1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80
81 #include <asm/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
transfer_xor(struct loop_device * lo,int cmd,struct page * raw_page,unsigned raw_off,struct page * loop_page,unsigned loop_off,int size,sector_t real_block)89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93 {
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116 }
117
xor_init(struct loop_device * lo,const struct loop_info64 * info)118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123 }
124
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127 };
128
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133 };
134
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139 };
140
get_size(loff_t offset,loff_t sizelimit,struct file * file)141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160 }
161
get_loop_size(struct loop_device * lo,struct file * file)162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166
__loop_update_dio(struct loop_device * lo,bool dio)167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane appplications should be PAGE_SIZE algined
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222
223 static int
figure_loop_size(struct loop_device * lo,loff_t offset,loff_t sizelimit)224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 sector_t x = (sector_t)size;
228 struct block_device *bdev = lo->lo_device;
229
230 if (unlikely((loff_t)x != size))
231 return -EFBIG;
232 if (lo->lo_offset != offset)
233 lo->lo_offset = offset;
234 if (lo->lo_sizelimit != sizelimit)
235 lo->lo_sizelimit = sizelimit;
236 set_capacity(lo->lo_disk, x);
237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 return 0;
241 }
242
243 static inline int
lo_do_transfer(struct loop_device * lo,int cmd,struct page * rpage,unsigned roffs,struct page * lpage,unsigned loffs,int size,sector_t rblock)244 lo_do_transfer(struct loop_device *lo, int cmd,
245 struct page *rpage, unsigned roffs,
246 struct page *lpage, unsigned loffs,
247 int size, sector_t rblock)
248 {
249 int ret;
250
251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 if (likely(!ret))
253 return 0;
254
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock << 9, size);
258 return ret;
259 }
260
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 struct iov_iter i;
264 ssize_t bw;
265
266 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
267
268 file_start_write(file);
269 bw = vfs_iter_write(file, &i, ppos);
270 file_end_write(file);
271
272 if (likely(bw == bvec->bv_len))
273 return 0;
274
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos, bvec->bv_len);
278 if (bw >= 0)
279 bw = -EIO;
280 return bw;
281 }
282
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 loff_t pos)
285 {
286 struct bio_vec bvec;
287 struct req_iterator iter;
288 int ret = 0;
289
290 rq_for_each_segment(bvec, rq, iter) {
291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 if (ret < 0)
293 break;
294 cond_resched();
295 }
296
297 return ret;
298 }
299
300 /*
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
304 */
lo_write_transfer(struct loop_device * lo,struct request * rq,loff_t pos)305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 loff_t pos)
307 {
308 struct bio_vec bvec, b;
309 struct req_iterator iter;
310 struct page *page;
311 int ret = 0;
312
313 page = alloc_page(GFP_NOIO);
314 if (unlikely(!page))
315 return -ENOMEM;
316
317 rq_for_each_segment(bvec, rq, iter) {
318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 bvec.bv_offset, bvec.bv_len, pos >> 9);
320 if (unlikely(ret))
321 break;
322
323 b.bv_page = page;
324 b.bv_offset = 0;
325 b.bv_len = bvec.bv_len;
326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 if (ret < 0)
328 break;
329 }
330
331 __free_page(page);
332 return ret;
333 }
334
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 loff_t pos)
337 {
338 struct bio_vec bvec;
339 struct req_iterator iter;
340 struct iov_iter i;
341 ssize_t len;
342
343 rq_for_each_segment(bvec, rq, iter) {
344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 if (len < 0)
347 return len;
348
349 flush_dcache_page(bvec.bv_page);
350
351 if (len != bvec.bv_len) {
352 struct bio *bio;
353
354 __rq_for_each_bio(bio, rq)
355 zero_fill_bio(bio);
356 break;
357 }
358 cond_resched();
359 }
360
361 return 0;
362 }
363
lo_read_transfer(struct loop_device * lo,struct request * rq,loff_t pos)364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 loff_t pos)
366 {
367 struct bio_vec bvec, b;
368 struct req_iterator iter;
369 struct iov_iter i;
370 struct page *page;
371 ssize_t len;
372 int ret = 0;
373
374 page = alloc_page(GFP_NOIO);
375 if (unlikely(!page))
376 return -ENOMEM;
377
378 rq_for_each_segment(bvec, rq, iter) {
379 loff_t offset = pos;
380
381 b.bv_page = page;
382 b.bv_offset = 0;
383 b.bv_len = bvec.bv_len;
384
385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 if (len < 0) {
388 ret = len;
389 goto out_free_page;
390 }
391
392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 bvec.bv_offset, len, offset >> 9);
394 if (ret)
395 goto out_free_page;
396
397 flush_dcache_page(bvec.bv_page);
398
399 if (len != bvec.bv_len) {
400 struct bio *bio;
401
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
405 }
406 }
407
408 ret = 0;
409 out_free_page:
410 __free_page(page);
411 return ret;
412 }
413
lo_discard(struct loop_device * lo,struct request * rq,loff_t pos)414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 /*
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
421 */
422 struct file *file = lo->lo_backing_file;
423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 int ret;
425
426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 ret = -EOPNOTSUPP;
428 goto out;
429 }
430
431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 ret = -EIO;
434 out:
435 return ret;
436 }
437
lo_req_flush(struct loop_device * lo,struct request * rq)438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 struct file *file = lo->lo_backing_file;
441 int ret = vfs_fsync(file, 0);
442 if (unlikely(ret && ret != -EINVAL))
443 ret = -EIO;
444
445 return ret;
446 }
447
handle_partial_read(struct loop_cmd * cmd,long bytes)448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
449 {
450 if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE))
451 return;
452
453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 struct bio *bio = cmd->rq->bio;
455
456 bio_advance(bio, bytes);
457 zero_fill_bio(bio);
458 }
459 }
460
lo_rw_aio_complete(struct kiocb * iocb,long ret,long ret2)461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
462 {
463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 struct request *rq = cmd->rq;
465
466 handle_partial_read(cmd, ret);
467
468 if (ret > 0)
469 ret = 0;
470 else if (ret < 0)
471 ret = -EIO;
472
473 blk_mq_complete_request(rq, ret);
474 }
475
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,bool rw)476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 loff_t pos, bool rw)
478 {
479 struct iov_iter iter;
480 struct bio_vec *bvec;
481 struct bio *bio = cmd->rq->bio;
482 struct file *file = lo->lo_backing_file;
483 int ret;
484
485 /* nomerge for loop request queue */
486 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
487
488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
490 bio_segments(bio), blk_rq_bytes(cmd->rq));
491 /*
492 * This bio may be started from the middle of the 'bvec'
493 * because of bio splitting, so offset from the bvec must
494 * be passed to iov iterator
495 */
496 iter.iov_offset = bio->bi_iter.bi_bvec_done;
497
498 cmd->iocb.ki_pos = pos;
499 cmd->iocb.ki_filp = file;
500 cmd->iocb.ki_complete = lo_rw_aio_complete;
501 cmd->iocb.ki_flags = IOCB_DIRECT;
502
503 if (rw == WRITE)
504 ret = file->f_op->write_iter(&cmd->iocb, &iter);
505 else
506 ret = file->f_op->read_iter(&cmd->iocb, &iter);
507
508 if (ret != -EIOCBQUEUED)
509 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
510 return 0;
511 }
512
513
lo_rw_simple(struct loop_device * lo,struct request * rq,loff_t pos,bool rw)514 static inline int lo_rw_simple(struct loop_device *lo,
515 struct request *rq, loff_t pos, bool rw)
516 {
517 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
518
519 if (cmd->use_aio)
520 return lo_rw_aio(lo, cmd, pos, rw);
521
522 /*
523 * lo_write_simple and lo_read_simple should have been covered
524 * by io submit style function like lo_rw_aio(), one blocker
525 * is that lo_read_simple() need to call flush_dcache_page after
526 * the page is written from kernel, and it isn't easy to handle
527 * this in io submit style function which submits all segments
528 * of the req at one time. And direct read IO doesn't need to
529 * run flush_dcache_page().
530 */
531 if (rw == WRITE)
532 return lo_write_simple(lo, rq, pos);
533 else
534 return lo_read_simple(lo, rq, pos);
535 }
536
do_req_filebacked(struct loop_device * lo,struct request * rq)537 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
538 {
539 loff_t pos;
540 int ret;
541
542 pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
543
544 if (rq->cmd_flags & REQ_WRITE) {
545 if (rq->cmd_flags & REQ_FLUSH)
546 ret = lo_req_flush(lo, rq);
547 else if (rq->cmd_flags & REQ_DISCARD)
548 ret = lo_discard(lo, rq, pos);
549 else if (lo->transfer)
550 ret = lo_write_transfer(lo, rq, pos);
551 else
552 ret = lo_rw_simple(lo, rq, pos, WRITE);
553
554 } else {
555 if (lo->transfer)
556 ret = lo_read_transfer(lo, rq, pos);
557 else
558 ret = lo_rw_simple(lo, rq, pos, READ);
559 }
560
561 return ret;
562 }
563
564 struct switch_request {
565 struct file *file;
566 struct completion wait;
567 };
568
loop_update_dio(struct loop_device * lo)569 static inline void loop_update_dio(struct loop_device *lo)
570 {
571 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
572 lo->use_dio);
573 }
574
575 /*
576 * Do the actual switch; called from the BIO completion routine
577 */
do_loop_switch(struct loop_device * lo,struct switch_request * p)578 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
579 {
580 struct file *file = p->file;
581 struct file *old_file = lo->lo_backing_file;
582 struct address_space *mapping;
583
584 /* if no new file, only flush of queued bios requested */
585 if (!file)
586 return;
587
588 mapping = file->f_mapping;
589 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
590 lo->lo_backing_file = file;
591 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
592 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
593 lo->old_gfp_mask = mapping_gfp_mask(mapping);
594 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
595 loop_update_dio(lo);
596 }
597
598 /*
599 * loop_switch performs the hard work of switching a backing store.
600 * First it needs to flush existing IO, it does this by sending a magic
601 * BIO down the pipe. The completion of this BIO does the actual switch.
602 */
loop_switch(struct loop_device * lo,struct file * file)603 static int loop_switch(struct loop_device *lo, struct file *file)
604 {
605 struct switch_request w;
606
607 w.file = file;
608
609 /* freeze queue and wait for completion of scheduled requests */
610 blk_mq_freeze_queue(lo->lo_queue);
611
612 /* do the switch action */
613 do_loop_switch(lo, &w);
614
615 /* unfreeze */
616 blk_mq_unfreeze_queue(lo->lo_queue);
617
618 return 0;
619 }
620
621 /*
622 * Helper to flush the IOs in loop, but keeping loop thread running
623 */
loop_flush(struct loop_device * lo)624 static int loop_flush(struct loop_device *lo)
625 {
626 /* loop not yet configured, no running thread, nothing to flush */
627 if (lo->lo_state != Lo_bound)
628 return 0;
629 return loop_switch(lo, NULL);
630 }
631
loop_reread_partitions(struct loop_device * lo,struct block_device * bdev)632 static void loop_reread_partitions(struct loop_device *lo,
633 struct block_device *bdev)
634 {
635 int rc;
636
637 /*
638 * bd_mutex has been held already in release path, so don't
639 * acquire it if this function is called in such case.
640 *
641 * If the reread partition isn't from release path, lo_refcnt
642 * must be at least one and it can only become zero when the
643 * current holder is released.
644 */
645 if (!atomic_read(&lo->lo_refcnt))
646 rc = __blkdev_reread_part(bdev);
647 else
648 rc = blkdev_reread_part(bdev);
649 if (rc)
650 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
651 __func__, lo->lo_number, lo->lo_file_name, rc);
652 }
653
is_loop_device(struct file * file)654 static inline int is_loop_device(struct file *file)
655 {
656 struct inode *i = file->f_mapping->host;
657
658 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
659 }
660
loop_validate_file(struct file * file,struct block_device * bdev)661 static int loop_validate_file(struct file *file, struct block_device *bdev)
662 {
663 struct inode *inode = file->f_mapping->host;
664 struct file *f = file;
665
666 /* Avoid recursion */
667 while (is_loop_device(f)) {
668 struct loop_device *l;
669
670 if (f->f_mapping->host->i_bdev == bdev)
671 return -EBADF;
672
673 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
674 if (l->lo_state == Lo_unbound) {
675 return -EINVAL;
676 }
677 f = l->lo_backing_file;
678 }
679 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
680 return -EINVAL;
681 return 0;
682 }
683
684 /*
685 * loop_change_fd switched the backing store of a loopback device to
686 * a new file. This is useful for operating system installers to free up
687 * the original file and in High Availability environments to switch to
688 * an alternative location for the content in case of server meltdown.
689 * This can only work if the loop device is used read-only, and if the
690 * new backing store is the same size and type as the old backing store.
691 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)692 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
693 unsigned int arg)
694 {
695 struct file *file, *old_file;
696 struct inode *inode;
697 int error;
698
699 error = -ENXIO;
700 if (lo->lo_state != Lo_bound)
701 goto out;
702
703 /* the loop device has to be read-only */
704 error = -EINVAL;
705 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
706 goto out;
707
708 error = -EBADF;
709 file = fget(arg);
710 if (!file)
711 goto out;
712
713 error = loop_validate_file(file, bdev);
714 if (error)
715 goto out_putf;
716
717 inode = file->f_mapping->host;
718 old_file = lo->lo_backing_file;
719
720 error = -EINVAL;
721
722 /* size of the new backing store needs to be the same */
723 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
724 goto out_putf;
725
726 /* and ... switch */
727 error = loop_switch(lo, file);
728 if (error)
729 goto out_putf;
730
731 fput(old_file);
732 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
733 loop_reread_partitions(lo, bdev);
734 return 0;
735
736 out_putf:
737 fput(file);
738 out:
739 return error;
740 }
741
742 /* loop sysfs attributes */
743
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))744 static ssize_t loop_attr_show(struct device *dev, char *page,
745 ssize_t (*callback)(struct loop_device *, char *))
746 {
747 struct gendisk *disk = dev_to_disk(dev);
748 struct loop_device *lo = disk->private_data;
749
750 return callback(lo, page);
751 }
752
753 #define LOOP_ATTR_RO(_name) \
754 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
755 static ssize_t loop_attr_do_show_##_name(struct device *d, \
756 struct device_attribute *attr, char *b) \
757 { \
758 return loop_attr_show(d, b, loop_attr_##_name##_show); \
759 } \
760 static struct device_attribute loop_attr_##_name = \
761 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
762
loop_attr_backing_file_show(struct loop_device * lo,char * buf)763 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
764 {
765 ssize_t ret;
766 char *p = NULL;
767
768 spin_lock_irq(&lo->lo_lock);
769 if (lo->lo_backing_file)
770 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
771 spin_unlock_irq(&lo->lo_lock);
772
773 if (IS_ERR_OR_NULL(p))
774 ret = PTR_ERR(p);
775 else {
776 ret = strlen(p);
777 memmove(buf, p, ret);
778 buf[ret++] = '\n';
779 buf[ret] = 0;
780 }
781
782 return ret;
783 }
784
loop_attr_offset_show(struct loop_device * lo,char * buf)785 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
786 {
787 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
788 }
789
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)790 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
791 {
792 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
793 }
794
loop_attr_autoclear_show(struct loop_device * lo,char * buf)795 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
796 {
797 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
798
799 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
800 }
801
loop_attr_partscan_show(struct loop_device * lo,char * buf)802 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
803 {
804 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
805
806 return sprintf(buf, "%s\n", partscan ? "1" : "0");
807 }
808
loop_attr_dio_show(struct loop_device * lo,char * buf)809 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
810 {
811 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
812
813 return sprintf(buf, "%s\n", dio ? "1" : "0");
814 }
815
816 LOOP_ATTR_RO(backing_file);
817 LOOP_ATTR_RO(offset);
818 LOOP_ATTR_RO(sizelimit);
819 LOOP_ATTR_RO(autoclear);
820 LOOP_ATTR_RO(partscan);
821 LOOP_ATTR_RO(dio);
822
823 static struct attribute *loop_attrs[] = {
824 &loop_attr_backing_file.attr,
825 &loop_attr_offset.attr,
826 &loop_attr_sizelimit.attr,
827 &loop_attr_autoclear.attr,
828 &loop_attr_partscan.attr,
829 &loop_attr_dio.attr,
830 NULL,
831 };
832
833 static struct attribute_group loop_attribute_group = {
834 .name = "loop",
835 .attrs= loop_attrs,
836 };
837
loop_sysfs_init(struct loop_device * lo)838 static void loop_sysfs_init(struct loop_device *lo)
839 {
840 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
841 &loop_attribute_group);
842 }
843
loop_sysfs_exit(struct loop_device * lo)844 static void loop_sysfs_exit(struct loop_device *lo)
845 {
846 if (lo->sysfs_inited)
847 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
848 &loop_attribute_group);
849 }
850
loop_config_discard(struct loop_device * lo)851 static void loop_config_discard(struct loop_device *lo)
852 {
853 struct file *file = lo->lo_backing_file;
854 struct inode *inode = file->f_mapping->host;
855 struct request_queue *q = lo->lo_queue;
856
857 /*
858 * We use punch hole to reclaim the free space used by the
859 * image a.k.a. discard. However we do not support discard if
860 * encryption is enabled, because it may give an attacker
861 * useful information.
862 */
863 if ((!file->f_op->fallocate) ||
864 lo->lo_encrypt_key_size) {
865 q->limits.discard_granularity = 0;
866 q->limits.discard_alignment = 0;
867 blk_queue_max_discard_sectors(q, 0);
868 q->limits.discard_zeroes_data = 0;
869 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
870 return;
871 }
872
873 q->limits.discard_granularity = inode->i_sb->s_blocksize;
874 q->limits.discard_alignment = 0;
875 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
876 q->limits.discard_zeroes_data = 1;
877 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
878 }
879
loop_unprepare_queue(struct loop_device * lo)880 static void loop_unprepare_queue(struct loop_device *lo)
881 {
882 flush_kthread_worker(&lo->worker);
883 kthread_stop(lo->worker_task);
884 }
885
loop_prepare_queue(struct loop_device * lo)886 static int loop_prepare_queue(struct loop_device *lo)
887 {
888 init_kthread_worker(&lo->worker);
889 lo->worker_task = kthread_run(kthread_worker_fn,
890 &lo->worker, "loop%d", lo->lo_number);
891 if (IS_ERR(lo->worker_task))
892 return -ENOMEM;
893 set_user_nice(lo->worker_task, MIN_NICE);
894 return 0;
895 }
896
loop_set_fd(struct loop_device * lo,fmode_t mode,struct block_device * bdev,unsigned int arg)897 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
898 struct block_device *bdev, unsigned int arg)
899 {
900 struct file *file;
901 struct inode *inode;
902 struct address_space *mapping;
903 unsigned lo_blocksize;
904 int lo_flags = 0;
905 int error;
906 loff_t size;
907
908 /* This is safe, since we have a reference from open(). */
909 __module_get(THIS_MODULE);
910
911 error = -EBADF;
912 file = fget(arg);
913 if (!file)
914 goto out;
915
916 error = -EBUSY;
917 if (lo->lo_state != Lo_unbound)
918 goto out_putf;
919
920 error = loop_validate_file(file, bdev);
921 if (error)
922 goto out_putf;
923
924 mapping = file->f_mapping;
925 inode = mapping->host;
926
927 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
928 !file->f_op->write_iter)
929 lo_flags |= LO_FLAGS_READ_ONLY;
930
931 lo_blocksize = S_ISBLK(inode->i_mode) ?
932 inode->i_bdev->bd_block_size : PAGE_SIZE;
933
934 error = -EFBIG;
935 size = get_loop_size(lo, file);
936 if ((loff_t)(sector_t)size != size)
937 goto out_putf;
938 error = loop_prepare_queue(lo);
939 if (error)
940 goto out_putf;
941
942 error = 0;
943
944 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
945
946 lo->use_dio = false;
947 lo->lo_blocksize = lo_blocksize;
948 lo->lo_device = bdev;
949 lo->lo_flags = lo_flags;
950 lo->lo_backing_file = file;
951 lo->transfer = NULL;
952 lo->ioctl = NULL;
953 lo->lo_sizelimit = 0;
954 lo->old_gfp_mask = mapping_gfp_mask(mapping);
955 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
956
957 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
958 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
959
960 loop_update_dio(lo);
961 set_capacity(lo->lo_disk, size);
962 bd_set_size(bdev, size << 9);
963 loop_sysfs_init(lo);
964 /* let user-space know about the new size */
965 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
966
967 set_blocksize(bdev, lo_blocksize);
968
969 lo->lo_state = Lo_bound;
970 if (part_shift)
971 lo->lo_flags |= LO_FLAGS_PARTSCAN;
972 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
973 loop_reread_partitions(lo, bdev);
974
975 /* Grab the block_device to prevent its destruction after we
976 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
977 */
978 bdgrab(bdev);
979 return 0;
980
981 out_putf:
982 fput(file);
983 out:
984 /* This is safe: open() is still holding a reference. */
985 module_put(THIS_MODULE);
986 return error;
987 }
988
989 static int
loop_release_xfer(struct loop_device * lo)990 loop_release_xfer(struct loop_device *lo)
991 {
992 int err = 0;
993 struct loop_func_table *xfer = lo->lo_encryption;
994
995 if (xfer) {
996 if (xfer->release)
997 err = xfer->release(lo);
998 lo->transfer = NULL;
999 lo->lo_encryption = NULL;
1000 module_put(xfer->owner);
1001 }
1002 return err;
1003 }
1004
1005 static int
loop_init_xfer(struct loop_device * lo,struct loop_func_table * xfer,const struct loop_info64 * i)1006 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1007 const struct loop_info64 *i)
1008 {
1009 int err = 0;
1010
1011 if (xfer) {
1012 struct module *owner = xfer->owner;
1013
1014 if (!try_module_get(owner))
1015 return -EINVAL;
1016 if (xfer->init)
1017 err = xfer->init(lo, i);
1018 if (err)
1019 module_put(owner);
1020 else
1021 lo->lo_encryption = xfer;
1022 }
1023 return err;
1024 }
1025
loop_clr_fd(struct loop_device * lo)1026 static int loop_clr_fd(struct loop_device *lo)
1027 {
1028 struct file *filp = lo->lo_backing_file;
1029 gfp_t gfp = lo->old_gfp_mask;
1030 struct block_device *bdev = lo->lo_device;
1031
1032 if (lo->lo_state != Lo_bound)
1033 return -ENXIO;
1034
1035 /*
1036 * If we've explicitly asked to tear down the loop device,
1037 * and it has an elevated reference count, set it for auto-teardown when
1038 * the last reference goes away. This stops $!~#$@ udev from
1039 * preventing teardown because it decided that it needs to run blkid on
1040 * the loopback device whenever they appear. xfstests is notorious for
1041 * failing tests because blkid via udev races with a losetup
1042 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1043 * command to fail with EBUSY.
1044 */
1045 if (atomic_read(&lo->lo_refcnt) > 1) {
1046 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1047 mutex_unlock(&lo->lo_ctl_mutex);
1048 return 0;
1049 }
1050
1051 if (filp == NULL)
1052 return -EINVAL;
1053
1054 /* freeze request queue during the transition */
1055 blk_mq_freeze_queue(lo->lo_queue);
1056
1057 spin_lock_irq(&lo->lo_lock);
1058 lo->lo_state = Lo_rundown;
1059 lo->lo_backing_file = NULL;
1060 spin_unlock_irq(&lo->lo_lock);
1061
1062 loop_release_xfer(lo);
1063 lo->transfer = NULL;
1064 lo->ioctl = NULL;
1065 lo->lo_device = NULL;
1066 lo->lo_encryption = NULL;
1067 lo->lo_offset = 0;
1068 lo->lo_sizelimit = 0;
1069 lo->lo_encrypt_key_size = 0;
1070 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1071 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1072 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1073 blk_queue_logical_block_size(lo->lo_queue, 512);
1074 if (bdev) {
1075 bdput(bdev);
1076 invalidate_bdev(bdev);
1077 }
1078 set_capacity(lo->lo_disk, 0);
1079 loop_sysfs_exit(lo);
1080 if (bdev) {
1081 bd_set_size(bdev, 0);
1082 /* let user-space know about this change */
1083 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1084 }
1085 mapping_set_gfp_mask(filp->f_mapping, gfp);
1086 lo->lo_state = Lo_unbound;
1087 /* This is safe: open() is still holding a reference. */
1088 module_put(THIS_MODULE);
1089 blk_mq_unfreeze_queue(lo->lo_queue);
1090
1091 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1092 loop_reread_partitions(lo, bdev);
1093 lo->lo_flags = 0;
1094 if (!part_shift)
1095 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1096 loop_unprepare_queue(lo);
1097 mutex_unlock(&lo->lo_ctl_mutex);
1098 /*
1099 * Need not hold lo_ctl_mutex to fput backing file.
1100 * Calling fput holding lo_ctl_mutex triggers a circular
1101 * lock dependency possibility warning as fput can take
1102 * bd_mutex which is usually taken before lo_ctl_mutex.
1103 */
1104 fput(filp);
1105 return 0;
1106 }
1107
1108 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1109 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1110 {
1111 int err;
1112 struct loop_func_table *xfer;
1113 kuid_t uid = current_uid();
1114
1115 if (lo->lo_encrypt_key_size &&
1116 !uid_eq(lo->lo_key_owner, uid) &&
1117 !capable(CAP_SYS_ADMIN))
1118 return -EPERM;
1119 if (lo->lo_state != Lo_bound)
1120 return -ENXIO;
1121 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1122 return -EINVAL;
1123
1124 if (lo->lo_offset != info->lo_offset ||
1125 lo->lo_sizelimit != info->lo_sizelimit) {
1126 sync_blockdev(lo->lo_device);
1127 kill_bdev(lo->lo_device);
1128 }
1129
1130 /* I/O need to be drained during transfer transition */
1131 blk_mq_freeze_queue(lo->lo_queue);
1132
1133 err = loop_release_xfer(lo);
1134 if (err)
1135 goto exit;
1136
1137 if (info->lo_encrypt_type) {
1138 unsigned int type = info->lo_encrypt_type;
1139
1140 if (type >= MAX_LO_CRYPT) {
1141 err = -EINVAL;
1142 goto exit;
1143 }
1144 xfer = xfer_funcs[type];
1145 if (xfer == NULL) {
1146 err = -EINVAL;
1147 goto exit;
1148 }
1149 } else
1150 xfer = NULL;
1151
1152 err = loop_init_xfer(lo, xfer, info);
1153 if (err)
1154 goto exit;
1155
1156 if (lo->lo_offset != info->lo_offset ||
1157 lo->lo_sizelimit != info->lo_sizelimit) {
1158 /* kill_bdev should have truncated all the pages */
1159 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1160 err = -EAGAIN;
1161 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1162 __func__, lo->lo_number, lo->lo_file_name,
1163 lo->lo_device->bd_inode->i_mapping->nrpages);
1164 goto exit;
1165 }
1166 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1167 err = -EFBIG;
1168 goto exit;
1169 }
1170 }
1171
1172 loop_config_discard(lo);
1173
1174 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1175 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1176 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1177 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1178
1179 if (!xfer)
1180 xfer = &none_funcs;
1181 lo->transfer = xfer->transfer;
1182 lo->ioctl = xfer->ioctl;
1183
1184 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1185 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1186 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1187
1188 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1189 lo->lo_init[0] = info->lo_init[0];
1190 lo->lo_init[1] = info->lo_init[1];
1191 if (info->lo_encrypt_key_size) {
1192 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1193 info->lo_encrypt_key_size);
1194 lo->lo_key_owner = uid;
1195 }
1196
1197 /* update dio if lo_offset or transfer is changed */
1198 __loop_update_dio(lo, lo->use_dio);
1199
1200 exit:
1201 blk_mq_unfreeze_queue(lo->lo_queue);
1202
1203 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1204 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1205 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1206 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1207 loop_reread_partitions(lo, lo->lo_device);
1208 }
1209
1210 return err;
1211 }
1212
1213 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1214 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1215 {
1216 struct file *file = lo->lo_backing_file;
1217 struct kstat stat;
1218 int error;
1219
1220 if (lo->lo_state != Lo_bound)
1221 return -ENXIO;
1222 error = vfs_getattr(&file->f_path, &stat);
1223 if (error)
1224 return error;
1225 memset(info, 0, sizeof(*info));
1226 info->lo_number = lo->lo_number;
1227 info->lo_device = huge_encode_dev(stat.dev);
1228 info->lo_inode = stat.ino;
1229 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1230 info->lo_offset = lo->lo_offset;
1231 info->lo_sizelimit = lo->lo_sizelimit;
1232 info->lo_flags = lo->lo_flags;
1233 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1234 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1235 info->lo_encrypt_type =
1236 lo->lo_encryption ? lo->lo_encryption->number : 0;
1237 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1238 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1239 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1240 lo->lo_encrypt_key_size);
1241 }
1242 return 0;
1243 }
1244
1245 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1246 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1247 {
1248 memset(info64, 0, sizeof(*info64));
1249 info64->lo_number = info->lo_number;
1250 info64->lo_device = info->lo_device;
1251 info64->lo_inode = info->lo_inode;
1252 info64->lo_rdevice = info->lo_rdevice;
1253 info64->lo_offset = info->lo_offset;
1254 info64->lo_sizelimit = 0;
1255 info64->lo_encrypt_type = info->lo_encrypt_type;
1256 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1257 info64->lo_flags = info->lo_flags;
1258 info64->lo_init[0] = info->lo_init[0];
1259 info64->lo_init[1] = info->lo_init[1];
1260 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1261 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1262 else
1263 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1264 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1265 }
1266
1267 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1268 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1269 {
1270 memset(info, 0, sizeof(*info));
1271 info->lo_number = info64->lo_number;
1272 info->lo_device = info64->lo_device;
1273 info->lo_inode = info64->lo_inode;
1274 info->lo_rdevice = info64->lo_rdevice;
1275 info->lo_offset = info64->lo_offset;
1276 info->lo_encrypt_type = info64->lo_encrypt_type;
1277 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1278 info->lo_flags = info64->lo_flags;
1279 info->lo_init[0] = info64->lo_init[0];
1280 info->lo_init[1] = info64->lo_init[1];
1281 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1282 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1283 else
1284 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1285 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1286
1287 /* error in case values were truncated */
1288 if (info->lo_device != info64->lo_device ||
1289 info->lo_rdevice != info64->lo_rdevice ||
1290 info->lo_inode != info64->lo_inode ||
1291 info->lo_offset != info64->lo_offset)
1292 return -EOVERFLOW;
1293
1294 return 0;
1295 }
1296
1297 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1298 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1299 {
1300 struct loop_info info;
1301 struct loop_info64 info64;
1302
1303 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1304 return -EFAULT;
1305 loop_info64_from_old(&info, &info64);
1306 return loop_set_status(lo, &info64);
1307 }
1308
1309 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1310 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1311 {
1312 struct loop_info64 info64;
1313
1314 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1315 return -EFAULT;
1316 return loop_set_status(lo, &info64);
1317 }
1318
1319 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1320 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1321 struct loop_info info;
1322 struct loop_info64 info64;
1323 int err = 0;
1324
1325 if (!arg)
1326 err = -EINVAL;
1327 if (!err)
1328 err = loop_get_status(lo, &info64);
1329 if (!err)
1330 err = loop_info64_to_old(&info64, &info);
1331 if (!err && copy_to_user(arg, &info, sizeof(info)))
1332 err = -EFAULT;
1333
1334 return err;
1335 }
1336
1337 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1338 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1339 struct loop_info64 info64;
1340 int err = 0;
1341
1342 if (!arg)
1343 err = -EINVAL;
1344 if (!err)
1345 err = loop_get_status(lo, &info64);
1346 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1347 err = -EFAULT;
1348
1349 return err;
1350 }
1351
loop_set_capacity(struct loop_device * lo,struct block_device * bdev)1352 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1353 {
1354 if (unlikely(lo->lo_state != Lo_bound))
1355 return -ENXIO;
1356
1357 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1358 }
1359
loop_set_dio(struct loop_device * lo,unsigned long arg)1360 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1361 {
1362 int error = -ENXIO;
1363 if (lo->lo_state != Lo_bound)
1364 goto out;
1365
1366 __loop_update_dio(lo, !!arg);
1367 if (lo->use_dio == !!arg)
1368 return 0;
1369 error = -EINVAL;
1370 out:
1371 return error;
1372 }
1373
loop_set_block_size(struct loop_device * lo,unsigned long arg)1374 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1375 {
1376 int err = 0;
1377
1378 if (lo->lo_state != Lo_bound)
1379 return -ENXIO;
1380
1381 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1382 return -EINVAL;
1383
1384 if (lo->lo_queue->limits.logical_block_size != arg) {
1385 sync_blockdev(lo->lo_device);
1386 kill_bdev(lo->lo_device);
1387 }
1388
1389 blk_mq_freeze_queue(lo->lo_queue);
1390
1391 /* kill_bdev should have truncated all the pages */
1392 if (lo->lo_queue->limits.logical_block_size != arg &&
1393 lo->lo_device->bd_inode->i_mapping->nrpages) {
1394 err = -EAGAIN;
1395 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1396 __func__, lo->lo_number, lo->lo_file_name,
1397 lo->lo_device->bd_inode->i_mapping->nrpages);
1398 goto out_unfreeze;
1399 }
1400
1401 blk_queue_logical_block_size(lo->lo_queue, arg);
1402 loop_update_dio(lo);
1403 out_unfreeze:
1404 blk_mq_unfreeze_queue(lo->lo_queue);
1405
1406 return err;
1407 }
1408
lo_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1409 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1410 unsigned int cmd, unsigned long arg)
1411 {
1412 struct loop_device *lo = bdev->bd_disk->private_data;
1413 int err;
1414
1415 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1416 switch (cmd) {
1417 case LOOP_SET_FD:
1418 err = loop_set_fd(lo, mode, bdev, arg);
1419 break;
1420 case LOOP_CHANGE_FD:
1421 err = loop_change_fd(lo, bdev, arg);
1422 break;
1423 case LOOP_CLR_FD:
1424 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1425 err = loop_clr_fd(lo);
1426 if (!err)
1427 goto out_unlocked;
1428 break;
1429 case LOOP_SET_STATUS:
1430 err = -EPERM;
1431 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1432 err = loop_set_status_old(lo,
1433 (struct loop_info __user *)arg);
1434 break;
1435 case LOOP_GET_STATUS:
1436 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1437 break;
1438 case LOOP_SET_STATUS64:
1439 err = -EPERM;
1440 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1441 err = loop_set_status64(lo,
1442 (struct loop_info64 __user *) arg);
1443 break;
1444 case LOOP_GET_STATUS64:
1445 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1446 break;
1447 case LOOP_SET_CAPACITY:
1448 err = -EPERM;
1449 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1450 err = loop_set_capacity(lo, bdev);
1451 break;
1452 case LOOP_SET_DIRECT_IO:
1453 err = -EPERM;
1454 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1455 err = loop_set_dio(lo, arg);
1456 break;
1457 case LOOP_SET_BLOCK_SIZE:
1458 err = -EPERM;
1459 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1460 err = loop_set_block_size(lo, arg);
1461 break;
1462 default:
1463 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1464 }
1465 mutex_unlock(&lo->lo_ctl_mutex);
1466
1467 out_unlocked:
1468 return err;
1469 }
1470
1471 #ifdef CONFIG_COMPAT
1472 struct compat_loop_info {
1473 compat_int_t lo_number; /* ioctl r/o */
1474 compat_dev_t lo_device; /* ioctl r/o */
1475 compat_ulong_t lo_inode; /* ioctl r/o */
1476 compat_dev_t lo_rdevice; /* ioctl r/o */
1477 compat_int_t lo_offset;
1478 compat_int_t lo_encrypt_type;
1479 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1480 compat_int_t lo_flags; /* ioctl r/o */
1481 char lo_name[LO_NAME_SIZE];
1482 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1483 compat_ulong_t lo_init[2];
1484 char reserved[4];
1485 };
1486
1487 /*
1488 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1489 * - noinlined to reduce stack space usage in main part of driver
1490 */
1491 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1492 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1493 struct loop_info64 *info64)
1494 {
1495 struct compat_loop_info info;
1496
1497 if (copy_from_user(&info, arg, sizeof(info)))
1498 return -EFAULT;
1499
1500 memset(info64, 0, sizeof(*info64));
1501 info64->lo_number = info.lo_number;
1502 info64->lo_device = info.lo_device;
1503 info64->lo_inode = info.lo_inode;
1504 info64->lo_rdevice = info.lo_rdevice;
1505 info64->lo_offset = info.lo_offset;
1506 info64->lo_sizelimit = 0;
1507 info64->lo_encrypt_type = info.lo_encrypt_type;
1508 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1509 info64->lo_flags = info.lo_flags;
1510 info64->lo_init[0] = info.lo_init[0];
1511 info64->lo_init[1] = info.lo_init[1];
1512 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1513 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1514 else
1515 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1516 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1517 return 0;
1518 }
1519
1520 /*
1521 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1522 * - noinlined to reduce stack space usage in main part of driver
1523 */
1524 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1525 loop_info64_to_compat(const struct loop_info64 *info64,
1526 struct compat_loop_info __user *arg)
1527 {
1528 struct compat_loop_info info;
1529
1530 memset(&info, 0, sizeof(info));
1531 info.lo_number = info64->lo_number;
1532 info.lo_device = info64->lo_device;
1533 info.lo_inode = info64->lo_inode;
1534 info.lo_rdevice = info64->lo_rdevice;
1535 info.lo_offset = info64->lo_offset;
1536 info.lo_encrypt_type = info64->lo_encrypt_type;
1537 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1538 info.lo_flags = info64->lo_flags;
1539 info.lo_init[0] = info64->lo_init[0];
1540 info.lo_init[1] = info64->lo_init[1];
1541 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1542 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1543 else
1544 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1545 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1546
1547 /* error in case values were truncated */
1548 if (info.lo_device != info64->lo_device ||
1549 info.lo_rdevice != info64->lo_rdevice ||
1550 info.lo_inode != info64->lo_inode ||
1551 info.lo_offset != info64->lo_offset ||
1552 info.lo_init[0] != info64->lo_init[0] ||
1553 info.lo_init[1] != info64->lo_init[1])
1554 return -EOVERFLOW;
1555
1556 if (copy_to_user(arg, &info, sizeof(info)))
1557 return -EFAULT;
1558 return 0;
1559 }
1560
1561 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1562 loop_set_status_compat(struct loop_device *lo,
1563 const struct compat_loop_info __user *arg)
1564 {
1565 struct loop_info64 info64;
1566 int ret;
1567
1568 ret = loop_info64_from_compat(arg, &info64);
1569 if (ret < 0)
1570 return ret;
1571 return loop_set_status(lo, &info64);
1572 }
1573
1574 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1575 loop_get_status_compat(struct loop_device *lo,
1576 struct compat_loop_info __user *arg)
1577 {
1578 struct loop_info64 info64;
1579 int err = 0;
1580
1581 if (!arg)
1582 err = -EINVAL;
1583 if (!err)
1584 err = loop_get_status(lo, &info64);
1585 if (!err)
1586 err = loop_info64_to_compat(&info64, arg);
1587 return err;
1588 }
1589
lo_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1590 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1591 unsigned int cmd, unsigned long arg)
1592 {
1593 struct loop_device *lo = bdev->bd_disk->private_data;
1594 int err;
1595
1596 switch(cmd) {
1597 case LOOP_SET_STATUS:
1598 mutex_lock(&lo->lo_ctl_mutex);
1599 err = loop_set_status_compat(
1600 lo, (const struct compat_loop_info __user *) arg);
1601 mutex_unlock(&lo->lo_ctl_mutex);
1602 break;
1603 case LOOP_GET_STATUS:
1604 mutex_lock(&lo->lo_ctl_mutex);
1605 err = loop_get_status_compat(
1606 lo, (struct compat_loop_info __user *) arg);
1607 mutex_unlock(&lo->lo_ctl_mutex);
1608 break;
1609 case LOOP_SET_CAPACITY:
1610 case LOOP_CLR_FD:
1611 case LOOP_GET_STATUS64:
1612 case LOOP_SET_STATUS64:
1613 arg = (unsigned long) compat_ptr(arg);
1614 case LOOP_SET_FD:
1615 case LOOP_CHANGE_FD:
1616 case LOOP_SET_BLOCK_SIZE:
1617 case LOOP_SET_DIRECT_IO:
1618 err = lo_ioctl(bdev, mode, cmd, arg);
1619 break;
1620 default:
1621 err = -ENOIOCTLCMD;
1622 break;
1623 }
1624 return err;
1625 }
1626 #endif
1627
lo_open(struct block_device * bdev,fmode_t mode)1628 static int lo_open(struct block_device *bdev, fmode_t mode)
1629 {
1630 struct loop_device *lo;
1631 int err = 0;
1632
1633 mutex_lock(&loop_index_mutex);
1634 lo = bdev->bd_disk->private_data;
1635 if (!lo) {
1636 err = -ENXIO;
1637 goto out;
1638 }
1639
1640 atomic_inc(&lo->lo_refcnt);
1641 out:
1642 mutex_unlock(&loop_index_mutex);
1643 return err;
1644 }
1645
__lo_release(struct loop_device * lo)1646 static void __lo_release(struct loop_device *lo)
1647 {
1648 int err;
1649
1650 if (atomic_dec_return(&lo->lo_refcnt))
1651 return;
1652
1653 mutex_lock(&lo->lo_ctl_mutex);
1654 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1655 /*
1656 * In autoclear mode, stop the loop thread
1657 * and remove configuration after last close.
1658 */
1659 err = loop_clr_fd(lo);
1660 if (!err)
1661 return;
1662 } else {
1663 /*
1664 * Otherwise keep thread (if running) and config,
1665 * but flush possible ongoing bios in thread.
1666 */
1667 loop_flush(lo);
1668 }
1669
1670 mutex_unlock(&lo->lo_ctl_mutex);
1671 }
1672
lo_release(struct gendisk * disk,fmode_t mode)1673 static void lo_release(struct gendisk *disk, fmode_t mode)
1674 {
1675 mutex_lock(&loop_index_mutex);
1676 __lo_release(disk->private_data);
1677 mutex_unlock(&loop_index_mutex);
1678 }
1679
1680 static const struct block_device_operations lo_fops = {
1681 .owner = THIS_MODULE,
1682 .open = lo_open,
1683 .release = lo_release,
1684 .ioctl = lo_ioctl,
1685 #ifdef CONFIG_COMPAT
1686 .compat_ioctl = lo_compat_ioctl,
1687 #endif
1688 };
1689
1690 /*
1691 * And now the modules code and kernel interface.
1692 */
1693 static int max_loop;
1694 module_param(max_loop, int, S_IRUGO);
1695 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1696 module_param(max_part, int, S_IRUGO);
1697 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1698 MODULE_LICENSE("GPL");
1699 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1700
loop_register_transfer(struct loop_func_table * funcs)1701 int loop_register_transfer(struct loop_func_table *funcs)
1702 {
1703 unsigned int n = funcs->number;
1704
1705 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1706 return -EINVAL;
1707 xfer_funcs[n] = funcs;
1708 return 0;
1709 }
1710
unregister_transfer_cb(int id,void * ptr,void * data)1711 static int unregister_transfer_cb(int id, void *ptr, void *data)
1712 {
1713 struct loop_device *lo = ptr;
1714 struct loop_func_table *xfer = data;
1715
1716 mutex_lock(&lo->lo_ctl_mutex);
1717 if (lo->lo_encryption == xfer)
1718 loop_release_xfer(lo);
1719 mutex_unlock(&lo->lo_ctl_mutex);
1720 return 0;
1721 }
1722
loop_unregister_transfer(int number)1723 int loop_unregister_transfer(int number)
1724 {
1725 unsigned int n = number;
1726 struct loop_func_table *xfer;
1727
1728 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1729 return -EINVAL;
1730
1731 xfer_funcs[n] = NULL;
1732 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1733 return 0;
1734 }
1735
1736 EXPORT_SYMBOL(loop_register_transfer);
1737 EXPORT_SYMBOL(loop_unregister_transfer);
1738
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1739 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1740 const struct blk_mq_queue_data *bd)
1741 {
1742 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1743 struct loop_device *lo = cmd->rq->q->queuedata;
1744
1745 blk_mq_start_request(bd->rq);
1746
1747 if (lo->lo_state != Lo_bound)
1748 return BLK_MQ_RQ_QUEUE_ERROR;
1749
1750 if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH |
1751 REQ_DISCARD)))
1752 cmd->use_aio = true;
1753 else
1754 cmd->use_aio = false;
1755
1756 queue_kthread_work(&lo->worker, &cmd->work);
1757
1758 return BLK_MQ_RQ_QUEUE_OK;
1759 }
1760
loop_handle_cmd(struct loop_cmd * cmd)1761 static void loop_handle_cmd(struct loop_cmd *cmd)
1762 {
1763 const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1764 struct loop_device *lo = cmd->rq->q->queuedata;
1765 int ret = 0;
1766
1767 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1768 ret = -EIO;
1769 goto failed;
1770 }
1771
1772 ret = do_req_filebacked(lo, cmd->rq);
1773 failed:
1774 /* complete non-aio request */
1775 if (!cmd->use_aio || ret)
1776 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1777 }
1778
loop_queue_work(struct kthread_work * work)1779 static void loop_queue_work(struct kthread_work *work)
1780 {
1781 struct loop_cmd *cmd =
1782 container_of(work, struct loop_cmd, work);
1783
1784 loop_handle_cmd(cmd);
1785 }
1786
loop_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)1787 static int loop_init_request(void *data, struct request *rq,
1788 unsigned int hctx_idx, unsigned int request_idx,
1789 unsigned int numa_node)
1790 {
1791 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1792
1793 cmd->rq = rq;
1794 init_kthread_work(&cmd->work, loop_queue_work);
1795
1796 return 0;
1797 }
1798
1799 static struct blk_mq_ops loop_mq_ops = {
1800 .queue_rq = loop_queue_rq,
1801 .map_queue = blk_mq_map_queue,
1802 .init_request = loop_init_request,
1803 };
1804
loop_add(struct loop_device ** l,int i)1805 static int loop_add(struct loop_device **l, int i)
1806 {
1807 struct loop_device *lo;
1808 struct gendisk *disk;
1809 int err;
1810
1811 err = -ENOMEM;
1812 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1813 if (!lo)
1814 goto out;
1815
1816 lo->lo_state = Lo_unbound;
1817
1818 /* allocate id, if @id >= 0, we're requesting that specific id */
1819 if (i >= 0) {
1820 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1821 if (err == -ENOSPC)
1822 err = -EEXIST;
1823 } else {
1824 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1825 }
1826 if (err < 0)
1827 goto out_free_dev;
1828 i = err;
1829
1830 err = -ENOMEM;
1831 lo->tag_set.ops = &loop_mq_ops;
1832 lo->tag_set.nr_hw_queues = 1;
1833 lo->tag_set.queue_depth = 128;
1834 lo->tag_set.numa_node = NUMA_NO_NODE;
1835 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1836 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1837 lo->tag_set.driver_data = lo;
1838
1839 err = blk_mq_alloc_tag_set(&lo->tag_set);
1840 if (err)
1841 goto out_free_idr;
1842
1843 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1844 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1845 err = PTR_ERR(lo->lo_queue);
1846 goto out_cleanup_tags;
1847 }
1848 lo->lo_queue->queuedata = lo;
1849
1850 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1851 /*
1852 * It doesn't make sense to enable merge because the I/O
1853 * submitted to backing file is handled page by page.
1854 */
1855 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1856
1857 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1858 if (!disk)
1859 goto out_free_queue;
1860
1861 /*
1862 * Disable partition scanning by default. The in-kernel partition
1863 * scanning can be requested individually per-device during its
1864 * setup. Userspace can always add and remove partitions from all
1865 * devices. The needed partition minors are allocated from the
1866 * extended minor space, the main loop device numbers will continue
1867 * to match the loop minors, regardless of the number of partitions
1868 * used.
1869 *
1870 * If max_part is given, partition scanning is globally enabled for
1871 * all loop devices. The minors for the main loop devices will be
1872 * multiples of max_part.
1873 *
1874 * Note: Global-for-all-devices, set-only-at-init, read-only module
1875 * parameteters like 'max_loop' and 'max_part' make things needlessly
1876 * complicated, are too static, inflexible and may surprise
1877 * userspace tools. Parameters like this in general should be avoided.
1878 */
1879 if (!part_shift)
1880 disk->flags |= GENHD_FL_NO_PART_SCAN;
1881 disk->flags |= GENHD_FL_EXT_DEVT;
1882 mutex_init(&lo->lo_ctl_mutex);
1883 atomic_set(&lo->lo_refcnt, 0);
1884 lo->lo_number = i;
1885 spin_lock_init(&lo->lo_lock);
1886 disk->major = LOOP_MAJOR;
1887 disk->first_minor = i << part_shift;
1888 disk->fops = &lo_fops;
1889 disk->private_data = lo;
1890 disk->queue = lo->lo_queue;
1891 sprintf(disk->disk_name, "loop%d", i);
1892 add_disk(disk);
1893 *l = lo;
1894 return lo->lo_number;
1895
1896 out_free_queue:
1897 blk_cleanup_queue(lo->lo_queue);
1898 out_cleanup_tags:
1899 blk_mq_free_tag_set(&lo->tag_set);
1900 out_free_idr:
1901 idr_remove(&loop_index_idr, i);
1902 out_free_dev:
1903 kfree(lo);
1904 out:
1905 return err;
1906 }
1907
loop_remove(struct loop_device * lo)1908 static void loop_remove(struct loop_device *lo)
1909 {
1910 blk_cleanup_queue(lo->lo_queue);
1911 del_gendisk(lo->lo_disk);
1912 blk_mq_free_tag_set(&lo->tag_set);
1913 put_disk(lo->lo_disk);
1914 kfree(lo);
1915 }
1916
find_free_cb(int id,void * ptr,void * data)1917 static int find_free_cb(int id, void *ptr, void *data)
1918 {
1919 struct loop_device *lo = ptr;
1920 struct loop_device **l = data;
1921
1922 if (lo->lo_state == Lo_unbound) {
1923 *l = lo;
1924 return 1;
1925 }
1926 return 0;
1927 }
1928
loop_lookup(struct loop_device ** l,int i)1929 static int loop_lookup(struct loop_device **l, int i)
1930 {
1931 struct loop_device *lo;
1932 int ret = -ENODEV;
1933
1934 if (i < 0) {
1935 int err;
1936
1937 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1938 if (err == 1) {
1939 *l = lo;
1940 ret = lo->lo_number;
1941 }
1942 goto out;
1943 }
1944
1945 /* lookup and return a specific i */
1946 lo = idr_find(&loop_index_idr, i);
1947 if (lo) {
1948 *l = lo;
1949 ret = lo->lo_number;
1950 }
1951 out:
1952 return ret;
1953 }
1954
loop_probe(dev_t dev,int * part,void * data)1955 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1956 {
1957 struct loop_device *lo;
1958 struct kobject *kobj;
1959 int err;
1960
1961 mutex_lock(&loop_index_mutex);
1962 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1963 if (err < 0)
1964 err = loop_add(&lo, MINOR(dev) >> part_shift);
1965 if (err < 0)
1966 kobj = NULL;
1967 else
1968 kobj = get_disk(lo->lo_disk);
1969 mutex_unlock(&loop_index_mutex);
1970
1971 *part = 0;
1972 return kobj;
1973 }
1974
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)1975 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1976 unsigned long parm)
1977 {
1978 struct loop_device *lo;
1979 int ret = -ENOSYS;
1980
1981 mutex_lock(&loop_index_mutex);
1982 switch (cmd) {
1983 case LOOP_CTL_ADD:
1984 ret = loop_lookup(&lo, parm);
1985 if (ret >= 0) {
1986 ret = -EEXIST;
1987 break;
1988 }
1989 ret = loop_add(&lo, parm);
1990 break;
1991 case LOOP_CTL_REMOVE:
1992 ret = loop_lookup(&lo, parm);
1993 if (ret < 0)
1994 break;
1995 mutex_lock(&lo->lo_ctl_mutex);
1996 if (lo->lo_state != Lo_unbound) {
1997 ret = -EBUSY;
1998 mutex_unlock(&lo->lo_ctl_mutex);
1999 break;
2000 }
2001 if (atomic_read(&lo->lo_refcnt) > 0) {
2002 ret = -EBUSY;
2003 mutex_unlock(&lo->lo_ctl_mutex);
2004 break;
2005 }
2006 lo->lo_disk->private_data = NULL;
2007 mutex_unlock(&lo->lo_ctl_mutex);
2008 idr_remove(&loop_index_idr, lo->lo_number);
2009 loop_remove(lo);
2010 break;
2011 case LOOP_CTL_GET_FREE:
2012 ret = loop_lookup(&lo, -1);
2013 if (ret >= 0)
2014 break;
2015 ret = loop_add(&lo, -1);
2016 }
2017 mutex_unlock(&loop_index_mutex);
2018
2019 return ret;
2020 }
2021
2022 static const struct file_operations loop_ctl_fops = {
2023 .open = nonseekable_open,
2024 .unlocked_ioctl = loop_control_ioctl,
2025 .compat_ioctl = loop_control_ioctl,
2026 .owner = THIS_MODULE,
2027 .llseek = noop_llseek,
2028 };
2029
2030 static struct miscdevice loop_misc = {
2031 .minor = LOOP_CTRL_MINOR,
2032 .name = "loop-control",
2033 .fops = &loop_ctl_fops,
2034 };
2035
2036 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2037 MODULE_ALIAS("devname:loop-control");
2038
loop_init(void)2039 static int __init loop_init(void)
2040 {
2041 int i, nr;
2042 unsigned long range;
2043 struct loop_device *lo;
2044 int err;
2045
2046 err = misc_register(&loop_misc);
2047 if (err < 0)
2048 return err;
2049
2050 part_shift = 0;
2051 if (max_part > 0) {
2052 part_shift = fls(max_part);
2053
2054 /*
2055 * Adjust max_part according to part_shift as it is exported
2056 * to user space so that user can decide correct minor number
2057 * if [s]he want to create more devices.
2058 *
2059 * Note that -1 is required because partition 0 is reserved
2060 * for the whole disk.
2061 */
2062 max_part = (1UL << part_shift) - 1;
2063 }
2064
2065 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2066 err = -EINVAL;
2067 goto misc_out;
2068 }
2069
2070 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2071 err = -EINVAL;
2072 goto misc_out;
2073 }
2074
2075 /*
2076 * If max_loop is specified, create that many devices upfront.
2077 * This also becomes a hard limit. If max_loop is not specified,
2078 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2079 * init time. Loop devices can be requested on-demand with the
2080 * /dev/loop-control interface, or be instantiated by accessing
2081 * a 'dead' device node.
2082 */
2083 if (max_loop) {
2084 nr = max_loop;
2085 range = max_loop << part_shift;
2086 } else {
2087 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2088 range = 1UL << MINORBITS;
2089 }
2090
2091 if (register_blkdev(LOOP_MAJOR, "loop")) {
2092 err = -EIO;
2093 goto misc_out;
2094 }
2095
2096 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2097 THIS_MODULE, loop_probe, NULL, NULL);
2098
2099 /* pre-create number of devices given by config or max_loop */
2100 mutex_lock(&loop_index_mutex);
2101 for (i = 0; i < nr; i++)
2102 loop_add(&lo, i);
2103 mutex_unlock(&loop_index_mutex);
2104
2105 printk(KERN_INFO "loop: module loaded\n");
2106 return 0;
2107
2108 misc_out:
2109 misc_deregister(&loop_misc);
2110 return err;
2111 }
2112
loop_exit_cb(int id,void * ptr,void * data)2113 static int loop_exit_cb(int id, void *ptr, void *data)
2114 {
2115 struct loop_device *lo = ptr;
2116
2117 loop_remove(lo);
2118 return 0;
2119 }
2120
loop_exit(void)2121 static void __exit loop_exit(void)
2122 {
2123 unsigned long range;
2124
2125 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2126
2127 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2128 idr_destroy(&loop_index_idr);
2129
2130 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2131 unregister_blkdev(LOOP_MAJOR, "loop");
2132
2133 misc_deregister(&loop_misc);
2134 }
2135
2136 module_init(loop_init);
2137 module_exit(loop_exit);
2138
2139 #ifndef MODULE
max_loop_setup(char * str)2140 static int __init max_loop_setup(char *str)
2141 {
2142 max_loop = simple_strtol(str, NULL, 0);
2143 return 1;
2144 }
2145
2146 __setup("max_loop=", max_loop_setup);
2147 #endif
2148