1 /*
2 * Copyright 2013 Emilio López
3 *
4 * Emilio López <emilio@elopez.com.ar>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22
23 #include "clk-factors.h"
24
25 /**
26 * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
27 * MOD0 rate is calculated as follows
28 * rate = (parent_rate >> p) / (m + 1);
29 */
30
sun4i_a10_get_mod0_factors(u32 * freq,u32 parent_rate,u8 * n,u8 * k,u8 * m,u8 * p)31 static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate,
32 u8 *n, u8 *k, u8 *m, u8 *p)
33 {
34 u8 div, calcm, calcp;
35
36 /* These clocks can only divide, so we will never be able to achieve
37 * frequencies higher than the parent frequency */
38 if (*freq > parent_rate)
39 *freq = parent_rate;
40
41 div = DIV_ROUND_UP(parent_rate, *freq);
42
43 if (div < 16)
44 calcp = 0;
45 else if (div / 2 < 16)
46 calcp = 1;
47 else if (div / 4 < 16)
48 calcp = 2;
49 else
50 calcp = 3;
51
52 calcm = DIV_ROUND_UP(div, 1 << calcp);
53
54 *freq = (parent_rate >> calcp) / calcm;
55
56 /* we were called to round the frequency, we can now return */
57 if (n == NULL)
58 return;
59
60 *m = calcm - 1;
61 *p = calcp;
62 }
63
64 /* user manual says "n" but it's really "p" */
65 static struct clk_factors_config sun4i_a10_mod0_config = {
66 .mshift = 0,
67 .mwidth = 4,
68 .pshift = 16,
69 .pwidth = 2,
70 };
71
72 static const struct factors_data sun4i_a10_mod0_data = {
73 .enable = 31,
74 .mux = 24,
75 .muxmask = BIT(1) | BIT(0),
76 .table = &sun4i_a10_mod0_config,
77 .getter = sun4i_a10_get_mod0_factors,
78 };
79
80 static DEFINE_SPINLOCK(sun4i_a10_mod0_lock);
81
sun4i_a10_mod0_setup(struct device_node * node)82 static void __init sun4i_a10_mod0_setup(struct device_node *node)
83 {
84 void __iomem *reg;
85
86 reg = of_iomap(node, 0);
87 if (!reg) {
88 /*
89 * This happens with mod0 clk nodes instantiated through
90 * mfd, as those do not have their resources assigned at
91 * CLK_OF_DECLARE time yet, so do not print an error.
92 */
93 return;
94 }
95
96 sunxi_factors_register(node, &sun4i_a10_mod0_data,
97 &sun4i_a10_mod0_lock, reg);
98 }
99 CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup);
100
sun4i_a10_mod0_clk_probe(struct platform_device * pdev)101 static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev)
102 {
103 struct device_node *np = pdev->dev.of_node;
104 struct resource *r;
105 void __iomem *reg;
106
107 if (!np)
108 return -ENODEV;
109
110 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
111 reg = devm_ioremap_resource(&pdev->dev, r);
112 if (IS_ERR(reg))
113 return PTR_ERR(reg);
114
115 sunxi_factors_register(np, &sun4i_a10_mod0_data,
116 &sun4i_a10_mod0_lock, reg);
117 return 0;
118 }
119
120 static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = {
121 { .compatible = "allwinner,sun4i-a10-mod0-clk" },
122 { /* sentinel */ }
123 };
124
125 static struct platform_driver sun4i_a10_mod0_clk_driver = {
126 .driver = {
127 .name = "sun4i-a10-mod0-clk",
128 .of_match_table = sun4i_a10_mod0_clk_dt_ids,
129 },
130 .probe = sun4i_a10_mod0_clk_probe,
131 };
132 builtin_platform_driver(sun4i_a10_mod0_clk_driver);
133
134 static const struct factors_data sun9i_a80_mod0_data __initconst = {
135 .enable = 31,
136 .mux = 24,
137 .muxmask = BIT(3) | BIT(2) | BIT(1) | BIT(0),
138 .table = &sun4i_a10_mod0_config,
139 .getter = sun4i_a10_get_mod0_factors,
140 };
141
sun9i_a80_mod0_setup(struct device_node * node)142 static void __init sun9i_a80_mod0_setup(struct device_node *node)
143 {
144 void __iomem *reg;
145
146 reg = of_io_request_and_map(node, 0, of_node_full_name(node));
147 if (IS_ERR(reg)) {
148 pr_err("Could not get registers for mod0-clk: %s\n",
149 node->name);
150 return;
151 }
152
153 sunxi_factors_register(node, &sun9i_a80_mod0_data,
154 &sun4i_a10_mod0_lock, reg);
155 }
156 CLK_OF_DECLARE(sun9i_a80_mod0, "allwinner,sun9i-a80-mod0-clk", sun9i_a80_mod0_setup);
157
158 static DEFINE_SPINLOCK(sun5i_a13_mbus_lock);
159
sun5i_a13_mbus_setup(struct device_node * node)160 static void __init sun5i_a13_mbus_setup(struct device_node *node)
161 {
162 struct clk *mbus;
163 void __iomem *reg;
164
165 reg = of_iomap(node, 0);
166 if (!reg) {
167 pr_err("Could not get registers for a13-mbus-clk\n");
168 return;
169 }
170
171 mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data,
172 &sun5i_a13_mbus_lock, reg);
173
174 /* The MBUS clocks needs to be always enabled */
175 __clk_get(mbus);
176 clk_prepare_enable(mbus);
177 }
178 CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup);
179
180 struct mmc_phase {
181 struct clk_hw hw;
182 u8 offset;
183 void __iomem *reg;
184 spinlock_t *lock;
185 };
186
187 #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw)
188
mmc_get_phase(struct clk_hw * hw)189 static int mmc_get_phase(struct clk_hw *hw)
190 {
191 struct clk *mmc, *mmc_parent, *clk = hw->clk;
192 struct mmc_phase *phase = to_mmc_phase(hw);
193 unsigned int mmc_rate, mmc_parent_rate;
194 u16 step, mmc_div;
195 u32 value;
196 u8 delay;
197
198 value = readl(phase->reg);
199 delay = (value >> phase->offset) & 0x3;
200
201 if (!delay)
202 return 180;
203
204 /* Get the main MMC clock */
205 mmc = clk_get_parent(clk);
206 if (!mmc)
207 return -EINVAL;
208
209 /* And its rate */
210 mmc_rate = clk_get_rate(mmc);
211 if (!mmc_rate)
212 return -EINVAL;
213
214 /* Now, get the MMC parent (most likely some PLL) */
215 mmc_parent = clk_get_parent(mmc);
216 if (!mmc_parent)
217 return -EINVAL;
218
219 /* And its rate */
220 mmc_parent_rate = clk_get_rate(mmc_parent);
221 if (!mmc_parent_rate)
222 return -EINVAL;
223
224 /* Get MMC clock divider */
225 mmc_div = mmc_parent_rate / mmc_rate;
226
227 step = DIV_ROUND_CLOSEST(360, mmc_div);
228 return delay * step;
229 }
230
mmc_set_phase(struct clk_hw * hw,int degrees)231 static int mmc_set_phase(struct clk_hw *hw, int degrees)
232 {
233 struct clk *mmc, *mmc_parent, *clk = hw->clk;
234 struct mmc_phase *phase = to_mmc_phase(hw);
235 unsigned int mmc_rate, mmc_parent_rate;
236 unsigned long flags;
237 u32 value;
238 u8 delay;
239
240 /* Get the main MMC clock */
241 mmc = clk_get_parent(clk);
242 if (!mmc)
243 return -EINVAL;
244
245 /* And its rate */
246 mmc_rate = clk_get_rate(mmc);
247 if (!mmc_rate)
248 return -EINVAL;
249
250 /* Now, get the MMC parent (most likely some PLL) */
251 mmc_parent = clk_get_parent(mmc);
252 if (!mmc_parent)
253 return -EINVAL;
254
255 /* And its rate */
256 mmc_parent_rate = clk_get_rate(mmc_parent);
257 if (!mmc_parent_rate)
258 return -EINVAL;
259
260 if (degrees != 180) {
261 u16 step, mmc_div;
262
263 /* Get MMC clock divider */
264 mmc_div = mmc_parent_rate / mmc_rate;
265
266 /*
267 * We can only outphase the clocks by multiple of the
268 * PLL's period.
269 *
270 * Since the MMC clock in only a divider, and the
271 * formula to get the outphasing in degrees is deg =
272 * 360 * delta / period
273 *
274 * If we simplify this formula, we can see that the
275 * only thing that we're concerned about is the number
276 * of period we want to outphase our clock from, and
277 * the divider set by the MMC clock.
278 */
279 step = DIV_ROUND_CLOSEST(360, mmc_div);
280 delay = DIV_ROUND_CLOSEST(degrees, step);
281 } else {
282 delay = 0;
283 }
284
285 spin_lock_irqsave(phase->lock, flags);
286 value = readl(phase->reg);
287 value &= ~GENMASK(phase->offset + 3, phase->offset);
288 value |= delay << phase->offset;
289 writel(value, phase->reg);
290 spin_unlock_irqrestore(phase->lock, flags);
291
292 return 0;
293 }
294
295 static const struct clk_ops mmc_clk_ops = {
296 .get_phase = mmc_get_phase,
297 .set_phase = mmc_set_phase,
298 };
299
300 /*
301 * sunxi_mmc_setup - Common setup function for mmc module clocks
302 *
303 * The only difference between module clocks on different platforms is the
304 * width of the mux register bits and the valid values, which are passed in
305 * through struct factors_data. The phase clocks parts are identical.
306 */
sunxi_mmc_setup(struct device_node * node,const struct factors_data * data,spinlock_t * lock)307 static void __init sunxi_mmc_setup(struct device_node *node,
308 const struct factors_data *data,
309 spinlock_t *lock)
310 {
311 struct clk_onecell_data *clk_data;
312 const char *parent;
313 void __iomem *reg;
314 int i;
315
316 reg = of_io_request_and_map(node, 0, of_node_full_name(node));
317 if (IS_ERR(reg)) {
318 pr_err("Couldn't map the %s clock registers\n", node->name);
319 return;
320 }
321
322 clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL);
323 if (!clk_data)
324 return;
325
326 clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL);
327 if (!clk_data->clks)
328 goto err_free_data;
329
330 clk_data->clk_num = 3;
331 clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg);
332 if (!clk_data->clks[0])
333 goto err_free_clks;
334
335 parent = __clk_get_name(clk_data->clks[0]);
336
337 for (i = 1; i < 3; i++) {
338 struct clk_init_data init = {
339 .num_parents = 1,
340 .parent_names = &parent,
341 .ops = &mmc_clk_ops,
342 };
343 struct mmc_phase *phase;
344
345 phase = kmalloc(sizeof(*phase), GFP_KERNEL);
346 if (!phase)
347 continue;
348
349 phase->hw.init = &init;
350 phase->reg = reg;
351 phase->lock = lock;
352
353 if (i == 1)
354 phase->offset = 8;
355 else
356 phase->offset = 20;
357
358 if (of_property_read_string_index(node, "clock-output-names",
359 i, &init.name))
360 init.name = node->name;
361
362 clk_data->clks[i] = clk_register(NULL, &phase->hw);
363 if (IS_ERR(clk_data->clks[i])) {
364 kfree(phase);
365 continue;
366 }
367 }
368
369 of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
370
371 return;
372
373 err_free_clks:
374 kfree(clk_data->clks);
375 err_free_data:
376 kfree(clk_data);
377 }
378
379 static DEFINE_SPINLOCK(sun4i_a10_mmc_lock);
380
sun4i_a10_mmc_setup(struct device_node * node)381 static void __init sun4i_a10_mmc_setup(struct device_node *node)
382 {
383 sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock);
384 }
385 CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup);
386
387 static DEFINE_SPINLOCK(sun9i_a80_mmc_lock);
388
sun9i_a80_mmc_setup(struct device_node * node)389 static void __init sun9i_a80_mmc_setup(struct device_node *node)
390 {
391 sunxi_mmc_setup(node, &sun9i_a80_mod0_data, &sun9i_a80_mmc_lock);
392 }
393 CLK_OF_DECLARE(sun9i_a80_mmc, "allwinner,sun9i-a80-mmc-clk", sun9i_a80_mmc_setup);
394