• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
transfer_xor(struct loop_device * lo,int cmd,struct page * raw_page,unsigned raw_off,struct page * loop_page,unsigned loop_off,int size,sector_t real_block)89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
xor_init(struct loop_device * lo,const struct loop_info64 * info)118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
get_size(loff_t offset,loff_t sizelimit,struct file * file)141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
get_loop_size(struct loop_device * lo,struct file * file)162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
__loop_update_dio(struct loop_device * lo,bool dio)167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane appplications should be PAGE_SIZE algined
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio)
217 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 	else
219 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 	blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222 
223 static int
figure_loop_size(struct loop_device * lo,loff_t offset,loff_t sizelimit)224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 	sector_t x = (sector_t)size;
228 	struct block_device *bdev = lo->lo_device;
229 
230 	if (unlikely((loff_t)x != size))
231 		return -EFBIG;
232 	if (lo->lo_offset != offset)
233 		lo->lo_offset = offset;
234 	if (lo->lo_sizelimit != sizelimit)
235 		lo->lo_sizelimit = sizelimit;
236 	set_capacity(lo->lo_disk, x);
237 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 	/* let user-space know about the new size */
239 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 	return 0;
241 }
242 
243 static inline int
lo_do_transfer(struct loop_device * lo,int cmd,struct page * rpage,unsigned roffs,struct page * lpage,unsigned loffs,int size,sector_t rblock)244 lo_do_transfer(struct loop_device *lo, int cmd,
245 	       struct page *rpage, unsigned roffs,
246 	       struct page *lpage, unsigned loffs,
247 	       int size, sector_t rblock)
248 {
249 	int ret;
250 
251 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 	if (likely(!ret))
253 		return 0;
254 
255 	printk_ratelimited(KERN_ERR
256 		"loop: Transfer error at byte offset %llu, length %i.\n",
257 		(unsigned long long)rblock << 9, size);
258 	return ret;
259 }
260 
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 	struct iov_iter i;
264 	ssize_t bw;
265 
266 	iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
267 
268 	file_start_write(file);
269 	bw = vfs_iter_write(file, &i, ppos);
270 	file_end_write(file);
271 
272 	if (likely(bw ==  bvec->bv_len))
273 		return 0;
274 
275 	printk_ratelimited(KERN_ERR
276 		"loop: Write error at byte offset %llu, length %i.\n",
277 		(unsigned long long)*ppos, bvec->bv_len);
278 	if (bw >= 0)
279 		bw = -EIO;
280 	return bw;
281 }
282 
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 		loff_t pos)
285 {
286 	struct bio_vec bvec;
287 	struct req_iterator iter;
288 	int ret = 0;
289 
290 	rq_for_each_segment(bvec, rq, iter) {
291 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 		if (ret < 0)
293 			break;
294 		cond_resched();
295 	}
296 
297 	return ret;
298 }
299 
300 /*
301  * This is the slow, transforming version that needs to double buffer the
302  * data as it cannot do the transformations in place without having direct
303  * access to the destination pages of the backing file.
304  */
lo_write_transfer(struct loop_device * lo,struct request * rq,loff_t pos)305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 		loff_t pos)
307 {
308 	struct bio_vec bvec, b;
309 	struct req_iterator iter;
310 	struct page *page;
311 	int ret = 0;
312 
313 	page = alloc_page(GFP_NOIO);
314 	if (unlikely(!page))
315 		return -ENOMEM;
316 
317 	rq_for_each_segment(bvec, rq, iter) {
318 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 			bvec.bv_offset, bvec.bv_len, pos >> 9);
320 		if (unlikely(ret))
321 			break;
322 
323 		b.bv_page = page;
324 		b.bv_offset = 0;
325 		b.bv_len = bvec.bv_len;
326 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 		if (ret < 0)
328 			break;
329 	}
330 
331 	__free_page(page);
332 	return ret;
333 }
334 
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 		loff_t pos)
337 {
338 	struct bio_vec bvec;
339 	struct req_iterator iter;
340 	struct iov_iter i;
341 	ssize_t len;
342 
343 	rq_for_each_segment(bvec, rq, iter) {
344 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 		if (len < 0)
347 			return len;
348 
349 		flush_dcache_page(bvec.bv_page);
350 
351 		if (len != bvec.bv_len) {
352 			struct bio *bio;
353 
354 			__rq_for_each_bio(bio, rq)
355 				zero_fill_bio(bio);
356 			break;
357 		}
358 		cond_resched();
359 	}
360 
361 	return 0;
362 }
363 
lo_read_transfer(struct loop_device * lo,struct request * rq,loff_t pos)364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 		loff_t pos)
366 {
367 	struct bio_vec bvec, b;
368 	struct req_iterator iter;
369 	struct iov_iter i;
370 	struct page *page;
371 	ssize_t len;
372 	int ret = 0;
373 
374 	page = alloc_page(GFP_NOIO);
375 	if (unlikely(!page))
376 		return -ENOMEM;
377 
378 	rq_for_each_segment(bvec, rq, iter) {
379 		loff_t offset = pos;
380 
381 		b.bv_page = page;
382 		b.bv_offset = 0;
383 		b.bv_len = bvec.bv_len;
384 
385 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 		if (len < 0) {
388 			ret = len;
389 			goto out_free_page;
390 		}
391 
392 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 			bvec.bv_offset, len, offset >> 9);
394 		if (ret)
395 			goto out_free_page;
396 
397 		flush_dcache_page(bvec.bv_page);
398 
399 		if (len != bvec.bv_len) {
400 			struct bio *bio;
401 
402 			__rq_for_each_bio(bio, rq)
403 				zero_fill_bio(bio);
404 			break;
405 		}
406 	}
407 
408 	ret = 0;
409 out_free_page:
410 	__free_page(page);
411 	return ret;
412 }
413 
lo_discard(struct loop_device * lo,struct request * rq,loff_t pos)414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 	/*
417 	 * We use punch hole to reclaim the free space used by the
418 	 * image a.k.a. discard. However we do not support discard if
419 	 * encryption is enabled, because it may give an attacker
420 	 * useful information.
421 	 */
422 	struct file *file = lo->lo_backing_file;
423 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 	int ret;
425 
426 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 		ret = -EOPNOTSUPP;
428 		goto out;
429 	}
430 
431 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 		ret = -EIO;
434  out:
435 	return ret;
436 }
437 
lo_req_flush(struct loop_device * lo,struct request * rq)438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 	struct file *file = lo->lo_backing_file;
441 	int ret = vfs_fsync(file, 0);
442 	if (unlikely(ret && ret != -EINVAL))
443 		ret = -EIO;
444 
445 	return ret;
446 }
447 
handle_partial_read(struct loop_cmd * cmd,long bytes)448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
449 {
450 	if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE))
451 		return;
452 
453 	if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 		struct bio *bio = cmd->rq->bio;
455 
456 		bio_advance(bio, bytes);
457 		zero_fill_bio(bio);
458 	}
459 }
460 
lo_rw_aio_complete(struct kiocb * iocb,long ret,long ret2)461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
462 {
463 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 	struct request *rq = cmd->rq;
465 
466 	handle_partial_read(cmd, ret);
467 
468 	if (ret > 0)
469 		ret = 0;
470 	else if (ret < 0)
471 		ret = -EIO;
472 
473 	blk_mq_complete_request(rq, ret);
474 }
475 
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,bool rw)476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 		     loff_t pos, bool rw)
478 {
479 	struct iov_iter iter;
480 	struct bio_vec *bvec;
481 	struct bio *bio = cmd->rq->bio;
482 	struct file *file = lo->lo_backing_file;
483 	int ret;
484 
485 	/* nomerge for loop request queue */
486 	WARN_ON(cmd->rq->bio != cmd->rq->biotail);
487 
488 	bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
489 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
490 		      bio_segments(bio), blk_rq_bytes(cmd->rq));
491 	/*
492 	 * This bio may be started from the middle of the 'bvec'
493 	 * because of bio splitting, so offset from the bvec must
494 	 * be passed to iov iterator
495 	 */
496 	iter.iov_offset = bio->bi_iter.bi_bvec_done;
497 
498 	cmd->iocb.ki_pos = pos;
499 	cmd->iocb.ki_filp = file;
500 	cmd->iocb.ki_complete = lo_rw_aio_complete;
501 	cmd->iocb.ki_flags = IOCB_DIRECT;
502 
503 	if (rw == WRITE)
504 		ret = file->f_op->write_iter(&cmd->iocb, &iter);
505 	else
506 		ret = file->f_op->read_iter(&cmd->iocb, &iter);
507 
508 	if (ret != -EIOCBQUEUED)
509 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
510 	return 0;
511 }
512 
513 
lo_rw_simple(struct loop_device * lo,struct request * rq,loff_t pos,bool rw)514 static inline int lo_rw_simple(struct loop_device *lo,
515 		struct request *rq, loff_t pos, bool rw)
516 {
517 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
518 
519 	if (cmd->use_aio)
520 		return lo_rw_aio(lo, cmd, pos, rw);
521 
522 	/*
523 	 * lo_write_simple and lo_read_simple should have been covered
524 	 * by io submit style function like lo_rw_aio(), one blocker
525 	 * is that lo_read_simple() need to call flush_dcache_page after
526 	 * the page is written from kernel, and it isn't easy to handle
527 	 * this in io submit style function which submits all segments
528 	 * of the req at one time. And direct read IO doesn't need to
529 	 * run flush_dcache_page().
530 	 */
531 	if (rw == WRITE)
532 		return lo_write_simple(lo, rq, pos);
533 	else
534 		return lo_read_simple(lo, rq, pos);
535 }
536 
do_req_filebacked(struct loop_device * lo,struct request * rq)537 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
538 {
539 	loff_t pos;
540 	int ret;
541 
542 	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
543 
544 	if (rq->cmd_flags & REQ_WRITE) {
545 		if (rq->cmd_flags & REQ_FLUSH)
546 			ret = lo_req_flush(lo, rq);
547 		else if (rq->cmd_flags & REQ_DISCARD)
548 			ret = lo_discard(lo, rq, pos);
549 		else if (lo->transfer)
550 			ret = lo_write_transfer(lo, rq, pos);
551 		else
552 			ret = lo_rw_simple(lo, rq, pos, WRITE);
553 
554 	} else {
555 		if (lo->transfer)
556 			ret = lo_read_transfer(lo, rq, pos);
557 		else
558 			ret = lo_rw_simple(lo, rq, pos, READ);
559 	}
560 
561 	return ret;
562 }
563 
564 struct switch_request {
565 	struct file *file;
566 	struct completion wait;
567 };
568 
loop_update_dio(struct loop_device * lo)569 static inline void loop_update_dio(struct loop_device *lo)
570 {
571 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
572 			lo->use_dio);
573 }
574 
575 /*
576  * Do the actual switch; called from the BIO completion routine
577  */
do_loop_switch(struct loop_device * lo,struct switch_request * p)578 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
579 {
580 	struct file *file = p->file;
581 	struct file *old_file = lo->lo_backing_file;
582 	struct address_space *mapping;
583 
584 	/* if no new file, only flush of queued bios requested */
585 	if (!file)
586 		return;
587 
588 	mapping = file->f_mapping;
589 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
590 	lo->lo_backing_file = file;
591 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
592 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
593 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
594 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
595 	loop_update_dio(lo);
596 }
597 
598 /*
599  * loop_switch performs the hard work of switching a backing store.
600  * First it needs to flush existing IO, it does this by sending a magic
601  * BIO down the pipe. The completion of this BIO does the actual switch.
602  */
loop_switch(struct loop_device * lo,struct file * file)603 static int loop_switch(struct loop_device *lo, struct file *file)
604 {
605 	struct switch_request w;
606 
607 	w.file = file;
608 
609 	/* freeze queue and wait for completion of scheduled requests */
610 	blk_mq_freeze_queue(lo->lo_queue);
611 
612 	/* do the switch action */
613 	do_loop_switch(lo, &w);
614 
615 	/* unfreeze */
616 	blk_mq_unfreeze_queue(lo->lo_queue);
617 
618 	return 0;
619 }
620 
621 /*
622  * Helper to flush the IOs in loop, but keeping loop thread running
623  */
loop_flush(struct loop_device * lo)624 static int loop_flush(struct loop_device *lo)
625 {
626 	/* loop not yet configured, no running thread, nothing to flush */
627 	if (lo->lo_state != Lo_bound)
628 		return 0;
629 	return loop_switch(lo, NULL);
630 }
631 
loop_reread_partitions(struct loop_device * lo,struct block_device * bdev)632 static void loop_reread_partitions(struct loop_device *lo,
633 				   struct block_device *bdev)
634 {
635 	int rc;
636 
637 	/*
638 	 * bd_mutex has been held already in release path, so don't
639 	 * acquire it if this function is called in such case.
640 	 *
641 	 * If the reread partition isn't from release path, lo_refcnt
642 	 * must be at least one and it can only become zero when the
643 	 * current holder is released.
644 	 */
645 	if (!atomic_read(&lo->lo_refcnt))
646 		rc = __blkdev_reread_part(bdev);
647 	else
648 		rc = blkdev_reread_part(bdev);
649 	if (rc)
650 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
651 			__func__, lo->lo_number, lo->lo_file_name, rc);
652 }
653 
is_loop_device(struct file * file)654 static inline int is_loop_device(struct file *file)
655 {
656 	struct inode *i = file->f_mapping->host;
657 
658 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
659 }
660 
loop_validate_file(struct file * file,struct block_device * bdev)661 static int loop_validate_file(struct file *file, struct block_device *bdev)
662 {
663 	struct inode	*inode = file->f_mapping->host;
664 	struct file	*f = file;
665 
666 	/* Avoid recursion */
667 	while (is_loop_device(f)) {
668 		struct loop_device *l;
669 
670 		if (f->f_mapping->host->i_bdev == bdev)
671 			return -EBADF;
672 
673 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
674 		if (l->lo_state == Lo_unbound) {
675 			return -EINVAL;
676 		}
677 		f = l->lo_backing_file;
678 	}
679 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
680 		return -EINVAL;
681 	return 0;
682 }
683 
684 /*
685  * loop_change_fd switched the backing store of a loopback device to
686  * a new file. This is useful for operating system installers to free up
687  * the original file and in High Availability environments to switch to
688  * an alternative location for the content in case of server meltdown.
689  * This can only work if the loop device is used read-only, and if the
690  * new backing store is the same size and type as the old backing store.
691  */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)692 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
693 			  unsigned int arg)
694 {
695 	struct file	*file, *old_file;
696 	struct inode	*inode;
697 	int		error;
698 
699 	error = -ENXIO;
700 	if (lo->lo_state != Lo_bound)
701 		goto out;
702 
703 	/* the loop device has to be read-only */
704 	error = -EINVAL;
705 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
706 		goto out;
707 
708 	error = -EBADF;
709 	file = fget(arg);
710 	if (!file)
711 		goto out;
712 
713 	error = loop_validate_file(file, bdev);
714 	if (error)
715 		goto out_putf;
716 
717 	inode = file->f_mapping->host;
718 	old_file = lo->lo_backing_file;
719 
720 	error = -EINVAL;
721 
722 	/* size of the new backing store needs to be the same */
723 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
724 		goto out_putf;
725 
726 	/* and ... switch */
727 	error = loop_switch(lo, file);
728 	if (error)
729 		goto out_putf;
730 
731 	fput(old_file);
732 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
733 		loop_reread_partitions(lo, bdev);
734 	return 0;
735 
736  out_putf:
737 	fput(file);
738  out:
739 	return error;
740 }
741 
742 /* loop sysfs attributes */
743 
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))744 static ssize_t loop_attr_show(struct device *dev, char *page,
745 			      ssize_t (*callback)(struct loop_device *, char *))
746 {
747 	struct gendisk *disk = dev_to_disk(dev);
748 	struct loop_device *lo = disk->private_data;
749 
750 	return callback(lo, page);
751 }
752 
753 #define LOOP_ATTR_RO(_name)						\
754 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
755 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
756 				struct device_attribute *attr, char *b)	\
757 {									\
758 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
759 }									\
760 static struct device_attribute loop_attr_##_name =			\
761 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
762 
loop_attr_backing_file_show(struct loop_device * lo,char * buf)763 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
764 {
765 	ssize_t ret;
766 	char *p = NULL;
767 
768 	spin_lock_irq(&lo->lo_lock);
769 	if (lo->lo_backing_file)
770 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
771 	spin_unlock_irq(&lo->lo_lock);
772 
773 	if (IS_ERR_OR_NULL(p))
774 		ret = PTR_ERR(p);
775 	else {
776 		ret = strlen(p);
777 		memmove(buf, p, ret);
778 		buf[ret++] = '\n';
779 		buf[ret] = 0;
780 	}
781 
782 	return ret;
783 }
784 
loop_attr_offset_show(struct loop_device * lo,char * buf)785 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
786 {
787 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
788 }
789 
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)790 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
791 {
792 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
793 }
794 
loop_attr_autoclear_show(struct loop_device * lo,char * buf)795 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
796 {
797 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
798 
799 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
800 }
801 
loop_attr_partscan_show(struct loop_device * lo,char * buf)802 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
803 {
804 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
805 
806 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
807 }
808 
loop_attr_dio_show(struct loop_device * lo,char * buf)809 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
810 {
811 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
812 
813 	return sprintf(buf, "%s\n", dio ? "1" : "0");
814 }
815 
816 LOOP_ATTR_RO(backing_file);
817 LOOP_ATTR_RO(offset);
818 LOOP_ATTR_RO(sizelimit);
819 LOOP_ATTR_RO(autoclear);
820 LOOP_ATTR_RO(partscan);
821 LOOP_ATTR_RO(dio);
822 
823 static struct attribute *loop_attrs[] = {
824 	&loop_attr_backing_file.attr,
825 	&loop_attr_offset.attr,
826 	&loop_attr_sizelimit.attr,
827 	&loop_attr_autoclear.attr,
828 	&loop_attr_partscan.attr,
829 	&loop_attr_dio.attr,
830 	NULL,
831 };
832 
833 static struct attribute_group loop_attribute_group = {
834 	.name = "loop",
835 	.attrs= loop_attrs,
836 };
837 
loop_sysfs_init(struct loop_device * lo)838 static void loop_sysfs_init(struct loop_device *lo)
839 {
840 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
841 						&loop_attribute_group);
842 }
843 
loop_sysfs_exit(struct loop_device * lo)844 static void loop_sysfs_exit(struct loop_device *lo)
845 {
846 	if (lo->sysfs_inited)
847 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
848 				   &loop_attribute_group);
849 }
850 
loop_config_discard(struct loop_device * lo)851 static void loop_config_discard(struct loop_device *lo)
852 {
853 	struct file *file = lo->lo_backing_file;
854 	struct inode *inode = file->f_mapping->host;
855 	struct request_queue *q = lo->lo_queue;
856 
857 	/*
858 	 * We use punch hole to reclaim the free space used by the
859 	 * image a.k.a. discard. However we do not support discard if
860 	 * encryption is enabled, because it may give an attacker
861 	 * useful information.
862 	 */
863 	if ((!file->f_op->fallocate) ||
864 	    lo->lo_encrypt_key_size) {
865 		q->limits.discard_granularity = 0;
866 		q->limits.discard_alignment = 0;
867 		blk_queue_max_discard_sectors(q, 0);
868 		q->limits.discard_zeroes_data = 0;
869 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
870 		return;
871 	}
872 
873 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
874 	q->limits.discard_alignment = 0;
875 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
876 	q->limits.discard_zeroes_data = 1;
877 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
878 }
879 
loop_unprepare_queue(struct loop_device * lo)880 static void loop_unprepare_queue(struct loop_device *lo)
881 {
882 	flush_kthread_worker(&lo->worker);
883 	kthread_stop(lo->worker_task);
884 }
885 
loop_prepare_queue(struct loop_device * lo)886 static int loop_prepare_queue(struct loop_device *lo)
887 {
888 	init_kthread_worker(&lo->worker);
889 	lo->worker_task = kthread_run(kthread_worker_fn,
890 			&lo->worker, "loop%d", lo->lo_number);
891 	if (IS_ERR(lo->worker_task))
892 		return -ENOMEM;
893 	set_user_nice(lo->worker_task, MIN_NICE);
894 	return 0;
895 }
896 
loop_set_fd(struct loop_device * lo,fmode_t mode,struct block_device * bdev,unsigned int arg)897 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
898 		       struct block_device *bdev, unsigned int arg)
899 {
900 	struct file	*file;
901 	struct inode	*inode;
902 	struct address_space *mapping;
903 	unsigned lo_blocksize;
904 	int		lo_flags = 0;
905 	int		error;
906 	loff_t		size;
907 
908 	/* This is safe, since we have a reference from open(). */
909 	__module_get(THIS_MODULE);
910 
911 	error = -EBADF;
912 	file = fget(arg);
913 	if (!file)
914 		goto out;
915 
916 	error = -EBUSY;
917 	if (lo->lo_state != Lo_unbound)
918 		goto out_putf;
919 
920 	error = loop_validate_file(file, bdev);
921 	if (error)
922 		goto out_putf;
923 
924 	mapping = file->f_mapping;
925 	inode = mapping->host;
926 
927 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
928 	    !file->f_op->write_iter)
929 		lo_flags |= LO_FLAGS_READ_ONLY;
930 
931 	lo_blocksize = S_ISBLK(inode->i_mode) ?
932 		inode->i_bdev->bd_block_size : PAGE_SIZE;
933 
934 	error = -EFBIG;
935 	size = get_loop_size(lo, file);
936 	if ((loff_t)(sector_t)size != size)
937 		goto out_putf;
938 	error = loop_prepare_queue(lo);
939 	if (error)
940 		goto out_putf;
941 
942 	error = 0;
943 
944 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
945 
946 	lo->use_dio = false;
947 	lo->lo_blocksize = lo_blocksize;
948 	lo->lo_device = bdev;
949 	lo->lo_flags = lo_flags;
950 	lo->lo_backing_file = file;
951 	lo->transfer = NULL;
952 	lo->ioctl = NULL;
953 	lo->lo_sizelimit = 0;
954 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
955 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
956 
957 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
958 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
959 
960 	loop_update_dio(lo);
961 	set_capacity(lo->lo_disk, size);
962 	bd_set_size(bdev, size << 9);
963 	loop_sysfs_init(lo);
964 	/* let user-space know about the new size */
965 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
966 
967 	set_blocksize(bdev, lo_blocksize);
968 
969 	lo->lo_state = Lo_bound;
970 	if (part_shift)
971 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
972 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
973 		loop_reread_partitions(lo, bdev);
974 
975 	/* Grab the block_device to prevent its destruction after we
976 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
977 	 */
978 	bdgrab(bdev);
979 	return 0;
980 
981  out_putf:
982 	fput(file);
983  out:
984 	/* This is safe: open() is still holding a reference. */
985 	module_put(THIS_MODULE);
986 	return error;
987 }
988 
989 static int
loop_release_xfer(struct loop_device * lo)990 loop_release_xfer(struct loop_device *lo)
991 {
992 	int err = 0;
993 	struct loop_func_table *xfer = lo->lo_encryption;
994 
995 	if (xfer) {
996 		if (xfer->release)
997 			err = xfer->release(lo);
998 		lo->transfer = NULL;
999 		lo->lo_encryption = NULL;
1000 		module_put(xfer->owner);
1001 	}
1002 	return err;
1003 }
1004 
1005 static int
loop_init_xfer(struct loop_device * lo,struct loop_func_table * xfer,const struct loop_info64 * i)1006 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1007 	       const struct loop_info64 *i)
1008 {
1009 	int err = 0;
1010 
1011 	if (xfer) {
1012 		struct module *owner = xfer->owner;
1013 
1014 		if (!try_module_get(owner))
1015 			return -EINVAL;
1016 		if (xfer->init)
1017 			err = xfer->init(lo, i);
1018 		if (err)
1019 			module_put(owner);
1020 		else
1021 			lo->lo_encryption = xfer;
1022 	}
1023 	return err;
1024 }
1025 
loop_clr_fd(struct loop_device * lo)1026 static int loop_clr_fd(struct loop_device *lo)
1027 {
1028 	struct file *filp = lo->lo_backing_file;
1029 	gfp_t gfp = lo->old_gfp_mask;
1030 	struct block_device *bdev = lo->lo_device;
1031 
1032 	if (lo->lo_state != Lo_bound)
1033 		return -ENXIO;
1034 
1035 	/*
1036 	 * If we've explicitly asked to tear down the loop device,
1037 	 * and it has an elevated reference count, set it for auto-teardown when
1038 	 * the last reference goes away. This stops $!~#$@ udev from
1039 	 * preventing teardown because it decided that it needs to run blkid on
1040 	 * the loopback device whenever they appear. xfstests is notorious for
1041 	 * failing tests because blkid via udev races with a losetup
1042 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1043 	 * command to fail with EBUSY.
1044 	 */
1045 	if (atomic_read(&lo->lo_refcnt) > 1) {
1046 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1047 		mutex_unlock(&lo->lo_ctl_mutex);
1048 		return 0;
1049 	}
1050 
1051 	if (filp == NULL)
1052 		return -EINVAL;
1053 
1054 	/* freeze request queue during the transition */
1055 	blk_mq_freeze_queue(lo->lo_queue);
1056 
1057 	spin_lock_irq(&lo->lo_lock);
1058 	lo->lo_state = Lo_rundown;
1059 	lo->lo_backing_file = NULL;
1060 	spin_unlock_irq(&lo->lo_lock);
1061 
1062 	loop_release_xfer(lo);
1063 	lo->transfer = NULL;
1064 	lo->ioctl = NULL;
1065 	lo->lo_device = NULL;
1066 	lo->lo_encryption = NULL;
1067 	lo->lo_offset = 0;
1068 	lo->lo_sizelimit = 0;
1069 	lo->lo_encrypt_key_size = 0;
1070 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1071 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1072 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1073 	blk_queue_logical_block_size(lo->lo_queue, 512);
1074 	if (bdev) {
1075 		bdput(bdev);
1076 		invalidate_bdev(bdev);
1077 	}
1078 	set_capacity(lo->lo_disk, 0);
1079 	loop_sysfs_exit(lo);
1080 	if (bdev) {
1081 		bd_set_size(bdev, 0);
1082 		/* let user-space know about this change */
1083 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1084 	}
1085 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1086 	lo->lo_state = Lo_unbound;
1087 	/* This is safe: open() is still holding a reference. */
1088 	module_put(THIS_MODULE);
1089 	blk_mq_unfreeze_queue(lo->lo_queue);
1090 
1091 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1092 		loop_reread_partitions(lo, bdev);
1093 	lo->lo_flags = 0;
1094 	if (!part_shift)
1095 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1096 	loop_unprepare_queue(lo);
1097 	mutex_unlock(&lo->lo_ctl_mutex);
1098 	/*
1099 	 * Need not hold lo_ctl_mutex to fput backing file.
1100 	 * Calling fput holding lo_ctl_mutex triggers a circular
1101 	 * lock dependency possibility warning as fput can take
1102 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1103 	 */
1104 	fput(filp);
1105 	return 0;
1106 }
1107 
1108 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1109 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1110 {
1111 	int err;
1112 	struct loop_func_table *xfer;
1113 	kuid_t uid = current_uid();
1114 
1115 	if (lo->lo_encrypt_key_size &&
1116 	    !uid_eq(lo->lo_key_owner, uid) &&
1117 	    !capable(CAP_SYS_ADMIN))
1118 		return -EPERM;
1119 	if (lo->lo_state != Lo_bound)
1120 		return -ENXIO;
1121 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1122 		return -EINVAL;
1123 
1124 	if (lo->lo_offset != info->lo_offset ||
1125 	    lo->lo_sizelimit != info->lo_sizelimit) {
1126 		sync_blockdev(lo->lo_device);
1127 		kill_bdev(lo->lo_device);
1128 	}
1129 
1130 	/* I/O need to be drained during transfer transition */
1131 	blk_mq_freeze_queue(lo->lo_queue);
1132 
1133 	err = loop_release_xfer(lo);
1134 	if (err)
1135 		goto exit;
1136 
1137 	if (info->lo_encrypt_type) {
1138 		unsigned int type = info->lo_encrypt_type;
1139 
1140 		if (type >= MAX_LO_CRYPT) {
1141 			err = -EINVAL;
1142 			goto exit;
1143 		}
1144 		xfer = xfer_funcs[type];
1145 		if (xfer == NULL) {
1146 			err = -EINVAL;
1147 			goto exit;
1148 		}
1149 	} else
1150 		xfer = NULL;
1151 
1152 	err = loop_init_xfer(lo, xfer, info);
1153 	if (err)
1154 		goto exit;
1155 
1156 	if (lo->lo_offset != info->lo_offset ||
1157 	    lo->lo_sizelimit != info->lo_sizelimit) {
1158 		/* kill_bdev should have truncated all the pages */
1159 		if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1160 			err = -EAGAIN;
1161 			pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1162 				__func__, lo->lo_number, lo->lo_file_name,
1163 				lo->lo_device->bd_inode->i_mapping->nrpages);
1164 			goto exit;
1165 		}
1166 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1167 			err = -EFBIG;
1168 			goto exit;
1169 		}
1170 	}
1171 
1172 	loop_config_discard(lo);
1173 
1174 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1175 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1176 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1177 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1178 
1179 	if (!xfer)
1180 		xfer = &none_funcs;
1181 	lo->transfer = xfer->transfer;
1182 	lo->ioctl = xfer->ioctl;
1183 
1184 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1185 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1186 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1187 
1188 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1189 	lo->lo_init[0] = info->lo_init[0];
1190 	lo->lo_init[1] = info->lo_init[1];
1191 	if (info->lo_encrypt_key_size) {
1192 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1193 		       info->lo_encrypt_key_size);
1194 		lo->lo_key_owner = uid;
1195 	}
1196 
1197 	/* update dio if lo_offset or transfer is changed */
1198 	__loop_update_dio(lo, lo->use_dio);
1199 
1200  exit:
1201 	blk_mq_unfreeze_queue(lo->lo_queue);
1202 
1203 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1204 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1205 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1206 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1207 		loop_reread_partitions(lo, lo->lo_device);
1208 	}
1209 
1210 	return err;
1211 }
1212 
1213 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1214 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1215 {
1216 	struct file *file = lo->lo_backing_file;
1217 	struct kstat stat;
1218 	int error;
1219 
1220 	if (lo->lo_state != Lo_bound)
1221 		return -ENXIO;
1222 	error = vfs_getattr(&file->f_path, &stat);
1223 	if (error)
1224 		return error;
1225 	memset(info, 0, sizeof(*info));
1226 	info->lo_number = lo->lo_number;
1227 	info->lo_device = huge_encode_dev(stat.dev);
1228 	info->lo_inode = stat.ino;
1229 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1230 	info->lo_offset = lo->lo_offset;
1231 	info->lo_sizelimit = lo->lo_sizelimit;
1232 	info->lo_flags = lo->lo_flags;
1233 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1234 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1235 	info->lo_encrypt_type =
1236 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1237 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1238 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1239 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1240 		       lo->lo_encrypt_key_size);
1241 	}
1242 	return 0;
1243 }
1244 
1245 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1246 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1247 {
1248 	memset(info64, 0, sizeof(*info64));
1249 	info64->lo_number = info->lo_number;
1250 	info64->lo_device = info->lo_device;
1251 	info64->lo_inode = info->lo_inode;
1252 	info64->lo_rdevice = info->lo_rdevice;
1253 	info64->lo_offset = info->lo_offset;
1254 	info64->lo_sizelimit = 0;
1255 	info64->lo_encrypt_type = info->lo_encrypt_type;
1256 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1257 	info64->lo_flags = info->lo_flags;
1258 	info64->lo_init[0] = info->lo_init[0];
1259 	info64->lo_init[1] = info->lo_init[1];
1260 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1261 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1262 	else
1263 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1264 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1265 }
1266 
1267 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1268 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1269 {
1270 	memset(info, 0, sizeof(*info));
1271 	info->lo_number = info64->lo_number;
1272 	info->lo_device = info64->lo_device;
1273 	info->lo_inode = info64->lo_inode;
1274 	info->lo_rdevice = info64->lo_rdevice;
1275 	info->lo_offset = info64->lo_offset;
1276 	info->lo_encrypt_type = info64->lo_encrypt_type;
1277 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1278 	info->lo_flags = info64->lo_flags;
1279 	info->lo_init[0] = info64->lo_init[0];
1280 	info->lo_init[1] = info64->lo_init[1];
1281 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1282 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1283 	else
1284 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1285 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1286 
1287 	/* error in case values were truncated */
1288 	if (info->lo_device != info64->lo_device ||
1289 	    info->lo_rdevice != info64->lo_rdevice ||
1290 	    info->lo_inode != info64->lo_inode ||
1291 	    info->lo_offset != info64->lo_offset)
1292 		return -EOVERFLOW;
1293 
1294 	return 0;
1295 }
1296 
1297 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1298 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1299 {
1300 	struct loop_info info;
1301 	struct loop_info64 info64;
1302 
1303 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1304 		return -EFAULT;
1305 	loop_info64_from_old(&info, &info64);
1306 	return loop_set_status(lo, &info64);
1307 }
1308 
1309 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1310 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1311 {
1312 	struct loop_info64 info64;
1313 
1314 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1315 		return -EFAULT;
1316 	return loop_set_status(lo, &info64);
1317 }
1318 
1319 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1320 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1321 	struct loop_info info;
1322 	struct loop_info64 info64;
1323 	int err = 0;
1324 
1325 	if (!arg)
1326 		err = -EINVAL;
1327 	if (!err)
1328 		err = loop_get_status(lo, &info64);
1329 	if (!err)
1330 		err = loop_info64_to_old(&info64, &info);
1331 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1332 		err = -EFAULT;
1333 
1334 	return err;
1335 }
1336 
1337 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1338 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1339 	struct loop_info64 info64;
1340 	int err = 0;
1341 
1342 	if (!arg)
1343 		err = -EINVAL;
1344 	if (!err)
1345 		err = loop_get_status(lo, &info64);
1346 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1347 		err = -EFAULT;
1348 
1349 	return err;
1350 }
1351 
loop_set_capacity(struct loop_device * lo,struct block_device * bdev)1352 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1353 {
1354 	if (unlikely(lo->lo_state != Lo_bound))
1355 		return -ENXIO;
1356 
1357 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1358 }
1359 
loop_set_dio(struct loop_device * lo,unsigned long arg)1360 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1361 {
1362 	int error = -ENXIO;
1363 	if (lo->lo_state != Lo_bound)
1364 		goto out;
1365 
1366 	__loop_update_dio(lo, !!arg);
1367 	if (lo->use_dio == !!arg)
1368 		return 0;
1369 	error = -EINVAL;
1370  out:
1371 	return error;
1372 }
1373 
loop_set_block_size(struct loop_device * lo,unsigned long arg)1374 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1375 {
1376 	int err = 0;
1377 
1378 	if (lo->lo_state != Lo_bound)
1379 		return -ENXIO;
1380 
1381 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1382 		return -EINVAL;
1383 
1384 	if (lo->lo_queue->limits.logical_block_size != arg) {
1385 		sync_blockdev(lo->lo_device);
1386 		kill_bdev(lo->lo_device);
1387 	}
1388 
1389 	blk_mq_freeze_queue(lo->lo_queue);
1390 
1391 	/* kill_bdev should have truncated all the pages */
1392 	if (lo->lo_queue->limits.logical_block_size != arg &&
1393 			lo->lo_device->bd_inode->i_mapping->nrpages) {
1394 		err = -EAGAIN;
1395 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1396 			__func__, lo->lo_number, lo->lo_file_name,
1397 			lo->lo_device->bd_inode->i_mapping->nrpages);
1398 		goto out_unfreeze;
1399 	}
1400 
1401 	blk_queue_logical_block_size(lo->lo_queue, arg);
1402 	loop_update_dio(lo);
1403 out_unfreeze:
1404 	blk_mq_unfreeze_queue(lo->lo_queue);
1405 
1406 	return err;
1407 }
1408 
lo_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1409 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1410 	unsigned int cmd, unsigned long arg)
1411 {
1412 	struct loop_device *lo = bdev->bd_disk->private_data;
1413 	int err;
1414 
1415 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1416 	switch (cmd) {
1417 	case LOOP_SET_FD:
1418 		err = loop_set_fd(lo, mode, bdev, arg);
1419 		break;
1420 	case LOOP_CHANGE_FD:
1421 		err = loop_change_fd(lo, bdev, arg);
1422 		break;
1423 	case LOOP_CLR_FD:
1424 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1425 		err = loop_clr_fd(lo);
1426 		if (!err)
1427 			goto out_unlocked;
1428 		break;
1429 	case LOOP_SET_STATUS:
1430 		err = -EPERM;
1431 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1432 			err = loop_set_status_old(lo,
1433 					(struct loop_info __user *)arg);
1434 		break;
1435 	case LOOP_GET_STATUS:
1436 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1437 		break;
1438 	case LOOP_SET_STATUS64:
1439 		err = -EPERM;
1440 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1441 			err = loop_set_status64(lo,
1442 					(struct loop_info64 __user *) arg);
1443 		break;
1444 	case LOOP_GET_STATUS64:
1445 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1446 		break;
1447 	case LOOP_SET_CAPACITY:
1448 		err = -EPERM;
1449 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1450 			err = loop_set_capacity(lo, bdev);
1451 		break;
1452 	case LOOP_SET_DIRECT_IO:
1453 		err = -EPERM;
1454 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1455 			err = loop_set_dio(lo, arg);
1456 		break;
1457 	case LOOP_SET_BLOCK_SIZE:
1458 		err = -EPERM;
1459 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1460 			err = loop_set_block_size(lo, arg);
1461 		break;
1462 	default:
1463 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1464 	}
1465 	mutex_unlock(&lo->lo_ctl_mutex);
1466 
1467 out_unlocked:
1468 	return err;
1469 }
1470 
1471 #ifdef CONFIG_COMPAT
1472 struct compat_loop_info {
1473 	compat_int_t	lo_number;      /* ioctl r/o */
1474 	compat_dev_t	lo_device;      /* ioctl r/o */
1475 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1476 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1477 	compat_int_t	lo_offset;
1478 	compat_int_t	lo_encrypt_type;
1479 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1480 	compat_int_t	lo_flags;       /* ioctl r/o */
1481 	char		lo_name[LO_NAME_SIZE];
1482 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1483 	compat_ulong_t	lo_init[2];
1484 	char		reserved[4];
1485 };
1486 
1487 /*
1488  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1489  * - noinlined to reduce stack space usage in main part of driver
1490  */
1491 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1492 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1493 			struct loop_info64 *info64)
1494 {
1495 	struct compat_loop_info info;
1496 
1497 	if (copy_from_user(&info, arg, sizeof(info)))
1498 		return -EFAULT;
1499 
1500 	memset(info64, 0, sizeof(*info64));
1501 	info64->lo_number = info.lo_number;
1502 	info64->lo_device = info.lo_device;
1503 	info64->lo_inode = info.lo_inode;
1504 	info64->lo_rdevice = info.lo_rdevice;
1505 	info64->lo_offset = info.lo_offset;
1506 	info64->lo_sizelimit = 0;
1507 	info64->lo_encrypt_type = info.lo_encrypt_type;
1508 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1509 	info64->lo_flags = info.lo_flags;
1510 	info64->lo_init[0] = info.lo_init[0];
1511 	info64->lo_init[1] = info.lo_init[1];
1512 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1513 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1514 	else
1515 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1516 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1517 	return 0;
1518 }
1519 
1520 /*
1521  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1522  * - noinlined to reduce stack space usage in main part of driver
1523  */
1524 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1525 loop_info64_to_compat(const struct loop_info64 *info64,
1526 		      struct compat_loop_info __user *arg)
1527 {
1528 	struct compat_loop_info info;
1529 
1530 	memset(&info, 0, sizeof(info));
1531 	info.lo_number = info64->lo_number;
1532 	info.lo_device = info64->lo_device;
1533 	info.lo_inode = info64->lo_inode;
1534 	info.lo_rdevice = info64->lo_rdevice;
1535 	info.lo_offset = info64->lo_offset;
1536 	info.lo_encrypt_type = info64->lo_encrypt_type;
1537 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1538 	info.lo_flags = info64->lo_flags;
1539 	info.lo_init[0] = info64->lo_init[0];
1540 	info.lo_init[1] = info64->lo_init[1];
1541 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1542 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1543 	else
1544 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1545 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1546 
1547 	/* error in case values were truncated */
1548 	if (info.lo_device != info64->lo_device ||
1549 	    info.lo_rdevice != info64->lo_rdevice ||
1550 	    info.lo_inode != info64->lo_inode ||
1551 	    info.lo_offset != info64->lo_offset ||
1552 	    info.lo_init[0] != info64->lo_init[0] ||
1553 	    info.lo_init[1] != info64->lo_init[1])
1554 		return -EOVERFLOW;
1555 
1556 	if (copy_to_user(arg, &info, sizeof(info)))
1557 		return -EFAULT;
1558 	return 0;
1559 }
1560 
1561 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1562 loop_set_status_compat(struct loop_device *lo,
1563 		       const struct compat_loop_info __user *arg)
1564 {
1565 	struct loop_info64 info64;
1566 	int ret;
1567 
1568 	ret = loop_info64_from_compat(arg, &info64);
1569 	if (ret < 0)
1570 		return ret;
1571 	return loop_set_status(lo, &info64);
1572 }
1573 
1574 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1575 loop_get_status_compat(struct loop_device *lo,
1576 		       struct compat_loop_info __user *arg)
1577 {
1578 	struct loop_info64 info64;
1579 	int err = 0;
1580 
1581 	if (!arg)
1582 		err = -EINVAL;
1583 	if (!err)
1584 		err = loop_get_status(lo, &info64);
1585 	if (!err)
1586 		err = loop_info64_to_compat(&info64, arg);
1587 	return err;
1588 }
1589 
lo_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1590 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1591 			   unsigned int cmd, unsigned long arg)
1592 {
1593 	struct loop_device *lo = bdev->bd_disk->private_data;
1594 	int err;
1595 
1596 	switch(cmd) {
1597 	case LOOP_SET_STATUS:
1598 		mutex_lock(&lo->lo_ctl_mutex);
1599 		err = loop_set_status_compat(
1600 			lo, (const struct compat_loop_info __user *) arg);
1601 		mutex_unlock(&lo->lo_ctl_mutex);
1602 		break;
1603 	case LOOP_GET_STATUS:
1604 		mutex_lock(&lo->lo_ctl_mutex);
1605 		err = loop_get_status_compat(
1606 			lo, (struct compat_loop_info __user *) arg);
1607 		mutex_unlock(&lo->lo_ctl_mutex);
1608 		break;
1609 	case LOOP_SET_CAPACITY:
1610 	case LOOP_CLR_FD:
1611 	case LOOP_GET_STATUS64:
1612 	case LOOP_SET_STATUS64:
1613 		arg = (unsigned long) compat_ptr(arg);
1614 	case LOOP_SET_FD:
1615 	case LOOP_CHANGE_FD:
1616 	case LOOP_SET_BLOCK_SIZE:
1617 	case LOOP_SET_DIRECT_IO:
1618 		err = lo_ioctl(bdev, mode, cmd, arg);
1619 		break;
1620 	default:
1621 		err = -ENOIOCTLCMD;
1622 		break;
1623 	}
1624 	return err;
1625 }
1626 #endif
1627 
lo_open(struct block_device * bdev,fmode_t mode)1628 static int lo_open(struct block_device *bdev, fmode_t mode)
1629 {
1630 	struct loop_device *lo;
1631 	int err = 0;
1632 
1633 	mutex_lock(&loop_index_mutex);
1634 	lo = bdev->bd_disk->private_data;
1635 	if (!lo) {
1636 		err = -ENXIO;
1637 		goto out;
1638 	}
1639 
1640 	atomic_inc(&lo->lo_refcnt);
1641 out:
1642 	mutex_unlock(&loop_index_mutex);
1643 	return err;
1644 }
1645 
__lo_release(struct loop_device * lo)1646 static void __lo_release(struct loop_device *lo)
1647 {
1648 	int err;
1649 
1650 	if (atomic_dec_return(&lo->lo_refcnt))
1651 		return;
1652 
1653 	mutex_lock(&lo->lo_ctl_mutex);
1654 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1655 		/*
1656 		 * In autoclear mode, stop the loop thread
1657 		 * and remove configuration after last close.
1658 		 */
1659 		err = loop_clr_fd(lo);
1660 		if (!err)
1661 			return;
1662 	} else {
1663 		/*
1664 		 * Otherwise keep thread (if running) and config,
1665 		 * but flush possible ongoing bios in thread.
1666 		 */
1667 		loop_flush(lo);
1668 	}
1669 
1670 	mutex_unlock(&lo->lo_ctl_mutex);
1671 }
1672 
lo_release(struct gendisk * disk,fmode_t mode)1673 static void lo_release(struct gendisk *disk, fmode_t mode)
1674 {
1675 	mutex_lock(&loop_index_mutex);
1676 	__lo_release(disk->private_data);
1677 	mutex_unlock(&loop_index_mutex);
1678 }
1679 
1680 static const struct block_device_operations lo_fops = {
1681 	.owner =	THIS_MODULE,
1682 	.open =		lo_open,
1683 	.release =	lo_release,
1684 	.ioctl =	lo_ioctl,
1685 #ifdef CONFIG_COMPAT
1686 	.compat_ioctl =	lo_compat_ioctl,
1687 #endif
1688 };
1689 
1690 /*
1691  * And now the modules code and kernel interface.
1692  */
1693 static int max_loop;
1694 module_param(max_loop, int, S_IRUGO);
1695 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1696 module_param(max_part, int, S_IRUGO);
1697 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1698 MODULE_LICENSE("GPL");
1699 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1700 
loop_register_transfer(struct loop_func_table * funcs)1701 int loop_register_transfer(struct loop_func_table *funcs)
1702 {
1703 	unsigned int n = funcs->number;
1704 
1705 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1706 		return -EINVAL;
1707 	xfer_funcs[n] = funcs;
1708 	return 0;
1709 }
1710 
unregister_transfer_cb(int id,void * ptr,void * data)1711 static int unregister_transfer_cb(int id, void *ptr, void *data)
1712 {
1713 	struct loop_device *lo = ptr;
1714 	struct loop_func_table *xfer = data;
1715 
1716 	mutex_lock(&lo->lo_ctl_mutex);
1717 	if (lo->lo_encryption == xfer)
1718 		loop_release_xfer(lo);
1719 	mutex_unlock(&lo->lo_ctl_mutex);
1720 	return 0;
1721 }
1722 
loop_unregister_transfer(int number)1723 int loop_unregister_transfer(int number)
1724 {
1725 	unsigned int n = number;
1726 	struct loop_func_table *xfer;
1727 
1728 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1729 		return -EINVAL;
1730 
1731 	xfer_funcs[n] = NULL;
1732 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1733 	return 0;
1734 }
1735 
1736 EXPORT_SYMBOL(loop_register_transfer);
1737 EXPORT_SYMBOL(loop_unregister_transfer);
1738 
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1739 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1740 		const struct blk_mq_queue_data *bd)
1741 {
1742 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1743 	struct loop_device *lo = cmd->rq->q->queuedata;
1744 
1745 	blk_mq_start_request(bd->rq);
1746 
1747 	if (lo->lo_state != Lo_bound)
1748 		return BLK_MQ_RQ_QUEUE_ERROR;
1749 
1750 	if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH |
1751 					REQ_DISCARD)))
1752 		cmd->use_aio = true;
1753 	else
1754 		cmd->use_aio = false;
1755 
1756 	queue_kthread_work(&lo->worker, &cmd->work);
1757 
1758 	return BLK_MQ_RQ_QUEUE_OK;
1759 }
1760 
loop_handle_cmd(struct loop_cmd * cmd)1761 static void loop_handle_cmd(struct loop_cmd *cmd)
1762 {
1763 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1764 	struct loop_device *lo = cmd->rq->q->queuedata;
1765 	int ret = 0;
1766 
1767 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1768 		ret = -EIO;
1769 		goto failed;
1770 	}
1771 
1772 	ret = do_req_filebacked(lo, cmd->rq);
1773  failed:
1774 	/* complete non-aio request */
1775 	if (!cmd->use_aio || ret)
1776 		blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1777 }
1778 
loop_queue_work(struct kthread_work * work)1779 static void loop_queue_work(struct kthread_work *work)
1780 {
1781 	struct loop_cmd *cmd =
1782 		container_of(work, struct loop_cmd, work);
1783 
1784 	loop_handle_cmd(cmd);
1785 }
1786 
loop_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)1787 static int loop_init_request(void *data, struct request *rq,
1788 		unsigned int hctx_idx, unsigned int request_idx,
1789 		unsigned int numa_node)
1790 {
1791 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1792 
1793 	cmd->rq = rq;
1794 	init_kthread_work(&cmd->work, loop_queue_work);
1795 
1796 	return 0;
1797 }
1798 
1799 static struct blk_mq_ops loop_mq_ops = {
1800 	.queue_rq       = loop_queue_rq,
1801 	.map_queue      = blk_mq_map_queue,
1802 	.init_request	= loop_init_request,
1803 };
1804 
loop_add(struct loop_device ** l,int i)1805 static int loop_add(struct loop_device **l, int i)
1806 {
1807 	struct loop_device *lo;
1808 	struct gendisk *disk;
1809 	int err;
1810 
1811 	err = -ENOMEM;
1812 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1813 	if (!lo)
1814 		goto out;
1815 
1816 	lo->lo_state = Lo_unbound;
1817 
1818 	/* allocate id, if @id >= 0, we're requesting that specific id */
1819 	if (i >= 0) {
1820 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1821 		if (err == -ENOSPC)
1822 			err = -EEXIST;
1823 	} else {
1824 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1825 	}
1826 	if (err < 0)
1827 		goto out_free_dev;
1828 	i = err;
1829 
1830 	err = -ENOMEM;
1831 	lo->tag_set.ops = &loop_mq_ops;
1832 	lo->tag_set.nr_hw_queues = 1;
1833 	lo->tag_set.queue_depth = 128;
1834 	lo->tag_set.numa_node = NUMA_NO_NODE;
1835 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1836 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1837 	lo->tag_set.driver_data = lo;
1838 
1839 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1840 	if (err)
1841 		goto out_free_idr;
1842 
1843 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1844 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1845 		err = PTR_ERR(lo->lo_queue);
1846 		goto out_cleanup_tags;
1847 	}
1848 	lo->lo_queue->queuedata = lo;
1849 
1850 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1851 	/*
1852 	 * It doesn't make sense to enable merge because the I/O
1853 	 * submitted to backing file is handled page by page.
1854 	 */
1855 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1856 
1857 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1858 	if (!disk)
1859 		goto out_free_queue;
1860 
1861 	/*
1862 	 * Disable partition scanning by default. The in-kernel partition
1863 	 * scanning can be requested individually per-device during its
1864 	 * setup. Userspace can always add and remove partitions from all
1865 	 * devices. The needed partition minors are allocated from the
1866 	 * extended minor space, the main loop device numbers will continue
1867 	 * to match the loop minors, regardless of the number of partitions
1868 	 * used.
1869 	 *
1870 	 * If max_part is given, partition scanning is globally enabled for
1871 	 * all loop devices. The minors for the main loop devices will be
1872 	 * multiples of max_part.
1873 	 *
1874 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1875 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1876 	 * complicated, are too static, inflexible and may surprise
1877 	 * userspace tools. Parameters like this in general should be avoided.
1878 	 */
1879 	if (!part_shift)
1880 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1881 	disk->flags |= GENHD_FL_EXT_DEVT;
1882 	mutex_init(&lo->lo_ctl_mutex);
1883 	atomic_set(&lo->lo_refcnt, 0);
1884 	lo->lo_number		= i;
1885 	spin_lock_init(&lo->lo_lock);
1886 	disk->major		= LOOP_MAJOR;
1887 	disk->first_minor	= i << part_shift;
1888 	disk->fops		= &lo_fops;
1889 	disk->private_data	= lo;
1890 	disk->queue		= lo->lo_queue;
1891 	sprintf(disk->disk_name, "loop%d", i);
1892 	add_disk(disk);
1893 	*l = lo;
1894 	return lo->lo_number;
1895 
1896 out_free_queue:
1897 	blk_cleanup_queue(lo->lo_queue);
1898 out_cleanup_tags:
1899 	blk_mq_free_tag_set(&lo->tag_set);
1900 out_free_idr:
1901 	idr_remove(&loop_index_idr, i);
1902 out_free_dev:
1903 	kfree(lo);
1904 out:
1905 	return err;
1906 }
1907 
loop_remove(struct loop_device * lo)1908 static void loop_remove(struct loop_device *lo)
1909 {
1910 	blk_cleanup_queue(lo->lo_queue);
1911 	del_gendisk(lo->lo_disk);
1912 	blk_mq_free_tag_set(&lo->tag_set);
1913 	put_disk(lo->lo_disk);
1914 	kfree(lo);
1915 }
1916 
find_free_cb(int id,void * ptr,void * data)1917 static int find_free_cb(int id, void *ptr, void *data)
1918 {
1919 	struct loop_device *lo = ptr;
1920 	struct loop_device **l = data;
1921 
1922 	if (lo->lo_state == Lo_unbound) {
1923 		*l = lo;
1924 		return 1;
1925 	}
1926 	return 0;
1927 }
1928 
loop_lookup(struct loop_device ** l,int i)1929 static int loop_lookup(struct loop_device **l, int i)
1930 {
1931 	struct loop_device *lo;
1932 	int ret = -ENODEV;
1933 
1934 	if (i < 0) {
1935 		int err;
1936 
1937 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1938 		if (err == 1) {
1939 			*l = lo;
1940 			ret = lo->lo_number;
1941 		}
1942 		goto out;
1943 	}
1944 
1945 	/* lookup and return a specific i */
1946 	lo = idr_find(&loop_index_idr, i);
1947 	if (lo) {
1948 		*l = lo;
1949 		ret = lo->lo_number;
1950 	}
1951 out:
1952 	return ret;
1953 }
1954 
loop_probe(dev_t dev,int * part,void * data)1955 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1956 {
1957 	struct loop_device *lo;
1958 	struct kobject *kobj;
1959 	int err;
1960 
1961 	mutex_lock(&loop_index_mutex);
1962 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1963 	if (err < 0)
1964 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1965 	if (err < 0)
1966 		kobj = NULL;
1967 	else
1968 		kobj = get_disk(lo->lo_disk);
1969 	mutex_unlock(&loop_index_mutex);
1970 
1971 	*part = 0;
1972 	return kobj;
1973 }
1974 
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)1975 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1976 			       unsigned long parm)
1977 {
1978 	struct loop_device *lo;
1979 	int ret = -ENOSYS;
1980 
1981 	mutex_lock(&loop_index_mutex);
1982 	switch (cmd) {
1983 	case LOOP_CTL_ADD:
1984 		ret = loop_lookup(&lo, parm);
1985 		if (ret >= 0) {
1986 			ret = -EEXIST;
1987 			break;
1988 		}
1989 		ret = loop_add(&lo, parm);
1990 		break;
1991 	case LOOP_CTL_REMOVE:
1992 		ret = loop_lookup(&lo, parm);
1993 		if (ret < 0)
1994 			break;
1995 		mutex_lock(&lo->lo_ctl_mutex);
1996 		if (lo->lo_state != Lo_unbound) {
1997 			ret = -EBUSY;
1998 			mutex_unlock(&lo->lo_ctl_mutex);
1999 			break;
2000 		}
2001 		if (atomic_read(&lo->lo_refcnt) > 0) {
2002 			ret = -EBUSY;
2003 			mutex_unlock(&lo->lo_ctl_mutex);
2004 			break;
2005 		}
2006 		lo->lo_disk->private_data = NULL;
2007 		mutex_unlock(&lo->lo_ctl_mutex);
2008 		idr_remove(&loop_index_idr, lo->lo_number);
2009 		loop_remove(lo);
2010 		break;
2011 	case LOOP_CTL_GET_FREE:
2012 		ret = loop_lookup(&lo, -1);
2013 		if (ret >= 0)
2014 			break;
2015 		ret = loop_add(&lo, -1);
2016 	}
2017 	mutex_unlock(&loop_index_mutex);
2018 
2019 	return ret;
2020 }
2021 
2022 static const struct file_operations loop_ctl_fops = {
2023 	.open		= nonseekable_open,
2024 	.unlocked_ioctl	= loop_control_ioctl,
2025 	.compat_ioctl	= loop_control_ioctl,
2026 	.owner		= THIS_MODULE,
2027 	.llseek		= noop_llseek,
2028 };
2029 
2030 static struct miscdevice loop_misc = {
2031 	.minor		= LOOP_CTRL_MINOR,
2032 	.name		= "loop-control",
2033 	.fops		= &loop_ctl_fops,
2034 };
2035 
2036 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2037 MODULE_ALIAS("devname:loop-control");
2038 
loop_init(void)2039 static int __init loop_init(void)
2040 {
2041 	int i, nr;
2042 	unsigned long range;
2043 	struct loop_device *lo;
2044 	int err;
2045 
2046 	err = misc_register(&loop_misc);
2047 	if (err < 0)
2048 		return err;
2049 
2050 	part_shift = 0;
2051 	if (max_part > 0) {
2052 		part_shift = fls(max_part);
2053 
2054 		/*
2055 		 * Adjust max_part according to part_shift as it is exported
2056 		 * to user space so that user can decide correct minor number
2057 		 * if [s]he want to create more devices.
2058 		 *
2059 		 * Note that -1 is required because partition 0 is reserved
2060 		 * for the whole disk.
2061 		 */
2062 		max_part = (1UL << part_shift) - 1;
2063 	}
2064 
2065 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2066 		err = -EINVAL;
2067 		goto misc_out;
2068 	}
2069 
2070 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2071 		err = -EINVAL;
2072 		goto misc_out;
2073 	}
2074 
2075 	/*
2076 	 * If max_loop is specified, create that many devices upfront.
2077 	 * This also becomes a hard limit. If max_loop is not specified,
2078 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2079 	 * init time. Loop devices can be requested on-demand with the
2080 	 * /dev/loop-control interface, or be instantiated by accessing
2081 	 * a 'dead' device node.
2082 	 */
2083 	if (max_loop) {
2084 		nr = max_loop;
2085 		range = max_loop << part_shift;
2086 	} else {
2087 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2088 		range = 1UL << MINORBITS;
2089 	}
2090 
2091 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2092 		err = -EIO;
2093 		goto misc_out;
2094 	}
2095 
2096 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2097 				  THIS_MODULE, loop_probe, NULL, NULL);
2098 
2099 	/* pre-create number of devices given by config or max_loop */
2100 	mutex_lock(&loop_index_mutex);
2101 	for (i = 0; i < nr; i++)
2102 		loop_add(&lo, i);
2103 	mutex_unlock(&loop_index_mutex);
2104 
2105 	printk(KERN_INFO "loop: module loaded\n");
2106 	return 0;
2107 
2108 misc_out:
2109 	misc_deregister(&loop_misc);
2110 	return err;
2111 }
2112 
loop_exit_cb(int id,void * ptr,void * data)2113 static int loop_exit_cb(int id, void *ptr, void *data)
2114 {
2115 	struct loop_device *lo = ptr;
2116 
2117 	loop_remove(lo);
2118 	return 0;
2119 }
2120 
loop_exit(void)2121 static void __exit loop_exit(void)
2122 {
2123 	unsigned long range;
2124 
2125 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2126 
2127 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2128 	idr_destroy(&loop_index_idr);
2129 
2130 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2131 	unregister_blkdev(LOOP_MAJOR, "loop");
2132 
2133 	misc_deregister(&loop_misc);
2134 }
2135 
2136 module_init(loop_init);
2137 module_exit(loop_exit);
2138 
2139 #ifndef MODULE
max_loop_setup(char * str)2140 static int __init max_loop_setup(char *str)
2141 {
2142 	max_loop = simple_strtol(str, NULL, 0);
2143 	return 1;
2144 }
2145 
2146 __setup("max_loop=", max_loop_setup);
2147 #endif
2148