• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 
19 #define PU_SOC_VOLTAGE_NORMAL	1250000
20 #define PU_SOC_VOLTAGE_HIGH	1275000
21 #define FREQ_1P2_GHZ		1200000000
22 
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26 
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32 
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
36 
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
41 
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
44 
imx6q_set_target(struct cpufreq_policy * policy,unsigned int index)45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
46 {
47 	struct dev_pm_opp *opp;
48 	unsigned long freq_hz, volt, volt_old;
49 	unsigned int old_freq, new_freq;
50 	int ret;
51 
52 	new_freq = freq_table[index].frequency;
53 	freq_hz = new_freq * 1000;
54 	old_freq = clk_get_rate(arm_clk) / 1000;
55 
56 	rcu_read_lock();
57 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
58 	if (IS_ERR(opp)) {
59 		rcu_read_unlock();
60 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
61 		return PTR_ERR(opp);
62 	}
63 
64 	volt = dev_pm_opp_get_voltage(opp);
65 	rcu_read_unlock();
66 	volt_old = regulator_get_voltage(arm_reg);
67 
68 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
69 		old_freq / 1000, volt_old / 1000,
70 		new_freq / 1000, volt / 1000);
71 
72 	/* scaling up?  scale voltage before frequency */
73 	if (new_freq > old_freq) {
74 		if (!IS_ERR(pu_reg)) {
75 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
76 			if (ret) {
77 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
78 				return ret;
79 			}
80 		}
81 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
82 		if (ret) {
83 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
84 			return ret;
85 		}
86 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
87 		if (ret) {
88 			dev_err(cpu_dev,
89 				"failed to scale vddarm up: %d\n", ret);
90 			return ret;
91 		}
92 	}
93 
94 	/*
95 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
96 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
97 	 * PLL1 is as below.
98 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
99 	 * flow is slightly different from other i.MX6 OSC.
100 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
101 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
102 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
103 	 *  - Disable pll2_pfd2_396m_clk
104 	 */
105 	if (of_machine_is_compatible("fsl,imx6ul")) {
106 		/*
107 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
108 		 * CPU may run at higher than 528MHz, this will lead to
109 		 * the system unstable if the voltage is lower than the
110 		 * voltage of 528MHz, so lower the CPU frequency to one
111 		 * half before changing CPU frequency.
112 		 */
113 		clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
114 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
115 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
116 			clk_set_parent(secondary_sel_clk, pll2_bus_clk);
117 		else
118 			clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
119 		clk_set_parent(step_clk, secondary_sel_clk);
120 		clk_set_parent(pll1_sw_clk, step_clk);
121 	} else {
122 		clk_set_parent(step_clk, pll2_pfd2_396m_clk);
123 		clk_set_parent(pll1_sw_clk, step_clk);
124 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
125 			clk_set_rate(pll1_sys_clk, new_freq * 1000);
126 			clk_set_parent(pll1_sw_clk, pll1_sys_clk);
127 		}
128 	}
129 
130 	/* Ensure the arm clock divider is what we expect */
131 	ret = clk_set_rate(arm_clk, new_freq * 1000);
132 	if (ret) {
133 		int ret1;
134 
135 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
136 		ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
137 		if (ret1)
138 			dev_warn(cpu_dev,
139 				 "failed to restore vddarm voltage: %d\n", ret1);
140 		return ret;
141 	}
142 
143 	/* scaling down?  scale voltage after frequency */
144 	if (new_freq < old_freq) {
145 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
146 		if (ret) {
147 			dev_warn(cpu_dev,
148 				 "failed to scale vddarm down: %d\n", ret);
149 			ret = 0;
150 		}
151 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
152 		if (ret) {
153 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
154 			ret = 0;
155 		}
156 		if (!IS_ERR(pu_reg)) {
157 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
158 			if (ret) {
159 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
160 				ret = 0;
161 			}
162 		}
163 	}
164 
165 	return 0;
166 }
167 
imx6q_cpufreq_init(struct cpufreq_policy * policy)168 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
169 {
170 	policy->clk = arm_clk;
171 	return cpufreq_generic_init(policy, freq_table, transition_latency);
172 }
173 
174 static struct cpufreq_driver imx6q_cpufreq_driver = {
175 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
176 	.verify = cpufreq_generic_frequency_table_verify,
177 	.target_index = imx6q_set_target,
178 	.get = cpufreq_generic_get,
179 	.init = imx6q_cpufreq_init,
180 	.name = "imx6q-cpufreq",
181 	.attr = cpufreq_generic_attr,
182 };
183 
imx6q_cpufreq_probe(struct platform_device * pdev)184 static int imx6q_cpufreq_probe(struct platform_device *pdev)
185 {
186 	struct device_node *np;
187 	struct dev_pm_opp *opp;
188 	unsigned long min_volt, max_volt;
189 	int num, ret;
190 	const struct property *prop;
191 	const __be32 *val;
192 	u32 nr, i, j;
193 
194 	cpu_dev = get_cpu_device(0);
195 	if (!cpu_dev) {
196 		pr_err("failed to get cpu0 device\n");
197 		return -ENODEV;
198 	}
199 
200 	np = of_node_get(cpu_dev->of_node);
201 	if (!np) {
202 		dev_err(cpu_dev, "failed to find cpu0 node\n");
203 		return -ENOENT;
204 	}
205 
206 	arm_clk = clk_get(cpu_dev, "arm");
207 	pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
208 	pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
209 	step_clk = clk_get(cpu_dev, "step");
210 	pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
211 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
212 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
213 		dev_err(cpu_dev, "failed to get clocks\n");
214 		ret = -ENOENT;
215 		goto put_clk;
216 	}
217 
218 	if (of_machine_is_compatible("fsl,imx6ul")) {
219 		pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
220 		secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
221 		if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
222 			dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
223 			ret = -ENOENT;
224 			goto put_clk;
225 		}
226 	}
227 
228 	arm_reg = regulator_get(cpu_dev, "arm");
229 	pu_reg = regulator_get_optional(cpu_dev, "pu");
230 	soc_reg = regulator_get(cpu_dev, "soc");
231 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
232 		dev_err(cpu_dev, "failed to get regulators\n");
233 		ret = -ENOENT;
234 		goto put_reg;
235 	}
236 
237 	/*
238 	 * We expect an OPP table supplied by platform.
239 	 * Just, incase the platform did not supply the OPP
240 	 * table, it will try to get it.
241 	 */
242 	num = dev_pm_opp_get_opp_count(cpu_dev);
243 	if (num < 0) {
244 		ret = dev_pm_opp_of_add_table(cpu_dev);
245 		if (ret < 0) {
246 			dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
247 			goto put_reg;
248 		}
249 
250 		/* Because we have added the OPPs here, we must free them */
251 		free_opp = true;
252 
253 		num = dev_pm_opp_get_opp_count(cpu_dev);
254 		if (num < 0) {
255 			ret = num;
256 			dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
257 			goto out_free_opp;
258 		}
259 	}
260 
261 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
262 	if (ret) {
263 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
264 		goto put_reg;
265 	}
266 
267 	/* Make imx6_soc_volt array's size same as arm opp number */
268 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
269 	if (imx6_soc_volt == NULL) {
270 		ret = -ENOMEM;
271 		goto free_freq_table;
272 	}
273 
274 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
275 	if (!prop || !prop->value)
276 		goto soc_opp_out;
277 
278 	/*
279 	 * Each OPP is a set of tuples consisting of frequency and
280 	 * voltage like <freq-kHz vol-uV>.
281 	 */
282 	nr = prop->length / sizeof(u32);
283 	if (nr % 2 || (nr / 2) < num)
284 		goto soc_opp_out;
285 
286 	for (j = 0; j < num; j++) {
287 		val = prop->value;
288 		for (i = 0; i < nr / 2; i++) {
289 			unsigned long freq = be32_to_cpup(val++);
290 			unsigned long volt = be32_to_cpup(val++);
291 			if (freq_table[j].frequency == freq) {
292 				imx6_soc_volt[soc_opp_count++] = volt;
293 				break;
294 			}
295 		}
296 	}
297 
298 soc_opp_out:
299 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
300 	if (soc_opp_count != num) {
301 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
302 		for (j = 0; j < num; j++)
303 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
304 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
305 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
306 	}
307 
308 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
309 		transition_latency = CPUFREQ_ETERNAL;
310 
311 	/*
312 	 * Calculate the ramp time for max voltage change in the
313 	 * VDDSOC and VDDPU regulators.
314 	 */
315 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
316 	if (ret > 0)
317 		transition_latency += ret * 1000;
318 	if (!IS_ERR(pu_reg)) {
319 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
320 		if (ret > 0)
321 			transition_latency += ret * 1000;
322 	}
323 
324 	/*
325 	 * OPP is maintained in order of increasing frequency, and
326 	 * freq_table initialised from OPP is therefore sorted in the
327 	 * same order.
328 	 */
329 	rcu_read_lock();
330 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
331 				  freq_table[0].frequency * 1000, true);
332 	min_volt = dev_pm_opp_get_voltage(opp);
333 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
334 				  freq_table[--num].frequency * 1000, true);
335 	max_volt = dev_pm_opp_get_voltage(opp);
336 	rcu_read_unlock();
337 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
338 	if (ret > 0)
339 		transition_latency += ret * 1000;
340 
341 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
342 	if (ret) {
343 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
344 		goto free_freq_table;
345 	}
346 
347 	of_node_put(np);
348 	return 0;
349 
350 free_freq_table:
351 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
352 out_free_opp:
353 	if (free_opp)
354 		dev_pm_opp_of_remove_table(cpu_dev);
355 put_reg:
356 	if (!IS_ERR(arm_reg))
357 		regulator_put(arm_reg);
358 	if (!IS_ERR(pu_reg))
359 		regulator_put(pu_reg);
360 	if (!IS_ERR(soc_reg))
361 		regulator_put(soc_reg);
362 put_clk:
363 	if (!IS_ERR(arm_clk))
364 		clk_put(arm_clk);
365 	if (!IS_ERR(pll1_sys_clk))
366 		clk_put(pll1_sys_clk);
367 	if (!IS_ERR(pll1_sw_clk))
368 		clk_put(pll1_sw_clk);
369 	if (!IS_ERR(step_clk))
370 		clk_put(step_clk);
371 	if (!IS_ERR(pll2_pfd2_396m_clk))
372 		clk_put(pll2_pfd2_396m_clk);
373 	if (!IS_ERR(pll2_bus_clk))
374 		clk_put(pll2_bus_clk);
375 	if (!IS_ERR(secondary_sel_clk))
376 		clk_put(secondary_sel_clk);
377 	of_node_put(np);
378 	return ret;
379 }
380 
imx6q_cpufreq_remove(struct platform_device * pdev)381 static int imx6q_cpufreq_remove(struct platform_device *pdev)
382 {
383 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
384 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
385 	if (free_opp)
386 		dev_pm_opp_of_remove_table(cpu_dev);
387 	regulator_put(arm_reg);
388 	if (!IS_ERR(pu_reg))
389 		regulator_put(pu_reg);
390 	regulator_put(soc_reg);
391 	clk_put(arm_clk);
392 	clk_put(pll1_sys_clk);
393 	clk_put(pll1_sw_clk);
394 	clk_put(step_clk);
395 	clk_put(pll2_pfd2_396m_clk);
396 	clk_put(pll2_bus_clk);
397 	clk_put(secondary_sel_clk);
398 
399 	return 0;
400 }
401 
402 static struct platform_driver imx6q_cpufreq_platdrv = {
403 	.driver = {
404 		.name	= "imx6q-cpufreq",
405 	},
406 	.probe		= imx6q_cpufreq_probe,
407 	.remove		= imx6q_cpufreq_remove,
408 };
409 module_platform_driver(imx6q_cpufreq_platdrv);
410 
411 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
412 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
413 MODULE_LICENSE("GPL");
414