1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC 10000
84 #define SI_USEC_PER_JIFFY (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
87 short timeout */
88
89 enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
94 SI_GETTING_MESSAGES,
95 SI_CHECKING_ENABLES,
96 SI_SETTING_ENABLES
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 #define DEVICE_NAME "ipmi_si"
111
112 static struct platform_driver ipmi_driver;
113
114 /*
115 * Indexes into stats[] in smi_info below.
116 */
117 enum si_stat_indexes {
118 /*
119 * Number of times the driver requested a timer while an operation
120 * was in progress.
121 */
122 SI_STAT_short_timeouts = 0,
123
124 /*
125 * Number of times the driver requested a timer while nothing was in
126 * progress.
127 */
128 SI_STAT_long_timeouts,
129
130 /* Number of times the interface was idle while being polled. */
131 SI_STAT_idles,
132
133 /* Number of interrupts the driver handled. */
134 SI_STAT_interrupts,
135
136 /* Number of time the driver got an ATTN from the hardware. */
137 SI_STAT_attentions,
138
139 /* Number of times the driver requested flags from the hardware. */
140 SI_STAT_flag_fetches,
141
142 /* Number of times the hardware didn't follow the state machine. */
143 SI_STAT_hosed_count,
144
145 /* Number of completed messages. */
146 SI_STAT_complete_transactions,
147
148 /* Number of IPMI events received from the hardware. */
149 SI_STAT_events,
150
151 /* Number of watchdog pretimeouts. */
152 SI_STAT_watchdog_pretimeouts,
153
154 /* Number of asynchronous messages received. */
155 SI_STAT_incoming_messages,
156
157
158 /* This *must* remain last, add new values above this. */
159 SI_NUM_STATS
160 };
161
162 struct smi_info {
163 int intf_num;
164 ipmi_smi_t intf;
165 struct si_sm_data *si_sm;
166 const struct si_sm_handlers *handlers;
167 enum si_type si_type;
168 spinlock_t si_lock;
169 struct ipmi_smi_msg *waiting_msg;
170 struct ipmi_smi_msg *curr_msg;
171 enum si_intf_state si_state;
172
173 /*
174 * Used to handle the various types of I/O that can occur with
175 * IPMI
176 */
177 struct si_sm_io io;
178 int (*io_setup)(struct smi_info *info);
179 void (*io_cleanup)(struct smi_info *info);
180 int (*irq_setup)(struct smi_info *info);
181 void (*irq_cleanup)(struct smi_info *info);
182 unsigned int io_size;
183 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184 void (*addr_source_cleanup)(struct smi_info *info);
185 void *addr_source_data;
186
187 /*
188 * Per-OEM handler, called from handle_flags(). Returns 1
189 * when handle_flags() needs to be re-run or 0 indicating it
190 * set si_state itself.
191 */
192 int (*oem_data_avail_handler)(struct smi_info *smi_info);
193
194 /*
195 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196 * is set to hold the flags until we are done handling everything
197 * from the flags.
198 */
199 #define RECEIVE_MSG_AVAIL 0x01
200 #define EVENT_MSG_BUFFER_FULL 0x02
201 #define WDT_PRE_TIMEOUT_INT 0x08
202 #define OEM0_DATA_AVAIL 0x20
203 #define OEM1_DATA_AVAIL 0x40
204 #define OEM2_DATA_AVAIL 0x80
205 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
206 OEM1_DATA_AVAIL | \
207 OEM2_DATA_AVAIL)
208 unsigned char msg_flags;
209
210 /* Does the BMC have an event buffer? */
211 bool has_event_buffer;
212
213 /*
214 * If set to true, this will request events the next time the
215 * state machine is idle.
216 */
217 atomic_t req_events;
218
219 /*
220 * If true, run the state machine to completion on every send
221 * call. Generally used after a panic to make sure stuff goes
222 * out.
223 */
224 bool run_to_completion;
225
226 /* The I/O port of an SI interface. */
227 int port;
228
229 /*
230 * The space between start addresses of the two ports. For
231 * instance, if the first port is 0xca2 and the spacing is 4, then
232 * the second port is 0xca6.
233 */
234 unsigned int spacing;
235
236 /* zero if no irq; */
237 int irq;
238
239 /* The timer for this si. */
240 struct timer_list si_timer;
241
242 /* This flag is set, if the timer can be set */
243 bool timer_can_start;
244
245 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
246 bool timer_running;
247
248 /* The time (in jiffies) the last timeout occurred at. */
249 unsigned long last_timeout_jiffies;
250
251 /* Are we waiting for the events, pretimeouts, received msgs? */
252 atomic_t need_watch;
253
254 /*
255 * The driver will disable interrupts when it gets into a
256 * situation where it cannot handle messages due to lack of
257 * memory. Once that situation clears up, it will re-enable
258 * interrupts.
259 */
260 bool interrupt_disabled;
261
262 /*
263 * Does the BMC support events?
264 */
265 bool supports_event_msg_buff;
266
267 /*
268 * Can we disable interrupts the global enables receive irq
269 * bit? There are currently two forms of brokenness, some
270 * systems cannot disable the bit (which is technically within
271 * the spec but a bad idea) and some systems have the bit
272 * forced to zero even though interrupts work (which is
273 * clearly outside the spec). The next bool tells which form
274 * of brokenness is present.
275 */
276 bool cannot_disable_irq;
277
278 /*
279 * Some systems are broken and cannot set the irq enable
280 * bit, even if they support interrupts.
281 */
282 bool irq_enable_broken;
283
284 /* Is the driver in maintenance mode? */
285 bool in_maintenance_mode;
286
287 /*
288 * Did we get an attention that we did not handle?
289 */
290 bool got_attn;
291
292 /* From the get device id response... */
293 struct ipmi_device_id device_id;
294
295 /* Driver model stuff. */
296 struct device *dev;
297 struct platform_device *pdev;
298
299 /*
300 * True if we allocated the device, false if it came from
301 * someplace else (like PCI).
302 */
303 bool dev_registered;
304
305 /* Slave address, could be reported from DMI. */
306 unsigned char slave_addr;
307
308 /* Counters and things for the proc filesystem. */
309 atomic_t stats[SI_NUM_STATS];
310
311 struct task_struct *thread;
312
313 struct list_head link;
314 union ipmi_smi_info_union addr_info;
315 };
316
317 #define smi_inc_stat(smi, stat) \
318 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
319 #define smi_get_stat(smi, stat) \
320 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
321
322 #define SI_MAX_PARMS 4
323
324 static int force_kipmid[SI_MAX_PARMS];
325 static int num_force_kipmid;
326 #ifdef CONFIG_PCI
327 static bool pci_registered;
328 #endif
329 #ifdef CONFIG_PARISC
330 static bool parisc_registered;
331 #endif
332
333 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
334 static int num_max_busy_us;
335
336 static bool unload_when_empty = true;
337
338 static int add_smi(struct smi_info *smi);
339 static int try_smi_init(struct smi_info *smi);
340 static void cleanup_one_si(struct smi_info *to_clean);
341 static void cleanup_ipmi_si(void);
342
343 #ifdef DEBUG_TIMING
debug_timestamp(char * msg)344 void debug_timestamp(char *msg)
345 {
346 struct timespec64 t;
347
348 getnstimeofday64(&t);
349 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
350 }
351 #else
352 #define debug_timestamp(x)
353 #endif
354
355 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)356 static int register_xaction_notifier(struct notifier_block *nb)
357 {
358 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
359 }
360
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)361 static void deliver_recv_msg(struct smi_info *smi_info,
362 struct ipmi_smi_msg *msg)
363 {
364 /* Deliver the message to the upper layer. */
365 if (smi_info->intf)
366 ipmi_smi_msg_received(smi_info->intf, msg);
367 else
368 ipmi_free_smi_msg(msg);
369 }
370
return_hosed_msg(struct smi_info * smi_info,int cCode)371 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
372 {
373 struct ipmi_smi_msg *msg = smi_info->curr_msg;
374
375 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
376 cCode = IPMI_ERR_UNSPECIFIED;
377 /* else use it as is */
378
379 /* Make it a response */
380 msg->rsp[0] = msg->data[0] | 4;
381 msg->rsp[1] = msg->data[1];
382 msg->rsp[2] = cCode;
383 msg->rsp_size = 3;
384
385 smi_info->curr_msg = NULL;
386 deliver_recv_msg(smi_info, msg);
387 }
388
start_next_msg(struct smi_info * smi_info)389 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
390 {
391 int rv;
392
393 if (!smi_info->waiting_msg) {
394 smi_info->curr_msg = NULL;
395 rv = SI_SM_IDLE;
396 } else {
397 int err;
398
399 smi_info->curr_msg = smi_info->waiting_msg;
400 smi_info->waiting_msg = NULL;
401 debug_timestamp("Start2");
402 err = atomic_notifier_call_chain(&xaction_notifier_list,
403 0, smi_info);
404 if (err & NOTIFY_STOP_MASK) {
405 rv = SI_SM_CALL_WITHOUT_DELAY;
406 goto out;
407 }
408 err = smi_info->handlers->start_transaction(
409 smi_info->si_sm,
410 smi_info->curr_msg->data,
411 smi_info->curr_msg->data_size);
412 if (err)
413 return_hosed_msg(smi_info, err);
414
415 rv = SI_SM_CALL_WITHOUT_DELAY;
416 }
417 out:
418 return rv;
419 }
420
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)421 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
422 {
423 if (!smi_info->timer_can_start)
424 return;
425 smi_info->last_timeout_jiffies = jiffies;
426 mod_timer(&smi_info->si_timer, new_val);
427 smi_info->timer_running = true;
428 }
429
430 /*
431 * Start a new message and (re)start the timer and thread.
432 */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)433 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
434 unsigned int size)
435 {
436 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
437
438 if (smi_info->thread)
439 wake_up_process(smi_info->thread);
440
441 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
442 }
443
start_check_enables(struct smi_info * smi_info)444 static void start_check_enables(struct smi_info *smi_info)
445 {
446 unsigned char msg[2];
447
448 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
449 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
450
451 start_new_msg(smi_info, msg, 2);
452 smi_info->si_state = SI_CHECKING_ENABLES;
453 }
454
start_clear_flags(struct smi_info * smi_info)455 static void start_clear_flags(struct smi_info *smi_info)
456 {
457 unsigned char msg[3];
458
459 /* Make sure the watchdog pre-timeout flag is not set at startup. */
460 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
461 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
462 msg[2] = WDT_PRE_TIMEOUT_INT;
463
464 start_new_msg(smi_info, msg, 3);
465 smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467
start_getting_msg_queue(struct smi_info * smi_info)468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 smi_info->curr_msg->data_size = 2;
473
474 start_new_msg(smi_info, smi_info->curr_msg->data,
475 smi_info->curr_msg->data_size);
476 smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478
start_getting_events(struct smi_info * smi_info)479 static void start_getting_events(struct smi_info *smi_info)
480 {
481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 smi_info->curr_msg->data_size = 2;
484
485 start_new_msg(smi_info, smi_info->curr_msg->data,
486 smi_info->curr_msg->data_size);
487 smi_info->si_state = SI_GETTING_EVENTS;
488 }
489
490 /*
491 * When we have a situtaion where we run out of memory and cannot
492 * allocate messages, we just leave them in the BMC and run the system
493 * polled until we can allocate some memory. Once we have some
494 * memory, we will re-enable the interrupt.
495 *
496 * Note that we cannot just use disable_irq(), since the interrupt may
497 * be shared.
498 */
disable_si_irq(struct smi_info * smi_info)499 static inline bool disable_si_irq(struct smi_info *smi_info)
500 {
501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 smi_info->interrupt_disabled = true;
503 start_check_enables(smi_info);
504 return true;
505 }
506 return false;
507 }
508
enable_si_irq(struct smi_info * smi_info)509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 smi_info->interrupt_disabled = false;
513 start_check_enables(smi_info);
514 return true;
515 }
516 return false;
517 }
518
519 /*
520 * Allocate a message. If unable to allocate, start the interrupt
521 * disable process and return NULL. If able to allocate but
522 * interrupts are disabled, free the message and return NULL after
523 * starting the interrupt enable process.
524 */
alloc_msg_handle_irq(struct smi_info * smi_info)525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527 struct ipmi_smi_msg *msg;
528
529 msg = ipmi_alloc_smi_msg();
530 if (!msg) {
531 if (!disable_si_irq(smi_info))
532 smi_info->si_state = SI_NORMAL;
533 } else if (enable_si_irq(smi_info)) {
534 ipmi_free_smi_msg(msg);
535 msg = NULL;
536 }
537 return msg;
538 }
539
handle_flags(struct smi_info * smi_info)540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 /* Watchdog pre-timeout */
545 smi_inc_stat(smi_info, watchdog_pretimeouts);
546
547 start_clear_flags(smi_info);
548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 if (smi_info->intf)
550 ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 /* Messages available. */
553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 if (!smi_info->curr_msg)
555 return;
556
557 start_getting_msg_queue(smi_info);
558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 /* Events available. */
560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 if (!smi_info->curr_msg)
562 return;
563
564 start_getting_events(smi_info);
565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 smi_info->oem_data_avail_handler) {
567 if (smi_info->oem_data_avail_handler(smi_info))
568 goto retry;
569 } else
570 smi_info->si_state = SI_NORMAL;
571 }
572
573 /*
574 * Global enables we care about.
575 */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 IPMI_BMC_EVT_MSG_INTR)
578
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 bool *irq_on)
581 {
582 u8 enables = 0;
583
584 if (smi_info->supports_event_msg_buff)
585 enables |= IPMI_BMC_EVT_MSG_BUFF;
586
587 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 smi_info->cannot_disable_irq) &&
589 !smi_info->irq_enable_broken)
590 enables |= IPMI_BMC_RCV_MSG_INTR;
591
592 if (smi_info->supports_event_msg_buff &&
593 smi_info->irq && !smi_info->interrupt_disabled &&
594 !smi_info->irq_enable_broken)
595 enables |= IPMI_BMC_EVT_MSG_INTR;
596
597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
599 return enables;
600 }
601
check_bt_irq(struct smi_info * smi_info,bool irq_on)602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608 if ((bool)irqstate == irq_on)
609 return;
610
611 if (irq_on)
612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 else
615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617
handle_transaction_done(struct smi_info * smi_info)618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620 struct ipmi_smi_msg *msg;
621
622 debug_timestamp("Done");
623 switch (smi_info->si_state) {
624 case SI_NORMAL:
625 if (!smi_info->curr_msg)
626 break;
627
628 smi_info->curr_msg->rsp_size
629 = smi_info->handlers->get_result(
630 smi_info->si_sm,
631 smi_info->curr_msg->rsp,
632 IPMI_MAX_MSG_LENGTH);
633
634 /*
635 * Do this here becase deliver_recv_msg() releases the
636 * lock, and a new message can be put in during the
637 * time the lock is released.
638 */
639 msg = smi_info->curr_msg;
640 smi_info->curr_msg = NULL;
641 deliver_recv_msg(smi_info, msg);
642 break;
643
644 case SI_GETTING_FLAGS:
645 {
646 unsigned char msg[4];
647 unsigned int len;
648
649 /* We got the flags from the SMI, now handle them. */
650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 if (msg[2] != 0) {
652 /* Error fetching flags, just give up for now. */
653 smi_info->si_state = SI_NORMAL;
654 } else if (len < 4) {
655 /*
656 * Hmm, no flags. That's technically illegal, but
657 * don't use uninitialized data.
658 */
659 smi_info->si_state = SI_NORMAL;
660 } else {
661 smi_info->msg_flags = msg[3];
662 handle_flags(smi_info);
663 }
664 break;
665 }
666
667 case SI_CLEARING_FLAGS:
668 {
669 unsigned char msg[3];
670
671 /* We cleared the flags. */
672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 if (msg[2] != 0) {
674 /* Error clearing flags */
675 dev_warn(smi_info->dev,
676 "Error clearing flags: %2.2x\n", msg[2]);
677 }
678 smi_info->si_state = SI_NORMAL;
679 break;
680 }
681
682 case SI_GETTING_EVENTS:
683 {
684 smi_info->curr_msg->rsp_size
685 = smi_info->handlers->get_result(
686 smi_info->si_sm,
687 smi_info->curr_msg->rsp,
688 IPMI_MAX_MSG_LENGTH);
689
690 /*
691 * Do this here becase deliver_recv_msg() releases the
692 * lock, and a new message can be put in during the
693 * time the lock is released.
694 */
695 msg = smi_info->curr_msg;
696 smi_info->curr_msg = NULL;
697 if (msg->rsp[2] != 0) {
698 /* Error getting event, probably done. */
699 msg->done(msg);
700
701 /* Take off the event flag. */
702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 handle_flags(smi_info);
704 } else {
705 smi_inc_stat(smi_info, events);
706
707 /*
708 * Do this before we deliver the message
709 * because delivering the message releases the
710 * lock and something else can mess with the
711 * state.
712 */
713 handle_flags(smi_info);
714
715 deliver_recv_msg(smi_info, msg);
716 }
717 break;
718 }
719
720 case SI_GETTING_MESSAGES:
721 {
722 smi_info->curr_msg->rsp_size
723 = smi_info->handlers->get_result(
724 smi_info->si_sm,
725 smi_info->curr_msg->rsp,
726 IPMI_MAX_MSG_LENGTH);
727
728 /*
729 * Do this here becase deliver_recv_msg() releases the
730 * lock, and a new message can be put in during the
731 * time the lock is released.
732 */
733 msg = smi_info->curr_msg;
734 smi_info->curr_msg = NULL;
735 if (msg->rsp[2] != 0) {
736 /* Error getting event, probably done. */
737 msg->done(msg);
738
739 /* Take off the msg flag. */
740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 handle_flags(smi_info);
742 } else {
743 smi_inc_stat(smi_info, incoming_messages);
744
745 /*
746 * Do this before we deliver the message
747 * because delivering the message releases the
748 * lock and something else can mess with the
749 * state.
750 */
751 handle_flags(smi_info);
752
753 deliver_recv_msg(smi_info, msg);
754 }
755 break;
756 }
757
758 case SI_CHECKING_ENABLES:
759 {
760 unsigned char msg[4];
761 u8 enables;
762 bool irq_on;
763
764 /* We got the flags from the SMI, now handle them. */
765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 if (msg[2] != 0) {
767 dev_warn(smi_info->dev,
768 "Couldn't get irq info: %x.\n", msg[2]);
769 dev_warn(smi_info->dev,
770 "Maybe ok, but ipmi might run very slowly.\n");
771 smi_info->si_state = SI_NORMAL;
772 break;
773 }
774 enables = current_global_enables(smi_info, 0, &irq_on);
775 if (smi_info->si_type == SI_BT)
776 /* BT has its own interrupt enable bit. */
777 check_bt_irq(smi_info, irq_on);
778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 /* Enables are not correct, fix them. */
780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 smi_info->handlers->start_transaction(
784 smi_info->si_sm, msg, 3);
785 smi_info->si_state = SI_SETTING_ENABLES;
786 } else if (smi_info->supports_event_msg_buff) {
787 smi_info->curr_msg = ipmi_alloc_smi_msg();
788 if (!smi_info->curr_msg) {
789 smi_info->si_state = SI_NORMAL;
790 break;
791 }
792 start_getting_msg_queue(smi_info);
793 } else {
794 smi_info->si_state = SI_NORMAL;
795 }
796 break;
797 }
798
799 case SI_SETTING_ENABLES:
800 {
801 unsigned char msg[4];
802
803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 if (msg[2] != 0)
805 dev_warn(smi_info->dev,
806 "Could not set the global enables: 0x%x.\n",
807 msg[2]);
808
809 if (smi_info->supports_event_msg_buff) {
810 smi_info->curr_msg = ipmi_alloc_smi_msg();
811 if (!smi_info->curr_msg) {
812 smi_info->si_state = SI_NORMAL;
813 break;
814 }
815 start_getting_msg_queue(smi_info);
816 } else {
817 smi_info->si_state = SI_NORMAL;
818 }
819 break;
820 }
821 }
822 }
823
824 /*
825 * Called on timeouts and events. Timeouts should pass the elapsed
826 * time, interrupts should pass in zero. Must be called with
827 * si_lock held and interrupts disabled.
828 */
smi_event_handler(struct smi_info * smi_info,int time)829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 int time)
831 {
832 enum si_sm_result si_sm_result;
833
834 restart:
835 /*
836 * There used to be a loop here that waited a little while
837 * (around 25us) before giving up. That turned out to be
838 * pointless, the minimum delays I was seeing were in the 300us
839 * range, which is far too long to wait in an interrupt. So
840 * we just run until the state machine tells us something
841 * happened or it needs a delay.
842 */
843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 time = 0;
845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847
848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 smi_inc_stat(smi_info, complete_transactions);
850
851 handle_transaction_done(smi_info);
852 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
853 } else if (si_sm_result == SI_SM_HOSED) {
854 smi_inc_stat(smi_info, hosed_count);
855
856 /*
857 * Do the before return_hosed_msg, because that
858 * releases the lock.
859 */
860 smi_info->si_state = SI_NORMAL;
861 if (smi_info->curr_msg != NULL) {
862 /*
863 * If we were handling a user message, format
864 * a response to send to the upper layer to
865 * tell it about the error.
866 */
867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 }
869 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
870 }
871
872 /*
873 * We prefer handling attn over new messages. But don't do
874 * this if there is not yet an upper layer to handle anything.
875 */
876 if (likely(smi_info->intf) &&
877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 unsigned char msg[2];
879
880 if (smi_info->si_state != SI_NORMAL) {
881 /*
882 * We got an ATTN, but we are doing something else.
883 * Handle the ATTN later.
884 */
885 smi_info->got_attn = true;
886 } else {
887 smi_info->got_attn = false;
888 smi_inc_stat(smi_info, attentions);
889
890 /*
891 * Got a attn, send down a get message flags to see
892 * what's causing it. It would be better to handle
893 * this in the upper layer, but due to the way
894 * interrupts work with the SMI, that's not really
895 * possible.
896 */
897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899
900 start_new_msg(smi_info, msg, 2);
901 smi_info->si_state = SI_GETTING_FLAGS;
902 goto restart;
903 }
904 }
905
906 /* If we are currently idle, try to start the next message. */
907 if (si_sm_result == SI_SM_IDLE) {
908 smi_inc_stat(smi_info, idles);
909
910 si_sm_result = start_next_msg(smi_info);
911 if (si_sm_result != SI_SM_IDLE)
912 goto restart;
913 }
914
915 if ((si_sm_result == SI_SM_IDLE)
916 && (atomic_read(&smi_info->req_events))) {
917 /*
918 * We are idle and the upper layer requested that I fetch
919 * events, so do so.
920 */
921 atomic_set(&smi_info->req_events, 0);
922
923 /*
924 * Take this opportunity to check the interrupt and
925 * message enable state for the BMC. The BMC can be
926 * asynchronously reset, and may thus get interrupts
927 * disable and messages disabled.
928 */
929 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 start_check_enables(smi_info);
931 } else {
932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 if (!smi_info->curr_msg)
934 goto out;
935
936 start_getting_events(smi_info);
937 }
938 goto restart;
939 }
940
941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 /* Ok it if fails, the timer will just go off. */
943 if (del_timer(&smi_info->si_timer))
944 smi_info->timer_running = false;
945 }
946
947 out:
948 return si_sm_result;
949 }
950
check_start_timer_thread(struct smi_info * smi_info)951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956 if (smi_info->thread)
957 wake_up_process(smi_info->thread);
958
959 start_next_msg(smi_info);
960 smi_event_handler(smi_info, 0);
961 }
962 }
963
flush_messages(void * send_info)964 static void flush_messages(void *send_info)
965 {
966 struct smi_info *smi_info = send_info;
967 enum si_sm_result result;
968
969 /*
970 * Currently, this function is called only in run-to-completion
971 * mode. This means we are single-threaded, no need for locks.
972 */
973 result = smi_event_handler(smi_info, 0);
974 while (result != SI_SM_IDLE) {
975 udelay(SI_SHORT_TIMEOUT_USEC);
976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 }
978 }
979
sender(void * send_info,struct ipmi_smi_msg * msg)980 static void sender(void *send_info,
981 struct ipmi_smi_msg *msg)
982 {
983 struct smi_info *smi_info = send_info;
984 unsigned long flags;
985
986 debug_timestamp("Enqueue");
987
988 if (smi_info->run_to_completion) {
989 /*
990 * If we are running to completion, start it. Upper
991 * layer will call flush_messages to clear it out.
992 */
993 smi_info->waiting_msg = msg;
994 return;
995 }
996
997 spin_lock_irqsave(&smi_info->si_lock, flags);
998 /*
999 * The following two lines don't need to be under the lock for
1000 * the lock's sake, but they do need SMP memory barriers to
1001 * avoid getting things out of order. We are already claiming
1002 * the lock, anyway, so just do it under the lock to avoid the
1003 * ordering problem.
1004 */
1005 BUG_ON(smi_info->waiting_msg);
1006 smi_info->waiting_msg = msg;
1007 check_start_timer_thread(smi_info);
1008 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010
set_run_to_completion(void * send_info,bool i_run_to_completion)1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013 struct smi_info *smi_info = send_info;
1014
1015 smi_info->run_to_completion = i_run_to_completion;
1016 if (i_run_to_completion)
1017 flush_messages(smi_info);
1018 }
1019
1020 /*
1021 * Use -1 in the nsec value of the busy waiting timespec to tell that
1022 * we are spinning in kipmid looking for something and not delaying
1023 * between checks
1024 */
ipmi_si_set_not_busy(struct timespec64 * ts)1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027 ts->tv_nsec = -1;
1028 }
ipmi_si_is_busy(struct timespec64 * ts)1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031 return ts->tv_nsec != -1;
1032 }
1033
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,struct timespec64 * busy_until)1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 const struct smi_info *smi_info,
1036 struct timespec64 *busy_until)
1037 {
1038 unsigned int max_busy_us = 0;
1039
1040 if (smi_info->intf_num < num_max_busy_us)
1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 ipmi_si_set_not_busy(busy_until);
1044 else if (!ipmi_si_is_busy(busy_until)) {
1045 getnstimeofday64(busy_until);
1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 } else {
1048 struct timespec64 now;
1049
1050 getnstimeofday64(&now);
1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 ipmi_si_set_not_busy(busy_until);
1053 return 0;
1054 }
1055 }
1056 return 1;
1057 }
1058
1059
1060 /*
1061 * A busy-waiting loop for speeding up IPMI operation.
1062 *
1063 * Lousy hardware makes this hard. This is only enabled for systems
1064 * that are not BT and do not have interrupts. It starts spinning
1065 * when an operation is complete or until max_busy tells it to stop
1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1067 * Documentation/IPMI.txt for details.
1068 */
ipmi_thread(void * data)1069 static int ipmi_thread(void *data)
1070 {
1071 struct smi_info *smi_info = data;
1072 unsigned long flags;
1073 enum si_sm_result smi_result;
1074 struct timespec64 busy_until;
1075
1076 ipmi_si_set_not_busy(&busy_until);
1077 set_user_nice(current, MAX_NICE);
1078 while (!kthread_should_stop()) {
1079 int busy_wait;
1080
1081 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 smi_result = smi_event_handler(smi_info, 0);
1083
1084 /*
1085 * If the driver is doing something, there is a possible
1086 * race with the timer. If the timer handler see idle,
1087 * and the thread here sees something else, the timer
1088 * handler won't restart the timer even though it is
1089 * required. So start it here if necessary.
1090 */
1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 &busy_until);
1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1098 ; /* do nothing */
1099 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1100 /*
1101 * In maintenance mode we run as fast as
1102 * possible to allow firmware updates to
1103 * complete as fast as possible, but normally
1104 * don't bang on the scheduler.
1105 */
1106 if (smi_info->in_maintenance_mode)
1107 schedule();
1108 else
1109 usleep_range(100, 200);
1110 } else if (smi_result == SI_SM_IDLE) {
1111 if (atomic_read(&smi_info->need_watch)) {
1112 schedule_timeout_interruptible(100);
1113 } else {
1114 /* Wait to be woken up when we are needed. */
1115 __set_current_state(TASK_INTERRUPTIBLE);
1116 schedule();
1117 }
1118 } else {
1119 schedule_timeout_interruptible(1);
1120 }
1121 }
1122 return 0;
1123 }
1124
1125
poll(void * send_info)1126 static void poll(void *send_info)
1127 {
1128 struct smi_info *smi_info = send_info;
1129 unsigned long flags = 0;
1130 bool run_to_completion = smi_info->run_to_completion;
1131
1132 /*
1133 * Make sure there is some delay in the poll loop so we can
1134 * drive time forward and timeout things.
1135 */
1136 udelay(10);
1137 if (!run_to_completion)
1138 spin_lock_irqsave(&smi_info->si_lock, flags);
1139 smi_event_handler(smi_info, 10);
1140 if (!run_to_completion)
1141 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1142 }
1143
request_events(void * send_info)1144 static void request_events(void *send_info)
1145 {
1146 struct smi_info *smi_info = send_info;
1147
1148 if (!smi_info->has_event_buffer)
1149 return;
1150
1151 atomic_set(&smi_info->req_events, 1);
1152 }
1153
set_need_watch(void * send_info,bool enable)1154 static void set_need_watch(void *send_info, bool enable)
1155 {
1156 struct smi_info *smi_info = send_info;
1157 unsigned long flags;
1158
1159 atomic_set(&smi_info->need_watch, enable);
1160 spin_lock_irqsave(&smi_info->si_lock, flags);
1161 check_start_timer_thread(smi_info);
1162 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1163 }
1164
1165 static int initialized;
1166
smi_timeout(unsigned long data)1167 static void smi_timeout(unsigned long data)
1168 {
1169 struct smi_info *smi_info = (struct smi_info *) data;
1170 enum si_sm_result smi_result;
1171 unsigned long flags;
1172 unsigned long jiffies_now;
1173 long time_diff;
1174 long timeout;
1175
1176 spin_lock_irqsave(&(smi_info->si_lock), flags);
1177 debug_timestamp("Timer");
1178
1179 jiffies_now = jiffies;
1180 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1181 * SI_USEC_PER_JIFFY);
1182 smi_result = smi_event_handler(smi_info, time_diff);
1183
1184 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1185 /* Running with interrupts, only do long timeouts. */
1186 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1187 smi_inc_stat(smi_info, long_timeouts);
1188 goto do_mod_timer;
1189 }
1190
1191 /*
1192 * If the state machine asks for a short delay, then shorten
1193 * the timer timeout.
1194 */
1195 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1196 smi_inc_stat(smi_info, short_timeouts);
1197 timeout = jiffies + 1;
1198 } else {
1199 smi_inc_stat(smi_info, long_timeouts);
1200 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1201 }
1202
1203 do_mod_timer:
1204 if (smi_result != SI_SM_IDLE)
1205 smi_mod_timer(smi_info, timeout);
1206 else
1207 smi_info->timer_running = false;
1208 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1209 }
1210
si_irq_handler(int irq,void * data)1211 static irqreturn_t si_irq_handler(int irq, void *data)
1212 {
1213 struct smi_info *smi_info = data;
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&(smi_info->si_lock), flags);
1217
1218 smi_inc_stat(smi_info, interrupts);
1219
1220 debug_timestamp("Interrupt");
1221
1222 smi_event_handler(smi_info, 0);
1223 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1224 return IRQ_HANDLED;
1225 }
1226
si_bt_irq_handler(int irq,void * data)1227 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1228 {
1229 struct smi_info *smi_info = data;
1230 /* We need to clear the IRQ flag for the BT interface. */
1231 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1232 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1233 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1234 return si_irq_handler(irq, data);
1235 }
1236
smi_start_processing(void * send_info,ipmi_smi_t intf)1237 static int smi_start_processing(void *send_info,
1238 ipmi_smi_t intf)
1239 {
1240 struct smi_info *new_smi = send_info;
1241 int enable = 0;
1242
1243 new_smi->intf = intf;
1244
1245 /* Set up the timer that drives the interface. */
1246 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1247 new_smi->timer_can_start = true;
1248 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1249
1250 /* Try to claim any interrupts. */
1251 if (new_smi->irq_setup)
1252 new_smi->irq_setup(new_smi);
1253
1254 /*
1255 * Check if the user forcefully enabled the daemon.
1256 */
1257 if (new_smi->intf_num < num_force_kipmid)
1258 enable = force_kipmid[new_smi->intf_num];
1259 /*
1260 * The BT interface is efficient enough to not need a thread,
1261 * and there is no need for a thread if we have interrupts.
1262 */
1263 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1264 enable = 1;
1265
1266 if (enable) {
1267 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1268 "kipmi%d", new_smi->intf_num);
1269 if (IS_ERR(new_smi->thread)) {
1270 dev_notice(new_smi->dev, "Could not start"
1271 " kernel thread due to error %ld, only using"
1272 " timers to drive the interface\n",
1273 PTR_ERR(new_smi->thread));
1274 new_smi->thread = NULL;
1275 }
1276 }
1277
1278 return 0;
1279 }
1280
get_smi_info(void * send_info,struct ipmi_smi_info * data)1281 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1282 {
1283 struct smi_info *smi = send_info;
1284
1285 data->addr_src = smi->addr_source;
1286 data->dev = smi->dev;
1287 data->addr_info = smi->addr_info;
1288 get_device(smi->dev);
1289
1290 return 0;
1291 }
1292
set_maintenance_mode(void * send_info,bool enable)1293 static void set_maintenance_mode(void *send_info, bool enable)
1294 {
1295 struct smi_info *smi_info = send_info;
1296
1297 if (!enable)
1298 atomic_set(&smi_info->req_events, 0);
1299 smi_info->in_maintenance_mode = enable;
1300 }
1301
1302 static const struct ipmi_smi_handlers handlers = {
1303 .owner = THIS_MODULE,
1304 .start_processing = smi_start_processing,
1305 .get_smi_info = get_smi_info,
1306 .sender = sender,
1307 .request_events = request_events,
1308 .set_need_watch = set_need_watch,
1309 .set_maintenance_mode = set_maintenance_mode,
1310 .set_run_to_completion = set_run_to_completion,
1311 .flush_messages = flush_messages,
1312 .poll = poll,
1313 };
1314
1315 /*
1316 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1317 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1318 */
1319
1320 static LIST_HEAD(smi_infos);
1321 static DEFINE_MUTEX(smi_infos_lock);
1322 static int smi_num; /* Used to sequence the SMIs */
1323
1324 #define DEFAULT_REGSPACING 1
1325 #define DEFAULT_REGSIZE 1
1326
1327 #ifdef CONFIG_ACPI
1328 static bool si_tryacpi = true;
1329 #endif
1330 #ifdef CONFIG_DMI
1331 static bool si_trydmi = true;
1332 #endif
1333 static bool si_tryplatform = true;
1334 #ifdef CONFIG_PCI
1335 static bool si_trypci = true;
1336 #endif
1337 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1338 static char *si_type[SI_MAX_PARMS];
1339 #define MAX_SI_TYPE_STR 30
1340 static char si_type_str[MAX_SI_TYPE_STR];
1341 static unsigned long addrs[SI_MAX_PARMS];
1342 static unsigned int num_addrs;
1343 static unsigned int ports[SI_MAX_PARMS];
1344 static unsigned int num_ports;
1345 static int irqs[SI_MAX_PARMS];
1346 static unsigned int num_irqs;
1347 static int regspacings[SI_MAX_PARMS];
1348 static unsigned int num_regspacings;
1349 static int regsizes[SI_MAX_PARMS];
1350 static unsigned int num_regsizes;
1351 static int regshifts[SI_MAX_PARMS];
1352 static unsigned int num_regshifts;
1353 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1354 static unsigned int num_slave_addrs;
1355
1356 #define IPMI_IO_ADDR_SPACE 0
1357 #define IPMI_MEM_ADDR_SPACE 1
1358 static char *addr_space_to_str[] = { "i/o", "mem" };
1359
1360 static int hotmod_handler(const char *val, struct kernel_param *kp);
1361
1362 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1363 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1364 " Documentation/IPMI.txt in the kernel sources for the"
1365 " gory details.");
1366
1367 #ifdef CONFIG_ACPI
1368 module_param_named(tryacpi, si_tryacpi, bool, 0);
1369 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1370 " default scan of the interfaces identified via ACPI");
1371 #endif
1372 #ifdef CONFIG_DMI
1373 module_param_named(trydmi, si_trydmi, bool, 0);
1374 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1375 " default scan of the interfaces identified via DMI");
1376 #endif
1377 module_param_named(tryplatform, si_tryplatform, bool, 0);
1378 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1379 " default scan of the interfaces identified via platform"
1380 " interfaces like openfirmware");
1381 #ifdef CONFIG_PCI
1382 module_param_named(trypci, si_trypci, bool, 0);
1383 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1384 " default scan of the interfaces identified via pci");
1385 #endif
1386 module_param_named(trydefaults, si_trydefaults, bool, 0);
1387 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1388 " default scan of the KCS and SMIC interface at the standard"
1389 " address");
1390 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1391 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1392 " interface separated by commas. The types are 'kcs',"
1393 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1394 " the first interface to kcs and the second to bt");
1395 module_param_array(addrs, ulong, &num_addrs, 0);
1396 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1397 " addresses separated by commas. Only use if an interface"
1398 " is in memory. Otherwise, set it to zero or leave"
1399 " it blank.");
1400 module_param_array(ports, uint, &num_ports, 0);
1401 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1402 " addresses separated by commas. Only use if an interface"
1403 " is a port. Otherwise, set it to zero or leave"
1404 " it blank.");
1405 module_param_array(irqs, int, &num_irqs, 0);
1406 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1407 " addresses separated by commas. Only use if an interface"
1408 " has an interrupt. Otherwise, set it to zero or leave"
1409 " it blank.");
1410 module_param_array(regspacings, int, &num_regspacings, 0);
1411 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1412 " and each successive register used by the interface. For"
1413 " instance, if the start address is 0xca2 and the spacing"
1414 " is 2, then the second address is at 0xca4. Defaults"
1415 " to 1.");
1416 module_param_array(regsizes, int, &num_regsizes, 0);
1417 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1418 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1419 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1420 " the 8-bit IPMI register has to be read from a larger"
1421 " register.");
1422 module_param_array(regshifts, int, &num_regshifts, 0);
1423 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1424 " IPMI register, in bits. For instance, if the data"
1425 " is read from a 32-bit word and the IPMI data is in"
1426 " bit 8-15, then the shift would be 8");
1427 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1428 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1429 " the controller. Normally this is 0x20, but can be"
1430 " overridden by this parm. This is an array indexed"
1431 " by interface number.");
1432 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1433 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1434 " disabled(0). Normally the IPMI driver auto-detects"
1435 " this, but the value may be overridden by this parm.");
1436 module_param(unload_when_empty, bool, 0);
1437 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1438 " specified or found, default is 1. Setting to 0"
1439 " is useful for hot add of devices using hotmod.");
1440 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1441 MODULE_PARM_DESC(kipmid_max_busy_us,
1442 "Max time (in microseconds) to busy-wait for IPMI data before"
1443 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1444 " if kipmid is using up a lot of CPU time.");
1445
1446
std_irq_cleanup(struct smi_info * info)1447 static void std_irq_cleanup(struct smi_info *info)
1448 {
1449 if (info->si_type == SI_BT)
1450 /* Disable the interrupt in the BT interface. */
1451 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1452 free_irq(info->irq, info);
1453 }
1454
std_irq_setup(struct smi_info * info)1455 static int std_irq_setup(struct smi_info *info)
1456 {
1457 int rv;
1458
1459 if (!info->irq)
1460 return 0;
1461
1462 if (info->si_type == SI_BT) {
1463 rv = request_irq(info->irq,
1464 si_bt_irq_handler,
1465 IRQF_SHARED,
1466 DEVICE_NAME,
1467 info);
1468 if (!rv)
1469 /* Enable the interrupt in the BT interface. */
1470 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1471 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1472 } else
1473 rv = request_irq(info->irq,
1474 si_irq_handler,
1475 IRQF_SHARED,
1476 DEVICE_NAME,
1477 info);
1478 if (rv) {
1479 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1480 " running polled\n",
1481 DEVICE_NAME, info->irq);
1482 info->irq = 0;
1483 } else {
1484 info->irq_cleanup = std_irq_cleanup;
1485 dev_info(info->dev, "Using irq %d\n", info->irq);
1486 }
1487
1488 return rv;
1489 }
1490
port_inb(const struct si_sm_io * io,unsigned int offset)1491 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1492 {
1493 unsigned int addr = io->addr_data;
1494
1495 return inb(addr + (offset * io->regspacing));
1496 }
1497
port_outb(const struct si_sm_io * io,unsigned int offset,unsigned char b)1498 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1499 unsigned char b)
1500 {
1501 unsigned int addr = io->addr_data;
1502
1503 outb(b, addr + (offset * io->regspacing));
1504 }
1505
port_inw(const struct si_sm_io * io,unsigned int offset)1506 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1507 {
1508 unsigned int addr = io->addr_data;
1509
1510 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1511 }
1512
port_outw(const struct si_sm_io * io,unsigned int offset,unsigned char b)1513 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1514 unsigned char b)
1515 {
1516 unsigned int addr = io->addr_data;
1517
1518 outw(b << io->regshift, addr + (offset * io->regspacing));
1519 }
1520
port_inl(const struct si_sm_io * io,unsigned int offset)1521 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1522 {
1523 unsigned int addr = io->addr_data;
1524
1525 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1526 }
1527
port_outl(const struct si_sm_io * io,unsigned int offset,unsigned char b)1528 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1529 unsigned char b)
1530 {
1531 unsigned int addr = io->addr_data;
1532
1533 outl(b << io->regshift, addr+(offset * io->regspacing));
1534 }
1535
port_cleanup(struct smi_info * info)1536 static void port_cleanup(struct smi_info *info)
1537 {
1538 unsigned int addr = info->io.addr_data;
1539 int idx;
1540
1541 if (addr) {
1542 for (idx = 0; idx < info->io_size; idx++)
1543 release_region(addr + idx * info->io.regspacing,
1544 info->io.regsize);
1545 }
1546 }
1547
port_setup(struct smi_info * info)1548 static int port_setup(struct smi_info *info)
1549 {
1550 unsigned int addr = info->io.addr_data;
1551 int idx;
1552
1553 if (!addr)
1554 return -ENODEV;
1555
1556 info->io_cleanup = port_cleanup;
1557
1558 /*
1559 * Figure out the actual inb/inw/inl/etc routine to use based
1560 * upon the register size.
1561 */
1562 switch (info->io.regsize) {
1563 case 1:
1564 info->io.inputb = port_inb;
1565 info->io.outputb = port_outb;
1566 break;
1567 case 2:
1568 info->io.inputb = port_inw;
1569 info->io.outputb = port_outw;
1570 break;
1571 case 4:
1572 info->io.inputb = port_inl;
1573 info->io.outputb = port_outl;
1574 break;
1575 default:
1576 dev_warn(info->dev, "Invalid register size: %d\n",
1577 info->io.regsize);
1578 return -EINVAL;
1579 }
1580
1581 /*
1582 * Some BIOSes reserve disjoint I/O regions in their ACPI
1583 * tables. This causes problems when trying to register the
1584 * entire I/O region. Therefore we must register each I/O
1585 * port separately.
1586 */
1587 for (idx = 0; idx < info->io_size; idx++) {
1588 if (request_region(addr + idx * info->io.regspacing,
1589 info->io.regsize, DEVICE_NAME) == NULL) {
1590 /* Undo allocations */
1591 while (idx--) {
1592 release_region(addr + idx * info->io.regspacing,
1593 info->io.regsize);
1594 }
1595 return -EIO;
1596 }
1597 }
1598 return 0;
1599 }
1600
intf_mem_inb(const struct si_sm_io * io,unsigned int offset)1601 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1602 unsigned int offset)
1603 {
1604 return readb((io->addr)+(offset * io->regspacing));
1605 }
1606
intf_mem_outb(const struct si_sm_io * io,unsigned int offset,unsigned char b)1607 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1608 unsigned char b)
1609 {
1610 writeb(b, (io->addr)+(offset * io->regspacing));
1611 }
1612
intf_mem_inw(const struct si_sm_io * io,unsigned int offset)1613 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1614 unsigned int offset)
1615 {
1616 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1617 & 0xff;
1618 }
1619
intf_mem_outw(const struct si_sm_io * io,unsigned int offset,unsigned char b)1620 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1621 unsigned char b)
1622 {
1623 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1624 }
1625
intf_mem_inl(const struct si_sm_io * io,unsigned int offset)1626 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1627 unsigned int offset)
1628 {
1629 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1630 & 0xff;
1631 }
1632
intf_mem_outl(const struct si_sm_io * io,unsigned int offset,unsigned char b)1633 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1634 unsigned char b)
1635 {
1636 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1637 }
1638
1639 #ifdef readq
mem_inq(const struct si_sm_io * io,unsigned int offset)1640 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1641 {
1642 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1643 & 0xff;
1644 }
1645
mem_outq(const struct si_sm_io * io,unsigned int offset,unsigned char b)1646 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1647 unsigned char b)
1648 {
1649 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1650 }
1651 #endif
1652
mem_cleanup(struct smi_info * info)1653 static void mem_cleanup(struct smi_info *info)
1654 {
1655 unsigned long addr = info->io.addr_data;
1656 int mapsize;
1657
1658 if (info->io.addr) {
1659 iounmap(info->io.addr);
1660
1661 mapsize = ((info->io_size * info->io.regspacing)
1662 - (info->io.regspacing - info->io.regsize));
1663
1664 release_mem_region(addr, mapsize);
1665 }
1666 }
1667
mem_setup(struct smi_info * info)1668 static int mem_setup(struct smi_info *info)
1669 {
1670 unsigned long addr = info->io.addr_data;
1671 int mapsize;
1672
1673 if (!addr)
1674 return -ENODEV;
1675
1676 info->io_cleanup = mem_cleanup;
1677
1678 /*
1679 * Figure out the actual readb/readw/readl/etc routine to use based
1680 * upon the register size.
1681 */
1682 switch (info->io.regsize) {
1683 case 1:
1684 info->io.inputb = intf_mem_inb;
1685 info->io.outputb = intf_mem_outb;
1686 break;
1687 case 2:
1688 info->io.inputb = intf_mem_inw;
1689 info->io.outputb = intf_mem_outw;
1690 break;
1691 case 4:
1692 info->io.inputb = intf_mem_inl;
1693 info->io.outputb = intf_mem_outl;
1694 break;
1695 #ifdef readq
1696 case 8:
1697 info->io.inputb = mem_inq;
1698 info->io.outputb = mem_outq;
1699 break;
1700 #endif
1701 default:
1702 dev_warn(info->dev, "Invalid register size: %d\n",
1703 info->io.regsize);
1704 return -EINVAL;
1705 }
1706
1707 /*
1708 * Calculate the total amount of memory to claim. This is an
1709 * unusual looking calculation, but it avoids claiming any
1710 * more memory than it has to. It will claim everything
1711 * between the first address to the end of the last full
1712 * register.
1713 */
1714 mapsize = ((info->io_size * info->io.regspacing)
1715 - (info->io.regspacing - info->io.regsize));
1716
1717 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1718 return -EIO;
1719
1720 info->io.addr = ioremap(addr, mapsize);
1721 if (info->io.addr == NULL) {
1722 release_mem_region(addr, mapsize);
1723 return -EIO;
1724 }
1725 return 0;
1726 }
1727
1728 /*
1729 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1730 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1731 * Options are:
1732 * rsp=<regspacing>
1733 * rsi=<regsize>
1734 * rsh=<regshift>
1735 * irq=<irq>
1736 * ipmb=<ipmb addr>
1737 */
1738 enum hotmod_op { HM_ADD, HM_REMOVE };
1739 struct hotmod_vals {
1740 char *name;
1741 int val;
1742 };
1743 static struct hotmod_vals hotmod_ops[] = {
1744 { "add", HM_ADD },
1745 { "remove", HM_REMOVE },
1746 { NULL }
1747 };
1748 static struct hotmod_vals hotmod_si[] = {
1749 { "kcs", SI_KCS },
1750 { "smic", SI_SMIC },
1751 { "bt", SI_BT },
1752 { NULL }
1753 };
1754 static struct hotmod_vals hotmod_as[] = {
1755 { "mem", IPMI_MEM_ADDR_SPACE },
1756 { "i/o", IPMI_IO_ADDR_SPACE },
1757 { NULL }
1758 };
1759
parse_str(struct hotmod_vals * v,int * val,char * name,char ** curr)1760 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1761 {
1762 char *s;
1763 int i;
1764
1765 s = strchr(*curr, ',');
1766 if (!s) {
1767 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1768 return -EINVAL;
1769 }
1770 *s = '\0';
1771 s++;
1772 for (i = 0; v[i].name; i++) {
1773 if (strcmp(*curr, v[i].name) == 0) {
1774 *val = v[i].val;
1775 *curr = s;
1776 return 0;
1777 }
1778 }
1779
1780 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781 return -EINVAL;
1782 }
1783
check_hotmod_int_op(const char * curr,const char * option,const char * name,int * val)1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785 const char *name, int *val)
1786 {
1787 char *n;
1788
1789 if (strcmp(curr, name) == 0) {
1790 if (!option) {
1791 printk(KERN_WARNING PFX
1792 "No option given for '%s'\n",
1793 curr);
1794 return -EINVAL;
1795 }
1796 *val = simple_strtoul(option, &n, 0);
1797 if ((*n != '\0') || (*option == '\0')) {
1798 printk(KERN_WARNING PFX
1799 "Bad option given for '%s'\n",
1800 curr);
1801 return -EINVAL;
1802 }
1803 return 1;
1804 }
1805 return 0;
1806 }
1807
smi_info_alloc(void)1808 static struct smi_info *smi_info_alloc(void)
1809 {
1810 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1811
1812 if (info)
1813 spin_lock_init(&info->si_lock);
1814 return info;
1815 }
1816
hotmod_handler(const char * val,struct kernel_param * kp)1817 static int hotmod_handler(const char *val, struct kernel_param *kp)
1818 {
1819 char *str = kstrdup(val, GFP_KERNEL);
1820 int rv;
1821 char *next, *curr, *s, *n, *o;
1822 enum hotmod_op op;
1823 enum si_type si_type;
1824 int addr_space;
1825 unsigned long addr;
1826 int regspacing;
1827 int regsize;
1828 int regshift;
1829 int irq;
1830 int ipmb;
1831 int ival;
1832 int len;
1833 struct smi_info *info;
1834
1835 if (!str)
1836 return -ENOMEM;
1837
1838 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1839 len = strlen(str);
1840 ival = len - 1;
1841 while ((ival >= 0) && isspace(str[ival])) {
1842 str[ival] = '\0';
1843 ival--;
1844 }
1845
1846 for (curr = str; curr; curr = next) {
1847 regspacing = 1;
1848 regsize = 1;
1849 regshift = 0;
1850 irq = 0;
1851 ipmb = 0; /* Choose the default if not specified */
1852
1853 next = strchr(curr, ':');
1854 if (next) {
1855 *next = '\0';
1856 next++;
1857 }
1858
1859 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1860 if (rv)
1861 break;
1862 op = ival;
1863
1864 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1865 if (rv)
1866 break;
1867 si_type = ival;
1868
1869 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1870 if (rv)
1871 break;
1872
1873 s = strchr(curr, ',');
1874 if (s) {
1875 *s = '\0';
1876 s++;
1877 }
1878 addr = simple_strtoul(curr, &n, 0);
1879 if ((*n != '\0') || (*curr == '\0')) {
1880 printk(KERN_WARNING PFX "Invalid hotmod address"
1881 " '%s'\n", curr);
1882 break;
1883 }
1884
1885 while (s) {
1886 curr = s;
1887 s = strchr(curr, ',');
1888 if (s) {
1889 *s = '\0';
1890 s++;
1891 }
1892 o = strchr(curr, '=');
1893 if (o) {
1894 *o = '\0';
1895 o++;
1896 }
1897 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
1898 if (rv < 0)
1899 goto out;
1900 else if (rv)
1901 continue;
1902 rv = check_hotmod_int_op(curr, o, "rsi", ®size);
1903 if (rv < 0)
1904 goto out;
1905 else if (rv)
1906 continue;
1907 rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
1908 if (rv < 0)
1909 goto out;
1910 else if (rv)
1911 continue;
1912 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1913 if (rv < 0)
1914 goto out;
1915 else if (rv)
1916 continue;
1917 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1918 if (rv < 0)
1919 goto out;
1920 else if (rv)
1921 continue;
1922
1923 rv = -EINVAL;
1924 printk(KERN_WARNING PFX
1925 "Invalid hotmod option '%s'\n",
1926 curr);
1927 goto out;
1928 }
1929
1930 if (op == HM_ADD) {
1931 info = smi_info_alloc();
1932 if (!info) {
1933 rv = -ENOMEM;
1934 goto out;
1935 }
1936
1937 info->addr_source = SI_HOTMOD;
1938 info->si_type = si_type;
1939 info->io.addr_data = addr;
1940 info->io.addr_type = addr_space;
1941 if (addr_space == IPMI_MEM_ADDR_SPACE)
1942 info->io_setup = mem_setup;
1943 else
1944 info->io_setup = port_setup;
1945
1946 info->io.addr = NULL;
1947 info->io.regspacing = regspacing;
1948 if (!info->io.regspacing)
1949 info->io.regspacing = DEFAULT_REGSPACING;
1950 info->io.regsize = regsize;
1951 if (!info->io.regsize)
1952 info->io.regsize = DEFAULT_REGSPACING;
1953 info->io.regshift = regshift;
1954 info->irq = irq;
1955 if (info->irq)
1956 info->irq_setup = std_irq_setup;
1957 info->slave_addr = ipmb;
1958
1959 rv = add_smi(info);
1960 if (rv) {
1961 kfree(info);
1962 goto out;
1963 }
1964 rv = try_smi_init(info);
1965 if (rv) {
1966 cleanup_one_si(info);
1967 goto out;
1968 }
1969 } else {
1970 /* remove */
1971 struct smi_info *e, *tmp_e;
1972
1973 mutex_lock(&smi_infos_lock);
1974 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1975 if (e->io.addr_type != addr_space)
1976 continue;
1977 if (e->si_type != si_type)
1978 continue;
1979 if (e->io.addr_data == addr)
1980 cleanup_one_si(e);
1981 }
1982 mutex_unlock(&smi_infos_lock);
1983 }
1984 }
1985 rv = len;
1986 out:
1987 kfree(str);
1988 return rv;
1989 }
1990
hardcode_find_bmc(void)1991 static int hardcode_find_bmc(void)
1992 {
1993 int ret = -ENODEV;
1994 int i;
1995 struct smi_info *info;
1996
1997 for (i = 0; i < SI_MAX_PARMS; i++) {
1998 if (!ports[i] && !addrs[i])
1999 continue;
2000
2001 info = smi_info_alloc();
2002 if (!info)
2003 return -ENOMEM;
2004
2005 info->addr_source = SI_HARDCODED;
2006 printk(KERN_INFO PFX "probing via hardcoded address\n");
2007
2008 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2009 info->si_type = SI_KCS;
2010 } else if (strcmp(si_type[i], "smic") == 0) {
2011 info->si_type = SI_SMIC;
2012 } else if (strcmp(si_type[i], "bt") == 0) {
2013 info->si_type = SI_BT;
2014 } else {
2015 printk(KERN_WARNING PFX "Interface type specified "
2016 "for interface %d, was invalid: %s\n",
2017 i, si_type[i]);
2018 kfree(info);
2019 continue;
2020 }
2021
2022 if (ports[i]) {
2023 /* An I/O port */
2024 info->io_setup = port_setup;
2025 info->io.addr_data = ports[i];
2026 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2027 } else if (addrs[i]) {
2028 /* A memory port */
2029 info->io_setup = mem_setup;
2030 info->io.addr_data = addrs[i];
2031 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2032 } else {
2033 printk(KERN_WARNING PFX "Interface type specified "
2034 "for interface %d, but port and address were "
2035 "not set or set to zero.\n", i);
2036 kfree(info);
2037 continue;
2038 }
2039
2040 info->io.addr = NULL;
2041 info->io.regspacing = regspacings[i];
2042 if (!info->io.regspacing)
2043 info->io.regspacing = DEFAULT_REGSPACING;
2044 info->io.regsize = regsizes[i];
2045 if (!info->io.regsize)
2046 info->io.regsize = DEFAULT_REGSPACING;
2047 info->io.regshift = regshifts[i];
2048 info->irq = irqs[i];
2049 if (info->irq)
2050 info->irq_setup = std_irq_setup;
2051 info->slave_addr = slave_addrs[i];
2052
2053 if (!add_smi(info)) {
2054 if (try_smi_init(info))
2055 cleanup_one_si(info);
2056 ret = 0;
2057 } else {
2058 kfree(info);
2059 }
2060 }
2061 return ret;
2062 }
2063
2064 #ifdef CONFIG_ACPI
2065
2066 #include <linux/acpi.h>
2067
2068 /*
2069 * Once we get an ACPI failure, we don't try any more, because we go
2070 * through the tables sequentially. Once we don't find a table, there
2071 * are no more.
2072 */
2073 static int acpi_failure;
2074
2075 /* For GPE-type interrupts. */
ipmi_acpi_gpe(acpi_handle gpe_device,u32 gpe_number,void * context)2076 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2077 u32 gpe_number, void *context)
2078 {
2079 struct smi_info *smi_info = context;
2080 unsigned long flags;
2081
2082 spin_lock_irqsave(&(smi_info->si_lock), flags);
2083
2084 smi_inc_stat(smi_info, interrupts);
2085
2086 debug_timestamp("ACPI_GPE");
2087
2088 smi_event_handler(smi_info, 0);
2089 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2090
2091 return ACPI_INTERRUPT_HANDLED;
2092 }
2093
acpi_gpe_irq_cleanup(struct smi_info * info)2094 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2095 {
2096 if (!info->irq)
2097 return;
2098
2099 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2100 }
2101
acpi_gpe_irq_setup(struct smi_info * info)2102 static int acpi_gpe_irq_setup(struct smi_info *info)
2103 {
2104 acpi_status status;
2105
2106 if (!info->irq)
2107 return 0;
2108
2109 status = acpi_install_gpe_handler(NULL,
2110 info->irq,
2111 ACPI_GPE_LEVEL_TRIGGERED,
2112 &ipmi_acpi_gpe,
2113 info);
2114 if (status != AE_OK) {
2115 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2116 " running polled\n", DEVICE_NAME, info->irq);
2117 info->irq = 0;
2118 return -EINVAL;
2119 } else {
2120 info->irq_cleanup = acpi_gpe_irq_cleanup;
2121 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2122 return 0;
2123 }
2124 }
2125
2126 /*
2127 * Defined at
2128 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2129 */
2130 struct SPMITable {
2131 s8 Signature[4];
2132 u32 Length;
2133 u8 Revision;
2134 u8 Checksum;
2135 s8 OEMID[6];
2136 s8 OEMTableID[8];
2137 s8 OEMRevision[4];
2138 s8 CreatorID[4];
2139 s8 CreatorRevision[4];
2140 u8 InterfaceType;
2141 u8 IPMIlegacy;
2142 s16 SpecificationRevision;
2143
2144 /*
2145 * Bit 0 - SCI interrupt supported
2146 * Bit 1 - I/O APIC/SAPIC
2147 */
2148 u8 InterruptType;
2149
2150 /*
2151 * If bit 0 of InterruptType is set, then this is the SCI
2152 * interrupt in the GPEx_STS register.
2153 */
2154 u8 GPE;
2155
2156 s16 Reserved;
2157
2158 /*
2159 * If bit 1 of InterruptType is set, then this is the I/O
2160 * APIC/SAPIC interrupt.
2161 */
2162 u32 GlobalSystemInterrupt;
2163
2164 /* The actual register address. */
2165 struct acpi_generic_address addr;
2166
2167 u8 UID[4];
2168
2169 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2170 };
2171
try_init_spmi(struct SPMITable * spmi)2172 static int try_init_spmi(struct SPMITable *spmi)
2173 {
2174 struct smi_info *info;
2175 int rv;
2176
2177 if (spmi->IPMIlegacy != 1) {
2178 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2179 return -ENODEV;
2180 }
2181
2182 info = smi_info_alloc();
2183 if (!info) {
2184 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2185 return -ENOMEM;
2186 }
2187
2188 info->addr_source = SI_SPMI;
2189 printk(KERN_INFO PFX "probing via SPMI\n");
2190
2191 /* Figure out the interface type. */
2192 switch (spmi->InterfaceType) {
2193 case 1: /* KCS */
2194 info->si_type = SI_KCS;
2195 break;
2196 case 2: /* SMIC */
2197 info->si_type = SI_SMIC;
2198 break;
2199 case 3: /* BT */
2200 info->si_type = SI_BT;
2201 break;
2202 case 4: /* SSIF, just ignore */
2203 kfree(info);
2204 return -EIO;
2205 default:
2206 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2207 spmi->InterfaceType);
2208 kfree(info);
2209 return -EIO;
2210 }
2211
2212 if (spmi->InterruptType & 1) {
2213 /* We've got a GPE interrupt. */
2214 info->irq = spmi->GPE;
2215 info->irq_setup = acpi_gpe_irq_setup;
2216 } else if (spmi->InterruptType & 2) {
2217 /* We've got an APIC/SAPIC interrupt. */
2218 info->irq = spmi->GlobalSystemInterrupt;
2219 info->irq_setup = std_irq_setup;
2220 } else {
2221 /* Use the default interrupt setting. */
2222 info->irq = 0;
2223 info->irq_setup = NULL;
2224 }
2225
2226 if (spmi->addr.bit_width) {
2227 /* A (hopefully) properly formed register bit width. */
2228 info->io.regspacing = spmi->addr.bit_width / 8;
2229 } else {
2230 info->io.regspacing = DEFAULT_REGSPACING;
2231 }
2232 info->io.regsize = info->io.regspacing;
2233 info->io.regshift = spmi->addr.bit_offset;
2234
2235 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2236 info->io_setup = mem_setup;
2237 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2238 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2239 info->io_setup = port_setup;
2240 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2241 } else {
2242 kfree(info);
2243 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2244 return -EIO;
2245 }
2246 info->io.addr_data = spmi->addr.address;
2247
2248 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2249 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2250 info->io.addr_data, info->io.regsize, info->io.regspacing,
2251 info->irq);
2252
2253 rv = add_smi(info);
2254 if (rv)
2255 kfree(info);
2256
2257 return rv;
2258 }
2259
spmi_find_bmc(void)2260 static void spmi_find_bmc(void)
2261 {
2262 acpi_status status;
2263 struct SPMITable *spmi;
2264 int i;
2265
2266 if (acpi_disabled)
2267 return;
2268
2269 if (acpi_failure)
2270 return;
2271
2272 for (i = 0; ; i++) {
2273 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2274 (struct acpi_table_header **)&spmi);
2275 if (status != AE_OK)
2276 return;
2277
2278 try_init_spmi(spmi);
2279 }
2280 }
2281 #endif
2282
2283 #ifdef CONFIG_DMI
2284 struct dmi_ipmi_data {
2285 u8 type;
2286 u8 addr_space;
2287 unsigned long base_addr;
2288 u8 irq;
2289 u8 offset;
2290 u8 slave_addr;
2291 };
2292
decode_dmi(const struct dmi_header * dm,struct dmi_ipmi_data * dmi)2293 static int decode_dmi(const struct dmi_header *dm,
2294 struct dmi_ipmi_data *dmi)
2295 {
2296 const u8 *data = (const u8 *)dm;
2297 unsigned long base_addr;
2298 u8 reg_spacing;
2299 u8 len = dm->length;
2300
2301 dmi->type = data[4];
2302
2303 memcpy(&base_addr, data+8, sizeof(unsigned long));
2304 if (len >= 0x11) {
2305 if (base_addr & 1) {
2306 /* I/O */
2307 base_addr &= 0xFFFE;
2308 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2309 } else
2310 /* Memory */
2311 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2312
2313 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2314 is odd. */
2315 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2316
2317 dmi->irq = data[0x11];
2318
2319 /* The top two bits of byte 0x10 hold the register spacing. */
2320 reg_spacing = (data[0x10] & 0xC0) >> 6;
2321 switch (reg_spacing) {
2322 case 0x00: /* Byte boundaries */
2323 dmi->offset = 1;
2324 break;
2325 case 0x01: /* 32-bit boundaries */
2326 dmi->offset = 4;
2327 break;
2328 case 0x02: /* 16-byte boundaries */
2329 dmi->offset = 16;
2330 break;
2331 default:
2332 /* Some other interface, just ignore it. */
2333 return -EIO;
2334 }
2335 } else {
2336 /* Old DMI spec. */
2337 /*
2338 * Note that technically, the lower bit of the base
2339 * address should be 1 if the address is I/O and 0 if
2340 * the address is in memory. So many systems get that
2341 * wrong (and all that I have seen are I/O) so we just
2342 * ignore that bit and assume I/O. Systems that use
2343 * memory should use the newer spec, anyway.
2344 */
2345 dmi->base_addr = base_addr & 0xfffe;
2346 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2347 dmi->offset = 1;
2348 }
2349
2350 dmi->slave_addr = data[6];
2351
2352 return 0;
2353 }
2354
try_init_dmi(struct dmi_ipmi_data * ipmi_data)2355 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2356 {
2357 struct smi_info *info;
2358
2359 info = smi_info_alloc();
2360 if (!info) {
2361 printk(KERN_ERR PFX "Could not allocate SI data\n");
2362 return;
2363 }
2364
2365 info->addr_source = SI_SMBIOS;
2366 printk(KERN_INFO PFX "probing via SMBIOS\n");
2367
2368 switch (ipmi_data->type) {
2369 case 0x01: /* KCS */
2370 info->si_type = SI_KCS;
2371 break;
2372 case 0x02: /* SMIC */
2373 info->si_type = SI_SMIC;
2374 break;
2375 case 0x03: /* BT */
2376 info->si_type = SI_BT;
2377 break;
2378 default:
2379 kfree(info);
2380 return;
2381 }
2382
2383 switch (ipmi_data->addr_space) {
2384 case IPMI_MEM_ADDR_SPACE:
2385 info->io_setup = mem_setup;
2386 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2387 break;
2388
2389 case IPMI_IO_ADDR_SPACE:
2390 info->io_setup = port_setup;
2391 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2392 break;
2393
2394 default:
2395 kfree(info);
2396 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2397 ipmi_data->addr_space);
2398 return;
2399 }
2400 info->io.addr_data = ipmi_data->base_addr;
2401
2402 info->io.regspacing = ipmi_data->offset;
2403 if (!info->io.regspacing)
2404 info->io.regspacing = DEFAULT_REGSPACING;
2405 info->io.regsize = DEFAULT_REGSPACING;
2406 info->io.regshift = 0;
2407
2408 info->slave_addr = ipmi_data->slave_addr;
2409
2410 info->irq = ipmi_data->irq;
2411 if (info->irq)
2412 info->irq_setup = std_irq_setup;
2413
2414 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2415 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2416 info->io.addr_data, info->io.regsize, info->io.regspacing,
2417 info->irq);
2418
2419 if (add_smi(info))
2420 kfree(info);
2421 }
2422
dmi_find_bmc(void)2423 static void dmi_find_bmc(void)
2424 {
2425 const struct dmi_device *dev = NULL;
2426 struct dmi_ipmi_data data;
2427 int rv;
2428
2429 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2430 memset(&data, 0, sizeof(data));
2431 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2432 &data);
2433 if (!rv)
2434 try_init_dmi(&data);
2435 }
2436 }
2437 #endif /* CONFIG_DMI */
2438
2439 #ifdef CONFIG_PCI
2440
2441 #define PCI_ERMC_CLASSCODE 0x0C0700
2442 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2443 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2444 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2445 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2446 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2447
2448 #define PCI_HP_VENDOR_ID 0x103C
2449 #define PCI_MMC_DEVICE_ID 0x121A
2450 #define PCI_MMC_ADDR_CW 0x10
2451
ipmi_pci_cleanup(struct smi_info * info)2452 static void ipmi_pci_cleanup(struct smi_info *info)
2453 {
2454 struct pci_dev *pdev = info->addr_source_data;
2455
2456 pci_disable_device(pdev);
2457 }
2458
ipmi_pci_probe_regspacing(struct smi_info * info)2459 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2460 {
2461 if (info->si_type == SI_KCS) {
2462 unsigned char status;
2463 int regspacing;
2464
2465 info->io.regsize = DEFAULT_REGSIZE;
2466 info->io.regshift = 0;
2467 info->io_size = 2;
2468 info->handlers = &kcs_smi_handlers;
2469
2470 /* detect 1, 4, 16byte spacing */
2471 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2472 info->io.regspacing = regspacing;
2473 if (info->io_setup(info)) {
2474 dev_err(info->dev,
2475 "Could not setup I/O space\n");
2476 return DEFAULT_REGSPACING;
2477 }
2478 /* write invalid cmd */
2479 info->io.outputb(&info->io, 1, 0x10);
2480 /* read status back */
2481 status = info->io.inputb(&info->io, 1);
2482 info->io_cleanup(info);
2483 if (status)
2484 return regspacing;
2485 regspacing *= 4;
2486 }
2487 }
2488 return DEFAULT_REGSPACING;
2489 }
2490
ipmi_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2491 static int ipmi_pci_probe(struct pci_dev *pdev,
2492 const struct pci_device_id *ent)
2493 {
2494 int rv;
2495 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2496 struct smi_info *info;
2497
2498 info = smi_info_alloc();
2499 if (!info)
2500 return -ENOMEM;
2501
2502 info->addr_source = SI_PCI;
2503 dev_info(&pdev->dev, "probing via PCI");
2504
2505 switch (class_type) {
2506 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2507 info->si_type = SI_SMIC;
2508 break;
2509
2510 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2511 info->si_type = SI_KCS;
2512 break;
2513
2514 case PCI_ERMC_CLASSCODE_TYPE_BT:
2515 info->si_type = SI_BT;
2516 break;
2517
2518 default:
2519 kfree(info);
2520 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2521 return -ENOMEM;
2522 }
2523
2524 rv = pci_enable_device(pdev);
2525 if (rv) {
2526 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2527 kfree(info);
2528 return rv;
2529 }
2530
2531 info->addr_source_cleanup = ipmi_pci_cleanup;
2532 info->addr_source_data = pdev;
2533
2534 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2535 info->io_setup = port_setup;
2536 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2537 } else {
2538 info->io_setup = mem_setup;
2539 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2540 }
2541 info->io.addr_data = pci_resource_start(pdev, 0);
2542
2543 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2544 info->io.regsize = DEFAULT_REGSIZE;
2545 info->io.regshift = 0;
2546
2547 info->irq = pdev->irq;
2548 if (info->irq)
2549 info->irq_setup = std_irq_setup;
2550
2551 info->dev = &pdev->dev;
2552 pci_set_drvdata(pdev, info);
2553
2554 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2555 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2556 info->irq);
2557
2558 rv = add_smi(info);
2559 if (rv) {
2560 kfree(info);
2561 pci_disable_device(pdev);
2562 }
2563
2564 return rv;
2565 }
2566
ipmi_pci_remove(struct pci_dev * pdev)2567 static void ipmi_pci_remove(struct pci_dev *pdev)
2568 {
2569 struct smi_info *info = pci_get_drvdata(pdev);
2570 cleanup_one_si(info);
2571 pci_disable_device(pdev);
2572 }
2573
2574 static const struct pci_device_id ipmi_pci_devices[] = {
2575 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2576 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2577 { 0, }
2578 };
2579 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2580
2581 static struct pci_driver ipmi_pci_driver = {
2582 .name = DEVICE_NAME,
2583 .id_table = ipmi_pci_devices,
2584 .probe = ipmi_pci_probe,
2585 .remove = ipmi_pci_remove,
2586 };
2587 #endif /* CONFIG_PCI */
2588
2589 #ifdef CONFIG_OF
2590 static const struct of_device_id of_ipmi_match[] = {
2591 { .type = "ipmi", .compatible = "ipmi-kcs",
2592 .data = (void *)(unsigned long) SI_KCS },
2593 { .type = "ipmi", .compatible = "ipmi-smic",
2594 .data = (void *)(unsigned long) SI_SMIC },
2595 { .type = "ipmi", .compatible = "ipmi-bt",
2596 .data = (void *)(unsigned long) SI_BT },
2597 {},
2598 };
2599 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2600
of_ipmi_probe(struct platform_device * dev)2601 static int of_ipmi_probe(struct platform_device *dev)
2602 {
2603 const struct of_device_id *match;
2604 struct smi_info *info;
2605 struct resource resource;
2606 const __be32 *regsize, *regspacing, *regshift;
2607 struct device_node *np = dev->dev.of_node;
2608 int ret;
2609 int proplen;
2610
2611 dev_info(&dev->dev, "probing via device tree\n");
2612
2613 match = of_match_device(of_ipmi_match, &dev->dev);
2614 if (!match)
2615 return -ENODEV;
2616
2617 if (!of_device_is_available(np))
2618 return -EINVAL;
2619
2620 ret = of_address_to_resource(np, 0, &resource);
2621 if (ret) {
2622 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2623 return ret;
2624 }
2625
2626 regsize = of_get_property(np, "reg-size", &proplen);
2627 if (regsize && proplen != 4) {
2628 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2629 return -EINVAL;
2630 }
2631
2632 regspacing = of_get_property(np, "reg-spacing", &proplen);
2633 if (regspacing && proplen != 4) {
2634 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2635 return -EINVAL;
2636 }
2637
2638 regshift = of_get_property(np, "reg-shift", &proplen);
2639 if (regshift && proplen != 4) {
2640 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2641 return -EINVAL;
2642 }
2643
2644 info = smi_info_alloc();
2645
2646 if (!info) {
2647 dev_err(&dev->dev,
2648 "could not allocate memory for OF probe\n");
2649 return -ENOMEM;
2650 }
2651
2652 info->si_type = (enum si_type) match->data;
2653 info->addr_source = SI_DEVICETREE;
2654 info->irq_setup = std_irq_setup;
2655
2656 if (resource.flags & IORESOURCE_IO) {
2657 info->io_setup = port_setup;
2658 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2659 } else {
2660 info->io_setup = mem_setup;
2661 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2662 }
2663
2664 info->io.addr_data = resource.start;
2665
2666 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2667 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2668 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2669
2670 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2671 info->dev = &dev->dev;
2672
2673 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2674 info->io.addr_data, info->io.regsize, info->io.regspacing,
2675 info->irq);
2676
2677 dev_set_drvdata(&dev->dev, info);
2678
2679 ret = add_smi(info);
2680 if (ret) {
2681 kfree(info);
2682 return ret;
2683 }
2684 return 0;
2685 }
2686 #else
2687 #define of_ipmi_match NULL
of_ipmi_probe(struct platform_device * dev)2688 static int of_ipmi_probe(struct platform_device *dev)
2689 {
2690 return -ENODEV;
2691 }
2692 #endif
2693
2694 #ifdef CONFIG_ACPI
acpi_ipmi_probe(struct platform_device * dev)2695 static int acpi_ipmi_probe(struct platform_device *dev)
2696 {
2697 struct smi_info *info;
2698 struct resource *res, *res_second;
2699 acpi_handle handle;
2700 acpi_status status;
2701 unsigned long long tmp;
2702 int rv = -EINVAL;
2703
2704 handle = ACPI_HANDLE(&dev->dev);
2705 if (!handle)
2706 return -ENODEV;
2707
2708 info = smi_info_alloc();
2709 if (!info)
2710 return -ENOMEM;
2711
2712 info->addr_source = SI_ACPI;
2713 dev_info(&dev->dev, PFX "probing via ACPI\n");
2714
2715 info->addr_info.acpi_info.acpi_handle = handle;
2716
2717 /* _IFT tells us the interface type: KCS, BT, etc */
2718 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2719 if (ACPI_FAILURE(status)) {
2720 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2721 goto err_free;
2722 }
2723
2724 switch (tmp) {
2725 case 1:
2726 info->si_type = SI_KCS;
2727 break;
2728 case 2:
2729 info->si_type = SI_SMIC;
2730 break;
2731 case 3:
2732 info->si_type = SI_BT;
2733 break;
2734 case 4: /* SSIF, just ignore */
2735 rv = -ENODEV;
2736 goto err_free;
2737 default:
2738 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2739 goto err_free;
2740 }
2741
2742 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2743 if (res) {
2744 info->io_setup = port_setup;
2745 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2746 } else {
2747 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2748 if (res) {
2749 info->io_setup = mem_setup;
2750 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2751 }
2752 }
2753 if (!res) {
2754 dev_err(&dev->dev, "no I/O or memory address\n");
2755 goto err_free;
2756 }
2757 info->io.addr_data = res->start;
2758
2759 info->io.regspacing = DEFAULT_REGSPACING;
2760 res_second = platform_get_resource(dev,
2761 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2762 IORESOURCE_IO : IORESOURCE_MEM,
2763 1);
2764 if (res_second) {
2765 if (res_second->start > info->io.addr_data)
2766 info->io.regspacing =
2767 res_second->start - info->io.addr_data;
2768 }
2769 info->io.regsize = DEFAULT_REGSPACING;
2770 info->io.regshift = 0;
2771
2772 /* If _GPE exists, use it; otherwise use standard interrupts */
2773 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2774 if (ACPI_SUCCESS(status)) {
2775 info->irq = tmp;
2776 info->irq_setup = acpi_gpe_irq_setup;
2777 } else {
2778 int irq = platform_get_irq(dev, 0);
2779
2780 if (irq > 0) {
2781 info->irq = irq;
2782 info->irq_setup = std_irq_setup;
2783 }
2784 }
2785
2786 info->dev = &dev->dev;
2787 platform_set_drvdata(dev, info);
2788
2789 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2790 res, info->io.regsize, info->io.regspacing,
2791 info->irq);
2792
2793 rv = add_smi(info);
2794 if (rv)
2795 kfree(info);
2796
2797 return rv;
2798
2799 err_free:
2800 kfree(info);
2801 return rv;
2802 }
2803
2804 static const struct acpi_device_id acpi_ipmi_match[] = {
2805 { "IPI0001", 0 },
2806 { },
2807 };
2808 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2809 #else
acpi_ipmi_probe(struct platform_device * dev)2810 static int acpi_ipmi_probe(struct platform_device *dev)
2811 {
2812 return -ENODEV;
2813 }
2814 #endif
2815
ipmi_probe(struct platform_device * dev)2816 static int ipmi_probe(struct platform_device *dev)
2817 {
2818 if (of_ipmi_probe(dev) == 0)
2819 return 0;
2820
2821 return acpi_ipmi_probe(dev);
2822 }
2823
ipmi_remove(struct platform_device * dev)2824 static int ipmi_remove(struct platform_device *dev)
2825 {
2826 struct smi_info *info = dev_get_drvdata(&dev->dev);
2827
2828 cleanup_one_si(info);
2829 return 0;
2830 }
2831
2832 static struct platform_driver ipmi_driver = {
2833 .driver = {
2834 .name = DEVICE_NAME,
2835 .of_match_table = of_ipmi_match,
2836 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2837 },
2838 .probe = ipmi_probe,
2839 .remove = ipmi_remove,
2840 };
2841
2842 #ifdef CONFIG_PARISC
ipmi_parisc_probe(struct parisc_device * dev)2843 static int ipmi_parisc_probe(struct parisc_device *dev)
2844 {
2845 struct smi_info *info;
2846 int rv;
2847
2848 info = smi_info_alloc();
2849
2850 if (!info) {
2851 dev_err(&dev->dev,
2852 "could not allocate memory for PARISC probe\n");
2853 return -ENOMEM;
2854 }
2855
2856 info->si_type = SI_KCS;
2857 info->addr_source = SI_DEVICETREE;
2858 info->io_setup = mem_setup;
2859 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2860 info->io.addr_data = dev->hpa.start;
2861 info->io.regsize = 1;
2862 info->io.regspacing = 1;
2863 info->io.regshift = 0;
2864 info->irq = 0; /* no interrupt */
2865 info->irq_setup = NULL;
2866 info->dev = &dev->dev;
2867
2868 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2869
2870 dev_set_drvdata(&dev->dev, info);
2871
2872 rv = add_smi(info);
2873 if (rv) {
2874 kfree(info);
2875 return rv;
2876 }
2877
2878 return 0;
2879 }
2880
ipmi_parisc_remove(struct parisc_device * dev)2881 static int ipmi_parisc_remove(struct parisc_device *dev)
2882 {
2883 cleanup_one_si(dev_get_drvdata(&dev->dev));
2884 return 0;
2885 }
2886
2887 static struct parisc_device_id ipmi_parisc_tbl[] = {
2888 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2889 { 0, }
2890 };
2891
2892 static struct parisc_driver ipmi_parisc_driver = {
2893 .name = "ipmi",
2894 .id_table = ipmi_parisc_tbl,
2895 .probe = ipmi_parisc_probe,
2896 .remove = ipmi_parisc_remove,
2897 };
2898 #endif /* CONFIG_PARISC */
2899
wait_for_msg_done(struct smi_info * smi_info)2900 static int wait_for_msg_done(struct smi_info *smi_info)
2901 {
2902 enum si_sm_result smi_result;
2903
2904 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2905 for (;;) {
2906 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2907 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2908 schedule_timeout_uninterruptible(1);
2909 smi_result = smi_info->handlers->event(
2910 smi_info->si_sm, jiffies_to_usecs(1));
2911 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2912 smi_result = smi_info->handlers->event(
2913 smi_info->si_sm, 0);
2914 } else
2915 break;
2916 }
2917 if (smi_result == SI_SM_HOSED)
2918 /*
2919 * We couldn't get the state machine to run, so whatever's at
2920 * the port is probably not an IPMI SMI interface.
2921 */
2922 return -ENODEV;
2923
2924 return 0;
2925 }
2926
try_get_dev_id(struct smi_info * smi_info)2927 static int try_get_dev_id(struct smi_info *smi_info)
2928 {
2929 unsigned char msg[2];
2930 unsigned char *resp;
2931 unsigned long resp_len;
2932 int rv = 0;
2933
2934 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2935 if (!resp)
2936 return -ENOMEM;
2937
2938 /*
2939 * Do a Get Device ID command, since it comes back with some
2940 * useful info.
2941 */
2942 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2943 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2944 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2945
2946 rv = wait_for_msg_done(smi_info);
2947 if (rv)
2948 goto out;
2949
2950 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2951 resp, IPMI_MAX_MSG_LENGTH);
2952
2953 /* Check and record info from the get device id, in case we need it. */
2954 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2955
2956 out:
2957 kfree(resp);
2958 return rv;
2959 }
2960
get_global_enables(struct smi_info * smi_info,u8 * enables)2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2962 {
2963 unsigned char msg[3];
2964 unsigned char *resp;
2965 unsigned long resp_len;
2966 int rv;
2967
2968 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2969 if (!resp)
2970 return -ENOMEM;
2971
2972 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2973 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2974 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2975
2976 rv = wait_for_msg_done(smi_info);
2977 if (rv) {
2978 dev_warn(smi_info->dev,
2979 "Error getting response from get global enables command: %d\n",
2980 rv);
2981 goto out;
2982 }
2983
2984 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2985 resp, IPMI_MAX_MSG_LENGTH);
2986
2987 if (resp_len < 4 ||
2988 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2989 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2990 resp[2] != 0) {
2991 dev_warn(smi_info->dev,
2992 "Invalid return from get global enables command: %ld %x %x %x\n",
2993 resp_len, resp[0], resp[1], resp[2]);
2994 rv = -EINVAL;
2995 goto out;
2996 } else {
2997 *enables = resp[3];
2998 }
2999
3000 out:
3001 kfree(resp);
3002 return rv;
3003 }
3004
3005 /*
3006 * Returns 1 if it gets an error from the command.
3007 */
set_global_enables(struct smi_info * smi_info,u8 enables)3008 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3009 {
3010 unsigned char msg[3];
3011 unsigned char *resp;
3012 unsigned long resp_len;
3013 int rv;
3014
3015 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3016 if (!resp)
3017 return -ENOMEM;
3018
3019 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3020 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3021 msg[2] = enables;
3022 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3023
3024 rv = wait_for_msg_done(smi_info);
3025 if (rv) {
3026 dev_warn(smi_info->dev,
3027 "Error getting response from set global enables command: %d\n",
3028 rv);
3029 goto out;
3030 }
3031
3032 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3033 resp, IPMI_MAX_MSG_LENGTH);
3034
3035 if (resp_len < 3 ||
3036 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3037 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3038 dev_warn(smi_info->dev,
3039 "Invalid return from set global enables command: %ld %x %x\n",
3040 resp_len, resp[0], resp[1]);
3041 rv = -EINVAL;
3042 goto out;
3043 }
3044
3045 if (resp[2] != 0)
3046 rv = 1;
3047
3048 out:
3049 kfree(resp);
3050 return rv;
3051 }
3052
3053 /*
3054 * Some BMCs do not support clearing the receive irq bit in the global
3055 * enables (even if they don't support interrupts on the BMC). Check
3056 * for this and handle it properly.
3057 */
check_clr_rcv_irq(struct smi_info * smi_info)3058 static void check_clr_rcv_irq(struct smi_info *smi_info)
3059 {
3060 u8 enables = 0;
3061 int rv;
3062
3063 rv = get_global_enables(smi_info, &enables);
3064 if (!rv) {
3065 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3066 /* Already clear, should work ok. */
3067 return;
3068
3069 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3070 rv = set_global_enables(smi_info, enables);
3071 }
3072
3073 if (rv < 0) {
3074 dev_err(smi_info->dev,
3075 "Cannot check clearing the rcv irq: %d\n", rv);
3076 return;
3077 }
3078
3079 if (rv) {
3080 /*
3081 * An error when setting the event buffer bit means
3082 * clearing the bit is not supported.
3083 */
3084 dev_warn(smi_info->dev,
3085 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 smi_info->cannot_disable_irq = true;
3087 }
3088 }
3089
3090 /*
3091 * Some BMCs do not support setting the interrupt bits in the global
3092 * enables even if they support interrupts. Clearly bad, but we can
3093 * compensate.
3094 */
check_set_rcv_irq(struct smi_info * smi_info)3095 static void check_set_rcv_irq(struct smi_info *smi_info)
3096 {
3097 u8 enables = 0;
3098 int rv;
3099
3100 if (!smi_info->irq)
3101 return;
3102
3103 rv = get_global_enables(smi_info, &enables);
3104 if (!rv) {
3105 enables |= IPMI_BMC_RCV_MSG_INTR;
3106 rv = set_global_enables(smi_info, enables);
3107 }
3108
3109 if (rv < 0) {
3110 dev_err(smi_info->dev,
3111 "Cannot check setting the rcv irq: %d\n", rv);
3112 return;
3113 }
3114
3115 if (rv) {
3116 /*
3117 * An error when setting the event buffer bit means
3118 * setting the bit is not supported.
3119 */
3120 dev_warn(smi_info->dev,
3121 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122 smi_info->cannot_disable_irq = true;
3123 smi_info->irq_enable_broken = true;
3124 }
3125 }
3126
try_enable_event_buffer(struct smi_info * smi_info)3127 static int try_enable_event_buffer(struct smi_info *smi_info)
3128 {
3129 unsigned char msg[3];
3130 unsigned char *resp;
3131 unsigned long resp_len;
3132 int rv = 0;
3133
3134 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3135 if (!resp)
3136 return -ENOMEM;
3137
3138 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3140 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3141
3142 rv = wait_for_msg_done(smi_info);
3143 if (rv) {
3144 printk(KERN_WARNING PFX "Error getting response from get"
3145 " global enables command, the event buffer is not"
3146 " enabled.\n");
3147 goto out;
3148 }
3149
3150 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3151 resp, IPMI_MAX_MSG_LENGTH);
3152
3153 if (resp_len < 4 ||
3154 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3155 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3156 resp[2] != 0) {
3157 printk(KERN_WARNING PFX "Invalid return from get global"
3158 " enables command, cannot enable the event buffer.\n");
3159 rv = -EINVAL;
3160 goto out;
3161 }
3162
3163 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3164 /* buffer is already enabled, nothing to do. */
3165 smi_info->supports_event_msg_buff = true;
3166 goto out;
3167 }
3168
3169 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3170 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3171 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3172 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3173
3174 rv = wait_for_msg_done(smi_info);
3175 if (rv) {
3176 printk(KERN_WARNING PFX "Error getting response from set"
3177 " global, enables command, the event buffer is not"
3178 " enabled.\n");
3179 goto out;
3180 }
3181
3182 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3183 resp, IPMI_MAX_MSG_LENGTH);
3184
3185 if (resp_len < 3 ||
3186 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3187 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3188 printk(KERN_WARNING PFX "Invalid return from get global,"
3189 "enables command, not enable the event buffer.\n");
3190 rv = -EINVAL;
3191 goto out;
3192 }
3193
3194 if (resp[2] != 0)
3195 /*
3196 * An error when setting the event buffer bit means
3197 * that the event buffer is not supported.
3198 */
3199 rv = -ENOENT;
3200 else
3201 smi_info->supports_event_msg_buff = true;
3202
3203 out:
3204 kfree(resp);
3205 return rv;
3206 }
3207
smi_type_proc_show(struct seq_file * m,void * v)3208 static int smi_type_proc_show(struct seq_file *m, void *v)
3209 {
3210 struct smi_info *smi = m->private;
3211
3212 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3213
3214 return 0;
3215 }
3216
smi_type_proc_open(struct inode * inode,struct file * file)3217 static int smi_type_proc_open(struct inode *inode, struct file *file)
3218 {
3219 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3220 }
3221
3222 static const struct file_operations smi_type_proc_ops = {
3223 .open = smi_type_proc_open,
3224 .read = seq_read,
3225 .llseek = seq_lseek,
3226 .release = single_release,
3227 };
3228
smi_si_stats_proc_show(struct seq_file * m,void * v)3229 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3230 {
3231 struct smi_info *smi = m->private;
3232
3233 seq_printf(m, "interrupts_enabled: %d\n",
3234 smi->irq && !smi->interrupt_disabled);
3235 seq_printf(m, "short_timeouts: %u\n",
3236 smi_get_stat(smi, short_timeouts));
3237 seq_printf(m, "long_timeouts: %u\n",
3238 smi_get_stat(smi, long_timeouts));
3239 seq_printf(m, "idles: %u\n",
3240 smi_get_stat(smi, idles));
3241 seq_printf(m, "interrupts: %u\n",
3242 smi_get_stat(smi, interrupts));
3243 seq_printf(m, "attentions: %u\n",
3244 smi_get_stat(smi, attentions));
3245 seq_printf(m, "flag_fetches: %u\n",
3246 smi_get_stat(smi, flag_fetches));
3247 seq_printf(m, "hosed_count: %u\n",
3248 smi_get_stat(smi, hosed_count));
3249 seq_printf(m, "complete_transactions: %u\n",
3250 smi_get_stat(smi, complete_transactions));
3251 seq_printf(m, "events: %u\n",
3252 smi_get_stat(smi, events));
3253 seq_printf(m, "watchdog_pretimeouts: %u\n",
3254 smi_get_stat(smi, watchdog_pretimeouts));
3255 seq_printf(m, "incoming_messages: %u\n",
3256 smi_get_stat(smi, incoming_messages));
3257 return 0;
3258 }
3259
smi_si_stats_proc_open(struct inode * inode,struct file * file)3260 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3261 {
3262 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3263 }
3264
3265 static const struct file_operations smi_si_stats_proc_ops = {
3266 .open = smi_si_stats_proc_open,
3267 .read = seq_read,
3268 .llseek = seq_lseek,
3269 .release = single_release,
3270 };
3271
smi_params_proc_show(struct seq_file * m,void * v)3272 static int smi_params_proc_show(struct seq_file *m, void *v)
3273 {
3274 struct smi_info *smi = m->private;
3275
3276 seq_printf(m,
3277 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3278 si_to_str[smi->si_type],
3279 addr_space_to_str[smi->io.addr_type],
3280 smi->io.addr_data,
3281 smi->io.regspacing,
3282 smi->io.regsize,
3283 smi->io.regshift,
3284 smi->irq,
3285 smi->slave_addr);
3286
3287 return 0;
3288 }
3289
smi_params_proc_open(struct inode * inode,struct file * file)3290 static int smi_params_proc_open(struct inode *inode, struct file *file)
3291 {
3292 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3293 }
3294
3295 static const struct file_operations smi_params_proc_ops = {
3296 .open = smi_params_proc_open,
3297 .read = seq_read,
3298 .llseek = seq_lseek,
3299 .release = single_release,
3300 };
3301
3302 /*
3303 * oem_data_avail_to_receive_msg_avail
3304 * @info - smi_info structure with msg_flags set
3305 *
3306 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3307 * Returns 1 indicating need to re-run handle_flags().
3308 */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)3309 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3310 {
3311 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3312 RECEIVE_MSG_AVAIL);
3313 return 1;
3314 }
3315
3316 /*
3317 * setup_dell_poweredge_oem_data_handler
3318 * @info - smi_info.device_id must be populated
3319 *
3320 * Systems that match, but have firmware version < 1.40 may assert
3321 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3322 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3323 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3324 * as RECEIVE_MSG_AVAIL instead.
3325 *
3326 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3327 * assert the OEM[012] bits, and if it did, the driver would have to
3328 * change to handle that properly, we don't actually check for the
3329 * firmware version.
3330 * Device ID = 0x20 BMC on PowerEdge 8G servers
3331 * Device Revision = 0x80
3332 * Firmware Revision1 = 0x01 BMC version 1.40
3333 * Firmware Revision2 = 0x40 BCD encoded
3334 * IPMI Version = 0x51 IPMI 1.5
3335 * Manufacturer ID = A2 02 00 Dell IANA
3336 *
3337 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3338 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3339 *
3340 */
3341 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3342 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3343 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3344 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)3345 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3346 {
3347 struct ipmi_device_id *id = &smi_info->device_id;
3348 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3349 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3350 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3351 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3352 smi_info->oem_data_avail_handler =
3353 oem_data_avail_to_receive_msg_avail;
3354 } else if (ipmi_version_major(id) < 1 ||
3355 (ipmi_version_major(id) == 1 &&
3356 ipmi_version_minor(id) < 5)) {
3357 smi_info->oem_data_avail_handler =
3358 oem_data_avail_to_receive_msg_avail;
3359 }
3360 }
3361 }
3362
3363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)3364 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3365 {
3366 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3367
3368 /* Make it a response */
3369 msg->rsp[0] = msg->data[0] | 4;
3370 msg->rsp[1] = msg->data[1];
3371 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3372 msg->rsp_size = 3;
3373 smi_info->curr_msg = NULL;
3374 deliver_recv_msg(smi_info, msg);
3375 }
3376
3377 /*
3378 * dell_poweredge_bt_xaction_handler
3379 * @info - smi_info.device_id must be populated
3380 *
3381 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3382 * not respond to a Get SDR command if the length of the data
3383 * requested is exactly 0x3A, which leads to command timeouts and no
3384 * data returned. This intercepts such commands, and causes userspace
3385 * callers to try again with a different-sized buffer, which succeeds.
3386 */
3387
3388 #define STORAGE_NETFN 0x0A
3389 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)3390 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3391 unsigned long unused,
3392 void *in)
3393 {
3394 struct smi_info *smi_info = in;
3395 unsigned char *data = smi_info->curr_msg->data;
3396 unsigned int size = smi_info->curr_msg->data_size;
3397 if (size >= 8 &&
3398 (data[0]>>2) == STORAGE_NETFN &&
3399 data[1] == STORAGE_CMD_GET_SDR &&
3400 data[7] == 0x3A) {
3401 return_hosed_msg_badsize(smi_info);
3402 return NOTIFY_STOP;
3403 }
3404 return NOTIFY_DONE;
3405 }
3406
3407 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3408 .notifier_call = dell_poweredge_bt_xaction_handler,
3409 };
3410
3411 /*
3412 * setup_dell_poweredge_bt_xaction_handler
3413 * @info - smi_info.device_id must be filled in already
3414 *
3415 * Fills in smi_info.device_id.start_transaction_pre_hook
3416 * when we know what function to use there.
3417 */
3418 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)3419 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3420 {
3421 struct ipmi_device_id *id = &smi_info->device_id;
3422 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3423 smi_info->si_type == SI_BT)
3424 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3425 }
3426
3427 /*
3428 * setup_oem_data_handler
3429 * @info - smi_info.device_id must be filled in already
3430 *
3431 * Fills in smi_info.device_id.oem_data_available_handler
3432 * when we know what function to use there.
3433 */
3434
setup_oem_data_handler(struct smi_info * smi_info)3435 static void setup_oem_data_handler(struct smi_info *smi_info)
3436 {
3437 setup_dell_poweredge_oem_data_handler(smi_info);
3438 }
3439
setup_xaction_handlers(struct smi_info * smi_info)3440 static void setup_xaction_handlers(struct smi_info *smi_info)
3441 {
3442 setup_dell_poweredge_bt_xaction_handler(smi_info);
3443 }
3444
check_for_broken_irqs(struct smi_info * smi_info)3445 static void check_for_broken_irqs(struct smi_info *smi_info)
3446 {
3447 check_clr_rcv_irq(smi_info);
3448 check_set_rcv_irq(smi_info);
3449 }
3450
stop_timer_and_thread(struct smi_info * smi_info)3451 static inline void stop_timer_and_thread(struct smi_info *smi_info)
3452 {
3453 if (smi_info->thread != NULL)
3454 kthread_stop(smi_info->thread);
3455
3456 smi_info->timer_can_start = false;
3457 if (smi_info->timer_running)
3458 del_timer_sync(&smi_info->si_timer);
3459 }
3460
3461 static const struct ipmi_default_vals
3462 {
3463 int type;
3464 int port;
3465 } ipmi_defaults[] =
3466 {
3467 { .type = SI_KCS, .port = 0xca2 },
3468 { .type = SI_SMIC, .port = 0xca9 },
3469 { .type = SI_BT, .port = 0xe4 },
3470 { .port = 0 }
3471 };
3472
default_find_bmc(void)3473 static void default_find_bmc(void)
3474 {
3475 struct smi_info *info;
3476 int i;
3477
3478 for (i = 0; ; i++) {
3479 if (!ipmi_defaults[i].port)
3480 break;
3481 #ifdef CONFIG_PPC
3482 if (check_legacy_ioport(ipmi_defaults[i].port))
3483 continue;
3484 #endif
3485 info = smi_info_alloc();
3486 if (!info)
3487 return;
3488
3489 info->addr_source = SI_DEFAULT;
3490
3491 info->si_type = ipmi_defaults[i].type;
3492 info->io_setup = port_setup;
3493 info->io.addr_data = ipmi_defaults[i].port;
3494 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3495
3496 info->io.addr = NULL;
3497 info->io.regspacing = DEFAULT_REGSPACING;
3498 info->io.regsize = DEFAULT_REGSPACING;
3499 info->io.regshift = 0;
3500
3501 if (add_smi(info) == 0) {
3502 if ((try_smi_init(info)) == 0) {
3503 /* Found one... */
3504 printk(KERN_INFO PFX "Found default %s"
3505 " state machine at %s address 0x%lx\n",
3506 si_to_str[info->si_type],
3507 addr_space_to_str[info->io.addr_type],
3508 info->io.addr_data);
3509 } else
3510 cleanup_one_si(info);
3511 } else {
3512 kfree(info);
3513 }
3514 }
3515 }
3516
is_new_interface(struct smi_info * info)3517 static int is_new_interface(struct smi_info *info)
3518 {
3519 struct smi_info *e;
3520
3521 list_for_each_entry(e, &smi_infos, link) {
3522 if (e->io.addr_type != info->io.addr_type)
3523 continue;
3524 if (e->io.addr_data == info->io.addr_data)
3525 return 0;
3526 }
3527
3528 return 1;
3529 }
3530
add_smi(struct smi_info * new_smi)3531 static int add_smi(struct smi_info *new_smi)
3532 {
3533 int rv = 0;
3534
3535 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3536 ipmi_addr_src_to_str(new_smi->addr_source),
3537 si_to_str[new_smi->si_type]);
3538 mutex_lock(&smi_infos_lock);
3539 if (!is_new_interface(new_smi)) {
3540 printk(KERN_CONT " duplicate interface\n");
3541 rv = -EBUSY;
3542 goto out_err;
3543 }
3544
3545 printk(KERN_CONT "\n");
3546
3547 /* So we know not to free it unless we have allocated one. */
3548 new_smi->intf = NULL;
3549 new_smi->si_sm = NULL;
3550 new_smi->handlers = NULL;
3551
3552 list_add_tail(&new_smi->link, &smi_infos);
3553
3554 out_err:
3555 mutex_unlock(&smi_infos_lock);
3556 return rv;
3557 }
3558
try_smi_init(struct smi_info * new_smi)3559 static int try_smi_init(struct smi_info *new_smi)
3560 {
3561 int rv = 0;
3562 int i;
3563
3564 printk(KERN_INFO PFX "Trying %s-specified %s state"
3565 " machine at %s address 0x%lx, slave address 0x%x,"
3566 " irq %d\n",
3567 ipmi_addr_src_to_str(new_smi->addr_source),
3568 si_to_str[new_smi->si_type],
3569 addr_space_to_str[new_smi->io.addr_type],
3570 new_smi->io.addr_data,
3571 new_smi->slave_addr, new_smi->irq);
3572
3573 switch (new_smi->si_type) {
3574 case SI_KCS:
3575 new_smi->handlers = &kcs_smi_handlers;
3576 break;
3577
3578 case SI_SMIC:
3579 new_smi->handlers = &smic_smi_handlers;
3580 break;
3581
3582 case SI_BT:
3583 new_smi->handlers = &bt_smi_handlers;
3584 break;
3585
3586 default:
3587 /* No support for anything else yet. */
3588 rv = -EIO;
3589 goto out_err;
3590 }
3591
3592 /* Allocate the state machine's data and initialize it. */
3593 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3594 if (!new_smi->si_sm) {
3595 printk(KERN_ERR PFX
3596 "Could not allocate state machine memory\n");
3597 rv = -ENOMEM;
3598 goto out_err;
3599 }
3600 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3601 &new_smi->io);
3602
3603 /* Now that we know the I/O size, we can set up the I/O. */
3604 rv = new_smi->io_setup(new_smi);
3605 if (rv) {
3606 printk(KERN_ERR PFX "Could not set up I/O space\n");
3607 goto out_err;
3608 }
3609
3610 /* Do low-level detection first. */
3611 if (new_smi->handlers->detect(new_smi->si_sm)) {
3612 if (new_smi->addr_source)
3613 printk(KERN_INFO PFX "Interface detection failed\n");
3614 rv = -ENODEV;
3615 goto out_err;
3616 }
3617
3618 /*
3619 * Attempt a get device id command. If it fails, we probably
3620 * don't have a BMC here.
3621 */
3622 rv = try_get_dev_id(new_smi);
3623 if (rv) {
3624 if (new_smi->addr_source)
3625 printk(KERN_INFO PFX "There appears to be no BMC"
3626 " at this location\n");
3627 goto out_err;
3628 }
3629
3630 setup_oem_data_handler(new_smi);
3631 setup_xaction_handlers(new_smi);
3632 check_for_broken_irqs(new_smi);
3633
3634 new_smi->waiting_msg = NULL;
3635 new_smi->curr_msg = NULL;
3636 atomic_set(&new_smi->req_events, 0);
3637 new_smi->run_to_completion = false;
3638 for (i = 0; i < SI_NUM_STATS; i++)
3639 atomic_set(&new_smi->stats[i], 0);
3640
3641 new_smi->interrupt_disabled = true;
3642 atomic_set(&new_smi->need_watch, 0);
3643 new_smi->intf_num = smi_num;
3644 smi_num++;
3645
3646 rv = try_enable_event_buffer(new_smi);
3647 if (rv == 0)
3648 new_smi->has_event_buffer = true;
3649
3650 /*
3651 * Start clearing the flags before we enable interrupts or the
3652 * timer to avoid racing with the timer.
3653 */
3654 start_clear_flags(new_smi);
3655
3656 /*
3657 * IRQ is defined to be set when non-zero. req_events will
3658 * cause a global flags check that will enable interrupts.
3659 */
3660 if (new_smi->irq) {
3661 new_smi->interrupt_disabled = false;
3662 atomic_set(&new_smi->req_events, 1);
3663 }
3664
3665 if (!new_smi->dev) {
3666 /*
3667 * If we don't already have a device from something
3668 * else (like PCI), then register a new one.
3669 */
3670 new_smi->pdev = platform_device_alloc("ipmi_si",
3671 new_smi->intf_num);
3672 if (!new_smi->pdev) {
3673 printk(KERN_ERR PFX
3674 "Unable to allocate platform device\n");
3675 goto out_err;
3676 }
3677 new_smi->dev = &new_smi->pdev->dev;
3678 new_smi->dev->driver = &ipmi_driver.driver;
3679
3680 rv = platform_device_add(new_smi->pdev);
3681 if (rv) {
3682 printk(KERN_ERR PFX
3683 "Unable to register system interface device:"
3684 " %d\n",
3685 rv);
3686 goto out_err;
3687 }
3688 new_smi->dev_registered = true;
3689 }
3690
3691 rv = ipmi_register_smi(&handlers,
3692 new_smi,
3693 &new_smi->device_id,
3694 new_smi->dev,
3695 new_smi->slave_addr);
3696 if (rv) {
3697 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3698 rv);
3699 goto out_err_stop_timer;
3700 }
3701
3702 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3703 &smi_type_proc_ops,
3704 new_smi);
3705 if (rv) {
3706 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3707 goto out_err_stop_timer;
3708 }
3709
3710 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3711 &smi_si_stats_proc_ops,
3712 new_smi);
3713 if (rv) {
3714 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3715 goto out_err_stop_timer;
3716 }
3717
3718 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3719 &smi_params_proc_ops,
3720 new_smi);
3721 if (rv) {
3722 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3723 goto out_err_stop_timer;
3724 }
3725
3726 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3727 si_to_str[new_smi->si_type]);
3728
3729 return 0;
3730
3731 out_err_stop_timer:
3732 stop_timer_and_thread(new_smi);
3733
3734 out_err:
3735 new_smi->interrupt_disabled = true;
3736
3737 if (new_smi->intf) {
3738 ipmi_smi_t intf = new_smi->intf;
3739 new_smi->intf = NULL;
3740 ipmi_unregister_smi(intf);
3741 }
3742
3743 if (new_smi->irq_cleanup) {
3744 new_smi->irq_cleanup(new_smi);
3745 new_smi->irq_cleanup = NULL;
3746 }
3747
3748 /*
3749 * Wait until we know that we are out of any interrupt
3750 * handlers might have been running before we freed the
3751 * interrupt.
3752 */
3753 synchronize_sched();
3754
3755 if (new_smi->si_sm) {
3756 if (new_smi->handlers)
3757 new_smi->handlers->cleanup(new_smi->si_sm);
3758 kfree(new_smi->si_sm);
3759 new_smi->si_sm = NULL;
3760 }
3761 if (new_smi->addr_source_cleanup) {
3762 new_smi->addr_source_cleanup(new_smi);
3763 new_smi->addr_source_cleanup = NULL;
3764 }
3765 if (new_smi->io_cleanup) {
3766 new_smi->io_cleanup(new_smi);
3767 new_smi->io_cleanup = NULL;
3768 }
3769
3770 if (new_smi->dev_registered) {
3771 platform_device_unregister(new_smi->pdev);
3772 new_smi->dev_registered = false;
3773 }
3774
3775 return rv;
3776 }
3777
init_ipmi_si(void)3778 static int init_ipmi_si(void)
3779 {
3780 int i;
3781 char *str;
3782 int rv;
3783 struct smi_info *e;
3784 enum ipmi_addr_src type = SI_INVALID;
3785
3786 if (initialized)
3787 return 0;
3788 initialized = 1;
3789
3790 if (si_tryplatform) {
3791 rv = platform_driver_register(&ipmi_driver);
3792 if (rv) {
3793 printk(KERN_ERR PFX "Unable to register "
3794 "driver: %d\n", rv);
3795 return rv;
3796 }
3797 }
3798
3799 /* Parse out the si_type string into its components. */
3800 str = si_type_str;
3801 if (*str != '\0') {
3802 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3803 si_type[i] = str;
3804 str = strchr(str, ',');
3805 if (str) {
3806 *str = '\0';
3807 str++;
3808 } else {
3809 break;
3810 }
3811 }
3812 }
3813
3814 printk(KERN_INFO "IPMI System Interface driver.\n");
3815
3816 /* If the user gave us a device, they presumably want us to use it */
3817 if (!hardcode_find_bmc())
3818 return 0;
3819
3820 #ifdef CONFIG_PCI
3821 if (si_trypci) {
3822 rv = pci_register_driver(&ipmi_pci_driver);
3823 if (rv)
3824 printk(KERN_ERR PFX "Unable to register "
3825 "PCI driver: %d\n", rv);
3826 else
3827 pci_registered = true;
3828 }
3829 #endif
3830
3831 #ifdef CONFIG_DMI
3832 if (si_trydmi)
3833 dmi_find_bmc();
3834 #endif
3835
3836 #ifdef CONFIG_ACPI
3837 if (si_tryacpi)
3838 spmi_find_bmc();
3839 #endif
3840
3841 #ifdef CONFIG_PARISC
3842 register_parisc_driver(&ipmi_parisc_driver);
3843 parisc_registered = true;
3844 /* poking PC IO addresses will crash machine, don't do it */
3845 si_trydefaults = 0;
3846 #endif
3847
3848 /* We prefer devices with interrupts, but in the case of a machine
3849 with multiple BMCs we assume that there will be several instances
3850 of a given type so if we succeed in registering a type then also
3851 try to register everything else of the same type */
3852
3853 mutex_lock(&smi_infos_lock);
3854 list_for_each_entry(e, &smi_infos, link) {
3855 /* Try to register a device if it has an IRQ and we either
3856 haven't successfully registered a device yet or this
3857 device has the same type as one we successfully registered */
3858 if (e->irq && (!type || e->addr_source == type)) {
3859 if (!try_smi_init(e)) {
3860 type = e->addr_source;
3861 }
3862 }
3863 }
3864
3865 /* type will only have been set if we successfully registered an si */
3866 if (type) {
3867 mutex_unlock(&smi_infos_lock);
3868 return 0;
3869 }
3870
3871 /* Fall back to the preferred device */
3872
3873 list_for_each_entry(e, &smi_infos, link) {
3874 if (!e->irq && (!type || e->addr_source == type)) {
3875 if (!try_smi_init(e)) {
3876 type = e->addr_source;
3877 }
3878 }
3879 }
3880 mutex_unlock(&smi_infos_lock);
3881
3882 if (type)
3883 return 0;
3884
3885 if (si_trydefaults) {
3886 mutex_lock(&smi_infos_lock);
3887 if (list_empty(&smi_infos)) {
3888 /* No BMC was found, try defaults. */
3889 mutex_unlock(&smi_infos_lock);
3890 default_find_bmc();
3891 } else
3892 mutex_unlock(&smi_infos_lock);
3893 }
3894
3895 mutex_lock(&smi_infos_lock);
3896 if (unload_when_empty && list_empty(&smi_infos)) {
3897 mutex_unlock(&smi_infos_lock);
3898 cleanup_ipmi_si();
3899 printk(KERN_WARNING PFX
3900 "Unable to find any System Interface(s)\n");
3901 return -ENODEV;
3902 } else {
3903 mutex_unlock(&smi_infos_lock);
3904 return 0;
3905 }
3906 }
3907 module_init(init_ipmi_si);
3908
cleanup_one_si(struct smi_info * to_clean)3909 static void cleanup_one_si(struct smi_info *to_clean)
3910 {
3911 int rv = 0;
3912
3913 if (!to_clean)
3914 return;
3915
3916 if (to_clean->intf) {
3917 ipmi_smi_t intf = to_clean->intf;
3918
3919 to_clean->intf = NULL;
3920 rv = ipmi_unregister_smi(intf);
3921 if (rv) {
3922 pr_err(PFX "Unable to unregister device: errno=%d\n",
3923 rv);
3924 }
3925 }
3926
3927 if (to_clean->dev)
3928 dev_set_drvdata(to_clean->dev, NULL);
3929
3930 list_del(&to_clean->link);
3931
3932 /*
3933 * Make sure that interrupts, the timer and the thread are
3934 * stopped and will not run again.
3935 */
3936 if (to_clean->irq_cleanup)
3937 to_clean->irq_cleanup(to_clean);
3938 stop_timer_and_thread(to_clean);
3939
3940 /*
3941 * Timeouts are stopped, now make sure the interrupts are off
3942 * in the BMC. Note that timers and CPU interrupts are off,
3943 * so no need for locks.
3944 */
3945 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3946 poll(to_clean);
3947 schedule_timeout_uninterruptible(1);
3948 }
3949 disable_si_irq(to_clean);
3950 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3951 poll(to_clean);
3952 schedule_timeout_uninterruptible(1);
3953 }
3954
3955 if (to_clean->handlers)
3956 to_clean->handlers->cleanup(to_clean->si_sm);
3957
3958 kfree(to_clean->si_sm);
3959
3960 if (to_clean->addr_source_cleanup)
3961 to_clean->addr_source_cleanup(to_clean);
3962 if (to_clean->io_cleanup)
3963 to_clean->io_cleanup(to_clean);
3964
3965 if (to_clean->dev_registered)
3966 platform_device_unregister(to_clean->pdev);
3967
3968 kfree(to_clean);
3969 }
3970
cleanup_ipmi_si(void)3971 static void cleanup_ipmi_si(void)
3972 {
3973 struct smi_info *e, *tmp_e;
3974
3975 if (!initialized)
3976 return;
3977
3978 #ifdef CONFIG_PCI
3979 if (pci_registered)
3980 pci_unregister_driver(&ipmi_pci_driver);
3981 #endif
3982 #ifdef CONFIG_PARISC
3983 if (parisc_registered)
3984 unregister_parisc_driver(&ipmi_parisc_driver);
3985 #endif
3986
3987 platform_driver_unregister(&ipmi_driver);
3988
3989 mutex_lock(&smi_infos_lock);
3990 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3991 cleanup_one_si(e);
3992 mutex_unlock(&smi_infos_lock);
3993 }
3994 module_exit(cleanup_ipmi_si);
3995
3996 MODULE_LICENSE("GPL");
3997 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3998 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3999 " system interfaces.");
4000