• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file contains driver for the Cadence Triple Timer Counter Rev 06
3  *
4  *  Copyright (C) 2011-2013 Xilinx
5  *
6  * based on arch/mips/kernel/time.c timer driver
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/clk.h>
19 #include <linux/interrupt.h>
20 #include <linux/clockchips.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 
26 /*
27  * This driver configures the 2 16/32-bit count-up timers as follows:
28  *
29  * T1: Timer 1, clocksource for generic timekeeping
30  * T2: Timer 2, clockevent source for hrtimers
31  * T3: Timer 3, <unused>
32  *
33  * The input frequency to the timer module for emulation is 2.5MHz which is
34  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
35  * the timers are clocked at 78.125KHz (12.8 us resolution).
36 
37  * The input frequency to the timer module in silicon is configurable and
38  * obtained from device tree. The pre-scaler of 32 is used.
39  */
40 
41 /*
42  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
43  * and use same offsets for Timer 2
44  */
45 #define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
46 #define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
47 #define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
48 #define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
49 #define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
50 #define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
51 
52 #define TTC_CNT_CNTRL_DISABLE_MASK	0x1
53 
54 #define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
55 #define TTC_CLK_CNTRL_PSV_MASK		0x1e
56 #define TTC_CLK_CNTRL_PSV_SHIFT		1
57 
58 /*
59  * Setup the timers to use pre-scaling, using a fixed value for now that will
60  * work across most input frequency, but it may need to be more dynamic
61  */
62 #define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
63 #define PRESCALE		2048	/* The exponent must match this */
64 #define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
65 #define CLK_CNTRL_PRESCALE_EN	1
66 #define CNT_CNTRL_RESET		(1 << 4)
67 
68 #define MAX_F_ERR 50
69 
70 /**
71  * struct ttc_timer - This definition defines local timer structure
72  *
73  * @base_addr:	Base address of timer
74  * @freq:	Timer input clock frequency
75  * @clk:	Associated clock source
76  * @clk_rate_change_nb	Notifier block for clock rate changes
77  */
78 struct ttc_timer {
79 	void __iomem *base_addr;
80 	unsigned long freq;
81 	struct clk *clk;
82 	struct notifier_block clk_rate_change_nb;
83 };
84 
85 #define to_ttc_timer(x) \
86 		container_of(x, struct ttc_timer, clk_rate_change_nb)
87 
88 struct ttc_timer_clocksource {
89 	u32			scale_clk_ctrl_reg_old;
90 	u32			scale_clk_ctrl_reg_new;
91 	struct ttc_timer	ttc;
92 	struct clocksource	cs;
93 };
94 
95 #define to_ttc_timer_clksrc(x) \
96 		container_of(x, struct ttc_timer_clocksource, cs)
97 
98 struct ttc_timer_clockevent {
99 	struct ttc_timer		ttc;
100 	struct clock_event_device	ce;
101 };
102 
103 #define to_ttc_timer_clkevent(x) \
104 		container_of(x, struct ttc_timer_clockevent, ce)
105 
106 static void __iomem *ttc_sched_clock_val_reg;
107 
108 /**
109  * ttc_set_interval - Set the timer interval value
110  *
111  * @timer:	Pointer to the timer instance
112  * @cycles:	Timer interval ticks
113  **/
ttc_set_interval(struct ttc_timer * timer,unsigned long cycles)114 static void ttc_set_interval(struct ttc_timer *timer,
115 					unsigned long cycles)
116 {
117 	u32 ctrl_reg;
118 
119 	/* Disable the counter, set the counter value  and re-enable counter */
120 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
121 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
122 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
123 
124 	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
125 
126 	/*
127 	 * Reset the counter (0x10) so that it starts from 0, one-shot
128 	 * mode makes this needed for timing to be right.
129 	 */
130 	ctrl_reg |= CNT_CNTRL_RESET;
131 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
132 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
133 }
134 
135 /**
136  * ttc_clock_event_interrupt - Clock event timer interrupt handler
137  *
138  * @irq:	IRQ number of the Timer
139  * @dev_id:	void pointer to the ttc_timer instance
140  *
141  * returns: Always IRQ_HANDLED - success
142  **/
ttc_clock_event_interrupt(int irq,void * dev_id)143 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
144 {
145 	struct ttc_timer_clockevent *ttce = dev_id;
146 	struct ttc_timer *timer = &ttce->ttc;
147 
148 	/* Acknowledge the interrupt and call event handler */
149 	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
150 
151 	ttce->ce.event_handler(&ttce->ce);
152 
153 	return IRQ_HANDLED;
154 }
155 
156 /**
157  * __ttc_clocksource_read - Reads the timer counter register
158  *
159  * returns: Current timer counter register value
160  **/
__ttc_clocksource_read(struct clocksource * cs)161 static cycle_t __ttc_clocksource_read(struct clocksource *cs)
162 {
163 	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
164 
165 	return (cycle_t)readl_relaxed(timer->base_addr +
166 				TTC_COUNT_VAL_OFFSET);
167 }
168 
ttc_sched_clock_read(void)169 static u64 notrace ttc_sched_clock_read(void)
170 {
171 	return readl_relaxed(ttc_sched_clock_val_reg);
172 }
173 
174 /**
175  * ttc_set_next_event - Sets the time interval for next event
176  *
177  * @cycles:	Timer interval ticks
178  * @evt:	Address of clock event instance
179  *
180  * returns: Always 0 - success
181  **/
ttc_set_next_event(unsigned long cycles,struct clock_event_device * evt)182 static int ttc_set_next_event(unsigned long cycles,
183 					struct clock_event_device *evt)
184 {
185 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
186 	struct ttc_timer *timer = &ttce->ttc;
187 
188 	ttc_set_interval(timer, cycles);
189 	return 0;
190 }
191 
192 /**
193  * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
194  *
195  * @evt:	Address of clock event instance
196  **/
ttc_shutdown(struct clock_event_device * evt)197 static int ttc_shutdown(struct clock_event_device *evt)
198 {
199 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
200 	struct ttc_timer *timer = &ttce->ttc;
201 	u32 ctrl_reg;
202 
203 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
204 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
205 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
206 	return 0;
207 }
208 
ttc_set_periodic(struct clock_event_device * evt)209 static int ttc_set_periodic(struct clock_event_device *evt)
210 {
211 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
212 	struct ttc_timer *timer = &ttce->ttc;
213 
214 	ttc_set_interval(timer,
215 			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
216 	return 0;
217 }
218 
ttc_resume(struct clock_event_device * evt)219 static int ttc_resume(struct clock_event_device *evt)
220 {
221 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
222 	struct ttc_timer *timer = &ttce->ttc;
223 	u32 ctrl_reg;
224 
225 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
227 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
228 	return 0;
229 }
230 
ttc_rate_change_clocksource_cb(struct notifier_block * nb,unsigned long event,void * data)231 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
232 		unsigned long event, void *data)
233 {
234 	struct clk_notifier_data *ndata = data;
235 	struct ttc_timer *ttc = to_ttc_timer(nb);
236 	struct ttc_timer_clocksource *ttccs = container_of(ttc,
237 			struct ttc_timer_clocksource, ttc);
238 
239 	switch (event) {
240 	case PRE_RATE_CHANGE:
241 	{
242 		u32 psv;
243 		unsigned long factor, rate_low, rate_high;
244 
245 		if (ndata->new_rate > ndata->old_rate) {
246 			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
247 					ndata->old_rate);
248 			rate_low = ndata->old_rate;
249 			rate_high = ndata->new_rate;
250 		} else {
251 			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
252 					ndata->new_rate);
253 			rate_low = ndata->new_rate;
254 			rate_high = ndata->old_rate;
255 		}
256 
257 		if (!is_power_of_2(factor))
258 				return NOTIFY_BAD;
259 
260 		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
261 			return NOTIFY_BAD;
262 
263 		factor = __ilog2_u32(factor);
264 
265 		/*
266 		 * store timer clock ctrl register so we can restore it in case
267 		 * of an abort.
268 		 */
269 		ttccs->scale_clk_ctrl_reg_old =
270 			readl_relaxed(ttccs->ttc.base_addr +
271 			TTC_CLK_CNTRL_OFFSET);
272 
273 		psv = (ttccs->scale_clk_ctrl_reg_old &
274 				TTC_CLK_CNTRL_PSV_MASK) >>
275 				TTC_CLK_CNTRL_PSV_SHIFT;
276 		if (ndata->new_rate < ndata->old_rate)
277 			psv -= factor;
278 		else
279 			psv += factor;
280 
281 		/* prescaler within legal range? */
282 		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
283 			return NOTIFY_BAD;
284 
285 		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
286 			~TTC_CLK_CNTRL_PSV_MASK;
287 		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
288 
289 
290 		/* scale down: adjust divider in post-change notification */
291 		if (ndata->new_rate < ndata->old_rate)
292 			return NOTIFY_DONE;
293 
294 		/* scale up: adjust divider now - before frequency change */
295 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
296 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
297 		break;
298 	}
299 	case POST_RATE_CHANGE:
300 		/* scale up: pre-change notification did the adjustment */
301 		if (ndata->new_rate > ndata->old_rate)
302 			return NOTIFY_OK;
303 
304 		/* scale down: adjust divider now - after frequency change */
305 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
306 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
307 		break;
308 
309 	case ABORT_RATE_CHANGE:
310 		/* we have to undo the adjustment in case we scale up */
311 		if (ndata->new_rate < ndata->old_rate)
312 			return NOTIFY_OK;
313 
314 		/* restore original register value */
315 		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
316 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
317 		/* fall through */
318 	default:
319 		return NOTIFY_DONE;
320 	}
321 
322 	return NOTIFY_DONE;
323 }
324 
ttc_setup_clocksource(struct clk * clk,void __iomem * base,u32 timer_width)325 static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
326 					 u32 timer_width)
327 {
328 	struct ttc_timer_clocksource *ttccs;
329 	int err;
330 
331 	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
332 	if (WARN_ON(!ttccs))
333 		return;
334 
335 	ttccs->ttc.clk = clk;
336 
337 	err = clk_prepare_enable(ttccs->ttc.clk);
338 	if (WARN_ON(err)) {
339 		kfree(ttccs);
340 		return;
341 	}
342 
343 	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
344 
345 	ttccs->ttc.clk_rate_change_nb.notifier_call =
346 		ttc_rate_change_clocksource_cb;
347 	ttccs->ttc.clk_rate_change_nb.next = NULL;
348 	if (clk_notifier_register(ttccs->ttc.clk,
349 				&ttccs->ttc.clk_rate_change_nb))
350 		pr_warn("Unable to register clock notifier.\n");
351 
352 	ttccs->ttc.base_addr = base;
353 	ttccs->cs.name = "ttc_clocksource";
354 	ttccs->cs.rating = 200;
355 	ttccs->cs.read = __ttc_clocksource_read;
356 	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
357 	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
358 
359 	/*
360 	 * Setup the clock source counter to be an incrementing counter
361 	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
362 	 * it by 32 also. Let it start running now.
363 	 */
364 	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
365 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
366 		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
367 	writel_relaxed(CNT_CNTRL_RESET,
368 		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
369 
370 	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
371 	if (WARN_ON(err)) {
372 		kfree(ttccs);
373 		return;
374 	}
375 
376 	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
377 	sched_clock_register(ttc_sched_clock_read, timer_width,
378 			     ttccs->ttc.freq / PRESCALE);
379 }
380 
ttc_rate_change_clockevent_cb(struct notifier_block * nb,unsigned long event,void * data)381 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
382 		unsigned long event, void *data)
383 {
384 	struct clk_notifier_data *ndata = data;
385 	struct ttc_timer *ttc = to_ttc_timer(nb);
386 	struct ttc_timer_clockevent *ttcce = container_of(ttc,
387 			struct ttc_timer_clockevent, ttc);
388 
389 	switch (event) {
390 	case POST_RATE_CHANGE:
391 		/* update cached frequency */
392 		ttc->freq = ndata->new_rate;
393 
394 		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
395 
396 		/* fall through */
397 	case PRE_RATE_CHANGE:
398 	case ABORT_RATE_CHANGE:
399 	default:
400 		return NOTIFY_DONE;
401 	}
402 }
403 
ttc_setup_clockevent(struct clk * clk,void __iomem * base,u32 irq)404 static void __init ttc_setup_clockevent(struct clk *clk,
405 						void __iomem *base, u32 irq)
406 {
407 	struct ttc_timer_clockevent *ttcce;
408 	int err;
409 
410 	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
411 	if (WARN_ON(!ttcce))
412 		return;
413 
414 	ttcce->ttc.clk = clk;
415 
416 	err = clk_prepare_enable(ttcce->ttc.clk);
417 	if (WARN_ON(err)) {
418 		kfree(ttcce);
419 		return;
420 	}
421 
422 	ttcce->ttc.clk_rate_change_nb.notifier_call =
423 		ttc_rate_change_clockevent_cb;
424 	ttcce->ttc.clk_rate_change_nb.next = NULL;
425 	if (clk_notifier_register(ttcce->ttc.clk,
426 				&ttcce->ttc.clk_rate_change_nb))
427 		pr_warn("Unable to register clock notifier.\n");
428 	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
429 
430 	ttcce->ttc.base_addr = base;
431 	ttcce->ce.name = "ttc_clockevent";
432 	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
433 	ttcce->ce.set_next_event = ttc_set_next_event;
434 	ttcce->ce.set_state_shutdown = ttc_shutdown;
435 	ttcce->ce.set_state_periodic = ttc_set_periodic;
436 	ttcce->ce.set_state_oneshot = ttc_shutdown;
437 	ttcce->ce.tick_resume = ttc_resume;
438 	ttcce->ce.rating = 200;
439 	ttcce->ce.irq = irq;
440 	ttcce->ce.cpumask = cpu_possible_mask;
441 
442 	/*
443 	 * Setup the clock event timer to be an interval timer which
444 	 * is prescaled by 32 using the interval interrupt. Leave it
445 	 * disabled for now.
446 	 */
447 	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
448 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
449 		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
450 	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
451 
452 	err = request_irq(irq, ttc_clock_event_interrupt,
453 			  IRQF_TIMER, ttcce->ce.name, ttcce);
454 	if (WARN_ON(err)) {
455 		kfree(ttcce);
456 		return;
457 	}
458 
459 	clockevents_config_and_register(&ttcce->ce,
460 			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
461 }
462 
463 /**
464  * ttc_timer_init - Initialize the timer
465  *
466  * Initializes the timer hardware and register the clock source and clock event
467  * timers with Linux kernal timer framework
468  */
ttc_timer_init(struct device_node * timer)469 static void __init ttc_timer_init(struct device_node *timer)
470 {
471 	unsigned int irq;
472 	void __iomem *timer_baseaddr;
473 	struct clk *clk_cs, *clk_ce;
474 	static int initialized;
475 	int clksel;
476 	u32 timer_width = 16;
477 
478 	if (initialized)
479 		return;
480 
481 	initialized = 1;
482 
483 	/*
484 	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
485 	 * and use it. Note that the event timer uses the interrupt and it's the
486 	 * 2nd TTC hence the irq_of_parse_and_map(,1)
487 	 */
488 	timer_baseaddr = of_iomap(timer, 0);
489 	if (!timer_baseaddr) {
490 		pr_err("ERROR: invalid timer base address\n");
491 		BUG();
492 	}
493 
494 	irq = irq_of_parse_and_map(timer, 1);
495 	if (irq <= 0) {
496 		pr_err("ERROR: invalid interrupt number\n");
497 		BUG();
498 	}
499 
500 	of_property_read_u32(timer, "timer-width", &timer_width);
501 
502 	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
503 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
504 	clk_cs = of_clk_get(timer, clksel);
505 	if (IS_ERR(clk_cs)) {
506 		pr_err("ERROR: timer input clock not found\n");
507 		BUG();
508 	}
509 
510 	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
511 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
512 	clk_ce = of_clk_get(timer, clksel);
513 	if (IS_ERR(clk_ce)) {
514 		pr_err("ERROR: timer input clock not found\n");
515 		BUG();
516 	}
517 
518 	ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
519 	ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
520 
521 	pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
522 }
523 
524 CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);
525