1 /*
2 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
3 *
4 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
5 * Author: Arnaud Ebalard <arno@natisbad.org>
6 *
7 * This work is based on an initial version written by
8 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
13 */
14
15 #include <crypto/md5.h>
16 #include <crypto/sha.h>
17
18 #include "cesa.h"
19
20 struct mv_cesa_ahash_dma_iter {
21 struct mv_cesa_dma_iter base;
22 struct mv_cesa_sg_dma_iter src;
23 };
24
25 static inline void
mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter * iter,struct ahash_request * req)26 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
27 struct ahash_request *req)
28 {
29 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
30 unsigned int len = req->nbytes + creq->cache_ptr;
31
32 if (!creq->last_req)
33 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
34
35 mv_cesa_req_dma_iter_init(&iter->base, len);
36 mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
37 iter->src.op_offset = creq->cache_ptr;
38 }
39
40 static inline bool
mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter * iter)41 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
42 {
43 iter->src.op_offset = 0;
44
45 return mv_cesa_req_dma_iter_next_op(&iter->base);
46 }
47
mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_req * creq,gfp_t flags)48 static inline int mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_req *creq,
49 gfp_t flags)
50 {
51 struct mv_cesa_ahash_dma_req *dreq = &creq->req.dma;
52
53 creq->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
54 &dreq->cache_dma);
55 if (!creq->cache)
56 return -ENOMEM;
57
58 return 0;
59 }
60
mv_cesa_ahash_std_alloc_cache(struct mv_cesa_ahash_req * creq,gfp_t flags)61 static inline int mv_cesa_ahash_std_alloc_cache(struct mv_cesa_ahash_req *creq,
62 gfp_t flags)
63 {
64 creq->cache = kzalloc(CESA_MAX_HASH_BLOCK_SIZE, flags);
65 if (!creq->cache)
66 return -ENOMEM;
67
68 return 0;
69 }
70
mv_cesa_ahash_alloc_cache(struct ahash_request * req)71 static int mv_cesa_ahash_alloc_cache(struct ahash_request *req)
72 {
73 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
74 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
75 GFP_KERNEL : GFP_ATOMIC;
76 int ret;
77
78 if (creq->cache)
79 return 0;
80
81 if (creq->req.base.type == CESA_DMA_REQ)
82 ret = mv_cesa_ahash_dma_alloc_cache(creq, flags);
83 else
84 ret = mv_cesa_ahash_std_alloc_cache(creq, flags);
85
86 return ret;
87 }
88
mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_req * creq)89 static inline void mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_req *creq)
90 {
91 dma_pool_free(cesa_dev->dma->cache_pool, creq->cache,
92 creq->req.dma.cache_dma);
93 }
94
mv_cesa_ahash_std_free_cache(struct mv_cesa_ahash_req * creq)95 static inline void mv_cesa_ahash_std_free_cache(struct mv_cesa_ahash_req *creq)
96 {
97 kfree(creq->cache);
98 }
99
mv_cesa_ahash_free_cache(struct mv_cesa_ahash_req * creq)100 static void mv_cesa_ahash_free_cache(struct mv_cesa_ahash_req *creq)
101 {
102 if (!creq->cache)
103 return;
104
105 if (creq->req.base.type == CESA_DMA_REQ)
106 mv_cesa_ahash_dma_free_cache(creq);
107 else
108 mv_cesa_ahash_std_free_cache(creq);
109
110 creq->cache = NULL;
111 }
112
mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req * req,gfp_t flags)113 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
114 gfp_t flags)
115 {
116 if (req->padding)
117 return 0;
118
119 req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
120 &req->padding_dma);
121 if (!req->padding)
122 return -ENOMEM;
123
124 return 0;
125 }
126
mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req * req)127 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
128 {
129 if (!req->padding)
130 return;
131
132 dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
133 req->padding_dma);
134 req->padding = NULL;
135 }
136
mv_cesa_ahash_dma_last_cleanup(struct ahash_request * req)137 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
138 {
139 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
140
141 mv_cesa_ahash_dma_free_padding(&creq->req.dma);
142 }
143
mv_cesa_ahash_dma_cleanup(struct ahash_request * req)144 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
145 {
146 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
147
148 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
149 mv_cesa_dma_cleanup(&creq->req.dma.base);
150 }
151
mv_cesa_ahash_cleanup(struct ahash_request * req)152 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
153 {
154 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
155
156 if (creq->req.base.type == CESA_DMA_REQ)
157 mv_cesa_ahash_dma_cleanup(req);
158 }
159
mv_cesa_ahash_last_cleanup(struct ahash_request * req)160 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
161 {
162 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
163
164 mv_cesa_ahash_free_cache(creq);
165
166 if (creq->req.base.type == CESA_DMA_REQ)
167 mv_cesa_ahash_dma_last_cleanup(req);
168 }
169
mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req * creq)170 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
171 {
172 unsigned int index, padlen;
173
174 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
175 padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
176
177 return padlen;
178 }
179
mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req * creq,u8 * buf)180 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
181 {
182 unsigned int index, padlen;
183
184 buf[0] = 0x80;
185 /* Pad out to 56 mod 64 */
186 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
187 padlen = mv_cesa_ahash_pad_len(creq);
188 memset(buf + 1, 0, padlen - 1);
189
190 if (creq->algo_le) {
191 __le64 bits = cpu_to_le64(creq->len << 3);
192 memcpy(buf + padlen, &bits, sizeof(bits));
193 } else {
194 __be64 bits = cpu_to_be64(creq->len << 3);
195 memcpy(buf + padlen, &bits, sizeof(bits));
196 }
197
198 return padlen + 8;
199 }
200
mv_cesa_ahash_std_step(struct ahash_request * req)201 static void mv_cesa_ahash_std_step(struct ahash_request *req)
202 {
203 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
204 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
205 struct mv_cesa_engine *engine = sreq->base.engine;
206 struct mv_cesa_op_ctx *op;
207 unsigned int new_cache_ptr = 0;
208 u32 frag_mode;
209 size_t len;
210
211 if (creq->cache_ptr)
212 memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
213 creq->cache, creq->cache_ptr);
214
215 len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
216 CESA_SA_SRAM_PAYLOAD_SIZE);
217
218 if (!creq->last_req) {
219 new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
220 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
221 }
222
223 if (len - creq->cache_ptr)
224 sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
225 engine->sram +
226 CESA_SA_DATA_SRAM_OFFSET +
227 creq->cache_ptr,
228 len - creq->cache_ptr,
229 sreq->offset);
230
231 op = &creq->op_tmpl;
232
233 frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
234
235 if (creq->last_req && sreq->offset == req->nbytes &&
236 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
237 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
238 frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
239 else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
240 frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
241 }
242
243 if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
244 frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
245 if (len &&
246 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
247 mv_cesa_set_mac_op_total_len(op, creq->len);
248 } else {
249 int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
250
251 if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
252 len &= CESA_HASH_BLOCK_SIZE_MSK;
253 new_cache_ptr = 64 - trailerlen;
254 memcpy_fromio(creq->cache,
255 engine->sram +
256 CESA_SA_DATA_SRAM_OFFSET + len,
257 new_cache_ptr);
258 } else {
259 len += mv_cesa_ahash_pad_req(creq,
260 engine->sram + len +
261 CESA_SA_DATA_SRAM_OFFSET);
262 }
263
264 if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
265 frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
266 else
267 frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
268 }
269 }
270
271 mv_cesa_set_mac_op_frag_len(op, len);
272 mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
273
274 /* FIXME: only update enc_len field */
275 memcpy_toio(engine->sram, op, sizeof(*op));
276
277 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
278 mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
279 CESA_SA_DESC_CFG_FRAG_MSK);
280
281 creq->cache_ptr = new_cache_ptr;
282
283 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
284 writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
285 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
286 }
287
mv_cesa_ahash_std_process(struct ahash_request * req,u32 status)288 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
289 {
290 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
291 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
292
293 if (sreq->offset < (req->nbytes - creq->cache_ptr))
294 return -EINPROGRESS;
295
296 return 0;
297 }
298
mv_cesa_ahash_dma_prepare(struct ahash_request * req)299 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
300 {
301 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
302 struct mv_cesa_tdma_req *dreq = &creq->req.dma.base;
303
304 mv_cesa_dma_prepare(dreq, dreq->base.engine);
305 }
306
mv_cesa_ahash_std_prepare(struct ahash_request * req)307 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
308 {
309 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
310 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
311 struct mv_cesa_engine *engine = sreq->base.engine;
312
313 sreq->offset = 0;
314 mv_cesa_adjust_op(engine, &creq->op_tmpl);
315 memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
316 }
317
mv_cesa_ahash_step(struct crypto_async_request * req)318 static void mv_cesa_ahash_step(struct crypto_async_request *req)
319 {
320 struct ahash_request *ahashreq = ahash_request_cast(req);
321 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
322
323 if (creq->req.base.type == CESA_DMA_REQ)
324 mv_cesa_dma_step(&creq->req.dma.base);
325 else
326 mv_cesa_ahash_std_step(ahashreq);
327 }
328
mv_cesa_ahash_process(struct crypto_async_request * req,u32 status)329 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
330 {
331 struct ahash_request *ahashreq = ahash_request_cast(req);
332 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
333 struct mv_cesa_engine *engine = creq->req.base.engine;
334 unsigned int digsize;
335 int ret, i;
336
337 if (creq->req.base.type == CESA_DMA_REQ)
338 ret = mv_cesa_dma_process(&creq->req.dma.base, status);
339 else
340 ret = mv_cesa_ahash_std_process(ahashreq, status);
341
342 if (ret == -EINPROGRESS)
343 return ret;
344
345 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
346 for (i = 0; i < digsize / 4; i++)
347 creq->state[i] = readl_relaxed(engine->regs + CESA_IVDIG(i));
348
349 if (creq->cache_ptr)
350 sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
351 creq->cache,
352 creq->cache_ptr,
353 ahashreq->nbytes - creq->cache_ptr);
354
355 if (creq->last_req) {
356 /*
357 * Hardware's MD5 digest is in little endian format, but
358 * SHA in big endian format
359 */
360 if (creq->algo_le) {
361 __le32 *result = (void *)ahashreq->result;
362
363 for (i = 0; i < digsize / 4; i++)
364 result[i] = cpu_to_le32(creq->state[i]);
365 } else {
366 __be32 *result = (void *)ahashreq->result;
367
368 for (i = 0; i < digsize / 4; i++)
369 result[i] = cpu_to_be32(creq->state[i]);
370 }
371 }
372
373 return ret;
374 }
375
mv_cesa_ahash_prepare(struct crypto_async_request * req,struct mv_cesa_engine * engine)376 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
377 struct mv_cesa_engine *engine)
378 {
379 struct ahash_request *ahashreq = ahash_request_cast(req);
380 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
381 unsigned int digsize;
382 int i;
383
384 creq->req.base.engine = engine;
385
386 if (creq->req.base.type == CESA_DMA_REQ)
387 mv_cesa_ahash_dma_prepare(ahashreq);
388 else
389 mv_cesa_ahash_std_prepare(ahashreq);
390
391 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
392 for (i = 0; i < digsize / 4; i++)
393 writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
394 }
395
mv_cesa_ahash_req_cleanup(struct crypto_async_request * req)396 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
397 {
398 struct ahash_request *ahashreq = ahash_request_cast(req);
399 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
400
401 if (creq->last_req)
402 mv_cesa_ahash_last_cleanup(ahashreq);
403
404 mv_cesa_ahash_cleanup(ahashreq);
405 }
406
407 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
408 .step = mv_cesa_ahash_step,
409 .process = mv_cesa_ahash_process,
410 .prepare = mv_cesa_ahash_prepare,
411 .cleanup = mv_cesa_ahash_req_cleanup,
412 };
413
mv_cesa_ahash_init(struct ahash_request * req,struct mv_cesa_op_ctx * tmpl,bool algo_le)414 static int mv_cesa_ahash_init(struct ahash_request *req,
415 struct mv_cesa_op_ctx *tmpl, bool algo_le)
416 {
417 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
418
419 memset(creq, 0, sizeof(*creq));
420 mv_cesa_update_op_cfg(tmpl,
421 CESA_SA_DESC_CFG_OP_MAC_ONLY |
422 CESA_SA_DESC_CFG_FIRST_FRAG,
423 CESA_SA_DESC_CFG_OP_MSK |
424 CESA_SA_DESC_CFG_FRAG_MSK);
425 mv_cesa_set_mac_op_total_len(tmpl, 0);
426 mv_cesa_set_mac_op_frag_len(tmpl, 0);
427 creq->op_tmpl = *tmpl;
428 creq->len = 0;
429 creq->algo_le = algo_le;
430
431 return 0;
432 }
433
mv_cesa_ahash_cra_init(struct crypto_tfm * tfm)434 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
435 {
436 struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
437
438 ctx->base.ops = &mv_cesa_ahash_req_ops;
439
440 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
441 sizeof(struct mv_cesa_ahash_req));
442 return 0;
443 }
444
mv_cesa_ahash_cache_req(struct ahash_request * req,bool * cached)445 static int mv_cesa_ahash_cache_req(struct ahash_request *req, bool *cached)
446 {
447 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
448 int ret;
449
450 if (((creq->cache_ptr + req->nbytes) & CESA_HASH_BLOCK_SIZE_MSK) &&
451 !creq->last_req) {
452 ret = mv_cesa_ahash_alloc_cache(req);
453 if (ret)
454 return ret;
455 }
456
457 if (creq->cache_ptr + req->nbytes < 64 && !creq->last_req) {
458 *cached = true;
459
460 if (!req->nbytes)
461 return 0;
462
463 sg_pcopy_to_buffer(req->src, creq->src_nents,
464 creq->cache + creq->cache_ptr,
465 req->nbytes, 0);
466
467 creq->cache_ptr += req->nbytes;
468 }
469
470 return 0;
471 }
472
473 static struct mv_cesa_op_ctx *
mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain * chain,struct mv_cesa_op_ctx * tmpl,unsigned int frag_len,gfp_t flags)474 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
475 struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
476 gfp_t flags)
477 {
478 struct mv_cesa_op_ctx *op;
479 int ret;
480
481 op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
482 if (IS_ERR(op))
483 return op;
484
485 /* Set the operation block fragment length. */
486 mv_cesa_set_mac_op_frag_len(op, frag_len);
487
488 /* Append dummy desc to launch operation */
489 ret = mv_cesa_dma_add_dummy_launch(chain, flags);
490 if (ret)
491 return ERR_PTR(ret);
492
493 if (mv_cesa_mac_op_is_first_frag(tmpl))
494 mv_cesa_update_op_cfg(tmpl,
495 CESA_SA_DESC_CFG_MID_FRAG,
496 CESA_SA_DESC_CFG_FRAG_MSK);
497
498 return op;
499 }
500
501 static int
mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain * chain,struct mv_cesa_ahash_dma_iter * dma_iter,struct mv_cesa_ahash_req * creq,gfp_t flags)502 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
503 struct mv_cesa_ahash_dma_iter *dma_iter,
504 struct mv_cesa_ahash_req *creq,
505 gfp_t flags)
506 {
507 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
508
509 if (!creq->cache_ptr)
510 return 0;
511
512 return mv_cesa_dma_add_data_transfer(chain,
513 CESA_SA_DATA_SRAM_OFFSET,
514 ahashdreq->cache_dma,
515 creq->cache_ptr,
516 CESA_TDMA_DST_IN_SRAM,
517 flags);
518 }
519
520 static struct mv_cesa_op_ctx *
mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain * chain,struct mv_cesa_ahash_dma_iter * dma_iter,struct mv_cesa_ahash_req * creq,unsigned int frag_len,gfp_t flags)521 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
522 struct mv_cesa_ahash_dma_iter *dma_iter,
523 struct mv_cesa_ahash_req *creq,
524 unsigned int frag_len, gfp_t flags)
525 {
526 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
527 unsigned int len, trailerlen, padoff = 0;
528 struct mv_cesa_op_ctx *op;
529 int ret;
530
531 /*
532 * If the transfer is smaller than our maximum length, and we have
533 * some data outstanding, we can ask the engine to finish the hash.
534 */
535 if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
536 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
537 flags);
538 if (IS_ERR(op))
539 return op;
540
541 mv_cesa_set_mac_op_total_len(op, creq->len);
542 mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
543 CESA_SA_DESC_CFG_NOT_FRAG :
544 CESA_SA_DESC_CFG_LAST_FRAG,
545 CESA_SA_DESC_CFG_FRAG_MSK);
546
547 return op;
548 }
549
550 /*
551 * The request is longer than the engine can handle, or we have
552 * no data outstanding. Manually generate the padding, adding it
553 * as a "mid" fragment.
554 */
555 ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
556 if (ret)
557 return ERR_PTR(ret);
558
559 trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
560
561 len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
562 if (len) {
563 ret = mv_cesa_dma_add_data_transfer(chain,
564 CESA_SA_DATA_SRAM_OFFSET +
565 frag_len,
566 ahashdreq->padding_dma,
567 len, CESA_TDMA_DST_IN_SRAM,
568 flags);
569 if (ret)
570 return ERR_PTR(ret);
571
572 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
573 flags);
574 if (IS_ERR(op))
575 return op;
576
577 if (len == trailerlen)
578 return op;
579
580 padoff += len;
581 }
582
583 ret = mv_cesa_dma_add_data_transfer(chain,
584 CESA_SA_DATA_SRAM_OFFSET,
585 ahashdreq->padding_dma +
586 padoff,
587 trailerlen - padoff,
588 CESA_TDMA_DST_IN_SRAM,
589 flags);
590 if (ret)
591 return ERR_PTR(ret);
592
593 return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
594 flags);
595 }
596
mv_cesa_ahash_dma_req_init(struct ahash_request * req)597 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
598 {
599 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
600 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
601 GFP_KERNEL : GFP_ATOMIC;
602 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
603 struct mv_cesa_tdma_req *dreq = &ahashdreq->base;
604 struct mv_cesa_ahash_dma_iter iter;
605 struct mv_cesa_op_ctx *op = NULL;
606 unsigned int frag_len;
607 int ret;
608
609 dreq->chain.first = NULL;
610 dreq->chain.last = NULL;
611
612 if (creq->src_nents) {
613 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
614 DMA_TO_DEVICE);
615 if (!ret) {
616 ret = -ENOMEM;
617 goto err;
618 }
619 }
620
621 mv_cesa_tdma_desc_iter_init(&dreq->chain);
622 mv_cesa_ahash_req_iter_init(&iter, req);
623
624 /*
625 * Add the cache (left-over data from a previous block) first.
626 * This will never overflow the SRAM size.
627 */
628 ret = mv_cesa_ahash_dma_add_cache(&dreq->chain, &iter, creq, flags);
629 if (ret)
630 goto err_free_tdma;
631
632 if (iter.src.sg) {
633 /*
634 * Add all the new data, inserting an operation block and
635 * launch command between each full SRAM block-worth of
636 * data. We intentionally do not add the final op block.
637 */
638 while (true) {
639 ret = mv_cesa_dma_add_op_transfers(&dreq->chain,
640 &iter.base,
641 &iter.src, flags);
642 if (ret)
643 goto err_free_tdma;
644
645 frag_len = iter.base.op_len;
646
647 if (!mv_cesa_ahash_req_iter_next_op(&iter))
648 break;
649
650 op = mv_cesa_dma_add_frag(&dreq->chain, &creq->op_tmpl,
651 frag_len, flags);
652 if (IS_ERR(op)) {
653 ret = PTR_ERR(op);
654 goto err_free_tdma;
655 }
656 }
657 } else {
658 /* Account for the data that was in the cache. */
659 frag_len = iter.base.op_len;
660 }
661
662 /*
663 * At this point, frag_len indicates whether we have any data
664 * outstanding which needs an operation. Queue up the final
665 * operation, which depends whether this is the final request.
666 */
667 if (creq->last_req)
668 op = mv_cesa_ahash_dma_last_req(&dreq->chain, &iter, creq,
669 frag_len, flags);
670 else if (frag_len)
671 op = mv_cesa_dma_add_frag(&dreq->chain, &creq->op_tmpl,
672 frag_len, flags);
673
674 if (IS_ERR(op)) {
675 ret = PTR_ERR(op);
676 goto err_free_tdma;
677 }
678
679 if (op) {
680 /* Add dummy desc to wait for crypto operation end */
681 ret = mv_cesa_dma_add_dummy_end(&dreq->chain, flags);
682 if (ret)
683 goto err_free_tdma;
684 }
685
686 if (!creq->last_req)
687 creq->cache_ptr = req->nbytes + creq->cache_ptr -
688 iter.base.len;
689 else
690 creq->cache_ptr = 0;
691
692 return 0;
693
694 err_free_tdma:
695 mv_cesa_dma_cleanup(dreq);
696 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
697
698 err:
699 mv_cesa_ahash_last_cleanup(req);
700
701 return ret;
702 }
703
mv_cesa_ahash_req_init(struct ahash_request * req,bool * cached)704 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
705 {
706 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
707 int ret;
708
709 if (cesa_dev->caps->has_tdma)
710 creq->req.base.type = CESA_DMA_REQ;
711 else
712 creq->req.base.type = CESA_STD_REQ;
713
714 creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
715
716 ret = mv_cesa_ahash_cache_req(req, cached);
717 if (ret)
718 return ret;
719
720 if (*cached)
721 return 0;
722
723 if (creq->req.base.type == CESA_DMA_REQ)
724 ret = mv_cesa_ahash_dma_req_init(req);
725
726 return ret;
727 }
728
mv_cesa_ahash_update(struct ahash_request * req)729 static int mv_cesa_ahash_update(struct ahash_request *req)
730 {
731 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
732 bool cached = false;
733 int ret;
734
735 creq->len += req->nbytes;
736 ret = mv_cesa_ahash_req_init(req, &cached);
737 if (ret)
738 return ret;
739
740 if (cached)
741 return 0;
742
743 ret = mv_cesa_queue_req(&req->base);
744 if (mv_cesa_req_needs_cleanup(&req->base, ret))
745 mv_cesa_ahash_cleanup(req);
746
747 return ret;
748 }
749
mv_cesa_ahash_final(struct ahash_request * req)750 static int mv_cesa_ahash_final(struct ahash_request *req)
751 {
752 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
753 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
754 bool cached = false;
755 int ret;
756
757 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
758 creq->last_req = true;
759 req->nbytes = 0;
760
761 ret = mv_cesa_ahash_req_init(req, &cached);
762 if (ret)
763 return ret;
764
765 if (cached)
766 return 0;
767
768 ret = mv_cesa_queue_req(&req->base);
769 if (mv_cesa_req_needs_cleanup(&req->base, ret))
770 mv_cesa_ahash_cleanup(req);
771
772 return ret;
773 }
774
mv_cesa_ahash_finup(struct ahash_request * req)775 static int mv_cesa_ahash_finup(struct ahash_request *req)
776 {
777 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
778 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
779 bool cached = false;
780 int ret;
781
782 creq->len += req->nbytes;
783 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
784 creq->last_req = true;
785
786 ret = mv_cesa_ahash_req_init(req, &cached);
787 if (ret)
788 return ret;
789
790 if (cached)
791 return 0;
792
793 ret = mv_cesa_queue_req(&req->base);
794 if (mv_cesa_req_needs_cleanup(&req->base, ret))
795 mv_cesa_ahash_cleanup(req);
796
797 return ret;
798 }
799
mv_cesa_ahash_export(struct ahash_request * req,void * hash,u64 * len,void * cache)800 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
801 u64 *len, void *cache)
802 {
803 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
804 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
805 unsigned int digsize = crypto_ahash_digestsize(ahash);
806 unsigned int blocksize;
807
808 blocksize = crypto_ahash_blocksize(ahash);
809
810 *len = creq->len;
811 memcpy(hash, creq->state, digsize);
812 memset(cache, 0, blocksize);
813 if (creq->cache)
814 memcpy(cache, creq->cache, creq->cache_ptr);
815
816 return 0;
817 }
818
mv_cesa_ahash_import(struct ahash_request * req,const void * hash,u64 len,const void * cache)819 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
820 u64 len, const void *cache)
821 {
822 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
823 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
824 unsigned int digsize = crypto_ahash_digestsize(ahash);
825 unsigned int blocksize;
826 unsigned int cache_ptr;
827 int ret;
828
829 ret = crypto_ahash_init(req);
830 if (ret)
831 return ret;
832
833 blocksize = crypto_ahash_blocksize(ahash);
834 if (len >= blocksize)
835 mv_cesa_update_op_cfg(&creq->op_tmpl,
836 CESA_SA_DESC_CFG_MID_FRAG,
837 CESA_SA_DESC_CFG_FRAG_MSK);
838
839 creq->len = len;
840 memcpy(creq->state, hash, digsize);
841 creq->cache_ptr = 0;
842
843 cache_ptr = do_div(len, blocksize);
844 if (!cache_ptr)
845 return 0;
846
847 ret = mv_cesa_ahash_alloc_cache(req);
848 if (ret)
849 return ret;
850
851 memcpy(creq->cache, cache, cache_ptr);
852 creq->cache_ptr = cache_ptr;
853
854 return 0;
855 }
856
mv_cesa_md5_init(struct ahash_request * req)857 static int mv_cesa_md5_init(struct ahash_request *req)
858 {
859 struct mv_cesa_op_ctx tmpl = { };
860
861 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
862
863 mv_cesa_ahash_init(req, &tmpl, true);
864
865 return 0;
866 }
867
mv_cesa_md5_export(struct ahash_request * req,void * out)868 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
869 {
870 struct md5_state *out_state = out;
871
872 return mv_cesa_ahash_export(req, out_state->hash,
873 &out_state->byte_count, out_state->block);
874 }
875
mv_cesa_md5_import(struct ahash_request * req,const void * in)876 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
877 {
878 const struct md5_state *in_state = in;
879
880 return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
881 in_state->block);
882 }
883
mv_cesa_md5_digest(struct ahash_request * req)884 static int mv_cesa_md5_digest(struct ahash_request *req)
885 {
886 int ret;
887
888 ret = mv_cesa_md5_init(req);
889 if (ret)
890 return ret;
891
892 return mv_cesa_ahash_finup(req);
893 }
894
895 struct ahash_alg mv_md5_alg = {
896 .init = mv_cesa_md5_init,
897 .update = mv_cesa_ahash_update,
898 .final = mv_cesa_ahash_final,
899 .finup = mv_cesa_ahash_finup,
900 .digest = mv_cesa_md5_digest,
901 .export = mv_cesa_md5_export,
902 .import = mv_cesa_md5_import,
903 .halg = {
904 .digestsize = MD5_DIGEST_SIZE,
905 .statesize = sizeof(struct md5_state),
906 .base = {
907 .cra_name = "md5",
908 .cra_driver_name = "mv-md5",
909 .cra_priority = 300,
910 .cra_flags = CRYPTO_ALG_ASYNC |
911 CRYPTO_ALG_KERN_DRIVER_ONLY,
912 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
913 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
914 .cra_init = mv_cesa_ahash_cra_init,
915 .cra_module = THIS_MODULE,
916 }
917 }
918 };
919
mv_cesa_sha1_init(struct ahash_request * req)920 static int mv_cesa_sha1_init(struct ahash_request *req)
921 {
922 struct mv_cesa_op_ctx tmpl = { };
923
924 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
925
926 mv_cesa_ahash_init(req, &tmpl, false);
927
928 return 0;
929 }
930
mv_cesa_sha1_export(struct ahash_request * req,void * out)931 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
932 {
933 struct sha1_state *out_state = out;
934
935 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
936 out_state->buffer);
937 }
938
mv_cesa_sha1_import(struct ahash_request * req,const void * in)939 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
940 {
941 const struct sha1_state *in_state = in;
942
943 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
944 in_state->buffer);
945 }
946
mv_cesa_sha1_digest(struct ahash_request * req)947 static int mv_cesa_sha1_digest(struct ahash_request *req)
948 {
949 int ret;
950
951 ret = mv_cesa_sha1_init(req);
952 if (ret)
953 return ret;
954
955 return mv_cesa_ahash_finup(req);
956 }
957
958 struct ahash_alg mv_sha1_alg = {
959 .init = mv_cesa_sha1_init,
960 .update = mv_cesa_ahash_update,
961 .final = mv_cesa_ahash_final,
962 .finup = mv_cesa_ahash_finup,
963 .digest = mv_cesa_sha1_digest,
964 .export = mv_cesa_sha1_export,
965 .import = mv_cesa_sha1_import,
966 .halg = {
967 .digestsize = SHA1_DIGEST_SIZE,
968 .statesize = sizeof(struct sha1_state),
969 .base = {
970 .cra_name = "sha1",
971 .cra_driver_name = "mv-sha1",
972 .cra_priority = 300,
973 .cra_flags = CRYPTO_ALG_ASYNC |
974 CRYPTO_ALG_KERN_DRIVER_ONLY,
975 .cra_blocksize = SHA1_BLOCK_SIZE,
976 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
977 .cra_init = mv_cesa_ahash_cra_init,
978 .cra_module = THIS_MODULE,
979 }
980 }
981 };
982
mv_cesa_sha256_init(struct ahash_request * req)983 static int mv_cesa_sha256_init(struct ahash_request *req)
984 {
985 struct mv_cesa_op_ctx tmpl = { };
986
987 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
988
989 mv_cesa_ahash_init(req, &tmpl, false);
990
991 return 0;
992 }
993
mv_cesa_sha256_digest(struct ahash_request * req)994 static int mv_cesa_sha256_digest(struct ahash_request *req)
995 {
996 int ret;
997
998 ret = mv_cesa_sha256_init(req);
999 if (ret)
1000 return ret;
1001
1002 return mv_cesa_ahash_finup(req);
1003 }
1004
mv_cesa_sha256_export(struct ahash_request * req,void * out)1005 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
1006 {
1007 struct sha256_state *out_state = out;
1008
1009 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
1010 out_state->buf);
1011 }
1012
mv_cesa_sha256_import(struct ahash_request * req,const void * in)1013 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
1014 {
1015 const struct sha256_state *in_state = in;
1016
1017 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
1018 in_state->buf);
1019 }
1020
1021 struct ahash_alg mv_sha256_alg = {
1022 .init = mv_cesa_sha256_init,
1023 .update = mv_cesa_ahash_update,
1024 .final = mv_cesa_ahash_final,
1025 .finup = mv_cesa_ahash_finup,
1026 .digest = mv_cesa_sha256_digest,
1027 .export = mv_cesa_sha256_export,
1028 .import = mv_cesa_sha256_import,
1029 .halg = {
1030 .digestsize = SHA256_DIGEST_SIZE,
1031 .statesize = sizeof(struct sha256_state),
1032 .base = {
1033 .cra_name = "sha256",
1034 .cra_driver_name = "mv-sha256",
1035 .cra_priority = 300,
1036 .cra_flags = CRYPTO_ALG_ASYNC |
1037 CRYPTO_ALG_KERN_DRIVER_ONLY,
1038 .cra_blocksize = SHA256_BLOCK_SIZE,
1039 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1040 .cra_init = mv_cesa_ahash_cra_init,
1041 .cra_module = THIS_MODULE,
1042 }
1043 }
1044 };
1045
1046 struct mv_cesa_ahash_result {
1047 struct completion completion;
1048 int error;
1049 };
1050
mv_cesa_hmac_ahash_complete(struct crypto_async_request * req,int error)1051 static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
1052 int error)
1053 {
1054 struct mv_cesa_ahash_result *result = req->data;
1055
1056 if (error == -EINPROGRESS)
1057 return;
1058
1059 result->error = error;
1060 complete(&result->completion);
1061 }
1062
mv_cesa_ahmac_iv_state_init(struct ahash_request * req,u8 * pad,void * state,unsigned int blocksize)1063 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1064 void *state, unsigned int blocksize)
1065 {
1066 struct mv_cesa_ahash_result result;
1067 struct scatterlist sg;
1068 int ret;
1069
1070 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1071 mv_cesa_hmac_ahash_complete, &result);
1072 sg_init_one(&sg, pad, blocksize);
1073 ahash_request_set_crypt(req, &sg, pad, blocksize);
1074 init_completion(&result.completion);
1075
1076 ret = crypto_ahash_init(req);
1077 if (ret)
1078 return ret;
1079
1080 ret = crypto_ahash_update(req);
1081 if (ret && ret != -EINPROGRESS)
1082 return ret;
1083
1084 wait_for_completion_interruptible(&result.completion);
1085 if (result.error)
1086 return result.error;
1087
1088 ret = crypto_ahash_export(req, state);
1089 if (ret)
1090 return ret;
1091
1092 return 0;
1093 }
1094
mv_cesa_ahmac_pad_init(struct ahash_request * req,const u8 * key,unsigned int keylen,u8 * ipad,u8 * opad,unsigned int blocksize)1095 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1096 const u8 *key, unsigned int keylen,
1097 u8 *ipad, u8 *opad,
1098 unsigned int blocksize)
1099 {
1100 struct mv_cesa_ahash_result result;
1101 struct scatterlist sg;
1102 int ret;
1103 int i;
1104
1105 if (keylen <= blocksize) {
1106 memcpy(ipad, key, keylen);
1107 } else {
1108 u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1109
1110 if (!keydup)
1111 return -ENOMEM;
1112
1113 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1114 mv_cesa_hmac_ahash_complete,
1115 &result);
1116 sg_init_one(&sg, keydup, keylen);
1117 ahash_request_set_crypt(req, &sg, ipad, keylen);
1118 init_completion(&result.completion);
1119
1120 ret = crypto_ahash_digest(req);
1121 if (ret == -EINPROGRESS) {
1122 wait_for_completion_interruptible(&result.completion);
1123 ret = result.error;
1124 }
1125
1126 /* Set the memory region to 0 to avoid any leak. */
1127 memset(keydup, 0, keylen);
1128 kfree(keydup);
1129
1130 if (ret)
1131 return ret;
1132
1133 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1134 }
1135
1136 memset(ipad + keylen, 0, blocksize - keylen);
1137 memcpy(opad, ipad, blocksize);
1138
1139 for (i = 0; i < blocksize; i++) {
1140 ipad[i] ^= 0x36;
1141 opad[i] ^= 0x5c;
1142 }
1143
1144 return 0;
1145 }
1146
mv_cesa_ahmac_setkey(const char * hash_alg_name,const u8 * key,unsigned int keylen,void * istate,void * ostate)1147 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1148 const u8 *key, unsigned int keylen,
1149 void *istate, void *ostate)
1150 {
1151 struct ahash_request *req;
1152 struct crypto_ahash *tfm;
1153 unsigned int blocksize;
1154 u8 *ipad = NULL;
1155 u8 *opad;
1156 int ret;
1157
1158 tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
1159 CRYPTO_ALG_TYPE_AHASH_MASK);
1160 if (IS_ERR(tfm))
1161 return PTR_ERR(tfm);
1162
1163 req = ahash_request_alloc(tfm, GFP_KERNEL);
1164 if (!req) {
1165 ret = -ENOMEM;
1166 goto free_ahash;
1167 }
1168
1169 crypto_ahash_clear_flags(tfm, ~0);
1170
1171 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1172
1173 ipad = kzalloc(2 * blocksize, GFP_KERNEL);
1174 if (!ipad) {
1175 ret = -ENOMEM;
1176 goto free_req;
1177 }
1178
1179 opad = ipad + blocksize;
1180
1181 ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1182 if (ret)
1183 goto free_ipad;
1184
1185 ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1186 if (ret)
1187 goto free_ipad;
1188
1189 ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1190
1191 free_ipad:
1192 kfree(ipad);
1193 free_req:
1194 ahash_request_free(req);
1195 free_ahash:
1196 crypto_free_ahash(tfm);
1197
1198 return ret;
1199 }
1200
mv_cesa_ahmac_cra_init(struct crypto_tfm * tfm)1201 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1202 {
1203 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1204
1205 ctx->base.ops = &mv_cesa_ahash_req_ops;
1206
1207 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1208 sizeof(struct mv_cesa_ahash_req));
1209 return 0;
1210 }
1211
mv_cesa_ahmac_md5_init(struct ahash_request * req)1212 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1213 {
1214 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1215 struct mv_cesa_op_ctx tmpl = { };
1216
1217 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1218 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1219
1220 mv_cesa_ahash_init(req, &tmpl, true);
1221
1222 return 0;
1223 }
1224
mv_cesa_ahmac_md5_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1225 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1226 unsigned int keylen)
1227 {
1228 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1229 struct md5_state istate, ostate;
1230 int ret, i;
1231
1232 ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1233 if (ret)
1234 return ret;
1235
1236 for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1237 ctx->iv[i] = be32_to_cpu(istate.hash[i]);
1238
1239 for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1240 ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
1241
1242 return 0;
1243 }
1244
mv_cesa_ahmac_md5_digest(struct ahash_request * req)1245 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1246 {
1247 int ret;
1248
1249 ret = mv_cesa_ahmac_md5_init(req);
1250 if (ret)
1251 return ret;
1252
1253 return mv_cesa_ahash_finup(req);
1254 }
1255
1256 struct ahash_alg mv_ahmac_md5_alg = {
1257 .init = mv_cesa_ahmac_md5_init,
1258 .update = mv_cesa_ahash_update,
1259 .final = mv_cesa_ahash_final,
1260 .finup = mv_cesa_ahash_finup,
1261 .digest = mv_cesa_ahmac_md5_digest,
1262 .setkey = mv_cesa_ahmac_md5_setkey,
1263 .export = mv_cesa_md5_export,
1264 .import = mv_cesa_md5_import,
1265 .halg = {
1266 .digestsize = MD5_DIGEST_SIZE,
1267 .statesize = sizeof(struct md5_state),
1268 .base = {
1269 .cra_name = "hmac(md5)",
1270 .cra_driver_name = "mv-hmac-md5",
1271 .cra_priority = 300,
1272 .cra_flags = CRYPTO_ALG_ASYNC |
1273 CRYPTO_ALG_KERN_DRIVER_ONLY,
1274 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1275 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1276 .cra_init = mv_cesa_ahmac_cra_init,
1277 .cra_module = THIS_MODULE,
1278 }
1279 }
1280 };
1281
mv_cesa_ahmac_sha1_init(struct ahash_request * req)1282 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1283 {
1284 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1285 struct mv_cesa_op_ctx tmpl = { };
1286
1287 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1288 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1289
1290 mv_cesa_ahash_init(req, &tmpl, false);
1291
1292 return 0;
1293 }
1294
mv_cesa_ahmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1295 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1296 unsigned int keylen)
1297 {
1298 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1299 struct sha1_state istate, ostate;
1300 int ret, i;
1301
1302 ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1303 if (ret)
1304 return ret;
1305
1306 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1307 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1308
1309 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1310 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1311
1312 return 0;
1313 }
1314
mv_cesa_ahmac_sha1_digest(struct ahash_request * req)1315 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1316 {
1317 int ret;
1318
1319 ret = mv_cesa_ahmac_sha1_init(req);
1320 if (ret)
1321 return ret;
1322
1323 return mv_cesa_ahash_finup(req);
1324 }
1325
1326 struct ahash_alg mv_ahmac_sha1_alg = {
1327 .init = mv_cesa_ahmac_sha1_init,
1328 .update = mv_cesa_ahash_update,
1329 .final = mv_cesa_ahash_final,
1330 .finup = mv_cesa_ahash_finup,
1331 .digest = mv_cesa_ahmac_sha1_digest,
1332 .setkey = mv_cesa_ahmac_sha1_setkey,
1333 .export = mv_cesa_sha1_export,
1334 .import = mv_cesa_sha1_import,
1335 .halg = {
1336 .digestsize = SHA1_DIGEST_SIZE,
1337 .statesize = sizeof(struct sha1_state),
1338 .base = {
1339 .cra_name = "hmac(sha1)",
1340 .cra_driver_name = "mv-hmac-sha1",
1341 .cra_priority = 300,
1342 .cra_flags = CRYPTO_ALG_ASYNC |
1343 CRYPTO_ALG_KERN_DRIVER_ONLY,
1344 .cra_blocksize = SHA1_BLOCK_SIZE,
1345 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1346 .cra_init = mv_cesa_ahmac_cra_init,
1347 .cra_module = THIS_MODULE,
1348 }
1349 }
1350 };
1351
mv_cesa_ahmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1352 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1353 unsigned int keylen)
1354 {
1355 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1356 struct sha256_state istate, ostate;
1357 int ret, i;
1358
1359 ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1360 if (ret)
1361 return ret;
1362
1363 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1364 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1365
1366 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1367 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1368
1369 return 0;
1370 }
1371
mv_cesa_ahmac_sha256_init(struct ahash_request * req)1372 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1373 {
1374 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1375 struct mv_cesa_op_ctx tmpl = { };
1376
1377 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1378 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1379
1380 mv_cesa_ahash_init(req, &tmpl, false);
1381
1382 return 0;
1383 }
1384
mv_cesa_ahmac_sha256_digest(struct ahash_request * req)1385 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1386 {
1387 int ret;
1388
1389 ret = mv_cesa_ahmac_sha256_init(req);
1390 if (ret)
1391 return ret;
1392
1393 return mv_cesa_ahash_finup(req);
1394 }
1395
1396 struct ahash_alg mv_ahmac_sha256_alg = {
1397 .init = mv_cesa_ahmac_sha256_init,
1398 .update = mv_cesa_ahash_update,
1399 .final = mv_cesa_ahash_final,
1400 .finup = mv_cesa_ahash_finup,
1401 .digest = mv_cesa_ahmac_sha256_digest,
1402 .setkey = mv_cesa_ahmac_sha256_setkey,
1403 .export = mv_cesa_sha256_export,
1404 .import = mv_cesa_sha256_import,
1405 .halg = {
1406 .digestsize = SHA256_DIGEST_SIZE,
1407 .statesize = sizeof(struct sha256_state),
1408 .base = {
1409 .cra_name = "hmac(sha256)",
1410 .cra_driver_name = "mv-hmac-sha256",
1411 .cra_priority = 300,
1412 .cra_flags = CRYPTO_ALG_ASYNC |
1413 CRYPTO_ALG_KERN_DRIVER_ONLY,
1414 .cra_blocksize = SHA256_BLOCK_SIZE,
1415 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1416 .cra_init = mv_cesa_ahmac_cra_init,
1417 .cra_module = THIS_MODULE,
1418 }
1419 }
1420 };
1421