• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
atc_get_xfer_width(dma_addr_t src,dma_addr_t dst,size_t len)70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
atc_first_active(struct at_dma_chan * atchan)85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
atc_first_queued(struct at_dma_chan * atchan)91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
atc_alloc_descriptor(struct dma_chan * chan,gfp_t gfp_flags)107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		memset(desc, 0, sizeof(struct at_desc));
117 		INIT_LIST_HEAD(&desc->tx_list);
118 		dma_async_tx_descriptor_init(&desc->txd, chan);
119 		/* txd.flags will be overwritten in prep functions */
120 		desc->txd.flags = DMA_CTRL_ACK;
121 		desc->txd.tx_submit = atc_tx_submit;
122 		desc->txd.phys = phys;
123 	}
124 
125 	return desc;
126 }
127 
128 /**
129  * atc_desc_get - get an unused descriptor from free_list
130  * @atchan: channel we want a new descriptor for
131  */
atc_desc_get(struct at_dma_chan * atchan)132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133 {
134 	struct at_desc *desc, *_desc;
135 	struct at_desc *ret = NULL;
136 	unsigned long flags;
137 	unsigned int i = 0;
138 	LIST_HEAD(tmp_list);
139 
140 	spin_lock_irqsave(&atchan->lock, flags);
141 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 		i++;
143 		if (async_tx_test_ack(&desc->txd)) {
144 			list_del(&desc->desc_node);
145 			ret = desc;
146 			break;
147 		}
148 		dev_dbg(chan2dev(&atchan->chan_common),
149 				"desc %p not ACKed\n", desc);
150 	}
151 	spin_unlock_irqrestore(&atchan->lock, flags);
152 	dev_vdbg(chan2dev(&atchan->chan_common),
153 		"scanned %u descriptors on freelist\n", i);
154 
155 	/* no more descriptor available in initial pool: create one more */
156 	if (!ret) {
157 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 		if (ret) {
159 			spin_lock_irqsave(&atchan->lock, flags);
160 			atchan->descs_allocated++;
161 			spin_unlock_irqrestore(&atchan->lock, flags);
162 		} else {
163 			dev_err(chan2dev(&atchan->chan_common),
164 					"not enough descriptors available\n");
165 		}
166 	}
167 
168 	return ret;
169 }
170 
171 /**
172  * atc_desc_put - move a descriptor, including any children, to the free list
173  * @atchan: channel we work on
174  * @desc: descriptor, at the head of a chain, to move to free list
175  */
atc_desc_put(struct at_dma_chan * atchan,struct at_desc * desc)176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177 {
178 	if (desc) {
179 		struct at_desc *child;
180 		unsigned long flags;
181 
182 		spin_lock_irqsave(&atchan->lock, flags);
183 		list_for_each_entry(child, &desc->tx_list, desc_node)
184 			dev_vdbg(chan2dev(&atchan->chan_common),
185 					"moving child desc %p to freelist\n",
186 					child);
187 		list_splice_init(&desc->tx_list, &atchan->free_list);
188 		dev_vdbg(chan2dev(&atchan->chan_common),
189 			 "moving desc %p to freelist\n", desc);
190 		list_add(&desc->desc_node, &atchan->free_list);
191 		spin_unlock_irqrestore(&atchan->lock, flags);
192 	}
193 }
194 
195 /**
196  * atc_desc_chain - build chain adding a descriptor
197  * @first: address of first descriptor of the chain
198  * @prev: address of previous descriptor of the chain
199  * @desc: descriptor to queue
200  *
201  * Called from prep_* functions
202  */
atc_desc_chain(struct at_desc ** first,struct at_desc ** prev,struct at_desc * desc)203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 			   struct at_desc *desc)
205 {
206 	if (!(*first)) {
207 		*first = desc;
208 	} else {
209 		/* inform the HW lli about chaining */
210 		(*prev)->lli.dscr = desc->txd.phys;
211 		/* insert the link descriptor to the LD ring */
212 		list_add_tail(&desc->desc_node,
213 				&(*first)->tx_list);
214 	}
215 	*prev = desc;
216 }
217 
218 /**
219  * atc_dostart - starts the DMA engine for real
220  * @atchan: the channel we want to start
221  * @first: first descriptor in the list we want to begin with
222  *
223  * Called with atchan->lock held and bh disabled
224  */
atc_dostart(struct at_dma_chan * atchan,struct at_desc * first)225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226 {
227 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
228 
229 	/* ASSERT:  channel is idle */
230 	if (atc_chan_is_enabled(atchan)) {
231 		dev_err(chan2dev(&atchan->chan_common),
232 			"BUG: Attempted to start non-idle channel\n");
233 		dev_err(chan2dev(&atchan->chan_common),
234 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 			channel_readl(atchan, SADDR),
236 			channel_readl(atchan, DADDR),
237 			channel_readl(atchan, CTRLA),
238 			channel_readl(atchan, CTRLB),
239 			channel_readl(atchan, DSCR));
240 
241 		/* The tasklet will hopefully advance the queue... */
242 		return;
243 	}
244 
245 	vdbg_dump_regs(atchan);
246 
247 	channel_writel(atchan, SADDR, 0);
248 	channel_writel(atchan, DADDR, 0);
249 	channel_writel(atchan, CTRLA, 0);
250 	channel_writel(atchan, CTRLB, 0);
251 	channel_writel(atchan, DSCR, first->txd.phys);
252 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 		       ATC_SPIP_BOUNDARY(first->boundary));
254 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 		       ATC_DPIP_BOUNDARY(first->boundary));
256 	dma_writel(atdma, CHER, atchan->mask);
257 
258 	vdbg_dump_regs(atchan);
259 }
260 
261 /*
262  * atc_get_desc_by_cookie - get the descriptor of a cookie
263  * @atchan: the DMA channel
264  * @cookie: the cookie to get the descriptor for
265  */
atc_get_desc_by_cookie(struct at_dma_chan * atchan,dma_cookie_t cookie)266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 						dma_cookie_t cookie)
268 {
269 	struct at_desc *desc, *_desc;
270 
271 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 		if (desc->txd.cookie == cookie)
273 			return desc;
274 	}
275 
276 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 		if (desc->txd.cookie == cookie)
278 			return desc;
279 	}
280 
281 	return NULL;
282 }
283 
284 /**
285  * atc_calc_bytes_left - calculates the number of bytes left according to the
286  * value read from CTRLA.
287  *
288  * @current_len: the number of bytes left before reading CTRLA
289  * @ctrla: the value of CTRLA
290  */
atc_calc_bytes_left(int current_len,u32 ctrla)291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292 {
293 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295 
296 	/*
297 	 * According to the datasheet, when reading the Control A Register
298 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 	 * number of transfers completed on the Source Interface.
300 	 * So btsize is always a number of source width transfers.
301 	 */
302 	return current_len - (btsize << src_width);
303 }
304 
305 /**
306  * atc_get_bytes_left - get the number of bytes residue for a cookie
307  * @chan: DMA channel
308  * @cookie: transaction identifier to check status of
309  */
atc_get_bytes_left(struct dma_chan * chan,dma_cookie_t cookie)310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311 {
312 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
313 	struct at_desc *desc_first = atc_first_active(atchan);
314 	struct at_desc *desc;
315 	int ret;
316 	u32 ctrla, dscr, trials;
317 
318 	/*
319 	 * If the cookie doesn't match to the currently running transfer then
320 	 * we can return the total length of the associated DMA transfer,
321 	 * because it is still queued.
322 	 */
323 	desc = atc_get_desc_by_cookie(atchan, cookie);
324 	if (desc == NULL)
325 		return -EINVAL;
326 	else if (desc != desc_first)
327 		return desc->total_len;
328 
329 	/* cookie matches to the currently running transfer */
330 	ret = desc_first->total_len;
331 
332 	if (desc_first->lli.dscr) {
333 		/* hardware linked list transfer */
334 
335 		/*
336 		 * Calculate the residue by removing the length of the child
337 		 * descriptors already transferred from the total length.
338 		 * To get the current child descriptor we can use the value of
339 		 * the channel's DSCR register and compare it against the value
340 		 * of the hardware linked list structure of each child
341 		 * descriptor.
342 		 *
343 		 * The CTRLA register provides us with the amount of data
344 		 * already read from the source for the current child
345 		 * descriptor. So we can compute a more accurate residue by also
346 		 * removing the number of bytes corresponding to this amount of
347 		 * data.
348 		 *
349 		 * However, the DSCR and CTRLA registers cannot be read both
350 		 * atomically. Hence a race condition may occur: the first read
351 		 * register may refer to one child descriptor whereas the second
352 		 * read may refer to a later child descriptor in the list
353 		 * because of the DMA transfer progression inbetween the two
354 		 * reads.
355 		 *
356 		 * One solution could have been to pause the DMA transfer, read
357 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 		 * this approach presents some drawbacks:
359 		 * - If the DMA transfer is paused, RX overruns or TX underruns
360 		 *   are more likey to occur depending on the system latency.
361 		 *   Taking the USART driver as an example, it uses a cyclic DMA
362 		 *   transfer to read data from the Receive Holding Register
363 		 *   (RHR) to avoid RX overruns since the RHR is not protected
364 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 		 *   to compute the residue would break the USART driver design.
366 		 * - The atc_pause() function masks interrupts but we'd rather
367 		 *   avoid to do so for system latency purpose.
368 		 *
369 		 * Then we'd rather use another solution: the DSCR is read a
370 		 * first time, the CTRLA is read in turn, next the DSCR is read
371 		 * a second time. If the two consecutive read values of the DSCR
372 		 * are the same then we assume both refers to the very same
373 		 * child descriptor as well as the CTRLA value read inbetween
374 		 * does. For cyclic tranfers, the assumption is that a full loop
375 		 * is "not so fast".
376 		 * If the two DSCR values are different, we read again the CTRLA
377 		 * then the DSCR till two consecutive read values from DSCR are
378 		 * equal or till the maxium trials is reach.
379 		 * This algorithm is very unlikely not to find a stable value for
380 		 * DSCR.
381 		 */
382 
383 		dscr = channel_readl(atchan, DSCR);
384 		rmb(); /* ensure DSCR is read before CTRLA */
385 		ctrla = channel_readl(atchan, CTRLA);
386 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 			u32 new_dscr;
388 
389 			rmb(); /* ensure DSCR is read after CTRLA */
390 			new_dscr = channel_readl(atchan, DSCR);
391 
392 			/*
393 			 * If the DSCR register value has not changed inside the
394 			 * DMA controller since the previous read, we assume
395 			 * that both the dscr and ctrla values refers to the
396 			 * very same descriptor.
397 			 */
398 			if (likely(new_dscr == dscr))
399 				break;
400 
401 			/*
402 			 * DSCR has changed inside the DMA controller, so the
403 			 * previouly read value of CTRLA may refer to an already
404 			 * processed descriptor hence could be outdated.
405 			 * We need to update ctrla to match the current
406 			 * descriptor.
407 			 */
408 			dscr = new_dscr;
409 			rmb(); /* ensure DSCR is read before CTRLA */
410 			ctrla = channel_readl(atchan, CTRLA);
411 		}
412 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 			return -ETIMEDOUT;
414 
415 		/* for the first descriptor we can be more accurate */
416 		if (desc_first->lli.dscr == dscr)
417 			return atc_calc_bytes_left(ret, ctrla);
418 
419 		ret -= desc_first->len;
420 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 			if (desc->lli.dscr == dscr)
422 				break;
423 
424 			ret -= desc->len;
425 		}
426 
427 		/*
428 		 * For the current descriptor in the chain we can calculate
429 		 * the remaining bytes using the channel's register.
430 		 */
431 		ret = atc_calc_bytes_left(ret, ctrla);
432 	} else {
433 		/* single transfer */
434 		ctrla = channel_readl(atchan, CTRLA);
435 		ret = atc_calc_bytes_left(ret, ctrla);
436 	}
437 
438 	return ret;
439 }
440 
441 /**
442  * atc_chain_complete - finish work for one transaction chain
443  * @atchan: channel we work on
444  * @desc: descriptor at the head of the chain we want do complete
445  *
446  * Called with atchan->lock held and bh disabled */
447 static void
atc_chain_complete(struct at_dma_chan * atchan,struct at_desc * desc)448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449 {
450 	struct dma_async_tx_descriptor	*txd = &desc->txd;
451 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
452 
453 	dev_vdbg(chan2dev(&atchan->chan_common),
454 		"descriptor %u complete\n", txd->cookie);
455 
456 	/* mark the descriptor as complete for non cyclic cases only */
457 	if (!atc_chan_is_cyclic(atchan))
458 		dma_cookie_complete(txd);
459 
460 	/* If the transfer was a memset, free our temporary buffer */
461 	if (desc->memset_buffer) {
462 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463 			      desc->memset_paddr);
464 		desc->memset_buffer = false;
465 	}
466 
467 	/* move children to free_list */
468 	list_splice_init(&desc->tx_list, &atchan->free_list);
469 	/* move myself to free_list */
470 	list_move(&desc->desc_node, &atchan->free_list);
471 
472 	dma_descriptor_unmap(txd);
473 	/* for cyclic transfers,
474 	 * no need to replay callback function while stopping */
475 	if (!atc_chan_is_cyclic(atchan)) {
476 		dma_async_tx_callback	callback = txd->callback;
477 		void			*param = txd->callback_param;
478 
479 		/*
480 		 * The API requires that no submissions are done from a
481 		 * callback, so we don't need to drop the lock here
482 		 */
483 		if (callback)
484 			callback(param);
485 	}
486 
487 	dma_run_dependencies(txd);
488 }
489 
490 /**
491  * atc_complete_all - finish work for all transactions
492  * @atchan: channel to complete transactions for
493  *
494  * Eventually submit queued descriptors if any
495  *
496  * Assume channel is idle while calling this function
497  * Called with atchan->lock held and bh disabled
498  */
atc_complete_all(struct at_dma_chan * atchan)499 static void atc_complete_all(struct at_dma_chan *atchan)
500 {
501 	struct at_desc *desc, *_desc;
502 	LIST_HEAD(list);
503 
504 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
505 
506 	/*
507 	 * Submit queued descriptors ASAP, i.e. before we go through
508 	 * the completed ones.
509 	 */
510 	if (!list_empty(&atchan->queue))
511 		atc_dostart(atchan, atc_first_queued(atchan));
512 	/* empty active_list now it is completed */
513 	list_splice_init(&atchan->active_list, &list);
514 	/* empty queue list by moving descriptors (if any) to active_list */
515 	list_splice_init(&atchan->queue, &atchan->active_list);
516 
517 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
518 		atc_chain_complete(atchan, desc);
519 }
520 
521 /**
522  * atc_advance_work - at the end of a transaction, move forward
523  * @atchan: channel where the transaction ended
524  *
525  * Called with atchan->lock held and bh disabled
526  */
atc_advance_work(struct at_dma_chan * atchan)527 static void atc_advance_work(struct at_dma_chan *atchan)
528 {
529 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
530 
531 	if (atc_chan_is_enabled(atchan))
532 		return;
533 
534 	if (list_empty(&atchan->active_list) ||
535 	    list_is_singular(&atchan->active_list)) {
536 		atc_complete_all(atchan);
537 	} else {
538 		atc_chain_complete(atchan, atc_first_active(atchan));
539 		/* advance work */
540 		atc_dostart(atchan, atc_first_active(atchan));
541 	}
542 }
543 
544 
545 /**
546  * atc_handle_error - handle errors reported by DMA controller
547  * @atchan: channel where error occurs
548  *
549  * Called with atchan->lock held and bh disabled
550  */
atc_handle_error(struct at_dma_chan * atchan)551 static void atc_handle_error(struct at_dma_chan *atchan)
552 {
553 	struct at_desc *bad_desc;
554 	struct at_desc *child;
555 
556 	/*
557 	 * The descriptor currently at the head of the active list is
558 	 * broked. Since we don't have any way to report errors, we'll
559 	 * just have to scream loudly and try to carry on.
560 	 */
561 	bad_desc = atc_first_active(atchan);
562 	list_del_init(&bad_desc->desc_node);
563 
564 	/* As we are stopped, take advantage to push queued descriptors
565 	 * in active_list */
566 	list_splice_init(&atchan->queue, atchan->active_list.prev);
567 
568 	/* Try to restart the controller */
569 	if (!list_empty(&atchan->active_list))
570 		atc_dostart(atchan, atc_first_active(atchan));
571 
572 	/*
573 	 * KERN_CRITICAL may seem harsh, but since this only happens
574 	 * when someone submits a bad physical address in a
575 	 * descriptor, we should consider ourselves lucky that the
576 	 * controller flagged an error instead of scribbling over
577 	 * random memory locations.
578 	 */
579 	dev_crit(chan2dev(&atchan->chan_common),
580 			"Bad descriptor submitted for DMA!\n");
581 	dev_crit(chan2dev(&atchan->chan_common),
582 			"  cookie: %d\n", bad_desc->txd.cookie);
583 	atc_dump_lli(atchan, &bad_desc->lli);
584 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
585 		atc_dump_lli(atchan, &child->lli);
586 
587 	/* Pretend the descriptor completed successfully */
588 	atc_chain_complete(atchan, bad_desc);
589 }
590 
591 /**
592  * atc_handle_cyclic - at the end of a period, run callback function
593  * @atchan: channel used for cyclic operations
594  *
595  * Called with atchan->lock held and bh disabled
596  */
atc_handle_cyclic(struct at_dma_chan * atchan)597 static void atc_handle_cyclic(struct at_dma_chan *atchan)
598 {
599 	struct at_desc			*first = atc_first_active(atchan);
600 	struct dma_async_tx_descriptor	*txd = &first->txd;
601 	dma_async_tx_callback		callback = txd->callback;
602 	void				*param = txd->callback_param;
603 
604 	dev_vdbg(chan2dev(&atchan->chan_common),
605 			"new cyclic period llp 0x%08x\n",
606 			channel_readl(atchan, DSCR));
607 
608 	if (callback)
609 		callback(param);
610 }
611 
612 /*--  IRQ & Tasklet  ---------------------------------------------------*/
613 
atc_tasklet(unsigned long data)614 static void atc_tasklet(unsigned long data)
615 {
616 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&atchan->lock, flags);
620 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
621 		atc_handle_error(atchan);
622 	else if (atc_chan_is_cyclic(atchan))
623 		atc_handle_cyclic(atchan);
624 	else
625 		atc_advance_work(atchan);
626 
627 	spin_unlock_irqrestore(&atchan->lock, flags);
628 }
629 
at_dma_interrupt(int irq,void * dev_id)630 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
631 {
632 	struct at_dma		*atdma = (struct at_dma *)dev_id;
633 	struct at_dma_chan	*atchan;
634 	int			i;
635 	u32			status, pending, imr;
636 	int			ret = IRQ_NONE;
637 
638 	do {
639 		imr = dma_readl(atdma, EBCIMR);
640 		status = dma_readl(atdma, EBCISR);
641 		pending = status & imr;
642 
643 		if (!pending)
644 			break;
645 
646 		dev_vdbg(atdma->dma_common.dev,
647 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
648 			 status, imr, pending);
649 
650 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
651 			atchan = &atdma->chan[i];
652 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
653 				if (pending & AT_DMA_ERR(i)) {
654 					/* Disable channel on AHB error */
655 					dma_writel(atdma, CHDR,
656 						AT_DMA_RES(i) | atchan->mask);
657 					/* Give information to tasklet */
658 					set_bit(ATC_IS_ERROR, &atchan->status);
659 				}
660 				tasklet_schedule(&atchan->tasklet);
661 				ret = IRQ_HANDLED;
662 			}
663 		}
664 
665 	} while (pending);
666 
667 	return ret;
668 }
669 
670 
671 /*--  DMA Engine API  --------------------------------------------------*/
672 
673 /**
674  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
675  * @desc: descriptor at the head of the transaction chain
676  *
677  * Queue chain if DMA engine is working already
678  *
679  * Cookie increment and adding to active_list or queue must be atomic
680  */
atc_tx_submit(struct dma_async_tx_descriptor * tx)681 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
682 {
683 	struct at_desc		*desc = txd_to_at_desc(tx);
684 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
685 	dma_cookie_t		cookie;
686 	unsigned long		flags;
687 
688 	spin_lock_irqsave(&atchan->lock, flags);
689 	cookie = dma_cookie_assign(tx);
690 
691 	if (list_empty(&atchan->active_list)) {
692 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
693 				desc->txd.cookie);
694 		atc_dostart(atchan, desc);
695 		list_add_tail(&desc->desc_node, &atchan->active_list);
696 	} else {
697 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
698 				desc->txd.cookie);
699 		list_add_tail(&desc->desc_node, &atchan->queue);
700 	}
701 
702 	spin_unlock_irqrestore(&atchan->lock, flags);
703 
704 	return cookie;
705 }
706 
707 /**
708  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
709  * @chan: the channel to prepare operation on
710  * @xt: Interleaved transfer template
711  * @flags: tx descriptor status flags
712  */
713 static struct dma_async_tx_descriptor *
atc_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)714 atc_prep_dma_interleaved(struct dma_chan *chan,
715 			 struct dma_interleaved_template *xt,
716 			 unsigned long flags)
717 {
718 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
719 	struct data_chunk	*first;
720 	struct at_desc		*desc = NULL;
721 	size_t			xfer_count;
722 	unsigned int		dwidth;
723 	u32			ctrla;
724 	u32			ctrlb;
725 	size_t			len = 0;
726 	int			i;
727 
728 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
729 		return NULL;
730 
731 	first = xt->sgl;
732 
733 	dev_info(chan2dev(chan),
734 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
735 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
736 		xt->frame_size, flags);
737 
738 	/*
739 	 * The controller can only "skip" X bytes every Y bytes, so we
740 	 * need to make sure we are given a template that fit that
741 	 * description, ie a template with chunks that always have the
742 	 * same size, with the same ICGs.
743 	 */
744 	for (i = 0; i < xt->frame_size; i++) {
745 		struct data_chunk *chunk = xt->sgl + i;
746 
747 		if ((chunk->size != xt->sgl->size) ||
748 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
749 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
750 			dev_err(chan2dev(chan),
751 				"%s: the controller can transfer only identical chunks\n",
752 				__func__);
753 			return NULL;
754 		}
755 
756 		len += chunk->size;
757 	}
758 
759 	dwidth = atc_get_xfer_width(xt->src_start,
760 				    xt->dst_start, len);
761 
762 	xfer_count = len >> dwidth;
763 	if (xfer_count > ATC_BTSIZE_MAX) {
764 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
765 		return NULL;
766 	}
767 
768 	ctrla = ATC_SRC_WIDTH(dwidth) |
769 		ATC_DST_WIDTH(dwidth);
770 
771 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
772 		| ATC_SRC_ADDR_MODE_INCR
773 		| ATC_DST_ADDR_MODE_INCR
774 		| ATC_SRC_PIP
775 		| ATC_DST_PIP
776 		| ATC_FC_MEM2MEM;
777 
778 	/* create the transfer */
779 	desc = atc_desc_get(atchan);
780 	if (!desc) {
781 		dev_err(chan2dev(chan),
782 			"%s: couldn't allocate our descriptor\n", __func__);
783 		return NULL;
784 	}
785 
786 	desc->lli.saddr = xt->src_start;
787 	desc->lli.daddr = xt->dst_start;
788 	desc->lli.ctrla = ctrla | xfer_count;
789 	desc->lli.ctrlb = ctrlb;
790 
791 	desc->boundary = first->size >> dwidth;
792 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
793 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
794 
795 	desc->txd.cookie = -EBUSY;
796 	desc->total_len = desc->len = len;
797 
798 	/* set end-of-link to the last link descriptor of list*/
799 	set_desc_eol(desc);
800 
801 	desc->txd.flags = flags; /* client is in control of this ack */
802 
803 	return &desc->txd;
804 }
805 
806 /**
807  * atc_prep_dma_memcpy - prepare a memcpy operation
808  * @chan: the channel to prepare operation on
809  * @dest: operation virtual destination address
810  * @src: operation virtual source address
811  * @len: operation length
812  * @flags: tx descriptor status flags
813  */
814 static struct dma_async_tx_descriptor *
atc_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)815 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
816 		size_t len, unsigned long flags)
817 {
818 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
819 	struct at_desc		*desc = NULL;
820 	struct at_desc		*first = NULL;
821 	struct at_desc		*prev = NULL;
822 	size_t			xfer_count;
823 	size_t			offset;
824 	unsigned int		src_width;
825 	unsigned int		dst_width;
826 	u32			ctrla;
827 	u32			ctrlb;
828 
829 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
830 			&dest, &src, len, flags);
831 
832 	if (unlikely(!len)) {
833 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
834 		return NULL;
835 	}
836 
837 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
838 		| ATC_SRC_ADDR_MODE_INCR
839 		| ATC_DST_ADDR_MODE_INCR
840 		| ATC_FC_MEM2MEM;
841 
842 	/*
843 	 * We can be a lot more clever here, but this should take care
844 	 * of the most common optimization.
845 	 */
846 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
847 
848 	ctrla = ATC_SRC_WIDTH(src_width) |
849 		ATC_DST_WIDTH(dst_width);
850 
851 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
852 		xfer_count = min_t(size_t, (len - offset) >> src_width,
853 				ATC_BTSIZE_MAX);
854 
855 		desc = atc_desc_get(atchan);
856 		if (!desc)
857 			goto err_desc_get;
858 
859 		desc->lli.saddr = src + offset;
860 		desc->lli.daddr = dest + offset;
861 		desc->lli.ctrla = ctrla | xfer_count;
862 		desc->lli.ctrlb = ctrlb;
863 
864 		desc->txd.cookie = 0;
865 		desc->len = xfer_count << src_width;
866 
867 		atc_desc_chain(&first, &prev, desc);
868 	}
869 
870 	/* First descriptor of the chain embedds additional information */
871 	first->txd.cookie = -EBUSY;
872 	first->total_len = len;
873 
874 	/* set end-of-link to the last link descriptor of list*/
875 	set_desc_eol(desc);
876 
877 	first->txd.flags = flags; /* client is in control of this ack */
878 
879 	return &first->txd;
880 
881 err_desc_get:
882 	atc_desc_put(atchan, first);
883 	return NULL;
884 }
885 
atc_create_memset_desc(struct dma_chan * chan,dma_addr_t psrc,dma_addr_t pdst,size_t len)886 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
887 					      dma_addr_t psrc,
888 					      dma_addr_t pdst,
889 					      size_t len)
890 {
891 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
892 	struct at_desc *desc;
893 	size_t xfer_count;
894 
895 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
896 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
897 		ATC_SRC_ADDR_MODE_FIXED |
898 		ATC_DST_ADDR_MODE_INCR |
899 		ATC_FC_MEM2MEM;
900 
901 	xfer_count = len >> 2;
902 	if (xfer_count > ATC_BTSIZE_MAX) {
903 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
904 			__func__);
905 		return NULL;
906 	}
907 
908 	desc = atc_desc_get(atchan);
909 	if (!desc) {
910 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
911 			__func__);
912 		return NULL;
913 	}
914 
915 	desc->lli.saddr = psrc;
916 	desc->lli.daddr = pdst;
917 	desc->lli.ctrla = ctrla | xfer_count;
918 	desc->lli.ctrlb = ctrlb;
919 
920 	desc->txd.cookie = 0;
921 	desc->len = len;
922 
923 	return desc;
924 }
925 
926 /**
927  * atc_prep_dma_memset - prepare a memcpy operation
928  * @chan: the channel to prepare operation on
929  * @dest: operation virtual destination address
930  * @value: value to set memory buffer to
931  * @len: operation length
932  * @flags: tx descriptor status flags
933  */
934 static struct dma_async_tx_descriptor *
atc_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)935 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
936 		    size_t len, unsigned long flags)
937 {
938 	struct at_dma		*atdma = to_at_dma(chan->device);
939 	struct at_desc		*desc;
940 	void __iomem		*vaddr;
941 	dma_addr_t		paddr;
942 
943 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
944 		&dest, value, len, flags);
945 
946 	if (unlikely(!len)) {
947 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
948 		return NULL;
949 	}
950 
951 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
952 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
953 			__func__);
954 		return NULL;
955 	}
956 
957 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
958 	if (!vaddr) {
959 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
960 			__func__);
961 		return NULL;
962 	}
963 	*(u32*)vaddr = value;
964 
965 	desc = atc_create_memset_desc(chan, paddr, dest, len);
966 	if (!desc) {
967 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
968 			__func__);
969 		goto err_free_buffer;
970 	}
971 
972 	desc->memset_paddr = paddr;
973 	desc->memset_vaddr = vaddr;
974 	desc->memset_buffer = true;
975 
976 	desc->txd.cookie = -EBUSY;
977 	desc->total_len = len;
978 
979 	/* set end-of-link on the descriptor */
980 	set_desc_eol(desc);
981 
982 	desc->txd.flags = flags;
983 
984 	return &desc->txd;
985 
986 err_free_buffer:
987 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
988 	return NULL;
989 }
990 
991 static struct dma_async_tx_descriptor *
atc_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)992 atc_prep_dma_memset_sg(struct dma_chan *chan,
993 		       struct scatterlist *sgl,
994 		       unsigned int sg_len, int value,
995 		       unsigned long flags)
996 {
997 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
998 	struct at_dma		*atdma = to_at_dma(chan->device);
999 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
1000 	struct scatterlist	*sg;
1001 	void __iomem		*vaddr;
1002 	dma_addr_t		paddr;
1003 	size_t			total_len = 0;
1004 	int			i;
1005 
1006 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1007 		 value, sg_len, flags);
1008 
1009 	if (unlikely(!sgl || !sg_len)) {
1010 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1011 			__func__);
1012 		return NULL;
1013 	}
1014 
1015 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1016 	if (!vaddr) {
1017 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1018 			__func__);
1019 		return NULL;
1020 	}
1021 	*(u32*)vaddr = value;
1022 
1023 	for_each_sg(sgl, sg, sg_len, i) {
1024 		dma_addr_t dest = sg_dma_address(sg);
1025 		size_t len = sg_dma_len(sg);
1026 
1027 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1028 			 __func__, &dest, len);
1029 
1030 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1031 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1032 				__func__);
1033 			goto err_put_desc;
1034 		}
1035 
1036 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1037 		if (!desc)
1038 			goto err_put_desc;
1039 
1040 		atc_desc_chain(&first, &prev, desc);
1041 
1042 		total_len += len;
1043 	}
1044 
1045 	/*
1046 	 * Only set the buffer pointers on the last descriptor to
1047 	 * avoid free'ing while we have our transfer still going
1048 	 */
1049 	desc->memset_paddr = paddr;
1050 	desc->memset_vaddr = vaddr;
1051 	desc->memset_buffer = true;
1052 
1053 	first->txd.cookie = -EBUSY;
1054 	first->total_len = total_len;
1055 
1056 	/* set end-of-link on the descriptor */
1057 	set_desc_eol(desc);
1058 
1059 	first->txd.flags = flags;
1060 
1061 	return &first->txd;
1062 
1063 err_put_desc:
1064 	atc_desc_put(atchan, first);
1065 	return NULL;
1066 }
1067 
1068 /**
1069  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1070  * @chan: DMA channel
1071  * @sgl: scatterlist to transfer to/from
1072  * @sg_len: number of entries in @scatterlist
1073  * @direction: DMA direction
1074  * @flags: tx descriptor status flags
1075  * @context: transaction context (ignored)
1076  */
1077 static struct dma_async_tx_descriptor *
atc_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1078 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1079 		unsigned int sg_len, enum dma_transfer_direction direction,
1080 		unsigned long flags, void *context)
1081 {
1082 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1083 	struct at_dma_slave	*atslave = chan->private;
1084 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1085 	struct at_desc		*first = NULL;
1086 	struct at_desc		*prev = NULL;
1087 	u32			ctrla;
1088 	u32			ctrlb;
1089 	dma_addr_t		reg;
1090 	unsigned int		reg_width;
1091 	unsigned int		mem_width;
1092 	unsigned int		i;
1093 	struct scatterlist	*sg;
1094 	size_t			total_len = 0;
1095 
1096 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1097 			sg_len,
1098 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1099 			flags);
1100 
1101 	if (unlikely(!atslave || !sg_len)) {
1102 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1103 		return NULL;
1104 	}
1105 
1106 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1107 		| ATC_DCSIZE(sconfig->dst_maxburst);
1108 	ctrlb = ATC_IEN;
1109 
1110 	switch (direction) {
1111 	case DMA_MEM_TO_DEV:
1112 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1113 		ctrla |=  ATC_DST_WIDTH(reg_width);
1114 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1115 			| ATC_SRC_ADDR_MODE_INCR
1116 			| ATC_FC_MEM2PER
1117 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1118 		reg = sconfig->dst_addr;
1119 		for_each_sg(sgl, sg, sg_len, i) {
1120 			struct at_desc	*desc;
1121 			u32		len;
1122 			u32		mem;
1123 
1124 			desc = atc_desc_get(atchan);
1125 			if (!desc)
1126 				goto err_desc_get;
1127 
1128 			mem = sg_dma_address(sg);
1129 			len = sg_dma_len(sg);
1130 			if (unlikely(!len)) {
1131 				dev_dbg(chan2dev(chan),
1132 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1133 				goto err;
1134 			}
1135 			mem_width = 2;
1136 			if (unlikely(mem & 3 || len & 3))
1137 				mem_width = 0;
1138 
1139 			desc->lli.saddr = mem;
1140 			desc->lli.daddr = reg;
1141 			desc->lli.ctrla = ctrla
1142 					| ATC_SRC_WIDTH(mem_width)
1143 					| len >> mem_width;
1144 			desc->lli.ctrlb = ctrlb;
1145 			desc->len = len;
1146 
1147 			atc_desc_chain(&first, &prev, desc);
1148 			total_len += len;
1149 		}
1150 		break;
1151 	case DMA_DEV_TO_MEM:
1152 		reg_width = convert_buswidth(sconfig->src_addr_width);
1153 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1154 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1155 			| ATC_SRC_ADDR_MODE_FIXED
1156 			| ATC_FC_PER2MEM
1157 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1158 
1159 		reg = sconfig->src_addr;
1160 		for_each_sg(sgl, sg, sg_len, i) {
1161 			struct at_desc	*desc;
1162 			u32		len;
1163 			u32		mem;
1164 
1165 			desc = atc_desc_get(atchan);
1166 			if (!desc)
1167 				goto err_desc_get;
1168 
1169 			mem = sg_dma_address(sg);
1170 			len = sg_dma_len(sg);
1171 			if (unlikely(!len)) {
1172 				dev_dbg(chan2dev(chan),
1173 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1174 				goto err;
1175 			}
1176 			mem_width = 2;
1177 			if (unlikely(mem & 3 || len & 3))
1178 				mem_width = 0;
1179 
1180 			desc->lli.saddr = reg;
1181 			desc->lli.daddr = mem;
1182 			desc->lli.ctrla = ctrla
1183 					| ATC_DST_WIDTH(mem_width)
1184 					| len >> reg_width;
1185 			desc->lli.ctrlb = ctrlb;
1186 			desc->len = len;
1187 
1188 			atc_desc_chain(&first, &prev, desc);
1189 			total_len += len;
1190 		}
1191 		break;
1192 	default:
1193 		return NULL;
1194 	}
1195 
1196 	/* set end-of-link to the last link descriptor of list*/
1197 	set_desc_eol(prev);
1198 
1199 	/* First descriptor of the chain embedds additional information */
1200 	first->txd.cookie = -EBUSY;
1201 	first->total_len = total_len;
1202 
1203 	/* first link descriptor of list is responsible of flags */
1204 	first->txd.flags = flags; /* client is in control of this ack */
1205 
1206 	return &first->txd;
1207 
1208 err_desc_get:
1209 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1210 err:
1211 	atc_desc_put(atchan, first);
1212 	return NULL;
1213 }
1214 
1215 /**
1216  * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1217  * @chan: the channel to prepare operation on
1218  * @dst_sg: destination scatterlist
1219  * @dst_nents: number of destination scatterlist entries
1220  * @src_sg: source scatterlist
1221  * @src_nents: number of source scatterlist entries
1222  * @flags: tx descriptor status flags
1223  */
1224 static struct dma_async_tx_descriptor *
atc_prep_dma_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long flags)1225 atc_prep_dma_sg(struct dma_chan *chan,
1226 		struct scatterlist *dst_sg, unsigned int dst_nents,
1227 		struct scatterlist *src_sg, unsigned int src_nents,
1228 		unsigned long flags)
1229 {
1230 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1231 	struct at_desc		*desc = NULL;
1232 	struct at_desc		*first = NULL;
1233 	struct at_desc		*prev = NULL;
1234 	unsigned int		src_width;
1235 	unsigned int		dst_width;
1236 	size_t			xfer_count;
1237 	u32			ctrla;
1238 	u32			ctrlb;
1239 	size_t			dst_len = 0, src_len = 0;
1240 	dma_addr_t		dst = 0, src = 0;
1241 	size_t			len = 0, total_len = 0;
1242 
1243 	if (unlikely(dst_nents == 0 || src_nents == 0))
1244 		return NULL;
1245 
1246 	if (unlikely(dst_sg == NULL || src_sg == NULL))
1247 		return NULL;
1248 
1249 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1250 		| ATC_SRC_ADDR_MODE_INCR
1251 		| ATC_DST_ADDR_MODE_INCR
1252 		| ATC_FC_MEM2MEM;
1253 
1254 	/*
1255 	 * loop until there is either no more source or no more destination
1256 	 * scatterlist entry
1257 	 */
1258 	while (true) {
1259 
1260 		/* prepare the next transfer */
1261 		if (dst_len == 0) {
1262 
1263 			/* no more destination scatterlist entries */
1264 			if (!dst_sg || !dst_nents)
1265 				break;
1266 
1267 			dst = sg_dma_address(dst_sg);
1268 			dst_len = sg_dma_len(dst_sg);
1269 
1270 			dst_sg = sg_next(dst_sg);
1271 			dst_nents--;
1272 		}
1273 
1274 		if (src_len == 0) {
1275 
1276 			/* no more source scatterlist entries */
1277 			if (!src_sg || !src_nents)
1278 				break;
1279 
1280 			src = sg_dma_address(src_sg);
1281 			src_len = sg_dma_len(src_sg);
1282 
1283 			src_sg = sg_next(src_sg);
1284 			src_nents--;
1285 		}
1286 
1287 		len = min_t(size_t, src_len, dst_len);
1288 		if (len == 0)
1289 			continue;
1290 
1291 		/* take care for the alignment */
1292 		src_width = dst_width = atc_get_xfer_width(src, dst, len);
1293 
1294 		ctrla = ATC_SRC_WIDTH(src_width) |
1295 			ATC_DST_WIDTH(dst_width);
1296 
1297 		/*
1298 		 * The number of transfers to set up refer to the source width
1299 		 * that depends on the alignment.
1300 		 */
1301 		xfer_count = len >> src_width;
1302 		if (xfer_count > ATC_BTSIZE_MAX) {
1303 			xfer_count = ATC_BTSIZE_MAX;
1304 			len = ATC_BTSIZE_MAX << src_width;
1305 		}
1306 
1307 		/* create the transfer */
1308 		desc = atc_desc_get(atchan);
1309 		if (!desc)
1310 			goto err_desc_get;
1311 
1312 		desc->lli.saddr = src;
1313 		desc->lli.daddr = dst;
1314 		desc->lli.ctrla = ctrla | xfer_count;
1315 		desc->lli.ctrlb = ctrlb;
1316 
1317 		desc->txd.cookie = 0;
1318 		desc->len = len;
1319 
1320 		atc_desc_chain(&first, &prev, desc);
1321 
1322 		/* update the lengths and addresses for the next loop cycle */
1323 		dst_len -= len;
1324 		src_len -= len;
1325 		dst += len;
1326 		src += len;
1327 
1328 		total_len += len;
1329 	}
1330 
1331 	/* First descriptor of the chain embedds additional information */
1332 	first->txd.cookie = -EBUSY;
1333 	first->total_len = total_len;
1334 
1335 	/* set end-of-link to the last link descriptor of list*/
1336 	set_desc_eol(desc);
1337 
1338 	first->txd.flags = flags; /* client is in control of this ack */
1339 
1340 	return &first->txd;
1341 
1342 err_desc_get:
1343 	atc_desc_put(atchan, first);
1344 	return NULL;
1345 }
1346 
1347 /**
1348  * atc_dma_cyclic_check_values
1349  * Check for too big/unaligned periods and unaligned DMA buffer
1350  */
1351 static int
atc_dma_cyclic_check_values(unsigned int reg_width,dma_addr_t buf_addr,size_t period_len)1352 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1353 		size_t period_len)
1354 {
1355 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1356 		goto err_out;
1357 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1358 		goto err_out;
1359 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1360 		goto err_out;
1361 
1362 	return 0;
1363 
1364 err_out:
1365 	return -EINVAL;
1366 }
1367 
1368 /**
1369  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1370  */
1371 static int
atc_dma_cyclic_fill_desc(struct dma_chan * chan,struct at_desc * desc,unsigned int period_index,dma_addr_t buf_addr,unsigned int reg_width,size_t period_len,enum dma_transfer_direction direction)1372 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1373 		unsigned int period_index, dma_addr_t buf_addr,
1374 		unsigned int reg_width, size_t period_len,
1375 		enum dma_transfer_direction direction)
1376 {
1377 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1378 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1379 	u32			ctrla;
1380 
1381 	/* prepare common CRTLA value */
1382 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1383 		| ATC_DCSIZE(sconfig->dst_maxburst)
1384 		| ATC_DST_WIDTH(reg_width)
1385 		| ATC_SRC_WIDTH(reg_width)
1386 		| period_len >> reg_width;
1387 
1388 	switch (direction) {
1389 	case DMA_MEM_TO_DEV:
1390 		desc->lli.saddr = buf_addr + (period_len * period_index);
1391 		desc->lli.daddr = sconfig->dst_addr;
1392 		desc->lli.ctrla = ctrla;
1393 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1394 				| ATC_SRC_ADDR_MODE_INCR
1395 				| ATC_FC_MEM2PER
1396 				| ATC_SIF(atchan->mem_if)
1397 				| ATC_DIF(atchan->per_if);
1398 		desc->len = period_len;
1399 		break;
1400 
1401 	case DMA_DEV_TO_MEM:
1402 		desc->lli.saddr = sconfig->src_addr;
1403 		desc->lli.daddr = buf_addr + (period_len * period_index);
1404 		desc->lli.ctrla = ctrla;
1405 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1406 				| ATC_SRC_ADDR_MODE_FIXED
1407 				| ATC_FC_PER2MEM
1408 				| ATC_SIF(atchan->per_if)
1409 				| ATC_DIF(atchan->mem_if);
1410 		desc->len = period_len;
1411 		break;
1412 
1413 	default:
1414 		return -EINVAL;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 /**
1421  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1422  * @chan: the DMA channel to prepare
1423  * @buf_addr: physical DMA address where the buffer starts
1424  * @buf_len: total number of bytes for the entire buffer
1425  * @period_len: number of bytes for each period
1426  * @direction: transfer direction, to or from device
1427  * @flags: tx descriptor status flags
1428  */
1429 static struct dma_async_tx_descriptor *
atc_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1430 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1431 		size_t period_len, enum dma_transfer_direction direction,
1432 		unsigned long flags)
1433 {
1434 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1435 	struct at_dma_slave	*atslave = chan->private;
1436 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1437 	struct at_desc		*first = NULL;
1438 	struct at_desc		*prev = NULL;
1439 	unsigned long		was_cyclic;
1440 	unsigned int		reg_width;
1441 	unsigned int		periods = buf_len / period_len;
1442 	unsigned int		i;
1443 
1444 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1445 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1446 			&buf_addr,
1447 			periods, buf_len, period_len);
1448 
1449 	if (unlikely(!atslave || !buf_len || !period_len)) {
1450 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1451 		return NULL;
1452 	}
1453 
1454 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1455 	if (was_cyclic) {
1456 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1457 		return NULL;
1458 	}
1459 
1460 	if (unlikely(!is_slave_direction(direction)))
1461 		goto err_out;
1462 
1463 	if (sconfig->direction == DMA_MEM_TO_DEV)
1464 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1465 	else
1466 		reg_width = convert_buswidth(sconfig->src_addr_width);
1467 
1468 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1469 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1470 		goto err_out;
1471 
1472 	/* build cyclic linked list */
1473 	for (i = 0; i < periods; i++) {
1474 		struct at_desc	*desc;
1475 
1476 		desc = atc_desc_get(atchan);
1477 		if (!desc)
1478 			goto err_desc_get;
1479 
1480 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1481 					     reg_width, period_len, direction))
1482 			goto err_desc_get;
1483 
1484 		atc_desc_chain(&first, &prev, desc);
1485 	}
1486 
1487 	/* lets make a cyclic list */
1488 	prev->lli.dscr = first->txd.phys;
1489 
1490 	/* First descriptor of the chain embedds additional information */
1491 	first->txd.cookie = -EBUSY;
1492 	first->total_len = buf_len;
1493 
1494 	return &first->txd;
1495 
1496 err_desc_get:
1497 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1498 	atc_desc_put(atchan, first);
1499 err_out:
1500 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1501 	return NULL;
1502 }
1503 
atc_config(struct dma_chan * chan,struct dma_slave_config * sconfig)1504 static int atc_config(struct dma_chan *chan,
1505 		      struct dma_slave_config *sconfig)
1506 {
1507 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1508 
1509 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1510 
1511 	/* Check if it is chan is configured for slave transfers */
1512 	if (!chan->private)
1513 		return -EINVAL;
1514 
1515 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1516 
1517 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1518 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1519 
1520 	return 0;
1521 }
1522 
atc_pause(struct dma_chan * chan)1523 static int atc_pause(struct dma_chan *chan)
1524 {
1525 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1526 	struct at_dma		*atdma = to_at_dma(chan->device);
1527 	int			chan_id = atchan->chan_common.chan_id;
1528 	unsigned long		flags;
1529 
1530 	LIST_HEAD(list);
1531 
1532 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1533 
1534 	spin_lock_irqsave(&atchan->lock, flags);
1535 
1536 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1537 	set_bit(ATC_IS_PAUSED, &atchan->status);
1538 
1539 	spin_unlock_irqrestore(&atchan->lock, flags);
1540 
1541 	return 0;
1542 }
1543 
atc_resume(struct dma_chan * chan)1544 static int atc_resume(struct dma_chan *chan)
1545 {
1546 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1547 	struct at_dma		*atdma = to_at_dma(chan->device);
1548 	int			chan_id = atchan->chan_common.chan_id;
1549 	unsigned long		flags;
1550 
1551 	LIST_HEAD(list);
1552 
1553 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1554 
1555 	if (!atc_chan_is_paused(atchan))
1556 		return 0;
1557 
1558 	spin_lock_irqsave(&atchan->lock, flags);
1559 
1560 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1561 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1562 
1563 	spin_unlock_irqrestore(&atchan->lock, flags);
1564 
1565 	return 0;
1566 }
1567 
atc_terminate_all(struct dma_chan * chan)1568 static int atc_terminate_all(struct dma_chan *chan)
1569 {
1570 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1571 	struct at_dma		*atdma = to_at_dma(chan->device);
1572 	int			chan_id = atchan->chan_common.chan_id;
1573 	struct at_desc		*desc, *_desc;
1574 	unsigned long		flags;
1575 
1576 	LIST_HEAD(list);
1577 
1578 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1579 
1580 	/*
1581 	 * This is only called when something went wrong elsewhere, so
1582 	 * we don't really care about the data. Just disable the
1583 	 * channel. We still have to poll the channel enable bit due
1584 	 * to AHB/HSB limitations.
1585 	 */
1586 	spin_lock_irqsave(&atchan->lock, flags);
1587 
1588 	/* disabling channel: must also remove suspend state */
1589 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1590 
1591 	/* confirm that this channel is disabled */
1592 	while (dma_readl(atdma, CHSR) & atchan->mask)
1593 		cpu_relax();
1594 
1595 	/* active_list entries will end up before queued entries */
1596 	list_splice_init(&atchan->queue, &list);
1597 	list_splice_init(&atchan->active_list, &list);
1598 
1599 	/* Flush all pending and queued descriptors */
1600 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1601 		atc_chain_complete(atchan, desc);
1602 
1603 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1604 	/* if channel dedicated to cyclic operations, free it */
1605 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1606 
1607 	spin_unlock_irqrestore(&atchan->lock, flags);
1608 
1609 	return 0;
1610 }
1611 
1612 /**
1613  * atc_tx_status - poll for transaction completion
1614  * @chan: DMA channel
1615  * @cookie: transaction identifier to check status of
1616  * @txstate: if not %NULL updated with transaction state
1617  *
1618  * If @txstate is passed in, upon return it reflect the driver
1619  * internal state and can be used with dma_async_is_complete() to check
1620  * the status of multiple cookies without re-checking hardware state.
1621  */
1622 static enum dma_status
atc_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1623 atc_tx_status(struct dma_chan *chan,
1624 		dma_cookie_t cookie,
1625 		struct dma_tx_state *txstate)
1626 {
1627 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1628 	unsigned long		flags;
1629 	enum dma_status		ret;
1630 	int bytes = 0;
1631 
1632 	ret = dma_cookie_status(chan, cookie, txstate);
1633 	if (ret == DMA_COMPLETE)
1634 		return ret;
1635 	/*
1636 	 * There's no point calculating the residue if there's
1637 	 * no txstate to store the value.
1638 	 */
1639 	if (!txstate)
1640 		return DMA_ERROR;
1641 
1642 	spin_lock_irqsave(&atchan->lock, flags);
1643 
1644 	/*  Get number of bytes left in the active transactions */
1645 	bytes = atc_get_bytes_left(chan, cookie);
1646 
1647 	spin_unlock_irqrestore(&atchan->lock, flags);
1648 
1649 	if (unlikely(bytes < 0)) {
1650 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1651 		return DMA_ERROR;
1652 	} else {
1653 		dma_set_residue(txstate, bytes);
1654 	}
1655 
1656 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1657 		 ret, cookie, bytes);
1658 
1659 	return ret;
1660 }
1661 
1662 /**
1663  * atc_issue_pending - try to finish work
1664  * @chan: target DMA channel
1665  */
atc_issue_pending(struct dma_chan * chan)1666 static void atc_issue_pending(struct dma_chan *chan)
1667 {
1668 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1669 	unsigned long		flags;
1670 
1671 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1672 
1673 	/* Not needed for cyclic transfers */
1674 	if (atc_chan_is_cyclic(atchan))
1675 		return;
1676 
1677 	spin_lock_irqsave(&atchan->lock, flags);
1678 	atc_advance_work(atchan);
1679 	spin_unlock_irqrestore(&atchan->lock, flags);
1680 }
1681 
1682 /**
1683  * atc_alloc_chan_resources - allocate resources for DMA channel
1684  * @chan: allocate descriptor resources for this channel
1685  * @client: current client requesting the channel be ready for requests
1686  *
1687  * return - the number of allocated descriptors
1688  */
atc_alloc_chan_resources(struct dma_chan * chan)1689 static int atc_alloc_chan_resources(struct dma_chan *chan)
1690 {
1691 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1692 	struct at_dma		*atdma = to_at_dma(chan->device);
1693 	struct at_desc		*desc;
1694 	struct at_dma_slave	*atslave;
1695 	unsigned long		flags;
1696 	int			i;
1697 	u32			cfg;
1698 	LIST_HEAD(tmp_list);
1699 
1700 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1701 
1702 	/* ASSERT:  channel is idle */
1703 	if (atc_chan_is_enabled(atchan)) {
1704 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1705 		return -EIO;
1706 	}
1707 
1708 	cfg = ATC_DEFAULT_CFG;
1709 
1710 	atslave = chan->private;
1711 	if (atslave) {
1712 		/*
1713 		 * We need controller-specific data to set up slave
1714 		 * transfers.
1715 		 */
1716 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1717 
1718 		/* if cfg configuration specified take it instead of default */
1719 		if (atslave->cfg)
1720 			cfg = atslave->cfg;
1721 	}
1722 
1723 	/* have we already been set up?
1724 	 * reconfigure channel but no need to reallocate descriptors */
1725 	if (!list_empty(&atchan->free_list))
1726 		return atchan->descs_allocated;
1727 
1728 	/* Allocate initial pool of descriptors */
1729 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1730 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1731 		if (!desc) {
1732 			dev_err(atdma->dma_common.dev,
1733 				"Only %d initial descriptors\n", i);
1734 			break;
1735 		}
1736 		list_add_tail(&desc->desc_node, &tmp_list);
1737 	}
1738 
1739 	spin_lock_irqsave(&atchan->lock, flags);
1740 	atchan->descs_allocated = i;
1741 	list_splice(&tmp_list, &atchan->free_list);
1742 	dma_cookie_init(chan);
1743 	spin_unlock_irqrestore(&atchan->lock, flags);
1744 
1745 	/* channel parameters */
1746 	channel_writel(atchan, CFG, cfg);
1747 
1748 	dev_dbg(chan2dev(chan),
1749 		"alloc_chan_resources: allocated %d descriptors\n",
1750 		atchan->descs_allocated);
1751 
1752 	return atchan->descs_allocated;
1753 }
1754 
1755 /**
1756  * atc_free_chan_resources - free all channel resources
1757  * @chan: DMA channel
1758  */
atc_free_chan_resources(struct dma_chan * chan)1759 static void atc_free_chan_resources(struct dma_chan *chan)
1760 {
1761 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1762 	struct at_dma		*atdma = to_at_dma(chan->device);
1763 	struct at_desc		*desc, *_desc;
1764 	LIST_HEAD(list);
1765 
1766 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1767 		atchan->descs_allocated);
1768 
1769 	/* ASSERT:  channel is idle */
1770 	BUG_ON(!list_empty(&atchan->active_list));
1771 	BUG_ON(!list_empty(&atchan->queue));
1772 	BUG_ON(atc_chan_is_enabled(atchan));
1773 
1774 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1775 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1776 		list_del(&desc->desc_node);
1777 		/* free link descriptor */
1778 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1779 	}
1780 	list_splice_init(&atchan->free_list, &list);
1781 	atchan->descs_allocated = 0;
1782 	atchan->status = 0;
1783 
1784 	/*
1785 	 * Free atslave allocated in at_dma_xlate()
1786 	 */
1787 	kfree(chan->private);
1788 	chan->private = NULL;
1789 
1790 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1791 }
1792 
1793 #ifdef CONFIG_OF
at_dma_filter(struct dma_chan * chan,void * slave)1794 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1795 {
1796 	struct at_dma_slave *atslave = slave;
1797 
1798 	if (atslave->dma_dev == chan->device->dev) {
1799 		chan->private = atslave;
1800 		return true;
1801 	} else {
1802 		return false;
1803 	}
1804 }
1805 
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1806 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1807 				     struct of_dma *of_dma)
1808 {
1809 	struct dma_chan *chan;
1810 	struct at_dma_chan *atchan;
1811 	struct at_dma_slave *atslave;
1812 	dma_cap_mask_t mask;
1813 	unsigned int per_id;
1814 	struct platform_device *dmac_pdev;
1815 
1816 	if (dma_spec->args_count != 2)
1817 		return NULL;
1818 
1819 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1820 	if (!dmac_pdev)
1821 		return NULL;
1822 
1823 	dma_cap_zero(mask);
1824 	dma_cap_set(DMA_SLAVE, mask);
1825 
1826 	atslave = kzalloc(sizeof(*atslave), GFP_KERNEL);
1827 	if (!atslave)
1828 		return NULL;
1829 
1830 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1831 	/*
1832 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1833 	 * ignored depending on DMA transfer direction.
1834 	 */
1835 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1836 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1837 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1838 	/*
1839 	 * We have to translate the value we get from the device tree since
1840 	 * the half FIFO configuration value had to be 0 to keep backward
1841 	 * compatibility.
1842 	 */
1843 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1844 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1845 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1846 		break;
1847 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1848 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1849 		break;
1850 	case AT91_DMA_CFG_FIFOCFG_HALF:
1851 	default:
1852 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1853 	}
1854 	atslave->dma_dev = &dmac_pdev->dev;
1855 
1856 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1857 	if (!chan)
1858 		return NULL;
1859 
1860 	atchan = to_at_dma_chan(chan);
1861 	atchan->per_if = dma_spec->args[0] & 0xff;
1862 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1863 
1864 	return chan;
1865 }
1866 #else
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1867 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1868 				     struct of_dma *of_dma)
1869 {
1870 	return NULL;
1871 }
1872 #endif
1873 
1874 /*--  Module Management  -----------------------------------------------*/
1875 
1876 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1877 static struct at_dma_platform_data at91sam9rl_config = {
1878 	.nr_channels = 2,
1879 };
1880 static struct at_dma_platform_data at91sam9g45_config = {
1881 	.nr_channels = 8,
1882 };
1883 
1884 #if defined(CONFIG_OF)
1885 static const struct of_device_id atmel_dma_dt_ids[] = {
1886 	{
1887 		.compatible = "atmel,at91sam9rl-dma",
1888 		.data = &at91sam9rl_config,
1889 	}, {
1890 		.compatible = "atmel,at91sam9g45-dma",
1891 		.data = &at91sam9g45_config,
1892 	}, {
1893 		/* sentinel */
1894 	}
1895 };
1896 
1897 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1898 #endif
1899 
1900 static const struct platform_device_id atdma_devtypes[] = {
1901 	{
1902 		.name = "at91sam9rl_dma",
1903 		.driver_data = (unsigned long) &at91sam9rl_config,
1904 	}, {
1905 		.name = "at91sam9g45_dma",
1906 		.driver_data = (unsigned long) &at91sam9g45_config,
1907 	}, {
1908 		/* sentinel */
1909 	}
1910 };
1911 
at_dma_get_driver_data(struct platform_device * pdev)1912 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1913 						struct platform_device *pdev)
1914 {
1915 	if (pdev->dev.of_node) {
1916 		const struct of_device_id *match;
1917 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1918 		if (match == NULL)
1919 			return NULL;
1920 		return match->data;
1921 	}
1922 	return (struct at_dma_platform_data *)
1923 			platform_get_device_id(pdev)->driver_data;
1924 }
1925 
1926 /**
1927  * at_dma_off - disable DMA controller
1928  * @atdma: the Atmel HDAMC device
1929  */
at_dma_off(struct at_dma * atdma)1930 static void at_dma_off(struct at_dma *atdma)
1931 {
1932 	dma_writel(atdma, EN, 0);
1933 
1934 	/* disable all interrupts */
1935 	dma_writel(atdma, EBCIDR, -1L);
1936 
1937 	/* confirm that all channels are disabled */
1938 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1939 		cpu_relax();
1940 }
1941 
at_dma_probe(struct platform_device * pdev)1942 static int __init at_dma_probe(struct platform_device *pdev)
1943 {
1944 	struct resource		*io;
1945 	struct at_dma		*atdma;
1946 	size_t			size;
1947 	int			irq;
1948 	int			err;
1949 	int			i;
1950 	const struct at_dma_platform_data *plat_dat;
1951 
1952 	/* setup platform data for each SoC */
1953 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1954 	dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1955 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1956 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1957 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1958 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1959 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1960 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1961 	dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1962 
1963 	/* get DMA parameters from controller type */
1964 	plat_dat = at_dma_get_driver_data(pdev);
1965 	if (!plat_dat)
1966 		return -ENODEV;
1967 
1968 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1969 	if (!io)
1970 		return -EINVAL;
1971 
1972 	irq = platform_get_irq(pdev, 0);
1973 	if (irq < 0)
1974 		return irq;
1975 
1976 	size = sizeof(struct at_dma);
1977 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1978 	atdma = kzalloc(size, GFP_KERNEL);
1979 	if (!atdma)
1980 		return -ENOMEM;
1981 
1982 	/* discover transaction capabilities */
1983 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1984 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1985 
1986 	size = resource_size(io);
1987 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1988 		err = -EBUSY;
1989 		goto err_kfree;
1990 	}
1991 
1992 	atdma->regs = ioremap(io->start, size);
1993 	if (!atdma->regs) {
1994 		err = -ENOMEM;
1995 		goto err_release_r;
1996 	}
1997 
1998 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1999 	if (IS_ERR(atdma->clk)) {
2000 		err = PTR_ERR(atdma->clk);
2001 		goto err_clk;
2002 	}
2003 	err = clk_prepare_enable(atdma->clk);
2004 	if (err)
2005 		goto err_clk_prepare;
2006 
2007 	/* force dma off, just in case */
2008 	at_dma_off(atdma);
2009 
2010 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
2011 	if (err)
2012 		goto err_irq;
2013 
2014 	platform_set_drvdata(pdev, atdma);
2015 
2016 	/* create a pool of consistent memory blocks for hardware descriptors */
2017 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2018 			&pdev->dev, sizeof(struct at_desc),
2019 			4 /* word alignment */, 0);
2020 	if (!atdma->dma_desc_pool) {
2021 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2022 		err = -ENOMEM;
2023 		goto err_desc_pool_create;
2024 	}
2025 
2026 	/* create a pool of consistent memory blocks for memset blocks */
2027 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2028 					     &pdev->dev, sizeof(int), 4, 0);
2029 	if (!atdma->memset_pool) {
2030 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2031 		err = -ENOMEM;
2032 		goto err_memset_pool_create;
2033 	}
2034 
2035 	/* clear any pending interrupt */
2036 	while (dma_readl(atdma, EBCISR))
2037 		cpu_relax();
2038 
2039 	/* initialize channels related values */
2040 	INIT_LIST_HEAD(&atdma->dma_common.channels);
2041 	for (i = 0; i < plat_dat->nr_channels; i++) {
2042 		struct at_dma_chan	*atchan = &atdma->chan[i];
2043 
2044 		atchan->mem_if = AT_DMA_MEM_IF;
2045 		atchan->per_if = AT_DMA_PER_IF;
2046 		atchan->chan_common.device = &atdma->dma_common;
2047 		dma_cookie_init(&atchan->chan_common);
2048 		list_add_tail(&atchan->chan_common.device_node,
2049 				&atdma->dma_common.channels);
2050 
2051 		atchan->ch_regs = atdma->regs + ch_regs(i);
2052 		spin_lock_init(&atchan->lock);
2053 		atchan->mask = 1 << i;
2054 
2055 		INIT_LIST_HEAD(&atchan->active_list);
2056 		INIT_LIST_HEAD(&atchan->queue);
2057 		INIT_LIST_HEAD(&atchan->free_list);
2058 
2059 		tasklet_init(&atchan->tasklet, atc_tasklet,
2060 				(unsigned long)atchan);
2061 		atc_enable_chan_irq(atdma, i);
2062 	}
2063 
2064 	/* set base routines */
2065 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2066 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2067 	atdma->dma_common.device_tx_status = atc_tx_status;
2068 	atdma->dma_common.device_issue_pending = atc_issue_pending;
2069 	atdma->dma_common.dev = &pdev->dev;
2070 
2071 	/* set prep routines based on capability */
2072 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2073 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2074 
2075 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2076 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2077 
2078 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2079 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2080 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2081 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2082 	}
2083 
2084 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2085 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2086 		/* controller can do slave DMA: can trigger cyclic transfers */
2087 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2088 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2089 		atdma->dma_common.device_config = atc_config;
2090 		atdma->dma_common.device_pause = atc_pause;
2091 		atdma->dma_common.device_resume = atc_resume;
2092 		atdma->dma_common.device_terminate_all = atc_terminate_all;
2093 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2094 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2095 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2096 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2097 	}
2098 
2099 	if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2100 		atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2101 
2102 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2103 
2104 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2105 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2106 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2107 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
2108 	  dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
2109 	  plat_dat->nr_channels);
2110 
2111 	dma_async_device_register(&atdma->dma_common);
2112 
2113 	/*
2114 	 * Do not return an error if the dmac node is not present in order to
2115 	 * not break the existing way of requesting channel with
2116 	 * dma_request_channel().
2117 	 */
2118 	if (pdev->dev.of_node) {
2119 		err = of_dma_controller_register(pdev->dev.of_node,
2120 						 at_dma_xlate, atdma);
2121 		if (err) {
2122 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2123 			goto err_of_dma_controller_register;
2124 		}
2125 	}
2126 
2127 	return 0;
2128 
2129 err_of_dma_controller_register:
2130 	dma_async_device_unregister(&atdma->dma_common);
2131 	dma_pool_destroy(atdma->memset_pool);
2132 err_memset_pool_create:
2133 	dma_pool_destroy(atdma->dma_desc_pool);
2134 err_desc_pool_create:
2135 	free_irq(platform_get_irq(pdev, 0), atdma);
2136 err_irq:
2137 	clk_disable_unprepare(atdma->clk);
2138 err_clk_prepare:
2139 	clk_put(atdma->clk);
2140 err_clk:
2141 	iounmap(atdma->regs);
2142 	atdma->regs = NULL;
2143 err_release_r:
2144 	release_mem_region(io->start, size);
2145 err_kfree:
2146 	kfree(atdma);
2147 	return err;
2148 }
2149 
at_dma_remove(struct platform_device * pdev)2150 static int at_dma_remove(struct platform_device *pdev)
2151 {
2152 	struct at_dma		*atdma = platform_get_drvdata(pdev);
2153 	struct dma_chan		*chan, *_chan;
2154 	struct resource		*io;
2155 
2156 	at_dma_off(atdma);
2157 	if (pdev->dev.of_node)
2158 		of_dma_controller_free(pdev->dev.of_node);
2159 	dma_async_device_unregister(&atdma->dma_common);
2160 
2161 	dma_pool_destroy(atdma->memset_pool);
2162 	dma_pool_destroy(atdma->dma_desc_pool);
2163 	free_irq(platform_get_irq(pdev, 0), atdma);
2164 
2165 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2166 			device_node) {
2167 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2168 
2169 		/* Disable interrupts */
2170 		atc_disable_chan_irq(atdma, chan->chan_id);
2171 
2172 		tasklet_kill(&atchan->tasklet);
2173 		list_del(&chan->device_node);
2174 	}
2175 
2176 	clk_disable_unprepare(atdma->clk);
2177 	clk_put(atdma->clk);
2178 
2179 	iounmap(atdma->regs);
2180 	atdma->regs = NULL;
2181 
2182 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2183 	release_mem_region(io->start, resource_size(io));
2184 
2185 	kfree(atdma);
2186 
2187 	return 0;
2188 }
2189 
at_dma_shutdown(struct platform_device * pdev)2190 static void at_dma_shutdown(struct platform_device *pdev)
2191 {
2192 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2193 
2194 	at_dma_off(platform_get_drvdata(pdev));
2195 	clk_disable_unprepare(atdma->clk);
2196 }
2197 
at_dma_prepare(struct device * dev)2198 static int at_dma_prepare(struct device *dev)
2199 {
2200 	struct platform_device *pdev = to_platform_device(dev);
2201 	struct at_dma *atdma = platform_get_drvdata(pdev);
2202 	struct dma_chan *chan, *_chan;
2203 
2204 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2205 			device_node) {
2206 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2207 		/* wait for transaction completion (except in cyclic case) */
2208 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2209 			return -EAGAIN;
2210 	}
2211 	return 0;
2212 }
2213 
atc_suspend_cyclic(struct at_dma_chan * atchan)2214 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2215 {
2216 	struct dma_chan	*chan = &atchan->chan_common;
2217 
2218 	/* Channel should be paused by user
2219 	 * do it anyway even if it is not done already */
2220 	if (!atc_chan_is_paused(atchan)) {
2221 		dev_warn(chan2dev(chan),
2222 		"cyclic channel not paused, should be done by channel user\n");
2223 		atc_pause(chan);
2224 	}
2225 
2226 	/* now preserve additional data for cyclic operations */
2227 	/* next descriptor address in the cyclic list */
2228 	atchan->save_dscr = channel_readl(atchan, DSCR);
2229 
2230 	vdbg_dump_regs(atchan);
2231 }
2232 
at_dma_suspend_noirq(struct device * dev)2233 static int at_dma_suspend_noirq(struct device *dev)
2234 {
2235 	struct platform_device *pdev = to_platform_device(dev);
2236 	struct at_dma *atdma = platform_get_drvdata(pdev);
2237 	struct dma_chan *chan, *_chan;
2238 
2239 	/* preserve data */
2240 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2241 			device_node) {
2242 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2243 
2244 		if (atc_chan_is_cyclic(atchan))
2245 			atc_suspend_cyclic(atchan);
2246 		atchan->save_cfg = channel_readl(atchan, CFG);
2247 	}
2248 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2249 
2250 	/* disable DMA controller */
2251 	at_dma_off(atdma);
2252 	clk_disable_unprepare(atdma->clk);
2253 	return 0;
2254 }
2255 
atc_resume_cyclic(struct at_dma_chan * atchan)2256 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2257 {
2258 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2259 
2260 	/* restore channel status for cyclic descriptors list:
2261 	 * next descriptor in the cyclic list at the time of suspend */
2262 	channel_writel(atchan, SADDR, 0);
2263 	channel_writel(atchan, DADDR, 0);
2264 	channel_writel(atchan, CTRLA, 0);
2265 	channel_writel(atchan, CTRLB, 0);
2266 	channel_writel(atchan, DSCR, atchan->save_dscr);
2267 	dma_writel(atdma, CHER, atchan->mask);
2268 
2269 	/* channel pause status should be removed by channel user
2270 	 * We cannot take the initiative to do it here */
2271 
2272 	vdbg_dump_regs(atchan);
2273 }
2274 
at_dma_resume_noirq(struct device * dev)2275 static int at_dma_resume_noirq(struct device *dev)
2276 {
2277 	struct platform_device *pdev = to_platform_device(dev);
2278 	struct at_dma *atdma = platform_get_drvdata(pdev);
2279 	struct dma_chan *chan, *_chan;
2280 
2281 	/* bring back DMA controller */
2282 	clk_prepare_enable(atdma->clk);
2283 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2284 
2285 	/* clear any pending interrupt */
2286 	while (dma_readl(atdma, EBCISR))
2287 		cpu_relax();
2288 
2289 	/* restore saved data */
2290 	dma_writel(atdma, EBCIER, atdma->save_imr);
2291 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2292 			device_node) {
2293 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2294 
2295 		channel_writel(atchan, CFG, atchan->save_cfg);
2296 		if (atc_chan_is_cyclic(atchan))
2297 			atc_resume_cyclic(atchan);
2298 	}
2299 	return 0;
2300 }
2301 
2302 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2303 	.prepare = at_dma_prepare,
2304 	.suspend_noirq = at_dma_suspend_noirq,
2305 	.resume_noirq = at_dma_resume_noirq,
2306 };
2307 
2308 static struct platform_driver at_dma_driver = {
2309 	.remove		= at_dma_remove,
2310 	.shutdown	= at_dma_shutdown,
2311 	.id_table	= atdma_devtypes,
2312 	.driver = {
2313 		.name	= "at_hdmac",
2314 		.pm	= &at_dma_dev_pm_ops,
2315 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2316 	},
2317 };
2318 
at_dma_init(void)2319 static int __init at_dma_init(void)
2320 {
2321 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2322 }
2323 subsys_initcall(at_dma_init);
2324 
at_dma_exit(void)2325 static void __exit at_dma_exit(void)
2326 {
2327 	platform_driver_unregister(&at_dma_driver);
2328 }
2329 module_exit(at_dma_exit);
2330 
2331 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2332 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2333 MODULE_LICENSE("GPL");
2334 MODULE_ALIAS("platform:at_hdmac");
2335