• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26 
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29 
30 #include <clocksource/arm_arch_timer.h>
31 
32 #define CNTTIDR		0x08
33 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
34 
35 #define CNTVCT_LO	0x08
36 #define CNTVCT_HI	0x0c
37 #define CNTFRQ		0x10
38 #define CNTP_TVAL	0x28
39 #define CNTP_CTL	0x2c
40 #define CNTV_TVAL	0x38
41 #define CNTV_CTL	0x3c
42 
43 #define ARCH_CP15_TIMER	BIT(0)
44 #define ARCH_MEM_TIMER	BIT(1)
45 static unsigned arch_timers_present __initdata;
46 
47 static void __iomem *arch_counter_base;
48 
49 struct arch_timer {
50 	void __iomem *base;
51 	struct clock_event_device evt;
52 };
53 
54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
55 
56 static u32 arch_timer_rate;
57 
58 enum ppi_nr {
59 	PHYS_SECURE_PPI,
60 	PHYS_NONSECURE_PPI,
61 	VIRT_PPI,
62 	HYP_PPI,
63 	MAX_TIMER_PPI
64 };
65 
66 static int arch_timer_ppi[MAX_TIMER_PPI];
67 
68 static struct clock_event_device __percpu *arch_timer_evt;
69 
70 static bool arch_timer_use_virtual = true;
71 static bool arch_timer_c3stop;
72 static bool arch_timer_mem_use_virtual;
73 
74 /*
75  * Architected system timer support.
76  */
77 
78 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u32 val,struct clock_event_device * clk)79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80 			  struct clock_event_device *clk)
81 {
82 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
83 		struct arch_timer *timer = to_arch_timer(clk);
84 		switch (reg) {
85 		case ARCH_TIMER_REG_CTRL:
86 			writel_relaxed(val, timer->base + CNTP_CTL);
87 			break;
88 		case ARCH_TIMER_REG_TVAL:
89 			writel_relaxed(val, timer->base + CNTP_TVAL);
90 			break;
91 		}
92 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
93 		struct arch_timer *timer = to_arch_timer(clk);
94 		switch (reg) {
95 		case ARCH_TIMER_REG_CTRL:
96 			writel_relaxed(val, timer->base + CNTV_CTL);
97 			break;
98 		case ARCH_TIMER_REG_TVAL:
99 			writel_relaxed(val, timer->base + CNTV_TVAL);
100 			break;
101 		}
102 	} else {
103 		arch_timer_reg_write_cp15(access, reg, val);
104 	}
105 }
106 
107 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109 			struct clock_event_device *clk)
110 {
111 	u32 val;
112 
113 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
114 		struct arch_timer *timer = to_arch_timer(clk);
115 		switch (reg) {
116 		case ARCH_TIMER_REG_CTRL:
117 			val = readl_relaxed(timer->base + CNTP_CTL);
118 			break;
119 		case ARCH_TIMER_REG_TVAL:
120 			val = readl_relaxed(timer->base + CNTP_TVAL);
121 			break;
122 		}
123 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
124 		struct arch_timer *timer = to_arch_timer(clk);
125 		switch (reg) {
126 		case ARCH_TIMER_REG_CTRL:
127 			val = readl_relaxed(timer->base + CNTV_CTL);
128 			break;
129 		case ARCH_TIMER_REG_TVAL:
130 			val = readl_relaxed(timer->base + CNTV_TVAL);
131 			break;
132 		}
133 	} else {
134 		val = arch_timer_reg_read_cp15(access, reg);
135 	}
136 
137 	return val;
138 }
139 
timer_handler(const int access,struct clock_event_device * evt)140 static __always_inline irqreturn_t timer_handler(const int access,
141 					struct clock_event_device *evt)
142 {
143 	unsigned long ctrl;
144 
145 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
147 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149 		evt->event_handler(evt);
150 		return IRQ_HANDLED;
151 	}
152 
153 	return IRQ_NONE;
154 }
155 
arch_timer_handler_virt(int irq,void * dev_id)156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
157 {
158 	struct clock_event_device *evt = dev_id;
159 
160 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
161 }
162 
arch_timer_handler_phys(int irq,void * dev_id)163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
164 {
165 	struct clock_event_device *evt = dev_id;
166 
167 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
168 }
169 
arch_timer_handler_phys_mem(int irq,void * dev_id)170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
171 {
172 	struct clock_event_device *evt = dev_id;
173 
174 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
175 }
176 
arch_timer_handler_virt_mem(int irq,void * dev_id)177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
178 {
179 	struct clock_event_device *evt = dev_id;
180 
181 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
182 }
183 
timer_shutdown(const int access,struct clock_event_device * clk)184 static __always_inline int timer_shutdown(const int access,
185 					  struct clock_event_device *clk)
186 {
187 	unsigned long ctrl;
188 
189 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192 
193 	return 0;
194 }
195 
arch_timer_shutdown_virt(struct clock_event_device * clk)196 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
197 {
198 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
199 }
200 
arch_timer_shutdown_phys(struct clock_event_device * clk)201 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
202 {
203 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
204 }
205 
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)206 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
207 {
208 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
209 }
210 
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)211 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
212 {
213 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
214 }
215 
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)216 static __always_inline void set_next_event(const int access, unsigned long evt,
217 					   struct clock_event_device *clk)
218 {
219 	unsigned long ctrl;
220 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
221 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
222 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
223 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
224 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
225 }
226 
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)227 static int arch_timer_set_next_event_virt(unsigned long evt,
228 					  struct clock_event_device *clk)
229 {
230 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
231 	return 0;
232 }
233 
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)234 static int arch_timer_set_next_event_phys(unsigned long evt,
235 					  struct clock_event_device *clk)
236 {
237 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
238 	return 0;
239 }
240 
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)241 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
242 					      struct clock_event_device *clk)
243 {
244 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
245 	return 0;
246 }
247 
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)248 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
249 					      struct clock_event_device *clk)
250 {
251 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
252 	return 0;
253 }
254 
__arch_timer_setup(unsigned type,struct clock_event_device * clk)255 static void __arch_timer_setup(unsigned type,
256 			       struct clock_event_device *clk)
257 {
258 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
259 
260 	if (type == ARCH_CP15_TIMER) {
261 		if (arch_timer_c3stop)
262 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
263 		clk->name = "arch_sys_timer";
264 		clk->rating = 450;
265 		clk->cpumask = cpumask_of(smp_processor_id());
266 		if (arch_timer_use_virtual) {
267 			clk->irq = arch_timer_ppi[VIRT_PPI];
268 			clk->set_state_shutdown = arch_timer_shutdown_virt;
269 			clk->set_next_event = arch_timer_set_next_event_virt;
270 		} else {
271 			clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
272 			clk->set_state_shutdown = arch_timer_shutdown_phys;
273 			clk->set_next_event = arch_timer_set_next_event_phys;
274 		}
275 	} else {
276 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
277 		clk->name = "arch_mem_timer";
278 		clk->rating = 400;
279 		clk->cpumask = cpu_all_mask;
280 		if (arch_timer_mem_use_virtual) {
281 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
282 			clk->set_next_event =
283 				arch_timer_set_next_event_virt_mem;
284 		} else {
285 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
286 			clk->set_next_event =
287 				arch_timer_set_next_event_phys_mem;
288 		}
289 	}
290 
291 	clk->set_state_shutdown(clk);
292 
293 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
294 }
295 
arch_timer_evtstrm_enable(int divider)296 static void arch_timer_evtstrm_enable(int divider)
297 {
298 	u32 cntkctl = arch_timer_get_cntkctl();
299 
300 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
301 	/* Set the divider and enable virtual event stream */
302 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
303 			| ARCH_TIMER_VIRT_EVT_EN;
304 	arch_timer_set_cntkctl(cntkctl);
305 	elf_hwcap |= HWCAP_EVTSTRM;
306 #ifdef CONFIG_COMPAT
307 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
308 #endif
309 }
310 
arch_timer_configure_evtstream(void)311 static void arch_timer_configure_evtstream(void)
312 {
313 	int evt_stream_div, lsb;
314 
315 	/*
316 	 * As the event stream can at most be generated at half the frequency
317 	 * of the counter, use half the frequency when computing the divider.
318 	 */
319 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
320 
321 	/*
322 	 * Find the closest power of two to the divisor. If the adjacent bit
323 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
324 	 */
325 	lsb = fls(evt_stream_div) - 1;
326 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
327 		lsb++;
328 
329 	/* enable event stream */
330 	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
331 }
332 
arch_counter_set_user_access(void)333 static void arch_counter_set_user_access(void)
334 {
335 	u32 cntkctl = arch_timer_get_cntkctl();
336 
337 	/* Disable user access to the timers and the physical counter */
338 	/* Also disable virtual event stream */
339 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
340 			| ARCH_TIMER_USR_VT_ACCESS_EN
341 			| ARCH_TIMER_VIRT_EVT_EN
342 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
343 
344 	/* Enable user access to the virtual counter */
345 	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_VCT_ACCESS))
346 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
347 	else
348 		cntkctl &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
349 
350 	arch_timer_set_cntkctl(cntkctl);
351 }
352 
arch_timer_setup(struct clock_event_device * clk)353 static int arch_timer_setup(struct clock_event_device *clk)
354 {
355 	__arch_timer_setup(ARCH_CP15_TIMER, clk);
356 
357 	if (arch_timer_use_virtual)
358 		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
359 	else {
360 		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
361 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
362 			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
363 	}
364 
365 	arch_counter_set_user_access();
366 	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
367 		arch_timer_configure_evtstream();
368 
369 	return 0;
370 }
371 
372 static void
arch_timer_detect_rate(void __iomem * cntbase,struct device_node * np)373 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
374 {
375 	/* Who has more than one independent system counter? */
376 	if (arch_timer_rate)
377 		return;
378 
379 	/*
380 	 * Try to determine the frequency from the device tree or CNTFRQ,
381 	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
382 	 */
383 	if (!acpi_disabled ||
384 	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
385 		if (cntbase)
386 			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
387 		else
388 			arch_timer_rate = arch_timer_get_cntfrq();
389 	}
390 
391 	/* Check the timer frequency. */
392 	if (arch_timer_rate == 0)
393 		pr_warn("Architected timer frequency not available\n");
394 }
395 
arch_timer_banner(unsigned type)396 static void arch_timer_banner(unsigned type)
397 {
398 	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
399 		     type & ARCH_CP15_TIMER ? "cp15" : "",
400 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
401 		     type & ARCH_MEM_TIMER ? "mmio" : "",
402 		     (unsigned long)arch_timer_rate / 1000000,
403 		     (unsigned long)(arch_timer_rate / 10000) % 100,
404 		     type & ARCH_CP15_TIMER ?
405 			arch_timer_use_virtual ? "virt" : "phys" :
406 			"",
407 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
408 		     type & ARCH_MEM_TIMER ?
409 			arch_timer_mem_use_virtual ? "virt" : "phys" :
410 			"");
411 }
412 
arch_timer_get_rate(void)413 u32 arch_timer_get_rate(void)
414 {
415 	return arch_timer_rate;
416 }
417 
arch_counter_get_cntvct_mem(void)418 static u64 arch_counter_get_cntvct_mem(void)
419 {
420 	u32 vct_lo, vct_hi, tmp_hi;
421 
422 	do {
423 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
424 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
425 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
426 	} while (vct_hi != tmp_hi);
427 
428 	return ((u64) vct_hi << 32) | vct_lo;
429 }
430 
431 /*
432  * Default to cp15 based access because arm64 uses this function for
433  * sched_clock() before DT is probed and the cp15 method is guaranteed
434  * to exist on arm64. arm doesn't use this before DT is probed so even
435  * if we don't have the cp15 accessors we won't have a problem.
436  */
437 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
438 
arch_counter_read(struct clocksource * cs)439 static cycle_t arch_counter_read(struct clocksource *cs)
440 {
441 	return arch_timer_read_counter();
442 }
443 
arch_counter_read_cc(const struct cyclecounter * cc)444 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
445 {
446 	return arch_timer_read_counter();
447 }
448 
449 static struct clocksource clocksource_counter = {
450 	.name	= "arch_sys_counter",
451 	.rating	= 400,
452 	.read	= arch_counter_read,
453 	.mask	= CLOCKSOURCE_MASK(56),
454 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
455 };
456 
457 static struct cyclecounter cyclecounter = {
458 	.read	= arch_counter_read_cc,
459 	.mask	= CLOCKSOURCE_MASK(56),
460 };
461 
462 static struct timecounter timecounter;
463 
arch_timer_get_timecounter(void)464 struct timecounter *arch_timer_get_timecounter(void)
465 {
466 	return &timecounter;
467 }
468 
arch_counter_register(unsigned type)469 static void __init arch_counter_register(unsigned type)
470 {
471 	u64 start_count;
472 
473 	/* Register the CP15 based counter if we have one */
474 	if (type & ARCH_CP15_TIMER) {
475 		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
476 			arch_timer_read_counter = arch_counter_get_cntvct;
477 		else
478 			arch_timer_read_counter = arch_counter_get_cntpct;
479 	} else {
480 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
481 
482 		/* If the clocksource name is "arch_sys_counter" the
483 		 * VDSO will attempt to read the CP15-based counter.
484 		 * Ensure this does not happen when CP15-based
485 		 * counter is not available.
486 		 */
487 		clocksource_counter.name = "arch_mem_counter";
488 	}
489 
490 	start_count = arch_timer_read_counter();
491 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
492 	cyclecounter.mult = clocksource_counter.mult;
493 	cyclecounter.shift = clocksource_counter.shift;
494 	timecounter_init(&timecounter, &cyclecounter, start_count);
495 
496 	/* 56 bits minimum, so we assume worst case rollover */
497 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
498 }
499 
arch_timer_stop(struct clock_event_device * clk)500 static void arch_timer_stop(struct clock_event_device *clk)
501 {
502 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
503 		 clk->irq, smp_processor_id());
504 
505 	if (arch_timer_use_virtual)
506 		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
507 	else {
508 		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
509 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
510 			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
511 	}
512 
513 	clk->set_state_shutdown(clk);
514 }
515 
arch_timer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)516 static int arch_timer_cpu_notify(struct notifier_block *self,
517 					   unsigned long action, void *hcpu)
518 {
519 	/*
520 	 * Grab cpu pointer in each case to avoid spurious
521 	 * preemptible warnings
522 	 */
523 	switch (action & ~CPU_TASKS_FROZEN) {
524 	case CPU_STARTING:
525 		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
526 		break;
527 	case CPU_DYING:
528 		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
529 		break;
530 	}
531 
532 	return NOTIFY_OK;
533 }
534 
535 static struct notifier_block arch_timer_cpu_nb = {
536 	.notifier_call = arch_timer_cpu_notify,
537 };
538 
539 #ifdef CONFIG_CPU_PM
540 static unsigned int saved_cntkctl;
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)541 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
542 				    unsigned long action, void *hcpu)
543 {
544 	if (action == CPU_PM_ENTER)
545 		saved_cntkctl = arch_timer_get_cntkctl();
546 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
547 		arch_timer_set_cntkctl(saved_cntkctl);
548 	return NOTIFY_OK;
549 }
550 
551 static struct notifier_block arch_timer_cpu_pm_notifier = {
552 	.notifier_call = arch_timer_cpu_pm_notify,
553 };
554 
arch_timer_cpu_pm_init(void)555 static int __init arch_timer_cpu_pm_init(void)
556 {
557 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
558 }
559 #else
arch_timer_cpu_pm_init(void)560 static int __init arch_timer_cpu_pm_init(void)
561 {
562 	return 0;
563 }
564 #endif
565 
arch_timer_register(void)566 static int __init arch_timer_register(void)
567 {
568 	int err;
569 	int ppi;
570 
571 	arch_timer_evt = alloc_percpu(struct clock_event_device);
572 	if (!arch_timer_evt) {
573 		err = -ENOMEM;
574 		goto out;
575 	}
576 
577 	if (arch_timer_use_virtual) {
578 		ppi = arch_timer_ppi[VIRT_PPI];
579 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
580 					 "arch_timer", arch_timer_evt);
581 	} else {
582 		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
583 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
584 					 "arch_timer", arch_timer_evt);
585 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
586 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
587 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
588 						 "arch_timer", arch_timer_evt);
589 			if (err)
590 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
591 						arch_timer_evt);
592 		}
593 	}
594 
595 	if (err) {
596 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
597 		       ppi, err);
598 		goto out_free;
599 	}
600 
601 	err = register_cpu_notifier(&arch_timer_cpu_nb);
602 	if (err)
603 		goto out_free_irq;
604 
605 	err = arch_timer_cpu_pm_init();
606 	if (err)
607 		goto out_unreg_notify;
608 
609 	/* Immediately configure the timer on the boot CPU */
610 	arch_timer_setup(this_cpu_ptr(arch_timer_evt));
611 
612 	return 0;
613 
614 out_unreg_notify:
615 	unregister_cpu_notifier(&arch_timer_cpu_nb);
616 out_free_irq:
617 	if (arch_timer_use_virtual)
618 		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
619 	else {
620 		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
621 				arch_timer_evt);
622 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
623 			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
624 					arch_timer_evt);
625 	}
626 
627 out_free:
628 	free_percpu(arch_timer_evt);
629 out:
630 	return err;
631 }
632 
arch_timer_mem_register(void __iomem * base,unsigned int irq)633 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
634 {
635 	int ret;
636 	irq_handler_t func;
637 	struct arch_timer *t;
638 
639 	t = kzalloc(sizeof(*t), GFP_KERNEL);
640 	if (!t)
641 		return -ENOMEM;
642 
643 	t->base = base;
644 	t->evt.irq = irq;
645 	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
646 
647 	if (arch_timer_mem_use_virtual)
648 		func = arch_timer_handler_virt_mem;
649 	else
650 		func = arch_timer_handler_phys_mem;
651 
652 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
653 	if (ret) {
654 		pr_err("arch_timer: Failed to request mem timer irq\n");
655 		kfree(t);
656 	}
657 
658 	return ret;
659 }
660 
661 static const struct of_device_id arch_timer_of_match[] __initconst = {
662 	{ .compatible   = "arm,armv7-timer",    },
663 	{ .compatible   = "arm,armv8-timer",    },
664 	{},
665 };
666 
667 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
668 	{ .compatible   = "arm,armv7-timer-mem", },
669 	{},
670 };
671 
672 static bool __init
arch_timer_needs_probing(int type,const struct of_device_id * matches)673 arch_timer_needs_probing(int type, const struct of_device_id *matches)
674 {
675 	struct device_node *dn;
676 	bool needs_probing = false;
677 
678 	dn = of_find_matching_node(NULL, matches);
679 	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
680 		needs_probing = true;
681 	of_node_put(dn);
682 
683 	return needs_probing;
684 }
685 
arch_timer_common_init(void)686 static void __init arch_timer_common_init(void)
687 {
688 	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
689 
690 	/* Wait until both nodes are probed if we have two timers */
691 	if ((arch_timers_present & mask) != mask) {
692 		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
693 			return;
694 		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
695 			return;
696 	}
697 
698 	arch_timer_banner(arch_timers_present);
699 	arch_counter_register(arch_timers_present);
700 	arch_timer_arch_init();
701 }
702 
arch_timer_init(void)703 static void __init arch_timer_init(void)
704 {
705 	/*
706 	 * If HYP mode is available, we know that the physical timer
707 	 * has been configured to be accessible from PL1. Use it, so
708 	 * that a guest can use the virtual timer instead.
709 	 *
710 	 * If no interrupt provided for virtual timer, we'll have to
711 	 * stick to the physical timer. It'd better be accessible...
712 	 */
713 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
714 		arch_timer_use_virtual = false;
715 
716 		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
717 		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
718 			pr_warn("arch_timer: No interrupt available, giving up\n");
719 			return;
720 		}
721 	}
722 
723 	arch_timer_register();
724 	arch_timer_common_init();
725 }
726 
arch_timer_of_init(struct device_node * np)727 static void __init arch_timer_of_init(struct device_node *np)
728 {
729 	int i;
730 
731 	if (arch_timers_present & ARCH_CP15_TIMER) {
732 		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
733 		return;
734 	}
735 
736 	arch_timers_present |= ARCH_CP15_TIMER;
737 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
738 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
739 
740 	arch_timer_detect_rate(NULL, np);
741 
742 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
743 
744 	/*
745 	 * If we cannot rely on firmware initializing the timer registers then
746 	 * we should use the physical timers instead.
747 	 */
748 	if (IS_ENABLED(CONFIG_ARM) &&
749 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
750 			arch_timer_use_virtual = false;
751 
752 	arch_timer_init();
753 }
754 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
755 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
756 
arch_timer_mem_init(struct device_node * np)757 static void __init arch_timer_mem_init(struct device_node *np)
758 {
759 	struct device_node *frame, *best_frame = NULL;
760 	void __iomem *cntctlbase, *base;
761 	unsigned int irq;
762 	u32 cnttidr;
763 
764 	arch_timers_present |= ARCH_MEM_TIMER;
765 	cntctlbase = of_iomap(np, 0);
766 	if (!cntctlbase) {
767 		pr_err("arch_timer: Can't find CNTCTLBase\n");
768 		return;
769 	}
770 
771 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
772 	iounmap(cntctlbase);
773 
774 	/*
775 	 * Try to find a virtual capable frame. Otherwise fall back to a
776 	 * physical capable frame.
777 	 */
778 	for_each_available_child_of_node(np, frame) {
779 		int n;
780 
781 		if (of_property_read_u32(frame, "frame-number", &n)) {
782 			pr_err("arch_timer: Missing frame-number\n");
783 			of_node_put(best_frame);
784 			of_node_put(frame);
785 			return;
786 		}
787 
788 		if (cnttidr & CNTTIDR_VIRT(n)) {
789 			of_node_put(best_frame);
790 			best_frame = frame;
791 			arch_timer_mem_use_virtual = true;
792 			break;
793 		}
794 		of_node_put(best_frame);
795 		best_frame = of_node_get(frame);
796 	}
797 
798 	base = arch_counter_base = of_iomap(best_frame, 0);
799 	if (!base) {
800 		pr_err("arch_timer: Can't map frame's registers\n");
801 		of_node_put(best_frame);
802 		return;
803 	}
804 
805 	if (arch_timer_mem_use_virtual)
806 		irq = irq_of_parse_and_map(best_frame, 1);
807 	else
808 		irq = irq_of_parse_and_map(best_frame, 0);
809 	of_node_put(best_frame);
810 	if (!irq) {
811 		pr_err("arch_timer: Frame missing %s irq",
812 		       arch_timer_mem_use_virtual ? "virt" : "phys");
813 		return;
814 	}
815 
816 	arch_timer_detect_rate(base, np);
817 	arch_timer_mem_register(base, irq);
818 	arch_timer_common_init();
819 }
820 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
821 		       arch_timer_mem_init);
822 
823 #ifdef CONFIG_ACPI
map_generic_timer_interrupt(u32 interrupt,u32 flags)824 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
825 {
826 	int trigger, polarity;
827 
828 	if (!interrupt)
829 		return 0;
830 
831 	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
832 			: ACPI_LEVEL_SENSITIVE;
833 
834 	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
835 			: ACPI_ACTIVE_HIGH;
836 
837 	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
838 }
839 
840 /* Initialize per-processor generic timer */
arch_timer_acpi_init(struct acpi_table_header * table)841 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
842 {
843 	struct acpi_table_gtdt *gtdt;
844 
845 	if (arch_timers_present & ARCH_CP15_TIMER) {
846 		pr_warn("arch_timer: already initialized, skipping\n");
847 		return -EINVAL;
848 	}
849 
850 	gtdt = container_of(table, struct acpi_table_gtdt, header);
851 
852 	arch_timers_present |= ARCH_CP15_TIMER;
853 
854 	arch_timer_ppi[PHYS_SECURE_PPI] =
855 		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
856 		gtdt->secure_el1_flags);
857 
858 	arch_timer_ppi[PHYS_NONSECURE_PPI] =
859 		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
860 		gtdt->non_secure_el1_flags);
861 
862 	arch_timer_ppi[VIRT_PPI] =
863 		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
864 		gtdt->virtual_timer_flags);
865 
866 	arch_timer_ppi[HYP_PPI] =
867 		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
868 		gtdt->non_secure_el2_flags);
869 
870 	/* Get the frequency from CNTFRQ */
871 	arch_timer_detect_rate(NULL, NULL);
872 
873 	/* Always-on capability */
874 	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
875 
876 	arch_timer_init();
877 	return 0;
878 }
879 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
880 #endif
881