1 /*
2 * Copyright (c) 2013 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Amit Daniel Kachhap <amit.daniel@samsung.com>
6 *
7 * EXYNOS5440 - CPU frequency scaling support
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/cpufreq.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/pm_opp.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26
27 /* Register definitions */
28 #define XMU_DVFS_CTRL 0x0060
29 #define XMU_PMU_P0_7 0x0064
30 #define XMU_C0_3_PSTATE 0x0090
31 #define XMU_P_LIMIT 0x00a0
32 #define XMU_P_STATUS 0x00a4
33 #define XMU_PMUEVTEN 0x00d0
34 #define XMU_PMUIRQEN 0x00d4
35 #define XMU_PMUIRQ 0x00d8
36
37 /* PMU mask and shift definations */
38 #define P_VALUE_MASK 0x7
39
40 #define XMU_DVFS_CTRL_EN_SHIFT 0
41
42 #define P0_7_CPUCLKDEV_SHIFT 21
43 #define P0_7_CPUCLKDEV_MASK 0x7
44 #define P0_7_ATBCLKDEV_SHIFT 18
45 #define P0_7_ATBCLKDEV_MASK 0x7
46 #define P0_7_CSCLKDEV_SHIFT 15
47 #define P0_7_CSCLKDEV_MASK 0x7
48 #define P0_7_CPUEMA_SHIFT 28
49 #define P0_7_CPUEMA_MASK 0xf
50 #define P0_7_L2EMA_SHIFT 24
51 #define P0_7_L2EMA_MASK 0xf
52 #define P0_7_VDD_SHIFT 8
53 #define P0_7_VDD_MASK 0x7f
54 #define P0_7_FREQ_SHIFT 0
55 #define P0_7_FREQ_MASK 0xff
56
57 #define C0_3_PSTATE_VALID_SHIFT 8
58 #define C0_3_PSTATE_CURR_SHIFT 4
59 #define C0_3_PSTATE_NEW_SHIFT 0
60
61 #define PSTATE_CHANGED_EVTEN_SHIFT 0
62
63 #define PSTATE_CHANGED_IRQEN_SHIFT 0
64
65 #define PSTATE_CHANGED_SHIFT 0
66
67 /* some constant values for clock divider calculation */
68 #define CPU_DIV_FREQ_MAX 500
69 #define CPU_DBG_FREQ_MAX 375
70 #define CPU_ATB_FREQ_MAX 500
71
72 #define PMIC_LOW_VOLT 0x30
73 #define PMIC_HIGH_VOLT 0x28
74
75 #define CPUEMA_HIGH 0x2
76 #define CPUEMA_MID 0x4
77 #define CPUEMA_LOW 0x7
78
79 #define L2EMA_HIGH 0x1
80 #define L2EMA_MID 0x3
81 #define L2EMA_LOW 0x4
82
83 #define DIV_TAB_MAX 2
84 /* frequency unit is 20MHZ */
85 #define FREQ_UNIT 20
86 #define MAX_VOLTAGE 1550000 /* In microvolt */
87 #define VOLTAGE_STEP 12500 /* In microvolt */
88
89 #define CPUFREQ_NAME "exynos5440_dvfs"
90 #define DEF_TRANS_LATENCY 100000
91
92 enum cpufreq_level_index {
93 L0, L1, L2, L3, L4,
94 L5, L6, L7, L8, L9,
95 };
96 #define CPUFREQ_LEVEL_END (L7 + 1)
97
98 struct exynos_dvfs_data {
99 void __iomem *base;
100 struct resource *mem;
101 int irq;
102 struct clk *cpu_clk;
103 unsigned int latency;
104 struct cpufreq_frequency_table *freq_table;
105 unsigned int freq_count;
106 struct device *dev;
107 bool dvfs_enabled;
108 struct work_struct irq_work;
109 };
110
111 static struct exynos_dvfs_data *dvfs_info;
112 static DEFINE_MUTEX(cpufreq_lock);
113 static struct cpufreq_freqs freqs;
114
init_div_table(void)115 static int init_div_table(void)
116 {
117 struct cpufreq_frequency_table *pos, *freq_tbl = dvfs_info->freq_table;
118 unsigned int tmp, clk_div, ema_div, freq, volt_id;
119 struct dev_pm_opp *opp;
120
121 rcu_read_lock();
122 cpufreq_for_each_entry(pos, freq_tbl) {
123 opp = dev_pm_opp_find_freq_exact(dvfs_info->dev,
124 pos->frequency * 1000, true);
125 if (IS_ERR(opp)) {
126 rcu_read_unlock();
127 dev_err(dvfs_info->dev,
128 "failed to find valid OPP for %u KHZ\n",
129 pos->frequency);
130 return PTR_ERR(opp);
131 }
132
133 freq = pos->frequency / 1000; /* In MHZ */
134 clk_div = ((freq / CPU_DIV_FREQ_MAX) & P0_7_CPUCLKDEV_MASK)
135 << P0_7_CPUCLKDEV_SHIFT;
136 clk_div |= ((freq / CPU_ATB_FREQ_MAX) & P0_7_ATBCLKDEV_MASK)
137 << P0_7_ATBCLKDEV_SHIFT;
138 clk_div |= ((freq / CPU_DBG_FREQ_MAX) & P0_7_CSCLKDEV_MASK)
139 << P0_7_CSCLKDEV_SHIFT;
140
141 /* Calculate EMA */
142 volt_id = dev_pm_opp_get_voltage(opp);
143 volt_id = (MAX_VOLTAGE - volt_id) / VOLTAGE_STEP;
144 if (volt_id < PMIC_HIGH_VOLT) {
145 ema_div = (CPUEMA_HIGH << P0_7_CPUEMA_SHIFT) |
146 (L2EMA_HIGH << P0_7_L2EMA_SHIFT);
147 } else if (volt_id > PMIC_LOW_VOLT) {
148 ema_div = (CPUEMA_LOW << P0_7_CPUEMA_SHIFT) |
149 (L2EMA_LOW << P0_7_L2EMA_SHIFT);
150 } else {
151 ema_div = (CPUEMA_MID << P0_7_CPUEMA_SHIFT) |
152 (L2EMA_MID << P0_7_L2EMA_SHIFT);
153 }
154
155 tmp = (clk_div | ema_div | (volt_id << P0_7_VDD_SHIFT)
156 | ((freq / FREQ_UNIT) << P0_7_FREQ_SHIFT));
157
158 __raw_writel(tmp, dvfs_info->base + XMU_PMU_P0_7 + 4 *
159 (pos - freq_tbl));
160 }
161
162 rcu_read_unlock();
163 return 0;
164 }
165
exynos_enable_dvfs(unsigned int cur_frequency)166 static void exynos_enable_dvfs(unsigned int cur_frequency)
167 {
168 unsigned int tmp, cpu;
169 struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
170 struct cpufreq_frequency_table *pos;
171 /* Disable DVFS */
172 __raw_writel(0, dvfs_info->base + XMU_DVFS_CTRL);
173
174 /* Enable PSTATE Change Event */
175 tmp = __raw_readl(dvfs_info->base + XMU_PMUEVTEN);
176 tmp |= (1 << PSTATE_CHANGED_EVTEN_SHIFT);
177 __raw_writel(tmp, dvfs_info->base + XMU_PMUEVTEN);
178
179 /* Enable PSTATE Change IRQ */
180 tmp = __raw_readl(dvfs_info->base + XMU_PMUIRQEN);
181 tmp |= (1 << PSTATE_CHANGED_IRQEN_SHIFT);
182 __raw_writel(tmp, dvfs_info->base + XMU_PMUIRQEN);
183
184 /* Set initial performance index */
185 cpufreq_for_each_entry(pos, freq_table)
186 if (pos->frequency == cur_frequency)
187 break;
188
189 if (pos->frequency == CPUFREQ_TABLE_END) {
190 dev_crit(dvfs_info->dev, "Boot up frequency not supported\n");
191 /* Assign the highest frequency */
192 pos = freq_table;
193 cur_frequency = pos->frequency;
194 }
195
196 dev_info(dvfs_info->dev, "Setting dvfs initial frequency = %uKHZ",
197 cur_frequency);
198
199 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) {
200 tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
201 tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT);
202 tmp |= ((pos - freq_table) << C0_3_PSTATE_NEW_SHIFT);
203 __raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
204 }
205
206 /* Enable DVFS */
207 __raw_writel(1 << XMU_DVFS_CTRL_EN_SHIFT,
208 dvfs_info->base + XMU_DVFS_CTRL);
209 }
210
exynos_target(struct cpufreq_policy * policy,unsigned int index)211 static int exynos_target(struct cpufreq_policy *policy, unsigned int index)
212 {
213 unsigned int tmp;
214 int i;
215 struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
216
217 mutex_lock(&cpufreq_lock);
218
219 freqs.old = policy->cur;
220 freqs.new = freq_table[index].frequency;
221
222 cpufreq_freq_transition_begin(policy, &freqs);
223
224 /* Set the target frequency in all C0_3_PSTATE register */
225 for_each_cpu(i, policy->cpus) {
226 tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + i * 4);
227 tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT);
228 tmp |= (index << C0_3_PSTATE_NEW_SHIFT);
229
230 __raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + i * 4);
231 }
232 mutex_unlock(&cpufreq_lock);
233 return 0;
234 }
235
exynos_cpufreq_work(struct work_struct * work)236 static void exynos_cpufreq_work(struct work_struct *work)
237 {
238 unsigned int cur_pstate, index;
239 struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
240 struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
241
242 /* Ensure we can access cpufreq structures */
243 if (unlikely(dvfs_info->dvfs_enabled == false))
244 goto skip_work;
245
246 mutex_lock(&cpufreq_lock);
247 freqs.old = policy->cur;
248
249 cur_pstate = __raw_readl(dvfs_info->base + XMU_P_STATUS);
250 if (cur_pstate >> C0_3_PSTATE_VALID_SHIFT & 0x1)
251 index = (cur_pstate >> C0_3_PSTATE_CURR_SHIFT) & P_VALUE_MASK;
252 else
253 index = (cur_pstate >> C0_3_PSTATE_NEW_SHIFT) & P_VALUE_MASK;
254
255 if (likely(index < dvfs_info->freq_count)) {
256 freqs.new = freq_table[index].frequency;
257 } else {
258 dev_crit(dvfs_info->dev, "New frequency out of range\n");
259 freqs.new = freqs.old;
260 }
261 cpufreq_freq_transition_end(policy, &freqs, 0);
262
263 cpufreq_cpu_put(policy);
264 mutex_unlock(&cpufreq_lock);
265 skip_work:
266 enable_irq(dvfs_info->irq);
267 }
268
exynos_cpufreq_irq(int irq,void * id)269 static irqreturn_t exynos_cpufreq_irq(int irq, void *id)
270 {
271 unsigned int tmp;
272
273 tmp = __raw_readl(dvfs_info->base + XMU_PMUIRQ);
274 if (tmp >> PSTATE_CHANGED_SHIFT & 0x1) {
275 __raw_writel(tmp, dvfs_info->base + XMU_PMUIRQ);
276 disable_irq_nosync(irq);
277 schedule_work(&dvfs_info->irq_work);
278 }
279 return IRQ_HANDLED;
280 }
281
exynos_sort_descend_freq_table(void)282 static void exynos_sort_descend_freq_table(void)
283 {
284 struct cpufreq_frequency_table *freq_tbl = dvfs_info->freq_table;
285 int i = 0, index;
286 unsigned int tmp_freq;
287 /*
288 * Exynos5440 clock controller state logic expects the cpufreq table to
289 * be in descending order. But the OPP library constructs the table in
290 * ascending order. So to make the table descending we just need to
291 * swap the i element with the N - i element.
292 */
293 for (i = 0; i < dvfs_info->freq_count / 2; i++) {
294 index = dvfs_info->freq_count - i - 1;
295 tmp_freq = freq_tbl[i].frequency;
296 freq_tbl[i].frequency = freq_tbl[index].frequency;
297 freq_tbl[index].frequency = tmp_freq;
298 }
299 }
300
exynos_cpufreq_cpu_init(struct cpufreq_policy * policy)301 static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
302 {
303 policy->clk = dvfs_info->cpu_clk;
304 return cpufreq_generic_init(policy, dvfs_info->freq_table,
305 dvfs_info->latency);
306 }
307
308 static struct cpufreq_driver exynos_driver = {
309 .flags = CPUFREQ_STICKY | CPUFREQ_ASYNC_NOTIFICATION |
310 CPUFREQ_NEED_INITIAL_FREQ_CHECK,
311 .verify = cpufreq_generic_frequency_table_verify,
312 .target_index = exynos_target,
313 .get = cpufreq_generic_get,
314 .init = exynos_cpufreq_cpu_init,
315 .name = CPUFREQ_NAME,
316 .attr = cpufreq_generic_attr,
317 };
318
319 static const struct of_device_id exynos_cpufreq_match[] = {
320 {
321 .compatible = "samsung,exynos5440-cpufreq",
322 },
323 {},
324 };
325 MODULE_DEVICE_TABLE(of, exynos_cpufreq_match);
326
exynos_cpufreq_probe(struct platform_device * pdev)327 static int exynos_cpufreq_probe(struct platform_device *pdev)
328 {
329 int ret = -EINVAL;
330 struct device_node *np;
331 struct resource res;
332 unsigned int cur_frequency;
333
334 np = pdev->dev.of_node;
335 if (!np)
336 return -ENODEV;
337
338 dvfs_info = devm_kzalloc(&pdev->dev, sizeof(*dvfs_info), GFP_KERNEL);
339 if (!dvfs_info) {
340 ret = -ENOMEM;
341 goto err_put_node;
342 }
343
344 dvfs_info->dev = &pdev->dev;
345
346 ret = of_address_to_resource(np, 0, &res);
347 if (ret)
348 goto err_put_node;
349
350 dvfs_info->base = devm_ioremap_resource(dvfs_info->dev, &res);
351 if (IS_ERR(dvfs_info->base)) {
352 ret = PTR_ERR(dvfs_info->base);
353 goto err_put_node;
354 }
355
356 dvfs_info->irq = irq_of_parse_and_map(np, 0);
357 if (!dvfs_info->irq) {
358 dev_err(dvfs_info->dev, "No cpufreq irq found\n");
359 ret = -ENODEV;
360 goto err_put_node;
361 }
362
363 ret = dev_pm_opp_of_add_table(dvfs_info->dev);
364 if (ret) {
365 dev_err(dvfs_info->dev, "failed to init OPP table: %d\n", ret);
366 goto err_put_node;
367 }
368
369 ret = dev_pm_opp_init_cpufreq_table(dvfs_info->dev,
370 &dvfs_info->freq_table);
371 if (ret) {
372 dev_err(dvfs_info->dev,
373 "failed to init cpufreq table: %d\n", ret);
374 goto err_free_opp;
375 }
376 dvfs_info->freq_count = dev_pm_opp_get_opp_count(dvfs_info->dev);
377 exynos_sort_descend_freq_table();
378
379 if (of_property_read_u32(np, "clock-latency", &dvfs_info->latency))
380 dvfs_info->latency = DEF_TRANS_LATENCY;
381
382 dvfs_info->cpu_clk = devm_clk_get(dvfs_info->dev, "armclk");
383 if (IS_ERR(dvfs_info->cpu_clk)) {
384 dev_err(dvfs_info->dev, "Failed to get cpu clock\n");
385 ret = PTR_ERR(dvfs_info->cpu_clk);
386 goto err_free_table;
387 }
388
389 cur_frequency = clk_get_rate(dvfs_info->cpu_clk);
390 if (!cur_frequency) {
391 dev_err(dvfs_info->dev, "Failed to get clock rate\n");
392 ret = -EINVAL;
393 goto err_free_table;
394 }
395 cur_frequency /= 1000;
396
397 INIT_WORK(&dvfs_info->irq_work, exynos_cpufreq_work);
398 ret = devm_request_irq(dvfs_info->dev, dvfs_info->irq,
399 exynos_cpufreq_irq, IRQF_TRIGGER_NONE,
400 CPUFREQ_NAME, dvfs_info);
401 if (ret) {
402 dev_err(dvfs_info->dev, "Failed to register IRQ\n");
403 goto err_free_table;
404 }
405
406 ret = init_div_table();
407 if (ret) {
408 dev_err(dvfs_info->dev, "Failed to initialise div table\n");
409 goto err_free_table;
410 }
411
412 exynos_enable_dvfs(cur_frequency);
413 ret = cpufreq_register_driver(&exynos_driver);
414 if (ret) {
415 dev_err(dvfs_info->dev,
416 "%s: failed to register cpufreq driver\n", __func__);
417 goto err_free_table;
418 }
419
420 of_node_put(np);
421 dvfs_info->dvfs_enabled = true;
422 return 0;
423
424 err_free_table:
425 dev_pm_opp_free_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table);
426 err_free_opp:
427 dev_pm_opp_of_remove_table(dvfs_info->dev);
428 err_put_node:
429 of_node_put(np);
430 dev_err(&pdev->dev, "%s: failed initialization\n", __func__);
431 return ret;
432 }
433
exynos_cpufreq_remove(struct platform_device * pdev)434 static int exynos_cpufreq_remove(struct platform_device *pdev)
435 {
436 cpufreq_unregister_driver(&exynos_driver);
437 dev_pm_opp_free_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table);
438 dev_pm_opp_of_remove_table(dvfs_info->dev);
439 return 0;
440 }
441
442 static struct platform_driver exynos_cpufreq_platdrv = {
443 .driver = {
444 .name = "exynos5440-cpufreq",
445 .of_match_table = exynos_cpufreq_match,
446 },
447 .probe = exynos_cpufreq_probe,
448 .remove = exynos_cpufreq_remove,
449 };
450 module_platform_driver(exynos_cpufreq_platdrv);
451
452 MODULE_AUTHOR("Amit Daniel Kachhap <amit.daniel@samsung.com>");
453 MODULE_DESCRIPTION("Exynos5440 cpufreq driver");
454 MODULE_LICENSE("GPL");
455