• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76 
77 #define PFX "ipmi_si: "
78 
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81 
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC	10000
84 #define SI_USEC_PER_JIFFY	(1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87 				      short timeout */
88 
89 enum si_intf_state {
90 	SI_NORMAL,
91 	SI_GETTING_FLAGS,
92 	SI_GETTING_EVENTS,
93 	SI_CLEARING_FLAGS,
94 	SI_GETTING_MESSAGES,
95 	SI_CHECKING_ENABLES,
96 	SI_SETTING_ENABLES
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 #define DEVICE_NAME "ipmi_si"
111 
112 static struct platform_driver ipmi_driver;
113 
114 /*
115  * Indexes into stats[] in smi_info below.
116  */
117 enum si_stat_indexes {
118 	/*
119 	 * Number of times the driver requested a timer while an operation
120 	 * was in progress.
121 	 */
122 	SI_STAT_short_timeouts = 0,
123 
124 	/*
125 	 * Number of times the driver requested a timer while nothing was in
126 	 * progress.
127 	 */
128 	SI_STAT_long_timeouts,
129 
130 	/* Number of times the interface was idle while being polled. */
131 	SI_STAT_idles,
132 
133 	/* Number of interrupts the driver handled. */
134 	SI_STAT_interrupts,
135 
136 	/* Number of time the driver got an ATTN from the hardware. */
137 	SI_STAT_attentions,
138 
139 	/* Number of times the driver requested flags from the hardware. */
140 	SI_STAT_flag_fetches,
141 
142 	/* Number of times the hardware didn't follow the state machine. */
143 	SI_STAT_hosed_count,
144 
145 	/* Number of completed messages. */
146 	SI_STAT_complete_transactions,
147 
148 	/* Number of IPMI events received from the hardware. */
149 	SI_STAT_events,
150 
151 	/* Number of watchdog pretimeouts. */
152 	SI_STAT_watchdog_pretimeouts,
153 
154 	/* Number of asynchronous messages received. */
155 	SI_STAT_incoming_messages,
156 
157 
158 	/* This *must* remain last, add new values above this. */
159 	SI_NUM_STATS
160 };
161 
162 struct smi_info {
163 	int                    intf_num;
164 	ipmi_smi_t             intf;
165 	struct si_sm_data      *si_sm;
166 	const struct si_sm_handlers *handlers;
167 	enum si_type           si_type;
168 	spinlock_t             si_lock;
169 	struct ipmi_smi_msg    *waiting_msg;
170 	struct ipmi_smi_msg    *curr_msg;
171 	enum si_intf_state     si_state;
172 
173 	/*
174 	 * Used to handle the various types of I/O that can occur with
175 	 * IPMI
176 	 */
177 	struct si_sm_io io;
178 	int (*io_setup)(struct smi_info *info);
179 	void (*io_cleanup)(struct smi_info *info);
180 	int (*irq_setup)(struct smi_info *info);
181 	void (*irq_cleanup)(struct smi_info *info);
182 	unsigned int io_size;
183 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184 	void (*addr_source_cleanup)(struct smi_info *info);
185 	void *addr_source_data;
186 
187 	/*
188 	 * Per-OEM handler, called from handle_flags().  Returns 1
189 	 * when handle_flags() needs to be re-run or 0 indicating it
190 	 * set si_state itself.
191 	 */
192 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
193 
194 	/*
195 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196 	 * is set to hold the flags until we are done handling everything
197 	 * from the flags.
198 	 */
199 #define RECEIVE_MSG_AVAIL	0x01
200 #define EVENT_MSG_BUFFER_FULL	0x02
201 #define WDT_PRE_TIMEOUT_INT	0x08
202 #define OEM0_DATA_AVAIL     0x20
203 #define OEM1_DATA_AVAIL     0x40
204 #define OEM2_DATA_AVAIL     0x80
205 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
206 			     OEM1_DATA_AVAIL | \
207 			     OEM2_DATA_AVAIL)
208 	unsigned char       msg_flags;
209 
210 	/* Does the BMC have an event buffer? */
211 	bool		    has_event_buffer;
212 
213 	/*
214 	 * If set to true, this will request events the next time the
215 	 * state machine is idle.
216 	 */
217 	atomic_t            req_events;
218 
219 	/*
220 	 * If true, run the state machine to completion on every send
221 	 * call.  Generally used after a panic to make sure stuff goes
222 	 * out.
223 	 */
224 	bool                run_to_completion;
225 
226 	/* The I/O port of an SI interface. */
227 	int                 port;
228 
229 	/*
230 	 * The space between start addresses of the two ports.  For
231 	 * instance, if the first port is 0xca2 and the spacing is 4, then
232 	 * the second port is 0xca6.
233 	 */
234 	unsigned int        spacing;
235 
236 	/* zero if no irq; */
237 	int                 irq;
238 
239 	/* The timer for this si. */
240 	struct timer_list   si_timer;
241 
242 	/* This flag is set, if the timer can be set */
243 	bool		    timer_can_start;
244 
245 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
246 	bool		    timer_running;
247 
248 	/* The time (in jiffies) the last timeout occurred at. */
249 	unsigned long       last_timeout_jiffies;
250 
251 	/* Are we waiting for the events, pretimeouts, received msgs? */
252 	atomic_t            need_watch;
253 
254 	/*
255 	 * The driver will disable interrupts when it gets into a
256 	 * situation where it cannot handle messages due to lack of
257 	 * memory.  Once that situation clears up, it will re-enable
258 	 * interrupts.
259 	 */
260 	bool interrupt_disabled;
261 
262 	/*
263 	 * Does the BMC support events?
264 	 */
265 	bool supports_event_msg_buff;
266 
267 	/*
268 	 * Can we disable interrupts the global enables receive irq
269 	 * bit?  There are currently two forms of brokenness, some
270 	 * systems cannot disable the bit (which is technically within
271 	 * the spec but a bad idea) and some systems have the bit
272 	 * forced to zero even though interrupts work (which is
273 	 * clearly outside the spec).  The next bool tells which form
274 	 * of brokenness is present.
275 	 */
276 	bool cannot_disable_irq;
277 
278 	/*
279 	 * Some systems are broken and cannot set the irq enable
280 	 * bit, even if they support interrupts.
281 	 */
282 	bool irq_enable_broken;
283 
284 	/* Is the driver in maintenance mode? */
285 	bool in_maintenance_mode;
286 
287 	/*
288 	 * Did we get an attention that we did not handle?
289 	 */
290 	bool got_attn;
291 
292 	/* From the get device id response... */
293 	struct ipmi_device_id device_id;
294 
295 	/* Driver model stuff. */
296 	struct device *dev;
297 	struct platform_device *pdev;
298 
299 	/*
300 	 * True if we allocated the device, false if it came from
301 	 * someplace else (like PCI).
302 	 */
303 	bool dev_registered;
304 
305 	/* Slave address, could be reported from DMI. */
306 	unsigned char slave_addr;
307 
308 	/* Counters and things for the proc filesystem. */
309 	atomic_t stats[SI_NUM_STATS];
310 
311 	struct task_struct *thread;
312 
313 	struct list_head link;
314 	union ipmi_smi_info_union addr_info;
315 };
316 
317 #define smi_inc_stat(smi, stat) \
318 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
319 #define smi_get_stat(smi, stat) \
320 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
321 
322 #define SI_MAX_PARMS 4
323 
324 static int force_kipmid[SI_MAX_PARMS];
325 static int num_force_kipmid;
326 #ifdef CONFIG_PCI
327 static bool pci_registered;
328 #endif
329 #ifdef CONFIG_PARISC
330 static bool parisc_registered;
331 #endif
332 
333 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
334 static int num_max_busy_us;
335 
336 static bool unload_when_empty = true;
337 
338 static int add_smi(struct smi_info *smi);
339 static int try_smi_init(struct smi_info *smi);
340 static void cleanup_one_si(struct smi_info *to_clean);
341 static void cleanup_ipmi_si(void);
342 
343 #ifdef DEBUG_TIMING
debug_timestamp(char * msg)344 void debug_timestamp(char *msg)
345 {
346 	struct timespec64 t;
347 
348 	getnstimeofday64(&t);
349 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
350 }
351 #else
352 #define debug_timestamp(x)
353 #endif
354 
355 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)356 static int register_xaction_notifier(struct notifier_block *nb)
357 {
358 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
359 }
360 
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)361 static void deliver_recv_msg(struct smi_info *smi_info,
362 			     struct ipmi_smi_msg *msg)
363 {
364 	/* Deliver the message to the upper layer. */
365 	if (smi_info->intf)
366 		ipmi_smi_msg_received(smi_info->intf, msg);
367 	else
368 		ipmi_free_smi_msg(msg);
369 }
370 
return_hosed_msg(struct smi_info * smi_info,int cCode)371 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
372 {
373 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
374 
375 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
376 		cCode = IPMI_ERR_UNSPECIFIED;
377 	/* else use it as is */
378 
379 	/* Make it a response */
380 	msg->rsp[0] = msg->data[0] | 4;
381 	msg->rsp[1] = msg->data[1];
382 	msg->rsp[2] = cCode;
383 	msg->rsp_size = 3;
384 
385 	smi_info->curr_msg = NULL;
386 	deliver_recv_msg(smi_info, msg);
387 }
388 
start_next_msg(struct smi_info * smi_info)389 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
390 {
391 	int              rv;
392 
393 	if (!smi_info->waiting_msg) {
394 		smi_info->curr_msg = NULL;
395 		rv = SI_SM_IDLE;
396 	} else {
397 		int err;
398 
399 		smi_info->curr_msg = smi_info->waiting_msg;
400 		smi_info->waiting_msg = NULL;
401 		debug_timestamp("Start2");
402 		err = atomic_notifier_call_chain(&xaction_notifier_list,
403 				0, smi_info);
404 		if (err & NOTIFY_STOP_MASK) {
405 			rv = SI_SM_CALL_WITHOUT_DELAY;
406 			goto out;
407 		}
408 		err = smi_info->handlers->start_transaction(
409 			smi_info->si_sm,
410 			smi_info->curr_msg->data,
411 			smi_info->curr_msg->data_size);
412 		if (err)
413 			return_hosed_msg(smi_info, err);
414 
415 		rv = SI_SM_CALL_WITHOUT_DELAY;
416 	}
417  out:
418 	return rv;
419 }
420 
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)421 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
422 {
423 	if (!smi_info->timer_can_start)
424 		return;
425 	smi_info->last_timeout_jiffies = jiffies;
426 	mod_timer(&smi_info->si_timer, new_val);
427 	smi_info->timer_running = true;
428 }
429 
430 /*
431  * Start a new message and (re)start the timer and thread.
432  */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)433 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
434 			  unsigned int size)
435 {
436 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
437 
438 	if (smi_info->thread)
439 		wake_up_process(smi_info->thread);
440 
441 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
442 }
443 
start_check_enables(struct smi_info * smi_info)444 static void start_check_enables(struct smi_info *smi_info)
445 {
446 	unsigned char msg[2];
447 
448 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
449 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
450 
451 	start_new_msg(smi_info, msg, 2);
452 	smi_info->si_state = SI_CHECKING_ENABLES;
453 }
454 
start_clear_flags(struct smi_info * smi_info)455 static void start_clear_flags(struct smi_info *smi_info)
456 {
457 	unsigned char msg[3];
458 
459 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
460 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
461 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
462 	msg[2] = WDT_PRE_TIMEOUT_INT;
463 
464 	start_new_msg(smi_info, msg, 3);
465 	smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467 
start_getting_msg_queue(struct smi_info * smi_info)468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 	smi_info->curr_msg->data_size = 2;
473 
474 	start_new_msg(smi_info, smi_info->curr_msg->data,
475 		      smi_info->curr_msg->data_size);
476 	smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478 
start_getting_events(struct smi_info * smi_info)479 static void start_getting_events(struct smi_info *smi_info)
480 {
481 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 	smi_info->curr_msg->data_size = 2;
484 
485 	start_new_msg(smi_info, smi_info->curr_msg->data,
486 		      smi_info->curr_msg->data_size);
487 	smi_info->si_state = SI_GETTING_EVENTS;
488 }
489 
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
disable_si_irq(struct smi_info * smi_info)499 static inline bool disable_si_irq(struct smi_info *smi_info)
500 {
501 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 		smi_info->interrupt_disabled = true;
503 		start_check_enables(smi_info);
504 		return true;
505 	}
506 	return false;
507 }
508 
enable_si_irq(struct smi_info * smi_info)509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 		smi_info->interrupt_disabled = false;
513 		start_check_enables(smi_info);
514 		return true;
515 	}
516 	return false;
517 }
518 
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
alloc_msg_handle_irq(struct smi_info * smi_info)525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527 	struct ipmi_smi_msg *msg;
528 
529 	msg = ipmi_alloc_smi_msg();
530 	if (!msg) {
531 		if (!disable_si_irq(smi_info))
532 			smi_info->si_state = SI_NORMAL;
533 	} else if (enable_si_irq(smi_info)) {
534 		ipmi_free_smi_msg(msg);
535 		msg = NULL;
536 	}
537 	return msg;
538 }
539 
handle_flags(struct smi_info * smi_info)540 static void handle_flags(struct smi_info *smi_info)
541 {
542  retry:
543 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 		/* Watchdog pre-timeout */
545 		smi_inc_stat(smi_info, watchdog_pretimeouts);
546 
547 		start_clear_flags(smi_info);
548 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 		if (smi_info->intf)
550 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 		/* Messages available. */
553 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 		if (!smi_info->curr_msg)
555 			return;
556 
557 		start_getting_msg_queue(smi_info);
558 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 		/* Events available. */
560 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 		if (!smi_info->curr_msg)
562 			return;
563 
564 		start_getting_events(smi_info);
565 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 		   smi_info->oem_data_avail_handler) {
567 		if (smi_info->oem_data_avail_handler(smi_info))
568 			goto retry;
569 	} else
570 		smi_info->si_state = SI_NORMAL;
571 }
572 
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 			     IPMI_BMC_EVT_MSG_INTR)
578 
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 				 bool *irq_on)
581 {
582 	u8 enables = 0;
583 
584 	if (smi_info->supports_event_msg_buff)
585 		enables |= IPMI_BMC_EVT_MSG_BUFF;
586 
587 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 	     smi_info->cannot_disable_irq) &&
589 	    !smi_info->irq_enable_broken)
590 		enables |= IPMI_BMC_RCV_MSG_INTR;
591 
592 	if (smi_info->supports_event_msg_buff &&
593 	    smi_info->irq && !smi_info->interrupt_disabled &&
594 	    !smi_info->irq_enable_broken)
595 		enables |= IPMI_BMC_EVT_MSG_INTR;
596 
597 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598 
599 	return enables;
600 }
601 
check_bt_irq(struct smi_info * smi_info,bool irq_on)602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605 
606 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607 
608 	if ((bool)irqstate == irq_on)
609 		return;
610 
611 	if (irq_on)
612 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 	else
615 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617 
handle_transaction_done(struct smi_info * smi_info)618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620 	struct ipmi_smi_msg *msg;
621 
622 	debug_timestamp("Done");
623 	switch (smi_info->si_state) {
624 	case SI_NORMAL:
625 		if (!smi_info->curr_msg)
626 			break;
627 
628 		smi_info->curr_msg->rsp_size
629 			= smi_info->handlers->get_result(
630 				smi_info->si_sm,
631 				smi_info->curr_msg->rsp,
632 				IPMI_MAX_MSG_LENGTH);
633 
634 		/*
635 		 * Do this here becase deliver_recv_msg() releases the
636 		 * lock, and a new message can be put in during the
637 		 * time the lock is released.
638 		 */
639 		msg = smi_info->curr_msg;
640 		smi_info->curr_msg = NULL;
641 		deliver_recv_msg(smi_info, msg);
642 		break;
643 
644 	case SI_GETTING_FLAGS:
645 	{
646 		unsigned char msg[4];
647 		unsigned int  len;
648 
649 		/* We got the flags from the SMI, now handle them. */
650 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 		if (msg[2] != 0) {
652 			/* Error fetching flags, just give up for now. */
653 			smi_info->si_state = SI_NORMAL;
654 		} else if (len < 4) {
655 			/*
656 			 * Hmm, no flags.  That's technically illegal, but
657 			 * don't use uninitialized data.
658 			 */
659 			smi_info->si_state = SI_NORMAL;
660 		} else {
661 			smi_info->msg_flags = msg[3];
662 			handle_flags(smi_info);
663 		}
664 		break;
665 	}
666 
667 	case SI_CLEARING_FLAGS:
668 	{
669 		unsigned char msg[3];
670 
671 		/* We cleared the flags. */
672 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 		if (msg[2] != 0) {
674 			/* Error clearing flags */
675 			dev_warn(smi_info->dev,
676 				 "Error clearing flags: %2.2x\n", msg[2]);
677 		}
678 		smi_info->si_state = SI_NORMAL;
679 		break;
680 	}
681 
682 	case SI_GETTING_EVENTS:
683 	{
684 		smi_info->curr_msg->rsp_size
685 			= smi_info->handlers->get_result(
686 				smi_info->si_sm,
687 				smi_info->curr_msg->rsp,
688 				IPMI_MAX_MSG_LENGTH);
689 
690 		/*
691 		 * Do this here becase deliver_recv_msg() releases the
692 		 * lock, and a new message can be put in during the
693 		 * time the lock is released.
694 		 */
695 		msg = smi_info->curr_msg;
696 		smi_info->curr_msg = NULL;
697 		if (msg->rsp[2] != 0) {
698 			/* Error getting event, probably done. */
699 			msg->done(msg);
700 
701 			/* Take off the event flag. */
702 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 			handle_flags(smi_info);
704 		} else {
705 			smi_inc_stat(smi_info, events);
706 
707 			/*
708 			 * Do this before we deliver the message
709 			 * because delivering the message releases the
710 			 * lock and something else can mess with the
711 			 * state.
712 			 */
713 			handle_flags(smi_info);
714 
715 			deliver_recv_msg(smi_info, msg);
716 		}
717 		break;
718 	}
719 
720 	case SI_GETTING_MESSAGES:
721 	{
722 		smi_info->curr_msg->rsp_size
723 			= smi_info->handlers->get_result(
724 				smi_info->si_sm,
725 				smi_info->curr_msg->rsp,
726 				IPMI_MAX_MSG_LENGTH);
727 
728 		/*
729 		 * Do this here becase deliver_recv_msg() releases the
730 		 * lock, and a new message can be put in during the
731 		 * time the lock is released.
732 		 */
733 		msg = smi_info->curr_msg;
734 		smi_info->curr_msg = NULL;
735 		if (msg->rsp[2] != 0) {
736 			/* Error getting event, probably done. */
737 			msg->done(msg);
738 
739 			/* Take off the msg flag. */
740 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 			handle_flags(smi_info);
742 		} else {
743 			smi_inc_stat(smi_info, incoming_messages);
744 
745 			/*
746 			 * Do this before we deliver the message
747 			 * because delivering the message releases the
748 			 * lock and something else can mess with the
749 			 * state.
750 			 */
751 			handle_flags(smi_info);
752 
753 			deliver_recv_msg(smi_info, msg);
754 		}
755 		break;
756 	}
757 
758 	case SI_CHECKING_ENABLES:
759 	{
760 		unsigned char msg[4];
761 		u8 enables;
762 		bool irq_on;
763 
764 		/* We got the flags from the SMI, now handle them. */
765 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 		if (msg[2] != 0) {
767 			dev_warn(smi_info->dev,
768 				 "Couldn't get irq info: %x.\n", msg[2]);
769 			dev_warn(smi_info->dev,
770 				 "Maybe ok, but ipmi might run very slowly.\n");
771 			smi_info->si_state = SI_NORMAL;
772 			break;
773 		}
774 		enables = current_global_enables(smi_info, 0, &irq_on);
775 		if (smi_info->si_type == SI_BT)
776 			/* BT has its own interrupt enable bit. */
777 			check_bt_irq(smi_info, irq_on);
778 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 			/* Enables are not correct, fix them. */
780 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 			smi_info->handlers->start_transaction(
784 				smi_info->si_sm, msg, 3);
785 			smi_info->si_state = SI_SETTING_ENABLES;
786 		} else if (smi_info->supports_event_msg_buff) {
787 			smi_info->curr_msg = ipmi_alloc_smi_msg();
788 			if (!smi_info->curr_msg) {
789 				smi_info->si_state = SI_NORMAL;
790 				break;
791 			}
792 			start_getting_msg_queue(smi_info);
793 		} else {
794 			smi_info->si_state = SI_NORMAL;
795 		}
796 		break;
797 	}
798 
799 	case SI_SETTING_ENABLES:
800 	{
801 		unsigned char msg[4];
802 
803 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 		if (msg[2] != 0)
805 			dev_warn(smi_info->dev,
806 				 "Could not set the global enables: 0x%x.\n",
807 				 msg[2]);
808 
809 		if (smi_info->supports_event_msg_buff) {
810 			smi_info->curr_msg = ipmi_alloc_smi_msg();
811 			if (!smi_info->curr_msg) {
812 				smi_info->si_state = SI_NORMAL;
813 				break;
814 			}
815 			start_getting_msg_queue(smi_info);
816 		} else {
817 			smi_info->si_state = SI_NORMAL;
818 		}
819 		break;
820 	}
821 	}
822 }
823 
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
smi_event_handler(struct smi_info * smi_info,int time)829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 					   int time)
831 {
832 	enum si_sm_result si_sm_result;
833 
834  restart:
835 	/*
836 	 * There used to be a loop here that waited a little while
837 	 * (around 25us) before giving up.  That turned out to be
838 	 * pointless, the minimum delays I was seeing were in the 300us
839 	 * range, which is far too long to wait in an interrupt.  So
840 	 * we just run until the state machine tells us something
841 	 * happened or it needs a delay.
842 	 */
843 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 	time = 0;
845 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847 
848 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 		smi_inc_stat(smi_info, complete_transactions);
850 
851 		handle_transaction_done(smi_info);
852 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
853 	} else if (si_sm_result == SI_SM_HOSED) {
854 		smi_inc_stat(smi_info, hosed_count);
855 
856 		/*
857 		 * Do the before return_hosed_msg, because that
858 		 * releases the lock.
859 		 */
860 		smi_info->si_state = SI_NORMAL;
861 		if (smi_info->curr_msg != NULL) {
862 			/*
863 			 * If we were handling a user message, format
864 			 * a response to send to the upper layer to
865 			 * tell it about the error.
866 			 */
867 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 		}
869 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
870 	}
871 
872 	/*
873 	 * We prefer handling attn over new messages.  But don't do
874 	 * this if there is not yet an upper layer to handle anything.
875 	 */
876 	if (likely(smi_info->intf) &&
877 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 		unsigned char msg[2];
879 
880 		if (smi_info->si_state != SI_NORMAL) {
881 			/*
882 			 * We got an ATTN, but we are doing something else.
883 			 * Handle the ATTN later.
884 			 */
885 			smi_info->got_attn = true;
886 		} else {
887 			smi_info->got_attn = false;
888 			smi_inc_stat(smi_info, attentions);
889 
890 			/*
891 			 * Got a attn, send down a get message flags to see
892 			 * what's causing it.  It would be better to handle
893 			 * this in the upper layer, but due to the way
894 			 * interrupts work with the SMI, that's not really
895 			 * possible.
896 			 */
897 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899 
900 			start_new_msg(smi_info, msg, 2);
901 			smi_info->si_state = SI_GETTING_FLAGS;
902 			goto restart;
903 		}
904 	}
905 
906 	/* If we are currently idle, try to start the next message. */
907 	if (si_sm_result == SI_SM_IDLE) {
908 		smi_inc_stat(smi_info, idles);
909 
910 		si_sm_result = start_next_msg(smi_info);
911 		if (si_sm_result != SI_SM_IDLE)
912 			goto restart;
913 	}
914 
915 	if ((si_sm_result == SI_SM_IDLE)
916 	    && (atomic_read(&smi_info->req_events))) {
917 		/*
918 		 * We are idle and the upper layer requested that I fetch
919 		 * events, so do so.
920 		 */
921 		atomic_set(&smi_info->req_events, 0);
922 
923 		/*
924 		 * Take this opportunity to check the interrupt and
925 		 * message enable state for the BMC.  The BMC can be
926 		 * asynchronously reset, and may thus get interrupts
927 		 * disable and messages disabled.
928 		 */
929 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 			start_check_enables(smi_info);
931 		} else {
932 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 			if (!smi_info->curr_msg)
934 				goto out;
935 
936 			start_getting_events(smi_info);
937 		}
938 		goto restart;
939 	}
940 
941 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 		/* Ok it if fails, the timer will just go off. */
943 		if (del_timer(&smi_info->si_timer))
944 			smi_info->timer_running = false;
945 	}
946 
947  out:
948 	return si_sm_result;
949 }
950 
check_start_timer_thread(struct smi_info * smi_info)951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955 
956 		if (smi_info->thread)
957 			wake_up_process(smi_info->thread);
958 
959 		start_next_msg(smi_info);
960 		smi_event_handler(smi_info, 0);
961 	}
962 }
963 
flush_messages(void * send_info)964 static void flush_messages(void *send_info)
965 {
966 	struct smi_info *smi_info = send_info;
967 	enum si_sm_result result;
968 
969 	/*
970 	 * Currently, this function is called only in run-to-completion
971 	 * mode.  This means we are single-threaded, no need for locks.
972 	 */
973 	result = smi_event_handler(smi_info, 0);
974 	while (result != SI_SM_IDLE) {
975 		udelay(SI_SHORT_TIMEOUT_USEC);
976 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 	}
978 }
979 
sender(void * send_info,struct ipmi_smi_msg * msg)980 static void sender(void                *send_info,
981 		   struct ipmi_smi_msg *msg)
982 {
983 	struct smi_info   *smi_info = send_info;
984 	unsigned long     flags;
985 
986 	debug_timestamp("Enqueue");
987 
988 	if (smi_info->run_to_completion) {
989 		/*
990 		 * If we are running to completion, start it.  Upper
991 		 * layer will call flush_messages to clear it out.
992 		 */
993 		smi_info->waiting_msg = msg;
994 		return;
995 	}
996 
997 	spin_lock_irqsave(&smi_info->si_lock, flags);
998 	/*
999 	 * The following two lines don't need to be under the lock for
1000 	 * the lock's sake, but they do need SMP memory barriers to
1001 	 * avoid getting things out of order.  We are already claiming
1002 	 * the lock, anyway, so just do it under the lock to avoid the
1003 	 * ordering problem.
1004 	 */
1005 	BUG_ON(smi_info->waiting_msg);
1006 	smi_info->waiting_msg = msg;
1007 	check_start_timer_thread(smi_info);
1008 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010 
set_run_to_completion(void * send_info,bool i_run_to_completion)1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013 	struct smi_info   *smi_info = send_info;
1014 
1015 	smi_info->run_to_completion = i_run_to_completion;
1016 	if (i_run_to_completion)
1017 		flush_messages(smi_info);
1018 }
1019 
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
ipmi_si_set_not_busy(struct timespec64 * ts)1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027 	ts->tv_nsec = -1;
1028 }
ipmi_si_is_busy(struct timespec64 * ts)1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031 	return ts->tv_nsec != -1;
1032 }
1033 
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,struct timespec64 * busy_until)1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 					const struct smi_info *smi_info,
1036 					struct timespec64 *busy_until)
1037 {
1038 	unsigned int max_busy_us = 0;
1039 
1040 	if (smi_info->intf_num < num_max_busy_us)
1041 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 		ipmi_si_set_not_busy(busy_until);
1044 	else if (!ipmi_si_is_busy(busy_until)) {
1045 		getnstimeofday64(busy_until);
1046 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 	} else {
1048 		struct timespec64 now;
1049 
1050 		getnstimeofday64(&now);
1051 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 			ipmi_si_set_not_busy(busy_until);
1053 			return 0;
1054 		}
1055 	}
1056 	return 1;
1057 }
1058 
1059 
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
ipmi_thread(void * data)1069 static int ipmi_thread(void *data)
1070 {
1071 	struct smi_info *smi_info = data;
1072 	unsigned long flags;
1073 	enum si_sm_result smi_result;
1074 	struct timespec64 busy_until;
1075 
1076 	ipmi_si_set_not_busy(&busy_until);
1077 	set_user_nice(current, MAX_NICE);
1078 	while (!kthread_should_stop()) {
1079 		int busy_wait;
1080 
1081 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 		smi_result = smi_event_handler(smi_info, 0);
1083 
1084 		/*
1085 		 * If the driver is doing something, there is a possible
1086 		 * race with the timer.  If the timer handler see idle,
1087 		 * and the thread here sees something else, the timer
1088 		 * handler won't restart the timer even though it is
1089 		 * required.  So start it here if necessary.
1090 		 */
1091 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093 
1094 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 						  &busy_until);
1097 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1098 			; /* do nothing */
1099 		} else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1100 			/*
1101 			 * In maintenance mode we run as fast as
1102 			 * possible to allow firmware updates to
1103 			 * complete as fast as possible, but normally
1104 			 * don't bang on the scheduler.
1105 			 */
1106 			if (smi_info->in_maintenance_mode)
1107 				schedule();
1108 			else
1109 				usleep_range(100, 200);
1110 		} else if (smi_result == SI_SM_IDLE) {
1111 			if (atomic_read(&smi_info->need_watch)) {
1112 				schedule_timeout_interruptible(100);
1113 			} else {
1114 				/* Wait to be woken up when we are needed. */
1115 				__set_current_state(TASK_INTERRUPTIBLE);
1116 				schedule();
1117 			}
1118 		} else {
1119 			schedule_timeout_interruptible(1);
1120 		}
1121 	}
1122 	return 0;
1123 }
1124 
1125 
poll(void * send_info)1126 static void poll(void *send_info)
1127 {
1128 	struct smi_info *smi_info = send_info;
1129 	unsigned long flags = 0;
1130 	bool run_to_completion = smi_info->run_to_completion;
1131 
1132 	/*
1133 	 * Make sure there is some delay in the poll loop so we can
1134 	 * drive time forward and timeout things.
1135 	 */
1136 	udelay(10);
1137 	if (!run_to_completion)
1138 		spin_lock_irqsave(&smi_info->si_lock, flags);
1139 	smi_event_handler(smi_info, 10);
1140 	if (!run_to_completion)
1141 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1142 }
1143 
request_events(void * send_info)1144 static void request_events(void *send_info)
1145 {
1146 	struct smi_info *smi_info = send_info;
1147 
1148 	if (!smi_info->has_event_buffer)
1149 		return;
1150 
1151 	atomic_set(&smi_info->req_events, 1);
1152 }
1153 
set_need_watch(void * send_info,bool enable)1154 static void set_need_watch(void *send_info, bool enable)
1155 {
1156 	struct smi_info *smi_info = send_info;
1157 	unsigned long flags;
1158 
1159 	atomic_set(&smi_info->need_watch, enable);
1160 	spin_lock_irqsave(&smi_info->si_lock, flags);
1161 	check_start_timer_thread(smi_info);
1162 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1163 }
1164 
1165 static int initialized;
1166 
smi_timeout(unsigned long data)1167 static void smi_timeout(unsigned long data)
1168 {
1169 	struct smi_info   *smi_info = (struct smi_info *) data;
1170 	enum si_sm_result smi_result;
1171 	unsigned long     flags;
1172 	unsigned long     jiffies_now;
1173 	long              time_diff;
1174 	long		  timeout;
1175 
1176 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1177 	debug_timestamp("Timer");
1178 
1179 	jiffies_now = jiffies;
1180 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1181 		     * SI_USEC_PER_JIFFY);
1182 	smi_result = smi_event_handler(smi_info, time_diff);
1183 
1184 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1185 		/* Running with interrupts, only do long timeouts. */
1186 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1187 		smi_inc_stat(smi_info, long_timeouts);
1188 		goto do_mod_timer;
1189 	}
1190 
1191 	/*
1192 	 * If the state machine asks for a short delay, then shorten
1193 	 * the timer timeout.
1194 	 */
1195 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1196 		smi_inc_stat(smi_info, short_timeouts);
1197 		timeout = jiffies + 1;
1198 	} else {
1199 		smi_inc_stat(smi_info, long_timeouts);
1200 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1201 	}
1202 
1203  do_mod_timer:
1204 	if (smi_result != SI_SM_IDLE)
1205 		smi_mod_timer(smi_info, timeout);
1206 	else
1207 		smi_info->timer_running = false;
1208 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1209 }
1210 
si_irq_handler(int irq,void * data)1211 static irqreturn_t si_irq_handler(int irq, void *data)
1212 {
1213 	struct smi_info *smi_info = data;
1214 	unsigned long   flags;
1215 
1216 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1217 
1218 	smi_inc_stat(smi_info, interrupts);
1219 
1220 	debug_timestamp("Interrupt");
1221 
1222 	smi_event_handler(smi_info, 0);
1223 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1224 	return IRQ_HANDLED;
1225 }
1226 
si_bt_irq_handler(int irq,void * data)1227 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1228 {
1229 	struct smi_info *smi_info = data;
1230 	/* We need to clear the IRQ flag for the BT interface. */
1231 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1232 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1233 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1234 	return si_irq_handler(irq, data);
1235 }
1236 
smi_start_processing(void * send_info,ipmi_smi_t intf)1237 static int smi_start_processing(void       *send_info,
1238 				ipmi_smi_t intf)
1239 {
1240 	struct smi_info *new_smi = send_info;
1241 	int             enable = 0;
1242 
1243 	new_smi->intf = intf;
1244 
1245 	/* Set up the timer that drives the interface. */
1246 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1247 	new_smi->timer_can_start = true;
1248 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1249 
1250 	/* Try to claim any interrupts. */
1251 	if (new_smi->irq_setup)
1252 		new_smi->irq_setup(new_smi);
1253 
1254 	/*
1255 	 * Check if the user forcefully enabled the daemon.
1256 	 */
1257 	if (new_smi->intf_num < num_force_kipmid)
1258 		enable = force_kipmid[new_smi->intf_num];
1259 	/*
1260 	 * The BT interface is efficient enough to not need a thread,
1261 	 * and there is no need for a thread if we have interrupts.
1262 	 */
1263 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1264 		enable = 1;
1265 
1266 	if (enable) {
1267 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1268 					      "kipmi%d", new_smi->intf_num);
1269 		if (IS_ERR(new_smi->thread)) {
1270 			dev_notice(new_smi->dev, "Could not start"
1271 				   " kernel thread due to error %ld, only using"
1272 				   " timers to drive the interface\n",
1273 				   PTR_ERR(new_smi->thread));
1274 			new_smi->thread = NULL;
1275 		}
1276 	}
1277 
1278 	return 0;
1279 }
1280 
get_smi_info(void * send_info,struct ipmi_smi_info * data)1281 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1282 {
1283 	struct smi_info *smi = send_info;
1284 
1285 	data->addr_src = smi->addr_source;
1286 	data->dev = smi->dev;
1287 	data->addr_info = smi->addr_info;
1288 	get_device(smi->dev);
1289 
1290 	return 0;
1291 }
1292 
set_maintenance_mode(void * send_info,bool enable)1293 static void set_maintenance_mode(void *send_info, bool enable)
1294 {
1295 	struct smi_info   *smi_info = send_info;
1296 
1297 	if (!enable)
1298 		atomic_set(&smi_info->req_events, 0);
1299 	smi_info->in_maintenance_mode = enable;
1300 }
1301 
1302 static const struct ipmi_smi_handlers handlers = {
1303 	.owner                  = THIS_MODULE,
1304 	.start_processing       = smi_start_processing,
1305 	.get_smi_info		= get_smi_info,
1306 	.sender			= sender,
1307 	.request_events		= request_events,
1308 	.set_need_watch		= set_need_watch,
1309 	.set_maintenance_mode   = set_maintenance_mode,
1310 	.set_run_to_completion  = set_run_to_completion,
1311 	.flush_messages		= flush_messages,
1312 	.poll			= poll,
1313 };
1314 
1315 /*
1316  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1317  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1318  */
1319 
1320 static LIST_HEAD(smi_infos);
1321 static DEFINE_MUTEX(smi_infos_lock);
1322 static int smi_num; /* Used to sequence the SMIs */
1323 
1324 #define DEFAULT_REGSPACING	1
1325 #define DEFAULT_REGSIZE		1
1326 
1327 #ifdef CONFIG_ACPI
1328 static bool          si_tryacpi = true;
1329 #endif
1330 #ifdef CONFIG_DMI
1331 static bool          si_trydmi = true;
1332 #endif
1333 static bool          si_tryplatform = true;
1334 #ifdef CONFIG_PCI
1335 static bool          si_trypci = true;
1336 #endif
1337 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1338 static char          *si_type[SI_MAX_PARMS];
1339 #define MAX_SI_TYPE_STR 30
1340 static char          si_type_str[MAX_SI_TYPE_STR];
1341 static unsigned long addrs[SI_MAX_PARMS];
1342 static unsigned int num_addrs;
1343 static unsigned int  ports[SI_MAX_PARMS];
1344 static unsigned int num_ports;
1345 static int           irqs[SI_MAX_PARMS];
1346 static unsigned int num_irqs;
1347 static int           regspacings[SI_MAX_PARMS];
1348 static unsigned int num_regspacings;
1349 static int           regsizes[SI_MAX_PARMS];
1350 static unsigned int num_regsizes;
1351 static int           regshifts[SI_MAX_PARMS];
1352 static unsigned int num_regshifts;
1353 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1354 static unsigned int num_slave_addrs;
1355 
1356 #define IPMI_IO_ADDR_SPACE  0
1357 #define IPMI_MEM_ADDR_SPACE 1
1358 static char *addr_space_to_str[] = { "i/o", "mem" };
1359 
1360 static int hotmod_handler(const char *val, struct kernel_param *kp);
1361 
1362 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1363 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1364 		 " Documentation/IPMI.txt in the kernel sources for the"
1365 		 " gory details.");
1366 
1367 #ifdef CONFIG_ACPI
1368 module_param_named(tryacpi, si_tryacpi, bool, 0);
1369 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1370 		 " default scan of the interfaces identified via ACPI");
1371 #endif
1372 #ifdef CONFIG_DMI
1373 module_param_named(trydmi, si_trydmi, bool, 0);
1374 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1375 		 " default scan of the interfaces identified via DMI");
1376 #endif
1377 module_param_named(tryplatform, si_tryplatform, bool, 0);
1378 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1379 		 " default scan of the interfaces identified via platform"
1380 		 " interfaces like openfirmware");
1381 #ifdef CONFIG_PCI
1382 module_param_named(trypci, si_trypci, bool, 0);
1383 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1384 		 " default scan of the interfaces identified via pci");
1385 #endif
1386 module_param_named(trydefaults, si_trydefaults, bool, 0);
1387 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1388 		 " default scan of the KCS and SMIC interface at the standard"
1389 		 " address");
1390 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1391 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1392 		 " interface separated by commas.  The types are 'kcs',"
1393 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1394 		 " the first interface to kcs and the second to bt");
1395 module_param_array(addrs, ulong, &num_addrs, 0);
1396 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1397 		 " addresses separated by commas.  Only use if an interface"
1398 		 " is in memory.  Otherwise, set it to zero or leave"
1399 		 " it blank.");
1400 module_param_array(ports, uint, &num_ports, 0);
1401 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1402 		 " addresses separated by commas.  Only use if an interface"
1403 		 " is a port.  Otherwise, set it to zero or leave"
1404 		 " it blank.");
1405 module_param_array(irqs, int, &num_irqs, 0);
1406 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1407 		 " addresses separated by commas.  Only use if an interface"
1408 		 " has an interrupt.  Otherwise, set it to zero or leave"
1409 		 " it blank.");
1410 module_param_array(regspacings, int, &num_regspacings, 0);
1411 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1412 		 " and each successive register used by the interface.  For"
1413 		 " instance, if the start address is 0xca2 and the spacing"
1414 		 " is 2, then the second address is at 0xca4.  Defaults"
1415 		 " to 1.");
1416 module_param_array(regsizes, int, &num_regsizes, 0);
1417 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1418 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1419 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1420 		 " the 8-bit IPMI register has to be read from a larger"
1421 		 " register.");
1422 module_param_array(regshifts, int, &num_regshifts, 0);
1423 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1424 		 " IPMI register, in bits.  For instance, if the data"
1425 		 " is read from a 32-bit word and the IPMI data is in"
1426 		 " bit 8-15, then the shift would be 8");
1427 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1428 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1429 		 " the controller.  Normally this is 0x20, but can be"
1430 		 " overridden by this parm.  This is an array indexed"
1431 		 " by interface number.");
1432 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1433 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1434 		 " disabled(0).  Normally the IPMI driver auto-detects"
1435 		 " this, but the value may be overridden by this parm.");
1436 module_param(unload_when_empty, bool, 0);
1437 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1438 		 " specified or found, default is 1.  Setting to 0"
1439 		 " is useful for hot add of devices using hotmod.");
1440 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1441 MODULE_PARM_DESC(kipmid_max_busy_us,
1442 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1443 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1444 		 " if kipmid is using up a lot of CPU time.");
1445 
1446 
std_irq_cleanup(struct smi_info * info)1447 static void std_irq_cleanup(struct smi_info *info)
1448 {
1449 	if (info->si_type == SI_BT)
1450 		/* Disable the interrupt in the BT interface. */
1451 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1452 	free_irq(info->irq, info);
1453 }
1454 
std_irq_setup(struct smi_info * info)1455 static int std_irq_setup(struct smi_info *info)
1456 {
1457 	int rv;
1458 
1459 	if (!info->irq)
1460 		return 0;
1461 
1462 	if (info->si_type == SI_BT) {
1463 		rv = request_irq(info->irq,
1464 				 si_bt_irq_handler,
1465 				 IRQF_SHARED,
1466 				 DEVICE_NAME,
1467 				 info);
1468 		if (!rv)
1469 			/* Enable the interrupt in the BT interface. */
1470 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1471 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1472 	} else
1473 		rv = request_irq(info->irq,
1474 				 si_irq_handler,
1475 				 IRQF_SHARED,
1476 				 DEVICE_NAME,
1477 				 info);
1478 	if (rv) {
1479 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1480 			 " running polled\n",
1481 			 DEVICE_NAME, info->irq);
1482 		info->irq = 0;
1483 	} else {
1484 		info->irq_cleanup = std_irq_cleanup;
1485 		dev_info(info->dev, "Using irq %d\n", info->irq);
1486 	}
1487 
1488 	return rv;
1489 }
1490 
port_inb(const struct si_sm_io * io,unsigned int offset)1491 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1492 {
1493 	unsigned int addr = io->addr_data;
1494 
1495 	return inb(addr + (offset * io->regspacing));
1496 }
1497 
port_outb(const struct si_sm_io * io,unsigned int offset,unsigned char b)1498 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1499 		      unsigned char b)
1500 {
1501 	unsigned int addr = io->addr_data;
1502 
1503 	outb(b, addr + (offset * io->regspacing));
1504 }
1505 
port_inw(const struct si_sm_io * io,unsigned int offset)1506 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1507 {
1508 	unsigned int addr = io->addr_data;
1509 
1510 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1511 }
1512 
port_outw(const struct si_sm_io * io,unsigned int offset,unsigned char b)1513 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1514 		      unsigned char b)
1515 {
1516 	unsigned int addr = io->addr_data;
1517 
1518 	outw(b << io->regshift, addr + (offset * io->regspacing));
1519 }
1520 
port_inl(const struct si_sm_io * io,unsigned int offset)1521 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1522 {
1523 	unsigned int addr = io->addr_data;
1524 
1525 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1526 }
1527 
port_outl(const struct si_sm_io * io,unsigned int offset,unsigned char b)1528 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1529 		      unsigned char b)
1530 {
1531 	unsigned int addr = io->addr_data;
1532 
1533 	outl(b << io->regshift, addr+(offset * io->regspacing));
1534 }
1535 
port_cleanup(struct smi_info * info)1536 static void port_cleanup(struct smi_info *info)
1537 {
1538 	unsigned int addr = info->io.addr_data;
1539 	int          idx;
1540 
1541 	if (addr) {
1542 		for (idx = 0; idx < info->io_size; idx++)
1543 			release_region(addr + idx * info->io.regspacing,
1544 				       info->io.regsize);
1545 	}
1546 }
1547 
port_setup(struct smi_info * info)1548 static int port_setup(struct smi_info *info)
1549 {
1550 	unsigned int addr = info->io.addr_data;
1551 	int          idx;
1552 
1553 	if (!addr)
1554 		return -ENODEV;
1555 
1556 	info->io_cleanup = port_cleanup;
1557 
1558 	/*
1559 	 * Figure out the actual inb/inw/inl/etc routine to use based
1560 	 * upon the register size.
1561 	 */
1562 	switch (info->io.regsize) {
1563 	case 1:
1564 		info->io.inputb = port_inb;
1565 		info->io.outputb = port_outb;
1566 		break;
1567 	case 2:
1568 		info->io.inputb = port_inw;
1569 		info->io.outputb = port_outw;
1570 		break;
1571 	case 4:
1572 		info->io.inputb = port_inl;
1573 		info->io.outputb = port_outl;
1574 		break;
1575 	default:
1576 		dev_warn(info->dev, "Invalid register size: %d\n",
1577 			 info->io.regsize);
1578 		return -EINVAL;
1579 	}
1580 
1581 	/*
1582 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1583 	 * tables.  This causes problems when trying to register the
1584 	 * entire I/O region.  Therefore we must register each I/O
1585 	 * port separately.
1586 	 */
1587 	for (idx = 0; idx < info->io_size; idx++) {
1588 		if (request_region(addr + idx * info->io.regspacing,
1589 				   info->io.regsize, DEVICE_NAME) == NULL) {
1590 			/* Undo allocations */
1591 			while (idx--) {
1592 				release_region(addr + idx * info->io.regspacing,
1593 					       info->io.regsize);
1594 			}
1595 			return -EIO;
1596 		}
1597 	}
1598 	return 0;
1599 }
1600 
intf_mem_inb(const struct si_sm_io * io,unsigned int offset)1601 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1602 				  unsigned int offset)
1603 {
1604 	return readb((io->addr)+(offset * io->regspacing));
1605 }
1606 
intf_mem_outb(const struct si_sm_io * io,unsigned int offset,unsigned char b)1607 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1608 			  unsigned char b)
1609 {
1610 	writeb(b, (io->addr)+(offset * io->regspacing));
1611 }
1612 
intf_mem_inw(const struct si_sm_io * io,unsigned int offset)1613 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1614 				  unsigned int offset)
1615 {
1616 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1617 		& 0xff;
1618 }
1619 
intf_mem_outw(const struct si_sm_io * io,unsigned int offset,unsigned char b)1620 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1621 			  unsigned char b)
1622 {
1623 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1624 }
1625 
intf_mem_inl(const struct si_sm_io * io,unsigned int offset)1626 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1627 				  unsigned int offset)
1628 {
1629 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1630 		& 0xff;
1631 }
1632 
intf_mem_outl(const struct si_sm_io * io,unsigned int offset,unsigned char b)1633 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1634 			  unsigned char b)
1635 {
1636 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1637 }
1638 
1639 #ifdef readq
mem_inq(const struct si_sm_io * io,unsigned int offset)1640 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1641 {
1642 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1643 		& 0xff;
1644 }
1645 
mem_outq(const struct si_sm_io * io,unsigned int offset,unsigned char b)1646 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1647 		     unsigned char b)
1648 {
1649 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1650 }
1651 #endif
1652 
mem_cleanup(struct smi_info * info)1653 static void mem_cleanup(struct smi_info *info)
1654 {
1655 	unsigned long addr = info->io.addr_data;
1656 	int           mapsize;
1657 
1658 	if (info->io.addr) {
1659 		iounmap(info->io.addr);
1660 
1661 		mapsize = ((info->io_size * info->io.regspacing)
1662 			   - (info->io.regspacing - info->io.regsize));
1663 
1664 		release_mem_region(addr, mapsize);
1665 	}
1666 }
1667 
mem_setup(struct smi_info * info)1668 static int mem_setup(struct smi_info *info)
1669 {
1670 	unsigned long addr = info->io.addr_data;
1671 	int           mapsize;
1672 
1673 	if (!addr)
1674 		return -ENODEV;
1675 
1676 	info->io_cleanup = mem_cleanup;
1677 
1678 	/*
1679 	 * Figure out the actual readb/readw/readl/etc routine to use based
1680 	 * upon the register size.
1681 	 */
1682 	switch (info->io.regsize) {
1683 	case 1:
1684 		info->io.inputb = intf_mem_inb;
1685 		info->io.outputb = intf_mem_outb;
1686 		break;
1687 	case 2:
1688 		info->io.inputb = intf_mem_inw;
1689 		info->io.outputb = intf_mem_outw;
1690 		break;
1691 	case 4:
1692 		info->io.inputb = intf_mem_inl;
1693 		info->io.outputb = intf_mem_outl;
1694 		break;
1695 #ifdef readq
1696 	case 8:
1697 		info->io.inputb = mem_inq;
1698 		info->io.outputb = mem_outq;
1699 		break;
1700 #endif
1701 	default:
1702 		dev_warn(info->dev, "Invalid register size: %d\n",
1703 			 info->io.regsize);
1704 		return -EINVAL;
1705 	}
1706 
1707 	/*
1708 	 * Calculate the total amount of memory to claim.  This is an
1709 	 * unusual looking calculation, but it avoids claiming any
1710 	 * more memory than it has to.  It will claim everything
1711 	 * between the first address to the end of the last full
1712 	 * register.
1713 	 */
1714 	mapsize = ((info->io_size * info->io.regspacing)
1715 		   - (info->io.regspacing - info->io.regsize));
1716 
1717 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1718 		return -EIO;
1719 
1720 	info->io.addr = ioremap(addr, mapsize);
1721 	if (info->io.addr == NULL) {
1722 		release_mem_region(addr, mapsize);
1723 		return -EIO;
1724 	}
1725 	return 0;
1726 }
1727 
1728 /*
1729  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1730  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1731  * Options are:
1732  *   rsp=<regspacing>
1733  *   rsi=<regsize>
1734  *   rsh=<regshift>
1735  *   irq=<irq>
1736  *   ipmb=<ipmb addr>
1737  */
1738 enum hotmod_op { HM_ADD, HM_REMOVE };
1739 struct hotmod_vals {
1740 	char *name;
1741 	int  val;
1742 };
1743 static struct hotmod_vals hotmod_ops[] = {
1744 	{ "add",	HM_ADD },
1745 	{ "remove",	HM_REMOVE },
1746 	{ NULL }
1747 };
1748 static struct hotmod_vals hotmod_si[] = {
1749 	{ "kcs",	SI_KCS },
1750 	{ "smic",	SI_SMIC },
1751 	{ "bt",		SI_BT },
1752 	{ NULL }
1753 };
1754 static struct hotmod_vals hotmod_as[] = {
1755 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1756 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1757 	{ NULL }
1758 };
1759 
parse_str(struct hotmod_vals * v,int * val,char * name,char ** curr)1760 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1761 {
1762 	char *s;
1763 	int  i;
1764 
1765 	s = strchr(*curr, ',');
1766 	if (!s) {
1767 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1768 		return -EINVAL;
1769 	}
1770 	*s = '\0';
1771 	s++;
1772 	for (i = 0; v[i].name; i++) {
1773 		if (strcmp(*curr, v[i].name) == 0) {
1774 			*val = v[i].val;
1775 			*curr = s;
1776 			return 0;
1777 		}
1778 	}
1779 
1780 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781 	return -EINVAL;
1782 }
1783 
check_hotmod_int_op(const char * curr,const char * option,const char * name,int * val)1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785 			       const char *name, int *val)
1786 {
1787 	char *n;
1788 
1789 	if (strcmp(curr, name) == 0) {
1790 		if (!option) {
1791 			printk(KERN_WARNING PFX
1792 			       "No option given for '%s'\n",
1793 			       curr);
1794 			return -EINVAL;
1795 		}
1796 		*val = simple_strtoul(option, &n, 0);
1797 		if ((*n != '\0') || (*option == '\0')) {
1798 			printk(KERN_WARNING PFX
1799 			       "Bad option given for '%s'\n",
1800 			       curr);
1801 			return -EINVAL;
1802 		}
1803 		return 1;
1804 	}
1805 	return 0;
1806 }
1807 
smi_info_alloc(void)1808 static struct smi_info *smi_info_alloc(void)
1809 {
1810 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1811 
1812 	if (info)
1813 		spin_lock_init(&info->si_lock);
1814 	return info;
1815 }
1816 
hotmod_handler(const char * val,struct kernel_param * kp)1817 static int hotmod_handler(const char *val, struct kernel_param *kp)
1818 {
1819 	char *str = kstrdup(val, GFP_KERNEL);
1820 	int  rv;
1821 	char *next, *curr, *s, *n, *o;
1822 	enum hotmod_op op;
1823 	enum si_type si_type;
1824 	int  addr_space;
1825 	unsigned long addr;
1826 	int regspacing;
1827 	int regsize;
1828 	int regshift;
1829 	int irq;
1830 	int ipmb;
1831 	int ival;
1832 	int len;
1833 	struct smi_info *info;
1834 
1835 	if (!str)
1836 		return -ENOMEM;
1837 
1838 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1839 	len = strlen(str);
1840 	ival = len - 1;
1841 	while ((ival >= 0) && isspace(str[ival])) {
1842 		str[ival] = '\0';
1843 		ival--;
1844 	}
1845 
1846 	for (curr = str; curr; curr = next) {
1847 		regspacing = 1;
1848 		regsize = 1;
1849 		regshift = 0;
1850 		irq = 0;
1851 		ipmb = 0; /* Choose the default if not specified */
1852 
1853 		next = strchr(curr, ':');
1854 		if (next) {
1855 			*next = '\0';
1856 			next++;
1857 		}
1858 
1859 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1860 		if (rv)
1861 			break;
1862 		op = ival;
1863 
1864 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1865 		if (rv)
1866 			break;
1867 		si_type = ival;
1868 
1869 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1870 		if (rv)
1871 			break;
1872 
1873 		s = strchr(curr, ',');
1874 		if (s) {
1875 			*s = '\0';
1876 			s++;
1877 		}
1878 		addr = simple_strtoul(curr, &n, 0);
1879 		if ((*n != '\0') || (*curr == '\0')) {
1880 			printk(KERN_WARNING PFX "Invalid hotmod address"
1881 			       " '%s'\n", curr);
1882 			break;
1883 		}
1884 
1885 		while (s) {
1886 			curr = s;
1887 			s = strchr(curr, ',');
1888 			if (s) {
1889 				*s = '\0';
1890 				s++;
1891 			}
1892 			o = strchr(curr, '=');
1893 			if (o) {
1894 				*o = '\0';
1895 				o++;
1896 			}
1897 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1898 			if (rv < 0)
1899 				goto out;
1900 			else if (rv)
1901 				continue;
1902 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1903 			if (rv < 0)
1904 				goto out;
1905 			else if (rv)
1906 				continue;
1907 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1908 			if (rv < 0)
1909 				goto out;
1910 			else if (rv)
1911 				continue;
1912 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1913 			if (rv < 0)
1914 				goto out;
1915 			else if (rv)
1916 				continue;
1917 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1918 			if (rv < 0)
1919 				goto out;
1920 			else if (rv)
1921 				continue;
1922 
1923 			rv = -EINVAL;
1924 			printk(KERN_WARNING PFX
1925 			       "Invalid hotmod option '%s'\n",
1926 			       curr);
1927 			goto out;
1928 		}
1929 
1930 		if (op == HM_ADD) {
1931 			info = smi_info_alloc();
1932 			if (!info) {
1933 				rv = -ENOMEM;
1934 				goto out;
1935 			}
1936 
1937 			info->addr_source = SI_HOTMOD;
1938 			info->si_type = si_type;
1939 			info->io.addr_data = addr;
1940 			info->io.addr_type = addr_space;
1941 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1942 				info->io_setup = mem_setup;
1943 			else
1944 				info->io_setup = port_setup;
1945 
1946 			info->io.addr = NULL;
1947 			info->io.regspacing = regspacing;
1948 			if (!info->io.regspacing)
1949 				info->io.regspacing = DEFAULT_REGSPACING;
1950 			info->io.regsize = regsize;
1951 			if (!info->io.regsize)
1952 				info->io.regsize = DEFAULT_REGSPACING;
1953 			info->io.regshift = regshift;
1954 			info->irq = irq;
1955 			if (info->irq)
1956 				info->irq_setup = std_irq_setup;
1957 			info->slave_addr = ipmb;
1958 
1959 			rv = add_smi(info);
1960 			if (rv) {
1961 				kfree(info);
1962 				goto out;
1963 			}
1964 			rv = try_smi_init(info);
1965 			if (rv) {
1966 				cleanup_one_si(info);
1967 				goto out;
1968 			}
1969 		} else {
1970 			/* remove */
1971 			struct smi_info *e, *tmp_e;
1972 
1973 			mutex_lock(&smi_infos_lock);
1974 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1975 				if (e->io.addr_type != addr_space)
1976 					continue;
1977 				if (e->si_type != si_type)
1978 					continue;
1979 				if (e->io.addr_data == addr)
1980 					cleanup_one_si(e);
1981 			}
1982 			mutex_unlock(&smi_infos_lock);
1983 		}
1984 	}
1985 	rv = len;
1986  out:
1987 	kfree(str);
1988 	return rv;
1989 }
1990 
hardcode_find_bmc(void)1991 static int hardcode_find_bmc(void)
1992 {
1993 	int ret = -ENODEV;
1994 	int             i;
1995 	struct smi_info *info;
1996 
1997 	for (i = 0; i < SI_MAX_PARMS; i++) {
1998 		if (!ports[i] && !addrs[i])
1999 			continue;
2000 
2001 		info = smi_info_alloc();
2002 		if (!info)
2003 			return -ENOMEM;
2004 
2005 		info->addr_source = SI_HARDCODED;
2006 		printk(KERN_INFO PFX "probing via hardcoded address\n");
2007 
2008 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2009 			info->si_type = SI_KCS;
2010 		} else if (strcmp(si_type[i], "smic") == 0) {
2011 			info->si_type = SI_SMIC;
2012 		} else if (strcmp(si_type[i], "bt") == 0) {
2013 			info->si_type = SI_BT;
2014 		} else {
2015 			printk(KERN_WARNING PFX "Interface type specified "
2016 			       "for interface %d, was invalid: %s\n",
2017 			       i, si_type[i]);
2018 			kfree(info);
2019 			continue;
2020 		}
2021 
2022 		if (ports[i]) {
2023 			/* An I/O port */
2024 			info->io_setup = port_setup;
2025 			info->io.addr_data = ports[i];
2026 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
2027 		} else if (addrs[i]) {
2028 			/* A memory port */
2029 			info->io_setup = mem_setup;
2030 			info->io.addr_data = addrs[i];
2031 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2032 		} else {
2033 			printk(KERN_WARNING PFX "Interface type specified "
2034 			       "for interface %d, but port and address were "
2035 			       "not set or set to zero.\n", i);
2036 			kfree(info);
2037 			continue;
2038 		}
2039 
2040 		info->io.addr = NULL;
2041 		info->io.regspacing = regspacings[i];
2042 		if (!info->io.regspacing)
2043 			info->io.regspacing = DEFAULT_REGSPACING;
2044 		info->io.regsize = regsizes[i];
2045 		if (!info->io.regsize)
2046 			info->io.regsize = DEFAULT_REGSPACING;
2047 		info->io.regshift = regshifts[i];
2048 		info->irq = irqs[i];
2049 		if (info->irq)
2050 			info->irq_setup = std_irq_setup;
2051 		info->slave_addr = slave_addrs[i];
2052 
2053 		if (!add_smi(info)) {
2054 			if (try_smi_init(info))
2055 				cleanup_one_si(info);
2056 			ret = 0;
2057 		} else {
2058 			kfree(info);
2059 		}
2060 	}
2061 	return ret;
2062 }
2063 
2064 #ifdef CONFIG_ACPI
2065 
2066 #include <linux/acpi.h>
2067 
2068 /*
2069  * Once we get an ACPI failure, we don't try any more, because we go
2070  * through the tables sequentially.  Once we don't find a table, there
2071  * are no more.
2072  */
2073 static int acpi_failure;
2074 
2075 /* For GPE-type interrupts. */
ipmi_acpi_gpe(acpi_handle gpe_device,u32 gpe_number,void * context)2076 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2077 	u32 gpe_number, void *context)
2078 {
2079 	struct smi_info *smi_info = context;
2080 	unsigned long   flags;
2081 
2082 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2083 
2084 	smi_inc_stat(smi_info, interrupts);
2085 
2086 	debug_timestamp("ACPI_GPE");
2087 
2088 	smi_event_handler(smi_info, 0);
2089 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2090 
2091 	return ACPI_INTERRUPT_HANDLED;
2092 }
2093 
acpi_gpe_irq_cleanup(struct smi_info * info)2094 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2095 {
2096 	if (!info->irq)
2097 		return;
2098 
2099 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2100 }
2101 
acpi_gpe_irq_setup(struct smi_info * info)2102 static int acpi_gpe_irq_setup(struct smi_info *info)
2103 {
2104 	acpi_status status;
2105 
2106 	if (!info->irq)
2107 		return 0;
2108 
2109 	status = acpi_install_gpe_handler(NULL,
2110 					  info->irq,
2111 					  ACPI_GPE_LEVEL_TRIGGERED,
2112 					  &ipmi_acpi_gpe,
2113 					  info);
2114 	if (status != AE_OK) {
2115 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2116 			 " running polled\n", DEVICE_NAME, info->irq);
2117 		info->irq = 0;
2118 		return -EINVAL;
2119 	} else {
2120 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2121 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2122 		return 0;
2123 	}
2124 }
2125 
2126 /*
2127  * Defined at
2128  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2129  */
2130 struct SPMITable {
2131 	s8	Signature[4];
2132 	u32	Length;
2133 	u8	Revision;
2134 	u8	Checksum;
2135 	s8	OEMID[6];
2136 	s8	OEMTableID[8];
2137 	s8	OEMRevision[4];
2138 	s8	CreatorID[4];
2139 	s8	CreatorRevision[4];
2140 	u8	InterfaceType;
2141 	u8	IPMIlegacy;
2142 	s16	SpecificationRevision;
2143 
2144 	/*
2145 	 * Bit 0 - SCI interrupt supported
2146 	 * Bit 1 - I/O APIC/SAPIC
2147 	 */
2148 	u8	InterruptType;
2149 
2150 	/*
2151 	 * If bit 0 of InterruptType is set, then this is the SCI
2152 	 * interrupt in the GPEx_STS register.
2153 	 */
2154 	u8	GPE;
2155 
2156 	s16	Reserved;
2157 
2158 	/*
2159 	 * If bit 1 of InterruptType is set, then this is the I/O
2160 	 * APIC/SAPIC interrupt.
2161 	 */
2162 	u32	GlobalSystemInterrupt;
2163 
2164 	/* The actual register address. */
2165 	struct acpi_generic_address addr;
2166 
2167 	u8	UID[4];
2168 
2169 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2170 };
2171 
try_init_spmi(struct SPMITable * spmi)2172 static int try_init_spmi(struct SPMITable *spmi)
2173 {
2174 	struct smi_info  *info;
2175 	int rv;
2176 
2177 	if (spmi->IPMIlegacy != 1) {
2178 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2179 		return -ENODEV;
2180 	}
2181 
2182 	info = smi_info_alloc();
2183 	if (!info) {
2184 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2185 		return -ENOMEM;
2186 	}
2187 
2188 	info->addr_source = SI_SPMI;
2189 	printk(KERN_INFO PFX "probing via SPMI\n");
2190 
2191 	/* Figure out the interface type. */
2192 	switch (spmi->InterfaceType) {
2193 	case 1:	/* KCS */
2194 		info->si_type = SI_KCS;
2195 		break;
2196 	case 2:	/* SMIC */
2197 		info->si_type = SI_SMIC;
2198 		break;
2199 	case 3:	/* BT */
2200 		info->si_type = SI_BT;
2201 		break;
2202 	case 4: /* SSIF, just ignore */
2203 		kfree(info);
2204 		return -EIO;
2205 	default:
2206 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2207 		       spmi->InterfaceType);
2208 		kfree(info);
2209 		return -EIO;
2210 	}
2211 
2212 	if (spmi->InterruptType & 1) {
2213 		/* We've got a GPE interrupt. */
2214 		info->irq = spmi->GPE;
2215 		info->irq_setup = acpi_gpe_irq_setup;
2216 	} else if (spmi->InterruptType & 2) {
2217 		/* We've got an APIC/SAPIC interrupt. */
2218 		info->irq = spmi->GlobalSystemInterrupt;
2219 		info->irq_setup = std_irq_setup;
2220 	} else {
2221 		/* Use the default interrupt setting. */
2222 		info->irq = 0;
2223 		info->irq_setup = NULL;
2224 	}
2225 
2226 	if (spmi->addr.bit_width) {
2227 		/* A (hopefully) properly formed register bit width. */
2228 		info->io.regspacing = spmi->addr.bit_width / 8;
2229 	} else {
2230 		info->io.regspacing = DEFAULT_REGSPACING;
2231 	}
2232 	info->io.regsize = info->io.regspacing;
2233 	info->io.regshift = spmi->addr.bit_offset;
2234 
2235 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2236 		info->io_setup = mem_setup;
2237 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2238 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2239 		info->io_setup = port_setup;
2240 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2241 	} else {
2242 		kfree(info);
2243 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2244 		return -EIO;
2245 	}
2246 	info->io.addr_data = spmi->addr.address;
2247 
2248 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2249 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2250 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2251 		 info->irq);
2252 
2253 	rv = add_smi(info);
2254 	if (rv)
2255 		kfree(info);
2256 
2257 	return rv;
2258 }
2259 
spmi_find_bmc(void)2260 static void spmi_find_bmc(void)
2261 {
2262 	acpi_status      status;
2263 	struct SPMITable *spmi;
2264 	int              i;
2265 
2266 	if (acpi_disabled)
2267 		return;
2268 
2269 	if (acpi_failure)
2270 		return;
2271 
2272 	for (i = 0; ; i++) {
2273 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2274 					(struct acpi_table_header **)&spmi);
2275 		if (status != AE_OK)
2276 			return;
2277 
2278 		try_init_spmi(spmi);
2279 	}
2280 }
2281 #endif
2282 
2283 #ifdef CONFIG_DMI
2284 struct dmi_ipmi_data {
2285 	u8   		type;
2286 	u8   		addr_space;
2287 	unsigned long	base_addr;
2288 	u8   		irq;
2289 	u8              offset;
2290 	u8              slave_addr;
2291 };
2292 
decode_dmi(const struct dmi_header * dm,struct dmi_ipmi_data * dmi)2293 static int decode_dmi(const struct dmi_header *dm,
2294 				struct dmi_ipmi_data *dmi)
2295 {
2296 	const u8	*data = (const u8 *)dm;
2297 	unsigned long  	base_addr;
2298 	u8		reg_spacing;
2299 	u8              len = dm->length;
2300 
2301 	dmi->type = data[4];
2302 
2303 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2304 	if (len >= 0x11) {
2305 		if (base_addr & 1) {
2306 			/* I/O */
2307 			base_addr &= 0xFFFE;
2308 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2309 		} else
2310 			/* Memory */
2311 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2312 
2313 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2314 		   is odd. */
2315 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2316 
2317 		dmi->irq = data[0x11];
2318 
2319 		/* The top two bits of byte 0x10 hold the register spacing. */
2320 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2321 		switch (reg_spacing) {
2322 		case 0x00: /* Byte boundaries */
2323 		    dmi->offset = 1;
2324 		    break;
2325 		case 0x01: /* 32-bit boundaries */
2326 		    dmi->offset = 4;
2327 		    break;
2328 		case 0x02: /* 16-byte boundaries */
2329 		    dmi->offset = 16;
2330 		    break;
2331 		default:
2332 		    /* Some other interface, just ignore it. */
2333 		    return -EIO;
2334 		}
2335 	} else {
2336 		/* Old DMI spec. */
2337 		/*
2338 		 * Note that technically, the lower bit of the base
2339 		 * address should be 1 if the address is I/O and 0 if
2340 		 * the address is in memory.  So many systems get that
2341 		 * wrong (and all that I have seen are I/O) so we just
2342 		 * ignore that bit and assume I/O.  Systems that use
2343 		 * memory should use the newer spec, anyway.
2344 		 */
2345 		dmi->base_addr = base_addr & 0xfffe;
2346 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2347 		dmi->offset = 1;
2348 	}
2349 
2350 	dmi->slave_addr = data[6];
2351 
2352 	return 0;
2353 }
2354 
try_init_dmi(struct dmi_ipmi_data * ipmi_data)2355 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2356 {
2357 	struct smi_info *info;
2358 
2359 	info = smi_info_alloc();
2360 	if (!info) {
2361 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2362 		return;
2363 	}
2364 
2365 	info->addr_source = SI_SMBIOS;
2366 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2367 
2368 	switch (ipmi_data->type) {
2369 	case 0x01: /* KCS */
2370 		info->si_type = SI_KCS;
2371 		break;
2372 	case 0x02: /* SMIC */
2373 		info->si_type = SI_SMIC;
2374 		break;
2375 	case 0x03: /* BT */
2376 		info->si_type = SI_BT;
2377 		break;
2378 	default:
2379 		kfree(info);
2380 		return;
2381 	}
2382 
2383 	switch (ipmi_data->addr_space) {
2384 	case IPMI_MEM_ADDR_SPACE:
2385 		info->io_setup = mem_setup;
2386 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2387 		break;
2388 
2389 	case IPMI_IO_ADDR_SPACE:
2390 		info->io_setup = port_setup;
2391 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2392 		break;
2393 
2394 	default:
2395 		kfree(info);
2396 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2397 		       ipmi_data->addr_space);
2398 		return;
2399 	}
2400 	info->io.addr_data = ipmi_data->base_addr;
2401 
2402 	info->io.regspacing = ipmi_data->offset;
2403 	if (!info->io.regspacing)
2404 		info->io.regspacing = DEFAULT_REGSPACING;
2405 	info->io.regsize = DEFAULT_REGSPACING;
2406 	info->io.regshift = 0;
2407 
2408 	info->slave_addr = ipmi_data->slave_addr;
2409 
2410 	info->irq = ipmi_data->irq;
2411 	if (info->irq)
2412 		info->irq_setup = std_irq_setup;
2413 
2414 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2415 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2416 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2417 		 info->irq);
2418 
2419 	if (add_smi(info))
2420 		kfree(info);
2421 }
2422 
dmi_find_bmc(void)2423 static void dmi_find_bmc(void)
2424 {
2425 	const struct dmi_device *dev = NULL;
2426 	struct dmi_ipmi_data data;
2427 	int                  rv;
2428 
2429 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2430 		memset(&data, 0, sizeof(data));
2431 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2432 				&data);
2433 		if (!rv)
2434 			try_init_dmi(&data);
2435 	}
2436 }
2437 #endif /* CONFIG_DMI */
2438 
2439 #ifdef CONFIG_PCI
2440 
2441 #define PCI_ERMC_CLASSCODE		0x0C0700
2442 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2443 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2444 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2445 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2446 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2447 
2448 #define PCI_HP_VENDOR_ID    0x103C
2449 #define PCI_MMC_DEVICE_ID   0x121A
2450 #define PCI_MMC_ADDR_CW     0x10
2451 
ipmi_pci_cleanup(struct smi_info * info)2452 static void ipmi_pci_cleanup(struct smi_info *info)
2453 {
2454 	struct pci_dev *pdev = info->addr_source_data;
2455 
2456 	pci_disable_device(pdev);
2457 }
2458 
ipmi_pci_probe_regspacing(struct smi_info * info)2459 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2460 {
2461 	if (info->si_type == SI_KCS) {
2462 		unsigned char	status;
2463 		int		regspacing;
2464 
2465 		info->io.regsize = DEFAULT_REGSIZE;
2466 		info->io.regshift = 0;
2467 		info->io_size = 2;
2468 		info->handlers = &kcs_smi_handlers;
2469 
2470 		/* detect 1, 4, 16byte spacing */
2471 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2472 			info->io.regspacing = regspacing;
2473 			if (info->io_setup(info)) {
2474 				dev_err(info->dev,
2475 					"Could not setup I/O space\n");
2476 				return DEFAULT_REGSPACING;
2477 			}
2478 			/* write invalid cmd */
2479 			info->io.outputb(&info->io, 1, 0x10);
2480 			/* read status back */
2481 			status = info->io.inputb(&info->io, 1);
2482 			info->io_cleanup(info);
2483 			if (status)
2484 				return regspacing;
2485 			regspacing *= 4;
2486 		}
2487 	}
2488 	return DEFAULT_REGSPACING;
2489 }
2490 
ipmi_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2491 static int ipmi_pci_probe(struct pci_dev *pdev,
2492 				    const struct pci_device_id *ent)
2493 {
2494 	int rv;
2495 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2496 	struct smi_info *info;
2497 
2498 	info = smi_info_alloc();
2499 	if (!info)
2500 		return -ENOMEM;
2501 
2502 	info->addr_source = SI_PCI;
2503 	dev_info(&pdev->dev, "probing via PCI");
2504 
2505 	switch (class_type) {
2506 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2507 		info->si_type = SI_SMIC;
2508 		break;
2509 
2510 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2511 		info->si_type = SI_KCS;
2512 		break;
2513 
2514 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2515 		info->si_type = SI_BT;
2516 		break;
2517 
2518 	default:
2519 		kfree(info);
2520 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2521 		return -ENOMEM;
2522 	}
2523 
2524 	rv = pci_enable_device(pdev);
2525 	if (rv) {
2526 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2527 		kfree(info);
2528 		return rv;
2529 	}
2530 
2531 	info->addr_source_cleanup = ipmi_pci_cleanup;
2532 	info->addr_source_data = pdev;
2533 
2534 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2535 		info->io_setup = port_setup;
2536 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2537 	} else {
2538 		info->io_setup = mem_setup;
2539 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2540 	}
2541 	info->io.addr_data = pci_resource_start(pdev, 0);
2542 
2543 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2544 	info->io.regsize = DEFAULT_REGSIZE;
2545 	info->io.regshift = 0;
2546 
2547 	info->irq = pdev->irq;
2548 	if (info->irq)
2549 		info->irq_setup = std_irq_setup;
2550 
2551 	info->dev = &pdev->dev;
2552 	pci_set_drvdata(pdev, info);
2553 
2554 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2555 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2556 		info->irq);
2557 
2558 	rv = add_smi(info);
2559 	if (rv) {
2560 		kfree(info);
2561 		pci_disable_device(pdev);
2562 	}
2563 
2564 	return rv;
2565 }
2566 
ipmi_pci_remove(struct pci_dev * pdev)2567 static void ipmi_pci_remove(struct pci_dev *pdev)
2568 {
2569 	struct smi_info *info = pci_get_drvdata(pdev);
2570 	cleanup_one_si(info);
2571 	pci_disable_device(pdev);
2572 }
2573 
2574 static const struct pci_device_id ipmi_pci_devices[] = {
2575 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2576 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2577 	{ 0, }
2578 };
2579 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2580 
2581 static struct pci_driver ipmi_pci_driver = {
2582 	.name =         DEVICE_NAME,
2583 	.id_table =     ipmi_pci_devices,
2584 	.probe =        ipmi_pci_probe,
2585 	.remove =       ipmi_pci_remove,
2586 };
2587 #endif /* CONFIG_PCI */
2588 
2589 #ifdef CONFIG_OF
2590 static const struct of_device_id of_ipmi_match[] = {
2591 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2592 	  .data = (void *)(unsigned long) SI_KCS },
2593 	{ .type = "ipmi", .compatible = "ipmi-smic",
2594 	  .data = (void *)(unsigned long) SI_SMIC },
2595 	{ .type = "ipmi", .compatible = "ipmi-bt",
2596 	  .data = (void *)(unsigned long) SI_BT },
2597 	{},
2598 };
2599 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2600 
of_ipmi_probe(struct platform_device * dev)2601 static int of_ipmi_probe(struct platform_device *dev)
2602 {
2603 	const struct of_device_id *match;
2604 	struct smi_info *info;
2605 	struct resource resource;
2606 	const __be32 *regsize, *regspacing, *regshift;
2607 	struct device_node *np = dev->dev.of_node;
2608 	int ret;
2609 	int proplen;
2610 
2611 	dev_info(&dev->dev, "probing via device tree\n");
2612 
2613 	match = of_match_device(of_ipmi_match, &dev->dev);
2614 	if (!match)
2615 		return -ENODEV;
2616 
2617 	if (!of_device_is_available(np))
2618 		return -EINVAL;
2619 
2620 	ret = of_address_to_resource(np, 0, &resource);
2621 	if (ret) {
2622 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2623 		return ret;
2624 	}
2625 
2626 	regsize = of_get_property(np, "reg-size", &proplen);
2627 	if (regsize && proplen != 4) {
2628 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2629 		return -EINVAL;
2630 	}
2631 
2632 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2633 	if (regspacing && proplen != 4) {
2634 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2635 		return -EINVAL;
2636 	}
2637 
2638 	regshift = of_get_property(np, "reg-shift", &proplen);
2639 	if (regshift && proplen != 4) {
2640 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2641 		return -EINVAL;
2642 	}
2643 
2644 	info = smi_info_alloc();
2645 
2646 	if (!info) {
2647 		dev_err(&dev->dev,
2648 			"could not allocate memory for OF probe\n");
2649 		return -ENOMEM;
2650 	}
2651 
2652 	info->si_type		= (enum si_type) match->data;
2653 	info->addr_source	= SI_DEVICETREE;
2654 	info->irq_setup		= std_irq_setup;
2655 
2656 	if (resource.flags & IORESOURCE_IO) {
2657 		info->io_setup		= port_setup;
2658 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2659 	} else {
2660 		info->io_setup		= mem_setup;
2661 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2662 	}
2663 
2664 	info->io.addr_data	= resource.start;
2665 
2666 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2667 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2668 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2669 
2670 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2671 	info->dev		= &dev->dev;
2672 
2673 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2674 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2675 		info->irq);
2676 
2677 	dev_set_drvdata(&dev->dev, info);
2678 
2679 	ret = add_smi(info);
2680 	if (ret) {
2681 		kfree(info);
2682 		return ret;
2683 	}
2684 	return 0;
2685 }
2686 #else
2687 #define of_ipmi_match NULL
of_ipmi_probe(struct platform_device * dev)2688 static int of_ipmi_probe(struct platform_device *dev)
2689 {
2690 	return -ENODEV;
2691 }
2692 #endif
2693 
2694 #ifdef CONFIG_ACPI
acpi_ipmi_probe(struct platform_device * dev)2695 static int acpi_ipmi_probe(struct platform_device *dev)
2696 {
2697 	struct smi_info *info;
2698 	struct resource *res, *res_second;
2699 	acpi_handle handle;
2700 	acpi_status status;
2701 	unsigned long long tmp;
2702 	int rv = -EINVAL;
2703 
2704 	handle = ACPI_HANDLE(&dev->dev);
2705 	if (!handle)
2706 		return -ENODEV;
2707 
2708 	info = smi_info_alloc();
2709 	if (!info)
2710 		return -ENOMEM;
2711 
2712 	info->addr_source = SI_ACPI;
2713 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2714 
2715 	info->addr_info.acpi_info.acpi_handle = handle;
2716 
2717 	/* _IFT tells us the interface type: KCS, BT, etc */
2718 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2719 	if (ACPI_FAILURE(status)) {
2720 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2721 		goto err_free;
2722 	}
2723 
2724 	switch (tmp) {
2725 	case 1:
2726 		info->si_type = SI_KCS;
2727 		break;
2728 	case 2:
2729 		info->si_type = SI_SMIC;
2730 		break;
2731 	case 3:
2732 		info->si_type = SI_BT;
2733 		break;
2734 	case 4: /* SSIF, just ignore */
2735 		rv = -ENODEV;
2736 		goto err_free;
2737 	default:
2738 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2739 		goto err_free;
2740 	}
2741 
2742 	res = platform_get_resource(dev, IORESOURCE_IO, 0);
2743 	if (res) {
2744 		info->io_setup = port_setup;
2745 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2746 	} else {
2747 		res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2748 		if (res) {
2749 			info->io_setup = mem_setup;
2750 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2751 		}
2752 	}
2753 	if (!res) {
2754 		dev_err(&dev->dev, "no I/O or memory address\n");
2755 		goto err_free;
2756 	}
2757 	info->io.addr_data = res->start;
2758 
2759 	info->io.regspacing = DEFAULT_REGSPACING;
2760 	res_second = platform_get_resource(dev,
2761 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2762 					IORESOURCE_IO : IORESOURCE_MEM,
2763 			       1);
2764 	if (res_second) {
2765 		if (res_second->start > info->io.addr_data)
2766 			info->io.regspacing =
2767 				res_second->start - info->io.addr_data;
2768 	}
2769 	info->io.regsize = DEFAULT_REGSPACING;
2770 	info->io.regshift = 0;
2771 
2772 	/* If _GPE exists, use it; otherwise use standard interrupts */
2773 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2774 	if (ACPI_SUCCESS(status)) {
2775 		info->irq = tmp;
2776 		info->irq_setup = acpi_gpe_irq_setup;
2777 	} else {
2778 		int irq = platform_get_irq(dev, 0);
2779 
2780 		if (irq > 0) {
2781 			info->irq = irq;
2782 			info->irq_setup = std_irq_setup;
2783 		}
2784 	}
2785 
2786 	info->dev = &dev->dev;
2787 	platform_set_drvdata(dev, info);
2788 
2789 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2790 		 res, info->io.regsize, info->io.regspacing,
2791 		 info->irq);
2792 
2793 	rv = add_smi(info);
2794 	if (rv)
2795 		kfree(info);
2796 
2797 	return rv;
2798 
2799 err_free:
2800 	kfree(info);
2801 	return rv;
2802 }
2803 
2804 static const struct acpi_device_id acpi_ipmi_match[] = {
2805 	{ "IPI0001", 0 },
2806 	{ },
2807 };
2808 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2809 #else
acpi_ipmi_probe(struct platform_device * dev)2810 static int acpi_ipmi_probe(struct platform_device *dev)
2811 {
2812 	return -ENODEV;
2813 }
2814 #endif
2815 
ipmi_probe(struct platform_device * dev)2816 static int ipmi_probe(struct platform_device *dev)
2817 {
2818 	if (of_ipmi_probe(dev) == 0)
2819 		return 0;
2820 
2821 	return acpi_ipmi_probe(dev);
2822 }
2823 
ipmi_remove(struct platform_device * dev)2824 static int ipmi_remove(struct platform_device *dev)
2825 {
2826 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2827 
2828 	cleanup_one_si(info);
2829 	return 0;
2830 }
2831 
2832 static struct platform_driver ipmi_driver = {
2833 	.driver = {
2834 		.name = DEVICE_NAME,
2835 		.of_match_table = of_ipmi_match,
2836 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2837 	},
2838 	.probe		= ipmi_probe,
2839 	.remove		= ipmi_remove,
2840 };
2841 
2842 #ifdef CONFIG_PARISC
ipmi_parisc_probe(struct parisc_device * dev)2843 static int ipmi_parisc_probe(struct parisc_device *dev)
2844 {
2845 	struct smi_info *info;
2846 	int rv;
2847 
2848 	info = smi_info_alloc();
2849 
2850 	if (!info) {
2851 		dev_err(&dev->dev,
2852 			"could not allocate memory for PARISC probe\n");
2853 		return -ENOMEM;
2854 	}
2855 
2856 	info->si_type		= SI_KCS;
2857 	info->addr_source	= SI_DEVICETREE;
2858 	info->io_setup		= mem_setup;
2859 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2860 	info->io.addr_data	= dev->hpa.start;
2861 	info->io.regsize	= 1;
2862 	info->io.regspacing	= 1;
2863 	info->io.regshift	= 0;
2864 	info->irq		= 0; /* no interrupt */
2865 	info->irq_setup		= NULL;
2866 	info->dev		= &dev->dev;
2867 
2868 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2869 
2870 	dev_set_drvdata(&dev->dev, info);
2871 
2872 	rv = add_smi(info);
2873 	if (rv) {
2874 		kfree(info);
2875 		return rv;
2876 	}
2877 
2878 	return 0;
2879 }
2880 
ipmi_parisc_remove(struct parisc_device * dev)2881 static int ipmi_parisc_remove(struct parisc_device *dev)
2882 {
2883 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2884 	return 0;
2885 }
2886 
2887 static struct parisc_device_id ipmi_parisc_tbl[] = {
2888 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2889 	{ 0, }
2890 };
2891 
2892 static struct parisc_driver ipmi_parisc_driver = {
2893 	.name =		"ipmi",
2894 	.id_table =	ipmi_parisc_tbl,
2895 	.probe =	ipmi_parisc_probe,
2896 	.remove =	ipmi_parisc_remove,
2897 };
2898 #endif /* CONFIG_PARISC */
2899 
wait_for_msg_done(struct smi_info * smi_info)2900 static int wait_for_msg_done(struct smi_info *smi_info)
2901 {
2902 	enum si_sm_result     smi_result;
2903 
2904 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2905 	for (;;) {
2906 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2907 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2908 			schedule_timeout_uninterruptible(1);
2909 			smi_result = smi_info->handlers->event(
2910 				smi_info->si_sm, jiffies_to_usecs(1));
2911 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2912 			smi_result = smi_info->handlers->event(
2913 				smi_info->si_sm, 0);
2914 		} else
2915 			break;
2916 	}
2917 	if (smi_result == SI_SM_HOSED)
2918 		/*
2919 		 * We couldn't get the state machine to run, so whatever's at
2920 		 * the port is probably not an IPMI SMI interface.
2921 		 */
2922 		return -ENODEV;
2923 
2924 	return 0;
2925 }
2926 
try_get_dev_id(struct smi_info * smi_info)2927 static int try_get_dev_id(struct smi_info *smi_info)
2928 {
2929 	unsigned char         msg[2];
2930 	unsigned char         *resp;
2931 	unsigned long         resp_len;
2932 	int                   rv = 0;
2933 
2934 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2935 	if (!resp)
2936 		return -ENOMEM;
2937 
2938 	/*
2939 	 * Do a Get Device ID command, since it comes back with some
2940 	 * useful info.
2941 	 */
2942 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2943 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2944 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2945 
2946 	rv = wait_for_msg_done(smi_info);
2947 	if (rv)
2948 		goto out;
2949 
2950 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2951 						  resp, IPMI_MAX_MSG_LENGTH);
2952 
2953 	/* Check and record info from the get device id, in case we need it. */
2954 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2955 
2956  out:
2957 	kfree(resp);
2958 	return rv;
2959 }
2960 
get_global_enables(struct smi_info * smi_info,u8 * enables)2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2962 {
2963 	unsigned char         msg[3];
2964 	unsigned char         *resp;
2965 	unsigned long         resp_len;
2966 	int                   rv;
2967 
2968 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2969 	if (!resp)
2970 		return -ENOMEM;
2971 
2972 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2973 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2974 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2975 
2976 	rv = wait_for_msg_done(smi_info);
2977 	if (rv) {
2978 		dev_warn(smi_info->dev,
2979 			 "Error getting response from get global enables command: %d\n",
2980 			 rv);
2981 		goto out;
2982 	}
2983 
2984 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2985 						  resp, IPMI_MAX_MSG_LENGTH);
2986 
2987 	if (resp_len < 4 ||
2988 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2989 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2990 			resp[2] != 0) {
2991 		dev_warn(smi_info->dev,
2992 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2993 			 resp_len, resp[0], resp[1], resp[2]);
2994 		rv = -EINVAL;
2995 		goto out;
2996 	} else {
2997 		*enables = resp[3];
2998 	}
2999 
3000 out:
3001 	kfree(resp);
3002 	return rv;
3003 }
3004 
3005 /*
3006  * Returns 1 if it gets an error from the command.
3007  */
set_global_enables(struct smi_info * smi_info,u8 enables)3008 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3009 {
3010 	unsigned char         msg[3];
3011 	unsigned char         *resp;
3012 	unsigned long         resp_len;
3013 	int                   rv;
3014 
3015 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3016 	if (!resp)
3017 		return -ENOMEM;
3018 
3019 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3020 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3021 	msg[2] = enables;
3022 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3023 
3024 	rv = wait_for_msg_done(smi_info);
3025 	if (rv) {
3026 		dev_warn(smi_info->dev,
3027 			 "Error getting response from set global enables command: %d\n",
3028 			 rv);
3029 		goto out;
3030 	}
3031 
3032 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3033 						  resp, IPMI_MAX_MSG_LENGTH);
3034 
3035 	if (resp_len < 3 ||
3036 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3037 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3038 		dev_warn(smi_info->dev,
3039 			 "Invalid return from set global enables command: %ld %x %x\n",
3040 			 resp_len, resp[0], resp[1]);
3041 		rv = -EINVAL;
3042 		goto out;
3043 	}
3044 
3045 	if (resp[2] != 0)
3046 		rv = 1;
3047 
3048 out:
3049 	kfree(resp);
3050 	return rv;
3051 }
3052 
3053 /*
3054  * Some BMCs do not support clearing the receive irq bit in the global
3055  * enables (even if they don't support interrupts on the BMC).  Check
3056  * for this and handle it properly.
3057  */
check_clr_rcv_irq(struct smi_info * smi_info)3058 static void check_clr_rcv_irq(struct smi_info *smi_info)
3059 {
3060 	u8 enables = 0;
3061 	int rv;
3062 
3063 	rv = get_global_enables(smi_info, &enables);
3064 	if (!rv) {
3065 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3066 			/* Already clear, should work ok. */
3067 			return;
3068 
3069 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3070 		rv = set_global_enables(smi_info, enables);
3071 	}
3072 
3073 	if (rv < 0) {
3074 		dev_err(smi_info->dev,
3075 			"Cannot check clearing the rcv irq: %d\n", rv);
3076 		return;
3077 	}
3078 
3079 	if (rv) {
3080 		/*
3081 		 * An error when setting the event buffer bit means
3082 		 * clearing the bit is not supported.
3083 		 */
3084 		dev_warn(smi_info->dev,
3085 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 		smi_info->cannot_disable_irq = true;
3087 	}
3088 }
3089 
3090 /*
3091  * Some BMCs do not support setting the interrupt bits in the global
3092  * enables even if they support interrupts.  Clearly bad, but we can
3093  * compensate.
3094  */
check_set_rcv_irq(struct smi_info * smi_info)3095 static void check_set_rcv_irq(struct smi_info *smi_info)
3096 {
3097 	u8 enables = 0;
3098 	int rv;
3099 
3100 	if (!smi_info->irq)
3101 		return;
3102 
3103 	rv = get_global_enables(smi_info, &enables);
3104 	if (!rv) {
3105 		enables |= IPMI_BMC_RCV_MSG_INTR;
3106 		rv = set_global_enables(smi_info, enables);
3107 	}
3108 
3109 	if (rv < 0) {
3110 		dev_err(smi_info->dev,
3111 			"Cannot check setting the rcv irq: %d\n", rv);
3112 		return;
3113 	}
3114 
3115 	if (rv) {
3116 		/*
3117 		 * An error when setting the event buffer bit means
3118 		 * setting the bit is not supported.
3119 		 */
3120 		dev_warn(smi_info->dev,
3121 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122 		smi_info->cannot_disable_irq = true;
3123 		smi_info->irq_enable_broken = true;
3124 	}
3125 }
3126 
try_enable_event_buffer(struct smi_info * smi_info)3127 static int try_enable_event_buffer(struct smi_info *smi_info)
3128 {
3129 	unsigned char         msg[3];
3130 	unsigned char         *resp;
3131 	unsigned long         resp_len;
3132 	int                   rv = 0;
3133 
3134 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3135 	if (!resp)
3136 		return -ENOMEM;
3137 
3138 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3140 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3141 
3142 	rv = wait_for_msg_done(smi_info);
3143 	if (rv) {
3144 		printk(KERN_WARNING PFX "Error getting response from get"
3145 		       " global enables command, the event buffer is not"
3146 		       " enabled.\n");
3147 		goto out;
3148 	}
3149 
3150 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3151 						  resp, IPMI_MAX_MSG_LENGTH);
3152 
3153 	if (resp_len < 4 ||
3154 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3155 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3156 			resp[2] != 0) {
3157 		printk(KERN_WARNING PFX "Invalid return from get global"
3158 		       " enables command, cannot enable the event buffer.\n");
3159 		rv = -EINVAL;
3160 		goto out;
3161 	}
3162 
3163 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3164 		/* buffer is already enabled, nothing to do. */
3165 		smi_info->supports_event_msg_buff = true;
3166 		goto out;
3167 	}
3168 
3169 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3170 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3171 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3172 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3173 
3174 	rv = wait_for_msg_done(smi_info);
3175 	if (rv) {
3176 		printk(KERN_WARNING PFX "Error getting response from set"
3177 		       " global, enables command, the event buffer is not"
3178 		       " enabled.\n");
3179 		goto out;
3180 	}
3181 
3182 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3183 						  resp, IPMI_MAX_MSG_LENGTH);
3184 
3185 	if (resp_len < 3 ||
3186 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3187 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3188 		printk(KERN_WARNING PFX "Invalid return from get global,"
3189 		       "enables command, not enable the event buffer.\n");
3190 		rv = -EINVAL;
3191 		goto out;
3192 	}
3193 
3194 	if (resp[2] != 0)
3195 		/*
3196 		 * An error when setting the event buffer bit means
3197 		 * that the event buffer is not supported.
3198 		 */
3199 		rv = -ENOENT;
3200 	else
3201 		smi_info->supports_event_msg_buff = true;
3202 
3203  out:
3204 	kfree(resp);
3205 	return rv;
3206 }
3207 
smi_type_proc_show(struct seq_file * m,void * v)3208 static int smi_type_proc_show(struct seq_file *m, void *v)
3209 {
3210 	struct smi_info *smi = m->private;
3211 
3212 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3213 
3214 	return 0;
3215 }
3216 
smi_type_proc_open(struct inode * inode,struct file * file)3217 static int smi_type_proc_open(struct inode *inode, struct file *file)
3218 {
3219 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3220 }
3221 
3222 static const struct file_operations smi_type_proc_ops = {
3223 	.open		= smi_type_proc_open,
3224 	.read		= seq_read,
3225 	.llseek		= seq_lseek,
3226 	.release	= single_release,
3227 };
3228 
smi_si_stats_proc_show(struct seq_file * m,void * v)3229 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3230 {
3231 	struct smi_info *smi = m->private;
3232 
3233 	seq_printf(m, "interrupts_enabled:    %d\n",
3234 		       smi->irq && !smi->interrupt_disabled);
3235 	seq_printf(m, "short_timeouts:        %u\n",
3236 		       smi_get_stat(smi, short_timeouts));
3237 	seq_printf(m, "long_timeouts:         %u\n",
3238 		       smi_get_stat(smi, long_timeouts));
3239 	seq_printf(m, "idles:                 %u\n",
3240 		       smi_get_stat(smi, idles));
3241 	seq_printf(m, "interrupts:            %u\n",
3242 		       smi_get_stat(smi, interrupts));
3243 	seq_printf(m, "attentions:            %u\n",
3244 		       smi_get_stat(smi, attentions));
3245 	seq_printf(m, "flag_fetches:          %u\n",
3246 		       smi_get_stat(smi, flag_fetches));
3247 	seq_printf(m, "hosed_count:           %u\n",
3248 		       smi_get_stat(smi, hosed_count));
3249 	seq_printf(m, "complete_transactions: %u\n",
3250 		       smi_get_stat(smi, complete_transactions));
3251 	seq_printf(m, "events:                %u\n",
3252 		       smi_get_stat(smi, events));
3253 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3254 		       smi_get_stat(smi, watchdog_pretimeouts));
3255 	seq_printf(m, "incoming_messages:     %u\n",
3256 		       smi_get_stat(smi, incoming_messages));
3257 	return 0;
3258 }
3259 
smi_si_stats_proc_open(struct inode * inode,struct file * file)3260 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3261 {
3262 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3263 }
3264 
3265 static const struct file_operations smi_si_stats_proc_ops = {
3266 	.open		= smi_si_stats_proc_open,
3267 	.read		= seq_read,
3268 	.llseek		= seq_lseek,
3269 	.release	= single_release,
3270 };
3271 
smi_params_proc_show(struct seq_file * m,void * v)3272 static int smi_params_proc_show(struct seq_file *m, void *v)
3273 {
3274 	struct smi_info *smi = m->private;
3275 
3276 	seq_printf(m,
3277 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3278 		   si_to_str[smi->si_type],
3279 		   addr_space_to_str[smi->io.addr_type],
3280 		   smi->io.addr_data,
3281 		   smi->io.regspacing,
3282 		   smi->io.regsize,
3283 		   smi->io.regshift,
3284 		   smi->irq,
3285 		   smi->slave_addr);
3286 
3287 	return 0;
3288 }
3289 
smi_params_proc_open(struct inode * inode,struct file * file)3290 static int smi_params_proc_open(struct inode *inode, struct file *file)
3291 {
3292 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3293 }
3294 
3295 static const struct file_operations smi_params_proc_ops = {
3296 	.open		= smi_params_proc_open,
3297 	.read		= seq_read,
3298 	.llseek		= seq_lseek,
3299 	.release	= single_release,
3300 };
3301 
3302 /*
3303  * oem_data_avail_to_receive_msg_avail
3304  * @info - smi_info structure with msg_flags set
3305  *
3306  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3307  * Returns 1 indicating need to re-run handle_flags().
3308  */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)3309 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3310 {
3311 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3312 			       RECEIVE_MSG_AVAIL);
3313 	return 1;
3314 }
3315 
3316 /*
3317  * setup_dell_poweredge_oem_data_handler
3318  * @info - smi_info.device_id must be populated
3319  *
3320  * Systems that match, but have firmware version < 1.40 may assert
3321  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3322  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3323  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3324  * as RECEIVE_MSG_AVAIL instead.
3325  *
3326  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3327  * assert the OEM[012] bits, and if it did, the driver would have to
3328  * change to handle that properly, we don't actually check for the
3329  * firmware version.
3330  * Device ID = 0x20                BMC on PowerEdge 8G servers
3331  * Device Revision = 0x80
3332  * Firmware Revision1 = 0x01       BMC version 1.40
3333  * Firmware Revision2 = 0x40       BCD encoded
3334  * IPMI Version = 0x51             IPMI 1.5
3335  * Manufacturer ID = A2 02 00      Dell IANA
3336  *
3337  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3338  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3339  *
3340  */
3341 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3342 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3343 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3344 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)3345 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3346 {
3347 	struct ipmi_device_id *id = &smi_info->device_id;
3348 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3349 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3350 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3351 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3352 			smi_info->oem_data_avail_handler =
3353 				oem_data_avail_to_receive_msg_avail;
3354 		} else if (ipmi_version_major(id) < 1 ||
3355 			   (ipmi_version_major(id) == 1 &&
3356 			    ipmi_version_minor(id) < 5)) {
3357 			smi_info->oem_data_avail_handler =
3358 				oem_data_avail_to_receive_msg_avail;
3359 		}
3360 	}
3361 }
3362 
3363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)3364 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3365 {
3366 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3367 
3368 	/* Make it a response */
3369 	msg->rsp[0] = msg->data[0] | 4;
3370 	msg->rsp[1] = msg->data[1];
3371 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3372 	msg->rsp_size = 3;
3373 	smi_info->curr_msg = NULL;
3374 	deliver_recv_msg(smi_info, msg);
3375 }
3376 
3377 /*
3378  * dell_poweredge_bt_xaction_handler
3379  * @info - smi_info.device_id must be populated
3380  *
3381  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3382  * not respond to a Get SDR command if the length of the data
3383  * requested is exactly 0x3A, which leads to command timeouts and no
3384  * data returned.  This intercepts such commands, and causes userspace
3385  * callers to try again with a different-sized buffer, which succeeds.
3386  */
3387 
3388 #define STORAGE_NETFN 0x0A
3389 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)3390 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3391 					     unsigned long unused,
3392 					     void *in)
3393 {
3394 	struct smi_info *smi_info = in;
3395 	unsigned char *data = smi_info->curr_msg->data;
3396 	unsigned int size   = smi_info->curr_msg->data_size;
3397 	if (size >= 8 &&
3398 	    (data[0]>>2) == STORAGE_NETFN &&
3399 	    data[1] == STORAGE_CMD_GET_SDR &&
3400 	    data[7] == 0x3A) {
3401 		return_hosed_msg_badsize(smi_info);
3402 		return NOTIFY_STOP;
3403 	}
3404 	return NOTIFY_DONE;
3405 }
3406 
3407 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3408 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3409 };
3410 
3411 /*
3412  * setup_dell_poweredge_bt_xaction_handler
3413  * @info - smi_info.device_id must be filled in already
3414  *
3415  * Fills in smi_info.device_id.start_transaction_pre_hook
3416  * when we know what function to use there.
3417  */
3418 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)3419 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3420 {
3421 	struct ipmi_device_id *id = &smi_info->device_id;
3422 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3423 	    smi_info->si_type == SI_BT)
3424 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3425 }
3426 
3427 /*
3428  * setup_oem_data_handler
3429  * @info - smi_info.device_id must be filled in already
3430  *
3431  * Fills in smi_info.device_id.oem_data_available_handler
3432  * when we know what function to use there.
3433  */
3434 
setup_oem_data_handler(struct smi_info * smi_info)3435 static void setup_oem_data_handler(struct smi_info *smi_info)
3436 {
3437 	setup_dell_poweredge_oem_data_handler(smi_info);
3438 }
3439 
setup_xaction_handlers(struct smi_info * smi_info)3440 static void setup_xaction_handlers(struct smi_info *smi_info)
3441 {
3442 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3443 }
3444 
check_for_broken_irqs(struct smi_info * smi_info)3445 static void check_for_broken_irqs(struct smi_info *smi_info)
3446 {
3447 	check_clr_rcv_irq(smi_info);
3448 	check_set_rcv_irq(smi_info);
3449 }
3450 
stop_timer_and_thread(struct smi_info * smi_info)3451 static inline void stop_timer_and_thread(struct smi_info *smi_info)
3452 {
3453 	if (smi_info->thread != NULL)
3454 		kthread_stop(smi_info->thread);
3455 
3456 	smi_info->timer_can_start = false;
3457 	if (smi_info->timer_running)
3458 		del_timer_sync(&smi_info->si_timer);
3459 }
3460 
3461 static const struct ipmi_default_vals
3462 {
3463 	int type;
3464 	int port;
3465 } ipmi_defaults[] =
3466 {
3467 	{ .type = SI_KCS, .port = 0xca2 },
3468 	{ .type = SI_SMIC, .port = 0xca9 },
3469 	{ .type = SI_BT, .port = 0xe4 },
3470 	{ .port = 0 }
3471 };
3472 
default_find_bmc(void)3473 static void default_find_bmc(void)
3474 {
3475 	struct smi_info *info;
3476 	int             i;
3477 
3478 	for (i = 0; ; i++) {
3479 		if (!ipmi_defaults[i].port)
3480 			break;
3481 #ifdef CONFIG_PPC
3482 		if (check_legacy_ioport(ipmi_defaults[i].port))
3483 			continue;
3484 #endif
3485 		info = smi_info_alloc();
3486 		if (!info)
3487 			return;
3488 
3489 		info->addr_source = SI_DEFAULT;
3490 
3491 		info->si_type = ipmi_defaults[i].type;
3492 		info->io_setup = port_setup;
3493 		info->io.addr_data = ipmi_defaults[i].port;
3494 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3495 
3496 		info->io.addr = NULL;
3497 		info->io.regspacing = DEFAULT_REGSPACING;
3498 		info->io.regsize = DEFAULT_REGSPACING;
3499 		info->io.regshift = 0;
3500 
3501 		if (add_smi(info) == 0) {
3502 			if ((try_smi_init(info)) == 0) {
3503 				/* Found one... */
3504 				printk(KERN_INFO PFX "Found default %s"
3505 				" state machine at %s address 0x%lx\n",
3506 				si_to_str[info->si_type],
3507 				addr_space_to_str[info->io.addr_type],
3508 				info->io.addr_data);
3509 			} else
3510 				cleanup_one_si(info);
3511 		} else {
3512 			kfree(info);
3513 		}
3514 	}
3515 }
3516 
is_new_interface(struct smi_info * info)3517 static int is_new_interface(struct smi_info *info)
3518 {
3519 	struct smi_info *e;
3520 
3521 	list_for_each_entry(e, &smi_infos, link) {
3522 		if (e->io.addr_type != info->io.addr_type)
3523 			continue;
3524 		if (e->io.addr_data == info->io.addr_data)
3525 			return 0;
3526 	}
3527 
3528 	return 1;
3529 }
3530 
add_smi(struct smi_info * new_smi)3531 static int add_smi(struct smi_info *new_smi)
3532 {
3533 	int rv = 0;
3534 
3535 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3536 	       ipmi_addr_src_to_str(new_smi->addr_source),
3537 	       si_to_str[new_smi->si_type]);
3538 	mutex_lock(&smi_infos_lock);
3539 	if (!is_new_interface(new_smi)) {
3540 		printk(KERN_CONT " duplicate interface\n");
3541 		rv = -EBUSY;
3542 		goto out_err;
3543 	}
3544 
3545 	printk(KERN_CONT "\n");
3546 
3547 	/* So we know not to free it unless we have allocated one. */
3548 	new_smi->intf = NULL;
3549 	new_smi->si_sm = NULL;
3550 	new_smi->handlers = NULL;
3551 
3552 	list_add_tail(&new_smi->link, &smi_infos);
3553 
3554 out_err:
3555 	mutex_unlock(&smi_infos_lock);
3556 	return rv;
3557 }
3558 
try_smi_init(struct smi_info * new_smi)3559 static int try_smi_init(struct smi_info *new_smi)
3560 {
3561 	int rv = 0;
3562 	int i;
3563 
3564 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3565 	       " machine at %s address 0x%lx, slave address 0x%x,"
3566 	       " irq %d\n",
3567 	       ipmi_addr_src_to_str(new_smi->addr_source),
3568 	       si_to_str[new_smi->si_type],
3569 	       addr_space_to_str[new_smi->io.addr_type],
3570 	       new_smi->io.addr_data,
3571 	       new_smi->slave_addr, new_smi->irq);
3572 
3573 	switch (new_smi->si_type) {
3574 	case SI_KCS:
3575 		new_smi->handlers = &kcs_smi_handlers;
3576 		break;
3577 
3578 	case SI_SMIC:
3579 		new_smi->handlers = &smic_smi_handlers;
3580 		break;
3581 
3582 	case SI_BT:
3583 		new_smi->handlers = &bt_smi_handlers;
3584 		break;
3585 
3586 	default:
3587 		/* No support for anything else yet. */
3588 		rv = -EIO;
3589 		goto out_err;
3590 	}
3591 
3592 	/* Allocate the state machine's data and initialize it. */
3593 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3594 	if (!new_smi->si_sm) {
3595 		printk(KERN_ERR PFX
3596 		       "Could not allocate state machine memory\n");
3597 		rv = -ENOMEM;
3598 		goto out_err;
3599 	}
3600 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3601 							&new_smi->io);
3602 
3603 	/* Now that we know the I/O size, we can set up the I/O. */
3604 	rv = new_smi->io_setup(new_smi);
3605 	if (rv) {
3606 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3607 		goto out_err;
3608 	}
3609 
3610 	/* Do low-level detection first. */
3611 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3612 		if (new_smi->addr_source)
3613 			printk(KERN_INFO PFX "Interface detection failed\n");
3614 		rv = -ENODEV;
3615 		goto out_err;
3616 	}
3617 
3618 	/*
3619 	 * Attempt a get device id command.  If it fails, we probably
3620 	 * don't have a BMC here.
3621 	 */
3622 	rv = try_get_dev_id(new_smi);
3623 	if (rv) {
3624 		if (new_smi->addr_source)
3625 			printk(KERN_INFO PFX "There appears to be no BMC"
3626 			       " at this location\n");
3627 		goto out_err;
3628 	}
3629 
3630 	setup_oem_data_handler(new_smi);
3631 	setup_xaction_handlers(new_smi);
3632 	check_for_broken_irqs(new_smi);
3633 
3634 	new_smi->waiting_msg = NULL;
3635 	new_smi->curr_msg = NULL;
3636 	atomic_set(&new_smi->req_events, 0);
3637 	new_smi->run_to_completion = false;
3638 	for (i = 0; i < SI_NUM_STATS; i++)
3639 		atomic_set(&new_smi->stats[i], 0);
3640 
3641 	new_smi->interrupt_disabled = true;
3642 	atomic_set(&new_smi->need_watch, 0);
3643 	new_smi->intf_num = smi_num;
3644 	smi_num++;
3645 
3646 	rv = try_enable_event_buffer(new_smi);
3647 	if (rv == 0)
3648 		new_smi->has_event_buffer = true;
3649 
3650 	/*
3651 	 * Start clearing the flags before we enable interrupts or the
3652 	 * timer to avoid racing with the timer.
3653 	 */
3654 	start_clear_flags(new_smi);
3655 
3656 	/*
3657 	 * IRQ is defined to be set when non-zero.  req_events will
3658 	 * cause a global flags check that will enable interrupts.
3659 	 */
3660 	if (new_smi->irq) {
3661 		new_smi->interrupt_disabled = false;
3662 		atomic_set(&new_smi->req_events, 1);
3663 	}
3664 
3665 	if (!new_smi->dev) {
3666 		/*
3667 		 * If we don't already have a device from something
3668 		 * else (like PCI), then register a new one.
3669 		 */
3670 		new_smi->pdev = platform_device_alloc("ipmi_si",
3671 						      new_smi->intf_num);
3672 		if (!new_smi->pdev) {
3673 			printk(KERN_ERR PFX
3674 			       "Unable to allocate platform device\n");
3675 			goto out_err;
3676 		}
3677 		new_smi->dev = &new_smi->pdev->dev;
3678 		new_smi->dev->driver = &ipmi_driver.driver;
3679 
3680 		rv = platform_device_add(new_smi->pdev);
3681 		if (rv) {
3682 			printk(KERN_ERR PFX
3683 			       "Unable to register system interface device:"
3684 			       " %d\n",
3685 			       rv);
3686 			goto out_err;
3687 		}
3688 		new_smi->dev_registered = true;
3689 	}
3690 
3691 	rv = ipmi_register_smi(&handlers,
3692 			       new_smi,
3693 			       &new_smi->device_id,
3694 			       new_smi->dev,
3695 			       new_smi->slave_addr);
3696 	if (rv) {
3697 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3698 			rv);
3699 		goto out_err_stop_timer;
3700 	}
3701 
3702 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3703 				     &smi_type_proc_ops,
3704 				     new_smi);
3705 	if (rv) {
3706 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3707 		goto out_err_stop_timer;
3708 	}
3709 
3710 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3711 				     &smi_si_stats_proc_ops,
3712 				     new_smi);
3713 	if (rv) {
3714 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3715 		goto out_err_stop_timer;
3716 	}
3717 
3718 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3719 				     &smi_params_proc_ops,
3720 				     new_smi);
3721 	if (rv) {
3722 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3723 		goto out_err_stop_timer;
3724 	}
3725 
3726 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3727 		 si_to_str[new_smi->si_type]);
3728 
3729 	return 0;
3730 
3731  out_err_stop_timer:
3732 	stop_timer_and_thread(new_smi);
3733 
3734  out_err:
3735 	new_smi->interrupt_disabled = true;
3736 
3737 	if (new_smi->intf) {
3738 		ipmi_smi_t intf = new_smi->intf;
3739 		new_smi->intf = NULL;
3740 		ipmi_unregister_smi(intf);
3741 	}
3742 
3743 	if (new_smi->irq_cleanup) {
3744 		new_smi->irq_cleanup(new_smi);
3745 		new_smi->irq_cleanup = NULL;
3746 	}
3747 
3748 	/*
3749 	 * Wait until we know that we are out of any interrupt
3750 	 * handlers might have been running before we freed the
3751 	 * interrupt.
3752 	 */
3753 	synchronize_sched();
3754 
3755 	if (new_smi->si_sm) {
3756 		if (new_smi->handlers)
3757 			new_smi->handlers->cleanup(new_smi->si_sm);
3758 		kfree(new_smi->si_sm);
3759 		new_smi->si_sm = NULL;
3760 	}
3761 	if (new_smi->addr_source_cleanup) {
3762 		new_smi->addr_source_cleanup(new_smi);
3763 		new_smi->addr_source_cleanup = NULL;
3764 	}
3765 	if (new_smi->io_cleanup) {
3766 		new_smi->io_cleanup(new_smi);
3767 		new_smi->io_cleanup = NULL;
3768 	}
3769 
3770 	if (new_smi->dev_registered) {
3771 		platform_device_unregister(new_smi->pdev);
3772 		new_smi->dev_registered = false;
3773 	}
3774 
3775 	return rv;
3776 }
3777 
init_ipmi_si(void)3778 static int init_ipmi_si(void)
3779 {
3780 	int  i;
3781 	char *str;
3782 	int  rv;
3783 	struct smi_info *e;
3784 	enum ipmi_addr_src type = SI_INVALID;
3785 
3786 	if (initialized)
3787 		return 0;
3788 	initialized = 1;
3789 
3790 	if (si_tryplatform) {
3791 		rv = platform_driver_register(&ipmi_driver);
3792 		if (rv) {
3793 			printk(KERN_ERR PFX "Unable to register "
3794 			       "driver: %d\n", rv);
3795 			return rv;
3796 		}
3797 	}
3798 
3799 	/* Parse out the si_type string into its components. */
3800 	str = si_type_str;
3801 	if (*str != '\0') {
3802 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3803 			si_type[i] = str;
3804 			str = strchr(str, ',');
3805 			if (str) {
3806 				*str = '\0';
3807 				str++;
3808 			} else {
3809 				break;
3810 			}
3811 		}
3812 	}
3813 
3814 	printk(KERN_INFO "IPMI System Interface driver.\n");
3815 
3816 	/* If the user gave us a device, they presumably want us to use it */
3817 	if (!hardcode_find_bmc())
3818 		return 0;
3819 
3820 #ifdef CONFIG_PCI
3821 	if (si_trypci) {
3822 		rv = pci_register_driver(&ipmi_pci_driver);
3823 		if (rv)
3824 			printk(KERN_ERR PFX "Unable to register "
3825 			       "PCI driver: %d\n", rv);
3826 		else
3827 			pci_registered = true;
3828 	}
3829 #endif
3830 
3831 #ifdef CONFIG_DMI
3832 	if (si_trydmi)
3833 		dmi_find_bmc();
3834 #endif
3835 
3836 #ifdef CONFIG_ACPI
3837 	if (si_tryacpi)
3838 		spmi_find_bmc();
3839 #endif
3840 
3841 #ifdef CONFIG_PARISC
3842 	register_parisc_driver(&ipmi_parisc_driver);
3843 	parisc_registered = true;
3844 	/* poking PC IO addresses will crash machine, don't do it */
3845 	si_trydefaults = 0;
3846 #endif
3847 
3848 	/* We prefer devices with interrupts, but in the case of a machine
3849 	   with multiple BMCs we assume that there will be several instances
3850 	   of a given type so if we succeed in registering a type then also
3851 	   try to register everything else of the same type */
3852 
3853 	mutex_lock(&smi_infos_lock);
3854 	list_for_each_entry(e, &smi_infos, link) {
3855 		/* Try to register a device if it has an IRQ and we either
3856 		   haven't successfully registered a device yet or this
3857 		   device has the same type as one we successfully registered */
3858 		if (e->irq && (!type || e->addr_source == type)) {
3859 			if (!try_smi_init(e)) {
3860 				type = e->addr_source;
3861 			}
3862 		}
3863 	}
3864 
3865 	/* type will only have been set if we successfully registered an si */
3866 	if (type) {
3867 		mutex_unlock(&smi_infos_lock);
3868 		return 0;
3869 	}
3870 
3871 	/* Fall back to the preferred device */
3872 
3873 	list_for_each_entry(e, &smi_infos, link) {
3874 		if (!e->irq && (!type || e->addr_source == type)) {
3875 			if (!try_smi_init(e)) {
3876 				type = e->addr_source;
3877 			}
3878 		}
3879 	}
3880 	mutex_unlock(&smi_infos_lock);
3881 
3882 	if (type)
3883 		return 0;
3884 
3885 	if (si_trydefaults) {
3886 		mutex_lock(&smi_infos_lock);
3887 		if (list_empty(&smi_infos)) {
3888 			/* No BMC was found, try defaults. */
3889 			mutex_unlock(&smi_infos_lock);
3890 			default_find_bmc();
3891 		} else
3892 			mutex_unlock(&smi_infos_lock);
3893 	}
3894 
3895 	mutex_lock(&smi_infos_lock);
3896 	if (unload_when_empty && list_empty(&smi_infos)) {
3897 		mutex_unlock(&smi_infos_lock);
3898 		cleanup_ipmi_si();
3899 		printk(KERN_WARNING PFX
3900 		       "Unable to find any System Interface(s)\n");
3901 		return -ENODEV;
3902 	} else {
3903 		mutex_unlock(&smi_infos_lock);
3904 		return 0;
3905 	}
3906 }
3907 module_init(init_ipmi_si);
3908 
cleanup_one_si(struct smi_info * to_clean)3909 static void cleanup_one_si(struct smi_info *to_clean)
3910 {
3911 	int           rv = 0;
3912 
3913 	if (!to_clean)
3914 		return;
3915 
3916 	if (to_clean->intf) {
3917 		ipmi_smi_t intf = to_clean->intf;
3918 
3919 		to_clean->intf = NULL;
3920 		rv = ipmi_unregister_smi(intf);
3921 		if (rv) {
3922 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3923 			       rv);
3924 		}
3925 	}
3926 
3927 	if (to_clean->dev)
3928 		dev_set_drvdata(to_clean->dev, NULL);
3929 
3930 	list_del(&to_clean->link);
3931 
3932 	/*
3933 	 * Make sure that interrupts, the timer and the thread are
3934 	 * stopped and will not run again.
3935 	 */
3936 	if (to_clean->irq_cleanup)
3937 		to_clean->irq_cleanup(to_clean);
3938 	stop_timer_and_thread(to_clean);
3939 
3940 	/*
3941 	 * Timeouts are stopped, now make sure the interrupts are off
3942 	 * in the BMC.  Note that timers and CPU interrupts are off,
3943 	 * so no need for locks.
3944 	 */
3945 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3946 		poll(to_clean);
3947 		schedule_timeout_uninterruptible(1);
3948 	}
3949 	disable_si_irq(to_clean);
3950 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3951 		poll(to_clean);
3952 		schedule_timeout_uninterruptible(1);
3953 	}
3954 
3955 	if (to_clean->handlers)
3956 		to_clean->handlers->cleanup(to_clean->si_sm);
3957 
3958 	kfree(to_clean->si_sm);
3959 
3960 	if (to_clean->addr_source_cleanup)
3961 		to_clean->addr_source_cleanup(to_clean);
3962 	if (to_clean->io_cleanup)
3963 		to_clean->io_cleanup(to_clean);
3964 
3965 	if (to_clean->dev_registered)
3966 		platform_device_unregister(to_clean->pdev);
3967 
3968 	kfree(to_clean);
3969 }
3970 
cleanup_ipmi_si(void)3971 static void cleanup_ipmi_si(void)
3972 {
3973 	struct smi_info *e, *tmp_e;
3974 
3975 	if (!initialized)
3976 		return;
3977 
3978 #ifdef CONFIG_PCI
3979 	if (pci_registered)
3980 		pci_unregister_driver(&ipmi_pci_driver);
3981 #endif
3982 #ifdef CONFIG_PARISC
3983 	if (parisc_registered)
3984 		unregister_parisc_driver(&ipmi_parisc_driver);
3985 #endif
3986 
3987 	platform_driver_unregister(&ipmi_driver);
3988 
3989 	mutex_lock(&smi_infos_lock);
3990 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3991 		cleanup_one_si(e);
3992 	mutex_unlock(&smi_infos_lock);
3993 }
3994 module_exit(cleanup_ipmi_si);
3995 
3996 MODULE_LICENSE("GPL");
3997 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3998 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3999 		   " system interfaces.");
4000