idr_remove(&connection->peer_devices, vnr);
2847 out_idr_remove_from_resource:
2848 	for_each_connection(connection, resource) {
2849 		peer_device = idr_find(&connection->peer_devices, vnr);
2850 		if (peer_device) {
2851 			idr_remove(&connection->peer_devices, vnr);
2852 			kref_put(&connection->kref, drbd_destroy_connection);
2853 		}
2854 	}
2855 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2856 		list_del(&peer_device->peer_devices);
2857 		kfree(peer_device);
2858 	}
2859 	idr_remove(&resource->devices, vnr);
2860 out_idr_remove_minor:
2861 	idr_remove(&drbd_devices, minor);
2862 	synchronize_rcu();
2863 out_no_minor_idr:
2864 	drbd_bm_cleanup(device);
2865 out_no_bitmap:
2866 	__free_page(device->md_io.page);
2867 out_no_io_page:
2868 	put_disk(disk);
2869 out_no_disk:
2870 	blk_cleanup_queue(q);
2871 out_no_q:
2872 	kref_put(&resource->kref, drbd_destroy_resource);
2873 	kfree(device);
2874 	return err;
2875 }
2876 
drbd_delete_device(struct drbd_device * device)2877 void drbd_delete_device(struct drbd_device *device)
2878 {
2879 	struct drbd_resource *resource = device->resource;
2880 	struct drbd_connection *connection;
2881 	struct drbd_peer_device *peer_device;
2882 	int refs = 3;
2883 
2884 	/* move to free_peer_device() */
2885 	for_each_peer_device(peer_device, device)
2886 		drbd_debugfs_peer_device_cleanup(peer_device);
2887 	drbd_debugfs_device_cleanup(device);
2888 	for_each_connection(connection, resource) {
2889 		idr_remove(&connection->peer_devices, device->vnr);
2890 		refs++;
2891 	}
2892 	idr_remove(&resource->devices, device->vnr);
2893 	idr_remove(&drbd_devices, device_to_minor(device));
2894 	del_gendisk(device->vdisk);
2895 	synchronize_rcu();
2896 	kref_sub(&device->kref, refs, drbd_destroy_device);
2897 }
2898 
drbd_init(void)2899 static int __init drbd_init(void)
2900 {
2901 	int err;
2902 
2903 	if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2904 		pr_err("invalid minor_count (%d)\n", minor_count);
2905 #ifdef MODULE
2906 		return -EINVAL;
2907 #else
2908 		minor_count = DRBD_MINOR_COUNT_DEF;
2909 #endif
2910 	}
2911 
2912 	err = register_blkdev(DRBD_MAJOR, "drbd");
2913 	if (err) {
2914 		pr_err("unable to register block device major %d\n",
2915 		       DRBD_MAJOR);
2916 		return err;
2917 	}
2918 
2919 	/*
2920 	 * allocate all necessary structs
2921 	 */
2922 	init_waitqueue_head(&drbd_pp_wait);
2923 
2924 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2925 	idr_init(&drbd_devices);
2926 
2927 	rwlock_init(&global_state_lock);
2928 	INIT_LIST_HEAD(&drbd_resources);
2929 
2930 	err = drbd_genl_register();
2931 	if (err) {
2932 		pr_err("unable to register generic netlink family\n");
2933 		goto fail;
2934 	}
2935 
2936 	err = drbd_create_mempools();
2937 	if (err)
2938 		goto fail;
2939 
2940 	err = -ENOMEM;
2941 	drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2942 	if (!drbd_proc)	{
2943 		pr_err("unable to register proc file\n");
2944 		goto fail;
2945 	}
2946 
2947 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2948 	if (!retry.wq) {
2949 		pr_err("unable to create retry workqueue\n");
2950 		goto fail;
2951 	}
2952 	INIT_WORK(&retry.worker, do_retry);
2953 	spin_lock_init(&retry.lock);
2954 	INIT_LIST_HEAD(&retry.writes);
2955 
2956 	if (drbd_debugfs_init())
2957 		pr_notice("failed to initialize debugfs -- will not be available\n");
2958 
2959 	pr_info("initialized. "
2960 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2961 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2962 	pr_info("%s\n", drbd_buildtag());
2963 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2964 	return 0; /* Success! */
2965 
2966 fail:
2967 	drbd_cleanup();
2968 	if (err == -ENOMEM)
2969 		pr_err("ran out of memory\n");
2970 	else
2971 		pr_err("initialization failure\n");
2972 	return err;
2973 }
2974 
drbd_free_ldev(struct drbd_backing_dev * ldev)2975 void drbd_free_ldev(struct drbd_backing_dev *ldev)
2976 {
2977 	if (ldev == NULL)
2978 		return;
2979 
2980 	blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2981 	blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2982 
2983 	kfree(ldev->disk_conf);
2984 	kfree(ldev);
2985 }
2986 
drbd_free_one_sock(struct drbd_socket * ds)2987 static void drbd_free_one_sock(struct drbd_socket *ds)
2988 {
2989 	struct socket *s;
2990 	mutex_lock(&ds->mutex);
2991 	s = ds->socket;
2992 	ds->socket = NULL;
2993 	mutex_unlock(&ds->mutex);
2994 	if (s) {
2995 		/* so debugfs does not need to mutex_lock() */
2996 		synchronize_rcu();
2997 		kernel_sock_shutdown(s, SHUT_RDWR);
2998 		sock_release(s);
2999 	}
3000 }
3001 
drbd_free_sock(struct drbd_connection * connection)3002 void drbd_free_sock(struct drbd_connection *connection)
3003 {
3004 	if (connection->data.socket)
3005 		drbd_free_one_sock(&connection->data);
3006 	if (connection->meta.socket)
3007 		drbd_free_one_sock(&connection->meta);
3008 }
3009 
3010 /* meta data management */
3011 
conn_md_sync(struct drbd_connection * connection)3012 void conn_md_sync(struct drbd_connection *connection)
3013 {
3014 	struct drbd_peer_device *peer_device;
3015 	int vnr;
3016 
3017 	rcu_read_lock();
3018 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3019 		struct drbd_device *device = peer_device->device;
3020 
3021 		kref_get(&device->kref);
3022 		rcu_read_unlock();
3023 		drbd_md_sync(device);
3024 		kref_put(&device->kref, drbd_destroy_device);
3025 		rcu_read_lock();
3026 	}
3027 	rcu_read_unlock();
3028 }
3029 
3030 /* aligned 4kByte */
3031 struct meta_data_on_disk {
3032 	u64 la_size_sect;      /* last agreed size. */
3033 	u64 uuid[UI_SIZE];   /* UUIDs. */
3034 	u64 device_uuid;
3035 	u64 reserved_u64_1;
3036 	u32 flags;             /* MDF */
3037 	u32 magic;
3038 	u32 md_size_sect;
3039 	u32 al_offset;         /* offset to this block */
3040 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3041 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3042 	u32 bm_offset;         /* offset to the bitmap, from here */
3043 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3044 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3045 
3046 	/* see al_tr_number_to_on_disk_sector() */
3047 	u32 al_stripes;
3048 	u32 al_stripe_size_4k;
3049 
3050 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3051 } __packed;
3052 
3053 
3054 
drbd_md_write(struct drbd_device * device,void * b)3055 void drbd_md_write(struct drbd_device *device, void *b)
3056 {
3057 	struct meta_data_on_disk *buffer = b;
3058 	sector_t sector;
3059 	int i;
3060 
3061 	memset(buffer, 0, sizeof(*buffer));
3062 
3063 	buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3064 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3065 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3066 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3067 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3068 
3069 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3070 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3071 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3072 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3073 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3074 
3075 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3076 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3077 
3078 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3079 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3080 
3081 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3082 	sector = device->ldev->md.md_offset;
3083 
3084 	if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3085 		/* this was a try anyways ... */
3086 		drbd_err(device, "meta data update failed!\n");
3087 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3088 	}
3089 }
3090 
3091 /**
3092  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3093  * @device:	DRBD device.
3094  */
drbd_md_sync(struct drbd_device * device)3095 void drbd_md_sync(struct drbd_device *device)
3096 {
3097 	struct meta_data_on_disk *buffer;
3098 
3099 	/* Don't accidentally change the DRBD meta data layout. */
3100 	BUILD_BUG_ON(UI_SIZE != 4);
3101 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3102 
3103 	del_timer(&device->md_sync_timer);
3104 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3105 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3106 		return;
3107 
3108 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3109 	 * metadata even if we detach due to a disk failure! */
3110 	if (!get_ldev_if_state(device, D_FAILED))
3111 		return;
3112 
3113 	buffer = drbd_md_get_buffer(device, __func__);
3114 	if (!buffer)
3115 		goto out;
3116 
3117 	drbd_md_write(device, buffer);
3118 
3119 	/* Update device->ldev->md.la_size_sect,
3120 	 * since we updated it on metadata. */
3121 	device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3122 
3123 	drbd_md_put_buffer(device);
3124 out:
3125 	put_ldev(device);
3126 }
3127 
check_activity_log_stripe_size(struct drbd_device * device,struct meta_data_on_disk * on_disk,struct drbd_md * in_core)3128 static int check_activity_log_stripe_size(struct drbd_device *device,
3129 		struct meta_data_on_disk *on_disk,
3130 		struct drbd_md *in_core)
3131 {
3132 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3133 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3134 	u64 al_size_4k;
3135 
3136 	/* both not set: default to old fixed size activity log */
3137 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3138 		al_stripes = 1;
3139 		al_stripe_size_4k = MD_32kB_SECT/8;
3140 	}
3141 
3142 	/* some paranoia plausibility checks */
3143 
3144 	/* we need both values to be set */
3145 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3146 		goto err;
3147 
3148 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3149 
3150 	/* Upper limit of activity log area, to avoid potential overflow
3151 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3152 	 * than 72 * 4k blocks total only increases the amount of history,
3153 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3154 	if (al_size_4k > (16 * 1024 * 1024/4))
3155 		goto err;
3156 
3157 	/* Lower limit: we need at least 8 transaction slots (32kB)
3158 	 * to not break existing setups */
3159 	if (al_size_4k < MD_32kB_SECT/8)
3160 		goto err;
3161 
3162 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3163 	in_core->al_stripes = al_stripes;
3164 	in_core->al_size_4k = al_size_4k;
3165 
3166 	return 0;
3167 err:
3168 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3169 			al_stripes, al_stripe_size_4k);
3170 	return -EINVAL;
3171 }
3172 
check_offsets_and_sizes(struct drbd_device * device,struct drbd_backing_dev * bdev)3173 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3174 {
3175 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3176 	struct drbd_md *in_core = &bdev->md;
3177 	s32 on_disk_al_sect;
3178 	s32 on_disk_bm_sect;
3179 
3180 	/* The on-disk size of the activity log, calculated from offsets, and
3181 	 * the size of the activity log calculated from the stripe settings,
3182 	 * should match.
3183 	 * Though we could relax this a bit: it is ok, if the striped activity log
3184 	 * fits in the available on-disk activity log size.
3185 	 * Right now, that would break how resize is implemented.
3186 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3187 	 * of possible unused padding space in the on disk layout. */
3188 	if (in_core->al_offset < 0) {
3189 		if (in_core->bm_offset > in_core->al_offset)
3190 			goto err;
3191 		on_disk_al_sect = -in_core->al_offset;
3192 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3193 	} else {
3194 		if (in_core->al_offset != MD_4kB_SECT)
3195 			goto err;
3196 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3197 			goto err;
3198 
3199 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3200 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3201 	}
3202 
3203 	/* old fixed size meta data is exactly that: fixed. */
3204 	if (in_core->meta_dev_idx >= 0) {
3205 		if (in_core->md_size_sect != MD_128MB_SECT
3206 		||  in_core->al_offset != MD_4kB_SECT
3207 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3208 		||  in_core->al_stripes != 1
3209 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3210 			goto err;
3211 	}
3212 
3213 	if (capacity < in_core->md_size_sect)
3214 		goto err;
3215 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3216 		goto err;
3217 
3218 	/* should be aligned, and at least 32k */
3219 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3220 		goto err;
3221 
3222 	/* should fit (for now: exactly) into the available on-disk space;
3223 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3224 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3225 		goto err;
3226 
3227 	/* again, should be aligned */
3228 	if (in_core->bm_offset & 7)
3229 		goto err;
3230 
3231 	/* FIXME check for device grow with flex external meta data? */
3232 
3233 	/* can the available bitmap space cover the last agreed device size? */
3234 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3235 		goto err;
3236 
3237 	return 0;
3238 
3239 err:
3240 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3241 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3242 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3243 			in_core->meta_dev_idx,
3244 			in_core->al_stripes, in_core->al_stripe_size_4k,
3245 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3246 			(unsigned long long)in_core->la_size_sect,
3247 			(unsigned long long)capacity);
3248 
3249 	return -EINVAL;
3250 }
3251 
3252 
3253 /**
3254  * drbd_md_read() - Reads in the meta data super block
3255  * @device:	DRBD device.
3256  * @bdev:	Device from which the meta data should be read in.
3257  *
3258  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3259  * something goes wrong.
3260  *
3261  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3262  * even before @bdev is assigned to @device->ldev.
3263  */
drbd_md_read(struct drbd_device * device,struct drbd_backing_dev * bdev)3264 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3265 {
3266 	struct meta_data_on_disk *buffer;
3267 	u32 magic, flags;
3268 	int i, rv = NO_ERROR;
3269 
3270 	if (device->state.disk != D_DISKLESS)
3271 		return ERR_DISK_CONFIGURED;
3272 
3273 	buffer = drbd_md_get_buffer(device, __func__);
3274 	if (!buffer)
3275 		return ERR_NOMEM;
3276 
3277 	/* First, figure out where our meta data superblock is located,
3278 	 * and read it. */
3279 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3280 	bdev->md.md_offset = drbd_md_ss(bdev);
3281 
3282 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3283 		/* NOTE: can't do normal error processing here as this is
3284 		   called BEFORE disk is attached */
3285 		drbd_err(device, "Error while reading metadata.\n");
3286 		rv = ERR_IO_MD_DISK;
3287 		goto err;
3288 	}
3289 
3290 	magic = be32_to_cpu(buffer->magic);
3291 	flags = be32_to_cpu(buffer->flags);
3292 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3293 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3294 			/* btw: that's Activity Log clean, not "all" clean. */
3295 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3296 		rv = ERR_MD_UNCLEAN;
3297 		goto err;
3298 	}
3299 
3300 	rv = ERR_MD_INVALID;
3301 	if (magic != DRBD_MD_MAGIC_08) {
3302 		if (magic == DRBD_MD_MAGIC_07)
3303 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3304 		else
3305 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3306 		goto err;
3307 	}
3308 
3309 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3310 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3311 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3312 		goto err;
3313 	}
3314 
3315 
3316 	/* convert to in_core endian */
3317 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3318 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3319 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3320 	bdev->md.flags = be32_to_cpu(buffer->flags);
3321 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3322 
3323 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3324 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3325 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3326 
3327 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3328 		goto err;
3329 	if (check_offsets_and_sizes(device, bdev))
3330 		goto err;
3331 
3332 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3333 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3334 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3335 		goto err;
3336 	}
3337 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3338 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3339 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3340 		goto err;
3341 	}
3342 
3343 	rv = NO_ERROR;
3344 
3345 	spin_lock_irq(&device->resource->req_lock);
3346 	if (device->state.conn < C_CONNECTED) {
3347 		unsigned int peer;
3348 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3349 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3350 		device->peer_max_bio_size = peer;
3351 	}
3352 	spin_unlock_irq(&device->resource->req_lock);
3353 
3354  err:
3355 	drbd_md_put_buffer(device);
3356 
3357 	return rv;
3358 }
3359 
3360 /**
3361  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3362  * @device:	DRBD device.
3363  *
3364  * Call this function if you change anything that should be written to
3365  * the meta-data super block. This function sets MD_DIRTY, and starts a
3366  * timer that ensures that within five seconds you have to call drbd_md_sync().
3367  */
3368 #ifdef DEBUG
drbd_md_mark_dirty_(struct drbd_device * device,unsigned int line,const char * func)3369 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3370 {
3371 	if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3372 		mod_timer(&device->md_sync_timer, jiffies + HZ);
3373 		device->last_md_mark_dirty.line = line;
3374 		device->last_md_mark_dirty.func = func;
3375 	}
3376 }
3377 #else
drbd_md_mark_dirty(struct drbd_device * device)3378 void drbd_md_mark_dirty(struct drbd_device *device)
3379 {
3380 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3381 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3382 }
3383 #endif
3384 
drbd_uuid_move_history(struct drbd_device * device)3385 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3386 {
3387 	int i;
3388 
3389 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3390 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3391 }
3392 
__drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3393 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3394 {
3395 	if (idx == UI_CURRENT) {
3396 		if (device->state.role == R_PRIMARY)
3397 			val |= 1;
3398 		else
3399 			val &= ~((u64)1);
3400 
3401 		drbd_set_ed_uuid(device, val);
3402 	}
3403 
3404 	device->ldev->md.uuid[idx] = val;
3405 	drbd_md_mark_dirty(device);
3406 }
3407 
_drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3408 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3409 {
3410 	unsigned long flags;
3411 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3412 	__drbd_uuid_set(device, idx, val);
3413 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3414 }
3415 
drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3416 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3417 {
3418 	unsigned long flags;
3419 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3420 	if (device->ldev->md.uuid[idx]) {
3421 		drbd_uuid_move_history(device);
3422 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3423 	}
3424 	__drbd_uuid_set(device, idx, val);
3425 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3426 }
3427 
3428 /**
3429  * drbd_uuid_new_current() - Creates a new current UUID
3430  * @device:	DRBD device.
3431  *
3432  * Creates a new current UUID, and rotates the old current UUID into
3433  * the bitmap slot. Causes an incremental resync upon next connect.
3434  */
drbd_uuid_new_current(struct drbd_device * device)3435 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3436 {
3437 	u64 val;
3438 	unsigned long long bm_uuid;
3439 
3440 	get_random_bytes(&val, sizeof(u64));
3441 
3442 	spin_lock_irq(&device->ldev->md.uuid_lock);
3443 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3444 
3445 	if (bm_uuid)
3446 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3447 
3448 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3449 	__drbd_uuid_set(device, UI_CURRENT, val);
3450 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3451 
3452 	drbd_print_uuids(device, "new current UUID");
3453 	/* get it to stable storage _now_ */
3454 	drbd_md_sync(device);
3455 }
3456 
drbd_uuid_set_bm(struct drbd_device * device,u64 val)3457 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3458 {
3459 	unsigned long flags;
3460 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3461 		return;
3462 
3463 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3464 	if (val == 0) {
3465 		drbd_uuid_move_history(device);
3466 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3467 		device->ldev->md.uuid[UI_BITMAP] = 0;
3468 	} else {
3469 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3470 		if (bm_uuid)
3471 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3472 
3473 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3474 	}
3475 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3476 
3477 	drbd_md_mark_dirty(device);
3478 }
3479 
3480 /**
3481  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3482  * @device:	DRBD device.
3483  *
3484  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3485  */
drbd_bmio_set_n_write(struct drbd_device * device)3486 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3487 {
3488 	int rv = -EIO;
3489 
3490 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3491 	drbd_md_sync(device);
3492 	drbd_bm_set_all(device);
3493 
3494 	rv = drbd_bm_write(device);
3495 
3496 	if (!rv) {
3497 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3498 		drbd_md_sync(device);
3499 	}
3500 
3501 	return rv;
3502 }
3503 
3504 /**
3505  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3506  * @device:	DRBD device.
3507  *
3508  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3509  */
drbd_bmio_clear_n_write(struct drbd_device * device)3510 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3511 {
3512 	drbd_resume_al(device);
3513 	drbd_bm_clear_all(device);
3514 	return drbd_bm_write(device);
3515 }
3516 
w_bitmap_io(struct drbd_work * w,int unused)3517 static int w_bitmap_io(struct drbd_work *w, int unused)
3518 {
3519 	struct drbd_device *device =
3520 		container_of(w, struct drbd_device, bm_io_work.w);
3521 	struct bm_io_work *work = &device->bm_io_work;
3522 	int rv = -EIO;
3523 
3524 	D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3525 
3526 	if (get_ldev(device)) {
3527 		drbd_bm_lock(device, work->why, work->flags);
3528 		rv = work->io_fn(device);
3529 		drbd_bm_unlock(device);
3530 		put_ldev(device);
3531 	}
3532 
3533 	clear_bit_unlock(BITMAP_IO, &device->flags);
3534 	wake_up(&device->misc_wait);
3535 
3536 	if (work->done)
3537 		work->done(device, rv);
3538 
3539 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3540 	work->why = NULL;
3541 	work->flags = 0;
3542 
3543 	return 0;
3544 }
3545 
3546 /**
3547  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3548  * @device:	DRBD device.
3549  * @io_fn:	IO callback to be called when bitmap IO is possible
3550  * @done:	callback to be called after the bitmap IO was performed
3551  * @why:	Descriptive text of the reason for doing the IO
3552  *
3553  * While IO on the bitmap happens we freeze application IO thus we ensure
3554  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3555  * called from worker context. It MUST NOT be used while a previous such
3556  * work is still pending!
3557  *
3558  * Its worker function encloses the call of io_fn() by get_ldev() and
3559  * put_ldev().
3560  */
drbd_queue_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),void (* done)(struct drbd_device *,int),char * why,enum bm_flag flags)3561 void drbd_queue_bitmap_io(struct drbd_device *device,
3562 			  int (*io_fn)(struct drbd_device *),
3563 			  void (*done)(struct drbd_device *, int),
3564 			  char *why, enum bm_flag flags)
3565 {
3566 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3567 
3568 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3569 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3570 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3571 	if (device->bm_io_work.why)
3572 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3573 			why, device->bm_io_work.why);
3574 
3575 	device->bm_io_work.io_fn = io_fn;
3576 	device->bm_io_work.done = done;
3577 	device->bm_io_work.why = why;
3578 	device->bm_io_work.flags = flags;
3579 
3580 	spin_lock_irq(&device->resource->req_lock);
3581 	set_bit(BITMAP_IO, &device->flags);
3582 	if (atomic_read(&device->ap_bio_cnt) == 0) {
3583 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3584 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3585 					&device->bm_io_work.w);
3586 	}
3587 	spin_unlock_irq(&device->resource->req_lock);
3588 }
3589 
3590 /**
3591  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3592  * @device:	DRBD device.
3593  * @io_fn:	IO callback to be called when bitmap IO is possible
3594  * @why:	Descriptive text of the reason for doing the IO
3595  *
3596  * freezes application IO while that the actual IO operations runs. This
3597  * functions MAY NOT be called from worker context.
3598  */
drbd_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),char * why,enum bm_flag flags)3599 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3600 		char *why, enum bm_flag flags)
3601 {
3602 	int rv;
3603 
3604 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3605 
3606 	if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3607 		drbd_suspend_io(device);
3608 
3609 	drbd_bm_lock(device, why, flags);
3610 	rv = io_fn(device);
3611 	drbd_bm_unlock(device);
3612 
3613 	if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3614 		drbd_resume_io(device);
3615 
3616 	return rv;
3617 }
3618 
drbd_md_set_flag(struct drbd_device * device,int flag)3619 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3620 {
3621 	if ((device->ldev->md.flags & flag) != flag) {
3622 		drbd_md_mark_dirty(device);
3623 		device->ldev->md.flags |= flag;
3624 	}
3625 }
3626 
drbd_md_clear_flag(struct drbd_device * device,int flag)3627 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3628 {
3629 	if ((device->ldev->md.flags & flag) != 0) {
3630 		drbd_md_mark_dirty(device);
3631 		device->ldev->md.flags &= ~flag;
3632 	}
3633 }
drbd_md_test_flag(struct drbd_backing_dev * bdev,int flag)3634 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3635 {
3636 	return (bdev->md.flags & flag) != 0;
3637 }
3638 
md_sync_timer_fn(unsigned long data)3639 static void md_sync_timer_fn(unsigned long data)
3640 {
3641 	struct drbd_device *device = (struct drbd_device *) data;
3642 	drbd_device_post_work(device, MD_SYNC);
3643 }
3644 
cmdname(enum drbd_packet cmd)3645 const char *cmdname(enum drbd_packet cmd)
3646 {
3647 	/* THINK may need to become several global tables
3648 	 * when we want to support more than
3649 	 * one PRO_VERSION */
3650 	static const char *cmdnames[] = {
3651 		[P_DATA]	        = "Data",
3652 		[P_DATA_REPLY]	        = "DataReply",
3653 		[P_RS_DATA_REPLY]	= "RSDataReply",
3654 		[P_BARRIER]	        = "Barrier",
3655 		[P_BITMAP]	        = "ReportBitMap",
3656 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3657 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3658 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3659 		[P_DATA_REQUEST]	= "DataRequest",
3660 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3661 		[P_SYNC_PARAM]	        = "SyncParam",
3662 		[P_SYNC_PARAM89]	= "SyncParam89",
3663 		[P_PROTOCOL]            = "ReportProtocol",
3664 		[P_UUIDS]	        = "ReportUUIDs",
3665 		[P_SIZES]	        = "ReportSizes",
3666 		[P_STATE]	        = "ReportState",
3667 		[P_SYNC_UUID]           = "ReportSyncUUID",
3668 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3669 		[P_AUTH_RESPONSE]	= "AuthResponse",
3670 		[P_PING]		= "Ping",
3671 		[P_PING_ACK]	        = "PingAck",
3672 		[P_RECV_ACK]	        = "RecvAck",
3673 		[P_WRITE_ACK]	        = "WriteAck",
3674 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3675 		[P_SUPERSEDED]          = "Superseded",
3676 		[P_NEG_ACK]	        = "NegAck",
3677 		[P_NEG_DREPLY]	        = "NegDReply",
3678 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3679 		[P_BARRIER_ACK]	        = "BarrierAck",
3680 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3681 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3682 		[P_OV_REQUEST]          = "OVRequest",
3683 		[P_OV_REPLY]            = "OVReply",
3684 		[P_OV_RESULT]           = "OVResult",
3685 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3686 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3687 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3688 		[P_DELAY_PROBE]         = "DelayProbe",
3689 		[P_OUT_OF_SYNC]		= "OutOfSync",
3690 		[P_RETRY_WRITE]		= "RetryWrite",
3691 		[P_RS_CANCEL]		= "RSCancel",
3692 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3693 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3694 		[P_RETRY_WRITE]		= "retry_write",
3695 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3696 
3697 		/* enum drbd_packet, but not commands - obsoleted flags:
3698 		 *	P_MAY_IGNORE
3699 		 *	P_MAX_OPT_CMD
3700 		 */
3701 	};
3702 
3703 	/* too big for the array: 0xfffX */
3704 	if (cmd == P_INITIAL_META)
3705 		return "InitialMeta";
3706 	if (cmd == P_INITIAL_DATA)
3707 		return "InitialData";
3708 	if (cmd == P_CONNECTION_FEATURES)
3709 		return "ConnectionFeatures";
3710 	if (cmd >= ARRAY_SIZE(cmdnames))
3711 		return "Unknown";
3712 	return cmdnames[cmd];
3713 }
3714 
3715 /**
3716  * drbd_wait_misc  -  wait for a request to make progress
3717  * @device:	device associated with the request
3718  * @i:		the struct drbd_interval embedded in struct drbd_request or
3719  *		struct drbd_peer_request
3720  */
drbd_wait_misc(struct drbd_device * device,struct drbd_interval * i)3721 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3722 {
3723 	struct net_conf *nc;
3724 	DEFINE_WAIT(wait);
3725 	long timeout;
3726 
3727 	rcu_read_lock();
3728 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3729 	if (!nc) {
3730 		rcu_read_unlock();
3731 		return -ETIMEDOUT;
3732 	}
3733 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3734 	rcu_read_unlock();
3735 
3736 	/* Indicate to wake up device->misc_wait on progress.  */
3737 	i->waiting = true;
3738 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3739 	spin_unlock_irq(&device->resource->req_lock);
3740 	timeout = schedule_timeout(timeout);
3741 	finish_wait(&device->misc_wait, &wait);
3742 	spin_lock_irq(&device->resource->req_lock);
3743 	if (!timeout || device->state.conn < C_CONNECTED)
3744 		return -ETIMEDOUT;
3745 	if (signal_pending(current))
3746 		return -ERESTARTSYS;
3747 	return 0;
3748 }
3749 
3750 #ifdef CONFIG_DRBD_FAULT_INJECTION
3751 /* Fault insertion support including random number generator shamelessly
3752  * stolen from kernel/rcutorture.c */
3753 struct fault_random_state {
3754 	unsigned long state;
3755 	unsigned long count;
3756 };
3757 
3758 #define FAULT_RANDOM_MULT 39916801  /* prime */
3759 #define FAULT_RANDOM_ADD	479001701 /* prime */
3760 #define FAULT_RANDOM_REFRESH 10000
3761 
3762 /*
3763  * Crude but fast random-number generator.  Uses a linear congruential
3764  * generator, with occasional help from get_random_bytes().
3765  */
3766 static unsigned long
_drbd_fault_random(struct fault_random_state * rsp)3767 _drbd_fault_random(struct fault_random_state *rsp)
3768 {
3769 	long refresh;
3770 
3771 	if (!rsp->count--) {
3772 		get_random_bytes(&refresh, sizeof(refresh));
3773 		rsp->state += refresh;
3774 		rsp->count = FAULT_RANDOM_REFRESH;
3775 	}
3776 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3777 	return swahw32(rsp->state);
3778 }
3779 
3780 static char *
_drbd_fault_str(unsigned int type)3781 _drbd_fault_str(unsigned int type) {
3782 	static char *_faults[] = {
3783 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3784 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3785 		[DRBD_FAULT_RS_WR] = "Resync write",
3786 		[DRBD_FAULT_RS_RD] = "Resync read",
3787 		[DRBD_FAULT_DT_WR] = "Data write",
3788 		[DRBD_FAULT_DT_RD] = "Data read",
3789 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3790 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3791 		[DRBD_FAULT_AL_EE] = "EE allocation",
3792 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3793 	};
3794 
3795 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3796 }
3797 
3798 unsigned int
_drbd_insert_fault(struct drbd_device * device,unsigned int type)3799 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3800 {
3801 	static struct fault_random_state rrs = {0, 0};
3802 
3803 	unsigned int ret = (
3804 		(fault_devs == 0 ||
3805 			((1 << device_to_minor(device)) & fault_devs) != 0) &&
3806 		(((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3807 
3808 	if (ret) {
3809 		fault_count++;
3810 
3811 		if (__ratelimit(&drbd_ratelimit_state))
3812 			drbd_warn(device, "***Simulating %s failure\n",
3813 				_drbd_fault_str(type));
3814 	}
3815 
3816 	return ret;
3817 }
3818 #endif
3819 
drbd_buildtag(void)3820 const char *drbd_buildtag(void)
3821 {
3822 	/* DRBD built from external sources has here a reference to the
3823 	   git hash of the source code. */
3824 
3825 	static char buildtag[38] = "\0uilt-in";
3826 
3827 	if (buildtag[0] == 0) {
3828 #ifdef MODULE
3829 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3830 #else
3831 		buildtag[0] = 'b';
3832 #endif
3833 	}
3834 
3835 	return buildtag;
3836 }
3837 
3838 module_init(drbd_init)
3839 module_exit(drbd_cleanup)
3840 
3841 EXPORT_SYMBOL(drbd_conn_str);
3842 EXPORT_SYMBOL(drbd_role_str);
3843 EXPORT_SYMBOL(drbd_disk_str);
3844 EXPORT_SYMBOL(drbd_set_st_err_str);
3845