• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <linux/platform_data/edma.h>
35 
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38 
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT		0x00
41 #define PARM_SRC		0x04
42 #define PARM_A_B_CNT		0x08
43 #define PARM_DST		0x0c
44 #define PARM_SRC_DST_BIDX	0x10
45 #define PARM_LINK_BCNTRLD	0x14
46 #define PARM_SRC_DST_CIDX	0x18
47 #define PARM_CCNT		0x1c
48 
49 #define PARM_SIZE		0x20
50 
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER			0x00	/* 64 bits */
53 #define SH_ECR			0x08	/* 64 bits */
54 #define SH_ESR			0x10	/* 64 bits */
55 #define SH_CER			0x18	/* 64 bits */
56 #define SH_EER			0x20	/* 64 bits */
57 #define SH_EECR			0x28	/* 64 bits */
58 #define SH_EESR			0x30	/* 64 bits */
59 #define SH_SER			0x38	/* 64 bits */
60 #define SH_SECR			0x40	/* 64 bits */
61 #define SH_IER			0x50	/* 64 bits */
62 #define SH_IECR			0x58	/* 64 bits */
63 #define SH_IESR			0x60	/* 64 bits */
64 #define SH_IPR			0x68	/* 64 bits */
65 #define SH_ICR			0x70	/* 64 bits */
66 #define SH_IEVAL		0x78
67 #define SH_QER			0x80
68 #define SH_QEER			0x84
69 #define SH_QEECR		0x88
70 #define SH_QEESR		0x8c
71 #define SH_QSER			0x90
72 #define SH_QSECR		0x94
73 #define SH_SIZE			0x200
74 
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV		0x0000
77 #define EDMA_CCCFG		0x0004
78 #define EDMA_QCHMAP		0x0200	/* 8 registers */
79 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM		0x0260
81 #define EDMA_QUETCMAP		0x0280
82 #define EDMA_QUEPRI		0x0284
83 #define EDMA_EMR		0x0300	/* 64 bits */
84 #define EDMA_EMCR		0x0308	/* 64 bits */
85 #define EDMA_QEMR		0x0310
86 #define EDMA_QEMCR		0x0314
87 #define EDMA_CCERR		0x0318
88 #define EDMA_CCERRCLR		0x031c
89 #define EDMA_EEVAL		0x0320
90 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
91 #define EDMA_QRAE		0x0380	/* 4 registers */
92 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
93 #define EDMA_QSTAT		0x0600	/* 2 registers */
94 #define EDMA_QWMTHRA		0x0620
95 #define EDMA_QWMTHRB		0x0624
96 #define EDMA_CCSTAT		0x0640
97 
98 #define EDMA_M			0x1000	/* global channel registers */
99 #define EDMA_ECR		0x1008
100 #define EDMA_ECRH		0x100C
101 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
102 #define EDMA_PARM		0x4000	/* PaRAM entries */
103 
104 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
105 
106 #define EDMA_DCHMAP		0x0100  /* 64 registers */
107 
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST		BIT(24)
115 
116 /*
117  * Max of 20 segments per channel to conserve PaRAM slots
118  * Also note that MAX_NR_SG should be atleast the no.of periods
119  * that are required for ASoC, otherwise DMA prep calls will
120  * fail. Today davinci-pcm is the only user of this driver and
121  * requires atleast 17 slots, so we setup the default to 20.
122  */
123 #define MAX_NR_SG		20
124 #define EDMA_MAX_SLOTS		MAX_NR_SG
125 #define EDMA_DESCRIPTORS	16
126 
127 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
128 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
129 #define EDMA_CONT_PARAMS_ANY		 1001
130 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
131 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
132 
133 /* PaRAM slots are laid out like this */
134 struct edmacc_param {
135 	u32 opt;
136 	u32 src;
137 	u32 a_b_cnt;
138 	u32 dst;
139 	u32 src_dst_bidx;
140 	u32 link_bcntrld;
141 	u32 src_dst_cidx;
142 	u32 ccnt;
143 } __packed;
144 
145 /* fields in edmacc_param.opt */
146 #define SAM		BIT(0)
147 #define DAM		BIT(1)
148 #define SYNCDIM		BIT(2)
149 #define STATIC		BIT(3)
150 #define EDMA_FWID	(0x07 << 8)
151 #define TCCMODE		BIT(11)
152 #define EDMA_TCC(t)	((t) << 12)
153 #define TCINTEN		BIT(20)
154 #define ITCINTEN	BIT(21)
155 #define TCCHEN		BIT(22)
156 #define ITCCHEN		BIT(23)
157 
158 struct edma_pset {
159 	u32				len;
160 	dma_addr_t			addr;
161 	struct edmacc_param		param;
162 };
163 
164 struct edma_desc {
165 	struct virt_dma_desc		vdesc;
166 	struct list_head		node;
167 	enum dma_transfer_direction	direction;
168 	int				cyclic;
169 	int				absync;
170 	int				pset_nr;
171 	struct edma_chan		*echan;
172 	int				processed;
173 
174 	/*
175 	 * The following 4 elements are used for residue accounting.
176 	 *
177 	 * - processed_stat: the number of SG elements we have traversed
178 	 * so far to cover accounting. This is updated directly to processed
179 	 * during edma_callback and is always <= processed, because processed
180 	 * refers to the number of pending transfer (programmed to EDMA
181 	 * controller), where as processed_stat tracks number of transfers
182 	 * accounted for so far.
183 	 *
184 	 * - residue: The amount of bytes we have left to transfer for this desc
185 	 *
186 	 * - residue_stat: The residue in bytes of data we have covered
187 	 * so far for accounting. This is updated directly to residue
188 	 * during callbacks to keep it current.
189 	 *
190 	 * - sg_len: Tracks the length of the current intermediate transfer,
191 	 * this is required to update the residue during intermediate transfer
192 	 * completion callback.
193 	 */
194 	int				processed_stat;
195 	u32				sg_len;
196 	u32				residue;
197 	u32				residue_stat;
198 
199 	struct edma_pset		pset[0];
200 };
201 
202 struct edma_cc;
203 
204 struct edma_tc {
205 	struct device_node		*node;
206 	u16				id;
207 };
208 
209 struct edma_chan {
210 	struct virt_dma_chan		vchan;
211 	struct list_head		node;
212 	struct edma_desc		*edesc;
213 	struct edma_cc			*ecc;
214 	struct edma_tc			*tc;
215 	int				ch_num;
216 	bool				alloced;
217 	bool				hw_triggered;
218 	int				slot[EDMA_MAX_SLOTS];
219 	int				missed;
220 	struct dma_slave_config		cfg;
221 };
222 
223 struct edma_cc {
224 	struct device			*dev;
225 	struct edma_soc_info		*info;
226 	void __iomem			*base;
227 	int				id;
228 	bool				legacy_mode;
229 
230 	/* eDMA3 resource information */
231 	unsigned			num_channels;
232 	unsigned			num_qchannels;
233 	unsigned			num_region;
234 	unsigned			num_slots;
235 	unsigned			num_tc;
236 	bool				chmap_exist;
237 	enum dma_event_q		default_queue;
238 
239 	/*
240 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
241 	 * in use by Linux or if it is allocated to be used by DSP.
242 	 */
243 	unsigned long *slot_inuse;
244 
245 	struct dma_device		dma_slave;
246 	struct dma_device		*dma_memcpy;
247 	struct edma_chan		*slave_chans;
248 	struct edma_tc			*tc_list;
249 	int				dummy_slot;
250 };
251 
252 /* dummy param set used to (re)initialize parameter RAM slots */
253 static const struct edmacc_param dummy_paramset = {
254 	.link_bcntrld = 0xffff,
255 	.ccnt = 1,
256 };
257 
258 #define EDMA_BINDING_LEGACY	0
259 #define EDMA_BINDING_TPCC	1
260 static const struct of_device_id edma_of_ids[] = {
261 	{
262 		.compatible = "ti,edma3",
263 		.data = (void *)EDMA_BINDING_LEGACY,
264 	},
265 	{
266 		.compatible = "ti,edma3-tpcc",
267 		.data = (void *)EDMA_BINDING_TPCC,
268 	},
269 	{}
270 };
271 
272 static const struct of_device_id edma_tptc_of_ids[] = {
273 	{ .compatible = "ti,edma3-tptc", },
274 	{}
275 };
276 
edma_read(struct edma_cc * ecc,int offset)277 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
278 {
279 	return (unsigned int)__raw_readl(ecc->base + offset);
280 }
281 
edma_write(struct edma_cc * ecc,int offset,int val)282 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
283 {
284 	__raw_writel(val, ecc->base + offset);
285 }
286 
edma_modify(struct edma_cc * ecc,int offset,unsigned and,unsigned or)287 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
288 			       unsigned or)
289 {
290 	unsigned val = edma_read(ecc, offset);
291 
292 	val &= and;
293 	val |= or;
294 	edma_write(ecc, offset, val);
295 }
296 
edma_and(struct edma_cc * ecc,int offset,unsigned and)297 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
298 {
299 	unsigned val = edma_read(ecc, offset);
300 
301 	val &= and;
302 	edma_write(ecc, offset, val);
303 }
304 
edma_or(struct edma_cc * ecc,int offset,unsigned or)305 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
306 {
307 	unsigned val = edma_read(ecc, offset);
308 
309 	val |= or;
310 	edma_write(ecc, offset, val);
311 }
312 
edma_read_array(struct edma_cc * ecc,int offset,int i)313 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
314 					   int i)
315 {
316 	return edma_read(ecc, offset + (i << 2));
317 }
318 
edma_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)319 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
320 				    unsigned val)
321 {
322 	edma_write(ecc, offset + (i << 2), val);
323 }
324 
edma_modify_array(struct edma_cc * ecc,int offset,int i,unsigned and,unsigned or)325 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
326 				     unsigned and, unsigned or)
327 {
328 	edma_modify(ecc, offset + (i << 2), and, or);
329 }
330 
edma_or_array(struct edma_cc * ecc,int offset,int i,unsigned or)331 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
332 				 unsigned or)
333 {
334 	edma_or(ecc, offset + (i << 2), or);
335 }
336 
edma_or_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned or)337 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
338 				  unsigned or)
339 {
340 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
341 }
342 
edma_write_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned val)343 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
344 				     int j, unsigned val)
345 {
346 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
347 }
348 
edma_shadow0_read(struct edma_cc * ecc,int offset)349 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
350 {
351 	return edma_read(ecc, EDMA_SHADOW0 + offset);
352 }
353 
edma_shadow0_read_array(struct edma_cc * ecc,int offset,int i)354 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
355 						   int offset, int i)
356 {
357 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
358 }
359 
edma_shadow0_write(struct edma_cc * ecc,int offset,unsigned val)360 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
361 				      unsigned val)
362 {
363 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
364 }
365 
edma_shadow0_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)366 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
367 					    int i, unsigned val)
368 {
369 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
370 }
371 
edma_param_read(struct edma_cc * ecc,int offset,int param_no)372 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
373 					   int param_no)
374 {
375 	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
376 }
377 
edma_param_write(struct edma_cc * ecc,int offset,int param_no,unsigned val)378 static inline void edma_param_write(struct edma_cc *ecc, int offset,
379 				    int param_no, unsigned val)
380 {
381 	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
382 }
383 
edma_param_modify(struct edma_cc * ecc,int offset,int param_no,unsigned and,unsigned or)384 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
385 				     int param_no, unsigned and, unsigned or)
386 {
387 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
388 }
389 
edma_param_and(struct edma_cc * ecc,int offset,int param_no,unsigned and)390 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
391 				  unsigned and)
392 {
393 	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
394 }
395 
edma_param_or(struct edma_cc * ecc,int offset,int param_no,unsigned or)396 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
397 				 unsigned or)
398 {
399 	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
400 }
401 
set_bits(int offset,int len,unsigned long * p)402 static inline void set_bits(int offset, int len, unsigned long *p)
403 {
404 	for (; len > 0; len--)
405 		set_bit(offset + (len - 1), p);
406 }
407 
clear_bits(int offset,int len,unsigned long * p)408 static inline void clear_bits(int offset, int len, unsigned long *p)
409 {
410 	for (; len > 0; len--)
411 		clear_bit(offset + (len - 1), p);
412 }
413 
edma_assign_priority_to_queue(struct edma_cc * ecc,int queue_no,int priority)414 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
415 					  int priority)
416 {
417 	int bit = queue_no * 4;
418 
419 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
420 }
421 
edma_set_chmap(struct edma_chan * echan,int slot)422 static void edma_set_chmap(struct edma_chan *echan, int slot)
423 {
424 	struct edma_cc *ecc = echan->ecc;
425 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
426 
427 	if (ecc->chmap_exist) {
428 		slot = EDMA_CHAN_SLOT(slot);
429 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
430 	}
431 }
432 
edma_setup_interrupt(struct edma_chan * echan,bool enable)433 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
434 {
435 	struct edma_cc *ecc = echan->ecc;
436 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
437 
438 	if (enable) {
439 		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
440 					 BIT(channel & 0x1f));
441 		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
442 					 BIT(channel & 0x1f));
443 	} else {
444 		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
445 					 BIT(channel & 0x1f));
446 	}
447 }
448 
449 /*
450  * paRAM slot management functions
451  */
edma_write_slot(struct edma_cc * ecc,unsigned slot,const struct edmacc_param * param)452 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
453 			    const struct edmacc_param *param)
454 {
455 	slot = EDMA_CHAN_SLOT(slot);
456 	if (slot >= ecc->num_slots)
457 		return;
458 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
459 }
460 
edma_read_slot(struct edma_cc * ecc,unsigned slot,struct edmacc_param * param)461 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
462 			   struct edmacc_param *param)
463 {
464 	slot = EDMA_CHAN_SLOT(slot);
465 	if (slot >= ecc->num_slots)
466 		return;
467 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
468 }
469 
470 /**
471  * edma_alloc_slot - allocate DMA parameter RAM
472  * @ecc: pointer to edma_cc struct
473  * @slot: specific slot to allocate; negative for "any unused slot"
474  *
475  * This allocates a parameter RAM slot, initializing it to hold a
476  * dummy transfer.  Slots allocated using this routine have not been
477  * mapped to a hardware DMA channel, and will normally be used by
478  * linking to them from a slot associated with a DMA channel.
479  *
480  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
481  * slots may be allocated on behalf of DSP firmware.
482  *
483  * Returns the number of the slot, else negative errno.
484  */
edma_alloc_slot(struct edma_cc * ecc,int slot)485 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
486 {
487 	if (slot > 0) {
488 		slot = EDMA_CHAN_SLOT(slot);
489 		/* Requesting entry paRAM slot for a HW triggered channel. */
490 		if (ecc->chmap_exist && slot < ecc->num_channels)
491 			slot = EDMA_SLOT_ANY;
492 	}
493 
494 	if (slot < 0) {
495 		if (ecc->chmap_exist)
496 			slot = 0;
497 		else
498 			slot = ecc->num_channels;
499 		for (;;) {
500 			slot = find_next_zero_bit(ecc->slot_inuse,
501 						  ecc->num_slots,
502 						  slot);
503 			if (slot == ecc->num_slots)
504 				return -ENOMEM;
505 			if (!test_and_set_bit(slot, ecc->slot_inuse))
506 				break;
507 		}
508 	} else if (slot >= ecc->num_slots) {
509 		return -EINVAL;
510 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
511 		return -EBUSY;
512 	}
513 
514 	edma_write_slot(ecc, slot, &dummy_paramset);
515 
516 	return EDMA_CTLR_CHAN(ecc->id, slot);
517 }
518 
edma_free_slot(struct edma_cc * ecc,unsigned slot)519 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
520 {
521 	slot = EDMA_CHAN_SLOT(slot);
522 	if (slot >= ecc->num_slots)
523 		return;
524 
525 	edma_write_slot(ecc, slot, &dummy_paramset);
526 	clear_bit(slot, ecc->slot_inuse);
527 }
528 
529 /**
530  * edma_link - link one parameter RAM slot to another
531  * @ecc: pointer to edma_cc struct
532  * @from: parameter RAM slot originating the link
533  * @to: parameter RAM slot which is the link target
534  *
535  * The originating slot should not be part of any active DMA transfer.
536  */
edma_link(struct edma_cc * ecc,unsigned from,unsigned to)537 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
538 {
539 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
540 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
541 
542 	from = EDMA_CHAN_SLOT(from);
543 	to = EDMA_CHAN_SLOT(to);
544 	if (from >= ecc->num_slots || to >= ecc->num_slots)
545 		return;
546 
547 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
548 			  PARM_OFFSET(to));
549 }
550 
551 /**
552  * edma_get_position - returns the current transfer point
553  * @ecc: pointer to edma_cc struct
554  * @slot: parameter RAM slot being examined
555  * @dst:  true selects the dest position, false the source
556  *
557  * Returns the position of the current active slot
558  */
edma_get_position(struct edma_cc * ecc,unsigned slot,bool dst)559 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
560 				    bool dst)
561 {
562 	u32 offs;
563 
564 	slot = EDMA_CHAN_SLOT(slot);
565 	offs = PARM_OFFSET(slot);
566 	offs += dst ? PARM_DST : PARM_SRC;
567 
568 	return edma_read(ecc, offs);
569 }
570 
571 /*
572  * Channels with event associations will be triggered by their hardware
573  * events, and channels without such associations will be triggered by
574  * software.  (At this writing there is no interface for using software
575  * triggers except with channels that don't support hardware triggers.)
576  */
edma_start(struct edma_chan * echan)577 static void edma_start(struct edma_chan *echan)
578 {
579 	struct edma_cc *ecc = echan->ecc;
580 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
581 	int j = (channel >> 5);
582 	unsigned int mask = BIT(channel & 0x1f);
583 
584 	if (!echan->hw_triggered) {
585 		/* EDMA channels without event association */
586 		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
587 			edma_shadow0_read_array(ecc, SH_ESR, j));
588 		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
589 	} else {
590 		/* EDMA channel with event association */
591 		dev_dbg(ecc->dev, "ER%d %08x\n", j,
592 			edma_shadow0_read_array(ecc, SH_ER, j));
593 		/* Clear any pending event or error */
594 		edma_write_array(ecc, EDMA_ECR, j, mask);
595 		edma_write_array(ecc, EDMA_EMCR, j, mask);
596 		/* Clear any SER */
597 		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
598 		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
599 		dev_dbg(ecc->dev, "EER%d %08x\n", j,
600 			edma_shadow0_read_array(ecc, SH_EER, j));
601 	}
602 }
603 
edma_stop(struct edma_chan * echan)604 static void edma_stop(struct edma_chan *echan)
605 {
606 	struct edma_cc *ecc = echan->ecc;
607 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
608 	int j = (channel >> 5);
609 	unsigned int mask = BIT(channel & 0x1f);
610 
611 	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
612 	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
613 	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
614 	edma_write_array(ecc, EDMA_EMCR, j, mask);
615 
616 	/* clear possibly pending completion interrupt */
617 	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
618 
619 	dev_dbg(ecc->dev, "EER%d %08x\n", j,
620 		edma_shadow0_read_array(ecc, SH_EER, j));
621 
622 	/* REVISIT:  consider guarding against inappropriate event
623 	 * chaining by overwriting with dummy_paramset.
624 	 */
625 }
626 
627 /*
628  * Temporarily disable EDMA hardware events on the specified channel,
629  * preventing them from triggering new transfers
630  */
edma_pause(struct edma_chan * echan)631 static void edma_pause(struct edma_chan *echan)
632 {
633 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
634 	unsigned int mask = BIT(channel & 0x1f);
635 
636 	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
637 }
638 
639 /* Re-enable EDMA hardware events on the specified channel.  */
edma_resume(struct edma_chan * echan)640 static void edma_resume(struct edma_chan *echan)
641 {
642 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
643 	unsigned int mask = BIT(channel & 0x1f);
644 
645 	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
646 }
647 
edma_trigger_channel(struct edma_chan * echan)648 static void edma_trigger_channel(struct edma_chan *echan)
649 {
650 	struct edma_cc *ecc = echan->ecc;
651 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
652 	unsigned int mask = BIT(channel & 0x1f);
653 
654 	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
655 
656 	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
657 		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
658 }
659 
edma_clean_channel(struct edma_chan * echan)660 static void edma_clean_channel(struct edma_chan *echan)
661 {
662 	struct edma_cc *ecc = echan->ecc;
663 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
664 	int j = (channel >> 5);
665 	unsigned int mask = BIT(channel & 0x1f);
666 
667 	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
668 	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
669 	/* Clear the corresponding EMR bits */
670 	edma_write_array(ecc, EDMA_EMCR, j, mask);
671 	/* Clear any SER */
672 	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
673 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
674 }
675 
676 /* Move channel to a specific event queue */
edma_assign_channel_eventq(struct edma_chan * echan,enum dma_event_q eventq_no)677 static void edma_assign_channel_eventq(struct edma_chan *echan,
678 				       enum dma_event_q eventq_no)
679 {
680 	struct edma_cc *ecc = echan->ecc;
681 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
682 	int bit = (channel & 0x7) * 4;
683 
684 	/* default to low priority queue */
685 	if (eventq_no == EVENTQ_DEFAULT)
686 		eventq_no = ecc->default_queue;
687 	if (eventq_no >= ecc->num_tc)
688 		return;
689 
690 	eventq_no &= 7;
691 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
692 			  eventq_no << bit);
693 }
694 
edma_alloc_channel(struct edma_chan * echan,enum dma_event_q eventq_no)695 static int edma_alloc_channel(struct edma_chan *echan,
696 			      enum dma_event_q eventq_no)
697 {
698 	struct edma_cc *ecc = echan->ecc;
699 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
700 
701 	/* ensure access through shadow region 0 */
702 	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
703 
704 	/* ensure no events are pending */
705 	edma_stop(echan);
706 
707 	edma_setup_interrupt(echan, true);
708 
709 	edma_assign_channel_eventq(echan, eventq_no);
710 
711 	return 0;
712 }
713 
edma_free_channel(struct edma_chan * echan)714 static void edma_free_channel(struct edma_chan *echan)
715 {
716 	/* ensure no events are pending */
717 	edma_stop(echan);
718 	/* REVISIT should probably take out of shadow region 0 */
719 	edma_setup_interrupt(echan, false);
720 }
721 
to_edma_cc(struct dma_device * d)722 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
723 {
724 	return container_of(d, struct edma_cc, dma_slave);
725 }
726 
to_edma_chan(struct dma_chan * c)727 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
728 {
729 	return container_of(c, struct edma_chan, vchan.chan);
730 }
731 
to_edma_desc(struct dma_async_tx_descriptor * tx)732 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
733 {
734 	return container_of(tx, struct edma_desc, vdesc.tx);
735 }
736 
edma_desc_free(struct virt_dma_desc * vdesc)737 static void edma_desc_free(struct virt_dma_desc *vdesc)
738 {
739 	kfree(container_of(vdesc, struct edma_desc, vdesc));
740 }
741 
742 /* Dispatch a queued descriptor to the controller (caller holds lock) */
edma_execute(struct edma_chan * echan)743 static void edma_execute(struct edma_chan *echan)
744 {
745 	struct edma_cc *ecc = echan->ecc;
746 	struct virt_dma_desc *vdesc;
747 	struct edma_desc *edesc;
748 	struct device *dev = echan->vchan.chan.device->dev;
749 	int i, j, left, nslots;
750 
751 	if (!echan->edesc) {
752 		/* Setup is needed for the first transfer */
753 		vdesc = vchan_next_desc(&echan->vchan);
754 		if (!vdesc)
755 			return;
756 		list_del(&vdesc->node);
757 		echan->edesc = to_edma_desc(&vdesc->tx);
758 	}
759 
760 	edesc = echan->edesc;
761 
762 	/* Find out how many left */
763 	left = edesc->pset_nr - edesc->processed;
764 	nslots = min(MAX_NR_SG, left);
765 	edesc->sg_len = 0;
766 
767 	/* Write descriptor PaRAM set(s) */
768 	for (i = 0; i < nslots; i++) {
769 		j = i + edesc->processed;
770 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
771 		edesc->sg_len += edesc->pset[j].len;
772 		dev_vdbg(dev,
773 			 "\n pset[%d]:\n"
774 			 "  chnum\t%d\n"
775 			 "  slot\t%d\n"
776 			 "  opt\t%08x\n"
777 			 "  src\t%08x\n"
778 			 "  dst\t%08x\n"
779 			 "  abcnt\t%08x\n"
780 			 "  ccnt\t%08x\n"
781 			 "  bidx\t%08x\n"
782 			 "  cidx\t%08x\n"
783 			 "  lkrld\t%08x\n",
784 			 j, echan->ch_num, echan->slot[i],
785 			 edesc->pset[j].param.opt,
786 			 edesc->pset[j].param.src,
787 			 edesc->pset[j].param.dst,
788 			 edesc->pset[j].param.a_b_cnt,
789 			 edesc->pset[j].param.ccnt,
790 			 edesc->pset[j].param.src_dst_bidx,
791 			 edesc->pset[j].param.src_dst_cidx,
792 			 edesc->pset[j].param.link_bcntrld);
793 		/* Link to the previous slot if not the last set */
794 		if (i != (nslots - 1))
795 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
796 	}
797 
798 	edesc->processed += nslots;
799 
800 	/*
801 	 * If this is either the last set in a set of SG-list transactions
802 	 * then setup a link to the dummy slot, this results in all future
803 	 * events being absorbed and that's OK because we're done
804 	 */
805 	if (edesc->processed == edesc->pset_nr) {
806 		if (edesc->cyclic)
807 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
808 		else
809 			edma_link(ecc, echan->slot[nslots - 1],
810 				  echan->ecc->dummy_slot);
811 	}
812 
813 	if (echan->missed) {
814 		/*
815 		 * This happens due to setup times between intermediate
816 		 * transfers in long SG lists which have to be broken up into
817 		 * transfers of MAX_NR_SG
818 		 */
819 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
820 		edma_clean_channel(echan);
821 		edma_stop(echan);
822 		edma_start(echan);
823 		edma_trigger_channel(echan);
824 		echan->missed = 0;
825 	} else if (edesc->processed <= MAX_NR_SG) {
826 		dev_dbg(dev, "first transfer starting on channel %d\n",
827 			echan->ch_num);
828 		edma_start(echan);
829 	} else {
830 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
831 			echan->ch_num, edesc->processed);
832 		edma_resume(echan);
833 	}
834 }
835 
edma_terminate_all(struct dma_chan * chan)836 static int edma_terminate_all(struct dma_chan *chan)
837 {
838 	struct edma_chan *echan = to_edma_chan(chan);
839 	unsigned long flags;
840 	LIST_HEAD(head);
841 
842 	spin_lock_irqsave(&echan->vchan.lock, flags);
843 
844 	/*
845 	 * Stop DMA activity: we assume the callback will not be called
846 	 * after edma_dma() returns (even if it does, it will see
847 	 * echan->edesc is NULL and exit.)
848 	 */
849 	if (echan->edesc) {
850 		edma_stop(echan);
851 		/* Move the cyclic channel back to default queue */
852 		if (!echan->tc && echan->edesc->cyclic)
853 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
854 		/*
855 		 * free the running request descriptor
856 		 * since it is not in any of the vdesc lists
857 		 */
858 		edma_desc_free(&echan->edesc->vdesc);
859 		echan->edesc = NULL;
860 	}
861 
862 	vchan_get_all_descriptors(&echan->vchan, &head);
863 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
864 	vchan_dma_desc_free_list(&echan->vchan, &head);
865 
866 	return 0;
867 }
868 
edma_slave_config(struct dma_chan * chan,struct dma_slave_config * cfg)869 static int edma_slave_config(struct dma_chan *chan,
870 	struct dma_slave_config *cfg)
871 {
872 	struct edma_chan *echan = to_edma_chan(chan);
873 
874 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
875 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
876 		return -EINVAL;
877 
878 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
879 
880 	return 0;
881 }
882 
edma_dma_pause(struct dma_chan * chan)883 static int edma_dma_pause(struct dma_chan *chan)
884 {
885 	struct edma_chan *echan = to_edma_chan(chan);
886 
887 	if (!echan->edesc)
888 		return -EINVAL;
889 
890 	edma_pause(echan);
891 	return 0;
892 }
893 
edma_dma_resume(struct dma_chan * chan)894 static int edma_dma_resume(struct dma_chan *chan)
895 {
896 	struct edma_chan *echan = to_edma_chan(chan);
897 
898 	edma_resume(echan);
899 	return 0;
900 }
901 
902 /*
903  * A PaRAM set configuration abstraction used by other modes
904  * @chan: Channel who's PaRAM set we're configuring
905  * @pset: PaRAM set to initialize and setup.
906  * @src_addr: Source address of the DMA
907  * @dst_addr: Destination address of the DMA
908  * @burst: In units of dev_width, how much to send
909  * @dev_width: How much is the dev_width
910  * @dma_length: Total length of the DMA transfer
911  * @direction: Direction of the transfer
912  */
edma_config_pset(struct dma_chan * chan,struct edma_pset * epset,dma_addr_t src_addr,dma_addr_t dst_addr,u32 burst,unsigned int acnt,unsigned int dma_length,enum dma_transfer_direction direction)913 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
914 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
915 			    unsigned int acnt, unsigned int dma_length,
916 			    enum dma_transfer_direction direction)
917 {
918 	struct edma_chan *echan = to_edma_chan(chan);
919 	struct device *dev = chan->device->dev;
920 	struct edmacc_param *param = &epset->param;
921 	int bcnt, ccnt, cidx;
922 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
923 	int absync;
924 
925 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
926 	if (!burst)
927 		burst = 1;
928 	/*
929 	 * If the maxburst is equal to the fifo width, use
930 	 * A-synced transfers. This allows for large contiguous
931 	 * buffer transfers using only one PaRAM set.
932 	 */
933 	if (burst == 1) {
934 		/*
935 		 * For the A-sync case, bcnt and ccnt are the remainder
936 		 * and quotient respectively of the division of:
937 		 * (dma_length / acnt) by (SZ_64K -1). This is so
938 		 * that in case bcnt over flows, we have ccnt to use.
939 		 * Note: In A-sync tranfer only, bcntrld is used, but it
940 		 * only applies for sg_dma_len(sg) >= SZ_64K.
941 		 * In this case, the best way adopted is- bccnt for the
942 		 * first frame will be the remainder below. Then for
943 		 * every successive frame, bcnt will be SZ_64K-1. This
944 		 * is assured as bcntrld = 0xffff in end of function.
945 		 */
946 		absync = false;
947 		ccnt = dma_length / acnt / (SZ_64K - 1);
948 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
949 		/*
950 		 * If bcnt is non-zero, we have a remainder and hence an
951 		 * extra frame to transfer, so increment ccnt.
952 		 */
953 		if (bcnt)
954 			ccnt++;
955 		else
956 			bcnt = SZ_64K - 1;
957 		cidx = acnt;
958 	} else {
959 		/*
960 		 * If maxburst is greater than the fifo address_width,
961 		 * use AB-synced transfers where A count is the fifo
962 		 * address_width and B count is the maxburst. In this
963 		 * case, we are limited to transfers of C count frames
964 		 * of (address_width * maxburst) where C count is limited
965 		 * to SZ_64K-1. This places an upper bound on the length
966 		 * of an SG segment that can be handled.
967 		 */
968 		absync = true;
969 		bcnt = burst;
970 		ccnt = dma_length / (acnt * bcnt);
971 		if (ccnt > (SZ_64K - 1)) {
972 			dev_err(dev, "Exceeded max SG segment size\n");
973 			return -EINVAL;
974 		}
975 		cidx = acnt * bcnt;
976 	}
977 
978 	epset->len = dma_length;
979 
980 	if (direction == DMA_MEM_TO_DEV) {
981 		src_bidx = acnt;
982 		src_cidx = cidx;
983 		dst_bidx = 0;
984 		dst_cidx = 0;
985 		epset->addr = src_addr;
986 	} else if (direction == DMA_DEV_TO_MEM)  {
987 		src_bidx = 0;
988 		src_cidx = 0;
989 		dst_bidx = acnt;
990 		dst_cidx = cidx;
991 		epset->addr = dst_addr;
992 	} else if (direction == DMA_MEM_TO_MEM)  {
993 		src_bidx = acnt;
994 		src_cidx = cidx;
995 		dst_bidx = acnt;
996 		dst_cidx = cidx;
997 	} else {
998 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
999 		return -EINVAL;
1000 	}
1001 
1002 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1003 	/* Configure A or AB synchronized transfers */
1004 	if (absync)
1005 		param->opt |= SYNCDIM;
1006 
1007 	param->src = src_addr;
1008 	param->dst = dst_addr;
1009 
1010 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1011 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1012 
1013 	param->a_b_cnt = bcnt << 16 | acnt;
1014 	param->ccnt = ccnt;
1015 	/*
1016 	 * Only time when (bcntrld) auto reload is required is for
1017 	 * A-sync case, and in this case, a requirement of reload value
1018 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1019 	 * and then later will be populated by edma_execute.
1020 	 */
1021 	param->link_bcntrld = 0xffffffff;
1022 	return absync;
1023 }
1024 
edma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long tx_flags,void * context)1025 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1026 	struct dma_chan *chan, struct scatterlist *sgl,
1027 	unsigned int sg_len, enum dma_transfer_direction direction,
1028 	unsigned long tx_flags, void *context)
1029 {
1030 	struct edma_chan *echan = to_edma_chan(chan);
1031 	struct device *dev = chan->device->dev;
1032 	struct edma_desc *edesc;
1033 	dma_addr_t src_addr = 0, dst_addr = 0;
1034 	enum dma_slave_buswidth dev_width;
1035 	u32 burst;
1036 	struct scatterlist *sg;
1037 	int i, nslots, ret;
1038 
1039 	if (unlikely(!echan || !sgl || !sg_len))
1040 		return NULL;
1041 
1042 	if (direction == DMA_DEV_TO_MEM) {
1043 		src_addr = echan->cfg.src_addr;
1044 		dev_width = echan->cfg.src_addr_width;
1045 		burst = echan->cfg.src_maxburst;
1046 	} else if (direction == DMA_MEM_TO_DEV) {
1047 		dst_addr = echan->cfg.dst_addr;
1048 		dev_width = echan->cfg.dst_addr_width;
1049 		burst = echan->cfg.dst_maxburst;
1050 	} else {
1051 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1052 		return NULL;
1053 	}
1054 
1055 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1056 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1057 		return NULL;
1058 	}
1059 
1060 	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1061 			GFP_ATOMIC);
1062 	if (!edesc) {
1063 		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1064 		return NULL;
1065 	}
1066 
1067 	edesc->pset_nr = sg_len;
1068 	edesc->residue = 0;
1069 	edesc->direction = direction;
1070 	edesc->echan = echan;
1071 
1072 	/* Allocate a PaRAM slot, if needed */
1073 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1074 
1075 	for (i = 0; i < nslots; i++) {
1076 		if (echan->slot[i] < 0) {
1077 			echan->slot[i] =
1078 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1079 			if (echan->slot[i] < 0) {
1080 				kfree(edesc);
1081 				dev_err(dev, "%s: Failed to allocate slot\n",
1082 					__func__);
1083 				return NULL;
1084 			}
1085 		}
1086 	}
1087 
1088 	/* Configure PaRAM sets for each SG */
1089 	for_each_sg(sgl, sg, sg_len, i) {
1090 		/* Get address for each SG */
1091 		if (direction == DMA_DEV_TO_MEM)
1092 			dst_addr = sg_dma_address(sg);
1093 		else
1094 			src_addr = sg_dma_address(sg);
1095 
1096 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1097 				       dst_addr, burst, dev_width,
1098 				       sg_dma_len(sg), direction);
1099 		if (ret < 0) {
1100 			kfree(edesc);
1101 			return NULL;
1102 		}
1103 
1104 		edesc->absync = ret;
1105 		edesc->residue += sg_dma_len(sg);
1106 
1107 		/* If this is the last in a current SG set of transactions,
1108 		   enable interrupts so that next set is processed */
1109 		if (!((i+1) % MAX_NR_SG))
1110 			edesc->pset[i].param.opt |= TCINTEN;
1111 
1112 		/* If this is the last set, enable completion interrupt flag */
1113 		if (i == sg_len - 1)
1114 			edesc->pset[i].param.opt |= TCINTEN;
1115 	}
1116 	edesc->residue_stat = edesc->residue;
1117 
1118 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1119 }
1120 
edma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long tx_flags)1121 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1122 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1123 	size_t len, unsigned long tx_flags)
1124 {
1125 	int ret, nslots;
1126 	struct edma_desc *edesc;
1127 	struct device *dev = chan->device->dev;
1128 	struct edma_chan *echan = to_edma_chan(chan);
1129 	unsigned int width, pset_len, array_size;
1130 
1131 	if (unlikely(!echan || !len))
1132 		return NULL;
1133 
1134 	/* Align the array size (acnt block) with the transfer properties */
1135 	switch (__ffs((src | dest | len))) {
1136 	case 0:
1137 		array_size = SZ_32K - 1;
1138 		break;
1139 	case 1:
1140 		array_size = SZ_32K - 2;
1141 		break;
1142 	default:
1143 		array_size = SZ_32K - 4;
1144 		break;
1145 	}
1146 
1147 	if (len < SZ_64K) {
1148 		/*
1149 		 * Transfer size less than 64K can be handled with one paRAM
1150 		 * slot and with one burst.
1151 		 * ACNT = length
1152 		 */
1153 		width = len;
1154 		pset_len = len;
1155 		nslots = 1;
1156 	} else {
1157 		/*
1158 		 * Transfer size bigger than 64K will be handled with maximum of
1159 		 * two paRAM slots.
1160 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1161 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1162 		 * slot2: the remaining amount of data after slot1.
1163 		 *	  ACNT = full_length - length1, length2 = ACNT
1164 		 *
1165 		 * When the full_length is multibple of 32767 one slot can be
1166 		 * used to complete the transfer.
1167 		 */
1168 		width = array_size;
1169 		pset_len = rounddown(len, width);
1170 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1171 		if (unlikely(pset_len == len))
1172 			nslots = 1;
1173 		else
1174 			nslots = 2;
1175 	}
1176 
1177 	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1178 			GFP_ATOMIC);
1179 	if (!edesc) {
1180 		dev_dbg(dev, "Failed to allocate a descriptor\n");
1181 		return NULL;
1182 	}
1183 
1184 	edesc->pset_nr = nslots;
1185 	edesc->residue = edesc->residue_stat = len;
1186 	edesc->direction = DMA_MEM_TO_MEM;
1187 	edesc->echan = echan;
1188 
1189 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1190 			       width, pset_len, DMA_MEM_TO_MEM);
1191 	if (ret < 0) {
1192 		kfree(edesc);
1193 		return NULL;
1194 	}
1195 
1196 	edesc->absync = ret;
1197 
1198 	edesc->pset[0].param.opt |= ITCCHEN;
1199 	if (nslots == 1) {
1200 		/* Enable transfer complete interrupt */
1201 		edesc->pset[0].param.opt |= TCINTEN;
1202 	} else {
1203 		/* Enable transfer complete chaining for the first slot */
1204 		edesc->pset[0].param.opt |= TCCHEN;
1205 
1206 		if (echan->slot[1] < 0) {
1207 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1208 							 EDMA_SLOT_ANY);
1209 			if (echan->slot[1] < 0) {
1210 				kfree(edesc);
1211 				dev_err(dev, "%s: Failed to allocate slot\n",
1212 					__func__);
1213 				return NULL;
1214 			}
1215 		}
1216 		dest += pset_len;
1217 		src += pset_len;
1218 		pset_len = width = len % array_size;
1219 
1220 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1221 				       width, pset_len, DMA_MEM_TO_MEM);
1222 		if (ret < 0) {
1223 			kfree(edesc);
1224 			return NULL;
1225 		}
1226 
1227 		edesc->pset[1].param.opt |= ITCCHEN;
1228 		edesc->pset[1].param.opt |= TCINTEN;
1229 	}
1230 
1231 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1232 }
1233 
edma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long tx_flags)1234 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1235 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1236 	size_t period_len, enum dma_transfer_direction direction,
1237 	unsigned long tx_flags)
1238 {
1239 	struct edma_chan *echan = to_edma_chan(chan);
1240 	struct device *dev = chan->device->dev;
1241 	struct edma_desc *edesc;
1242 	dma_addr_t src_addr, dst_addr;
1243 	enum dma_slave_buswidth dev_width;
1244 	u32 burst;
1245 	int i, ret, nslots;
1246 
1247 	if (unlikely(!echan || !buf_len || !period_len))
1248 		return NULL;
1249 
1250 	if (direction == DMA_DEV_TO_MEM) {
1251 		src_addr = echan->cfg.src_addr;
1252 		dst_addr = buf_addr;
1253 		dev_width = echan->cfg.src_addr_width;
1254 		burst = echan->cfg.src_maxburst;
1255 	} else if (direction == DMA_MEM_TO_DEV) {
1256 		src_addr = buf_addr;
1257 		dst_addr = echan->cfg.dst_addr;
1258 		dev_width = echan->cfg.dst_addr_width;
1259 		burst = echan->cfg.dst_maxburst;
1260 	} else {
1261 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1262 		return NULL;
1263 	}
1264 
1265 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1266 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1267 		return NULL;
1268 	}
1269 
1270 	if (unlikely(buf_len % period_len)) {
1271 		dev_err(dev, "Period should be multiple of Buffer length\n");
1272 		return NULL;
1273 	}
1274 
1275 	nslots = (buf_len / period_len) + 1;
1276 
1277 	/*
1278 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1279 	 * by cases where the number of periods is more than the maximum
1280 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1281 	 * such as Slave SGs, such delays are tolerable and synchronized,
1282 	 * but the synchronization is difficult to achieve with Cyclic and
1283 	 * cannot be guaranteed, so we error out early.
1284 	 */
1285 	if (nslots > MAX_NR_SG)
1286 		return NULL;
1287 
1288 	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1289 			GFP_ATOMIC);
1290 	if (!edesc) {
1291 		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1292 		return NULL;
1293 	}
1294 
1295 	edesc->cyclic = 1;
1296 	edesc->pset_nr = nslots;
1297 	edesc->residue = edesc->residue_stat = buf_len;
1298 	edesc->direction = direction;
1299 	edesc->echan = echan;
1300 
1301 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1302 		__func__, echan->ch_num, nslots, period_len, buf_len);
1303 
1304 	for (i = 0; i < nslots; i++) {
1305 		/* Allocate a PaRAM slot, if needed */
1306 		if (echan->slot[i] < 0) {
1307 			echan->slot[i] =
1308 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1309 			if (echan->slot[i] < 0) {
1310 				kfree(edesc);
1311 				dev_err(dev, "%s: Failed to allocate slot\n",
1312 					__func__);
1313 				return NULL;
1314 			}
1315 		}
1316 
1317 		if (i == nslots - 1) {
1318 			memcpy(&edesc->pset[i], &edesc->pset[0],
1319 			       sizeof(edesc->pset[0]));
1320 			break;
1321 		}
1322 
1323 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1324 				       dst_addr, burst, dev_width, period_len,
1325 				       direction);
1326 		if (ret < 0) {
1327 			kfree(edesc);
1328 			return NULL;
1329 		}
1330 
1331 		if (direction == DMA_DEV_TO_MEM)
1332 			dst_addr += period_len;
1333 		else
1334 			src_addr += period_len;
1335 
1336 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1337 		dev_vdbg(dev,
1338 			"\n pset[%d]:\n"
1339 			"  chnum\t%d\n"
1340 			"  slot\t%d\n"
1341 			"  opt\t%08x\n"
1342 			"  src\t%08x\n"
1343 			"  dst\t%08x\n"
1344 			"  abcnt\t%08x\n"
1345 			"  ccnt\t%08x\n"
1346 			"  bidx\t%08x\n"
1347 			"  cidx\t%08x\n"
1348 			"  lkrld\t%08x\n",
1349 			i, echan->ch_num, echan->slot[i],
1350 			edesc->pset[i].param.opt,
1351 			edesc->pset[i].param.src,
1352 			edesc->pset[i].param.dst,
1353 			edesc->pset[i].param.a_b_cnt,
1354 			edesc->pset[i].param.ccnt,
1355 			edesc->pset[i].param.src_dst_bidx,
1356 			edesc->pset[i].param.src_dst_cidx,
1357 			edesc->pset[i].param.link_bcntrld);
1358 
1359 		edesc->absync = ret;
1360 
1361 		/*
1362 		 * Enable period interrupt only if it is requested
1363 		 */
1364 		if (tx_flags & DMA_PREP_INTERRUPT)
1365 			edesc->pset[i].param.opt |= TCINTEN;
1366 	}
1367 
1368 	/* Place the cyclic channel to highest priority queue */
1369 	if (!echan->tc)
1370 		edma_assign_channel_eventq(echan, EVENTQ_0);
1371 
1372 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1373 }
1374 
edma_completion_handler(struct edma_chan * echan)1375 static void edma_completion_handler(struct edma_chan *echan)
1376 {
1377 	struct device *dev = echan->vchan.chan.device->dev;
1378 	struct edma_desc *edesc = echan->edesc;
1379 
1380 	if (!edesc)
1381 		return;
1382 
1383 	spin_lock(&echan->vchan.lock);
1384 	if (edesc->cyclic) {
1385 		vchan_cyclic_callback(&edesc->vdesc);
1386 		spin_unlock(&echan->vchan.lock);
1387 		return;
1388 	} else if (edesc->processed == edesc->pset_nr) {
1389 		edesc->residue = 0;
1390 		edma_stop(echan);
1391 		vchan_cookie_complete(&edesc->vdesc);
1392 		echan->edesc = NULL;
1393 
1394 		dev_dbg(dev, "Transfer completed on channel %d\n",
1395 			echan->ch_num);
1396 	} else {
1397 		dev_dbg(dev, "Sub transfer completed on channel %d\n",
1398 			echan->ch_num);
1399 
1400 		edma_pause(echan);
1401 
1402 		/* Update statistics for tx_status */
1403 		edesc->residue -= edesc->sg_len;
1404 		edesc->residue_stat = edesc->residue;
1405 		edesc->processed_stat = edesc->processed;
1406 	}
1407 	edma_execute(echan);
1408 
1409 	spin_unlock(&echan->vchan.lock);
1410 }
1411 
1412 /* eDMA interrupt handler */
dma_irq_handler(int irq,void * data)1413 static irqreturn_t dma_irq_handler(int irq, void *data)
1414 {
1415 	struct edma_cc *ecc = data;
1416 	int ctlr;
1417 	u32 sh_ier;
1418 	u32 sh_ipr;
1419 	u32 bank;
1420 
1421 	ctlr = ecc->id;
1422 	if (ctlr < 0)
1423 		return IRQ_NONE;
1424 
1425 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1426 
1427 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1428 	if (!sh_ipr) {
1429 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1430 		if (!sh_ipr)
1431 			return IRQ_NONE;
1432 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1433 		bank = 1;
1434 	} else {
1435 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1436 		bank = 0;
1437 	}
1438 
1439 	do {
1440 		u32 slot;
1441 		u32 channel;
1442 
1443 		slot = __ffs(sh_ipr);
1444 		sh_ipr &= ~(BIT(slot));
1445 
1446 		if (sh_ier & BIT(slot)) {
1447 			channel = (bank << 5) | slot;
1448 			/* Clear the corresponding IPR bits */
1449 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1450 			edma_completion_handler(&ecc->slave_chans[channel]);
1451 		}
1452 	} while (sh_ipr);
1453 
1454 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1455 	return IRQ_HANDLED;
1456 }
1457 
edma_error_handler(struct edma_chan * echan)1458 static void edma_error_handler(struct edma_chan *echan)
1459 {
1460 	struct edma_cc *ecc = echan->ecc;
1461 	struct device *dev = echan->vchan.chan.device->dev;
1462 	struct edmacc_param p;
1463 
1464 	if (!echan->edesc)
1465 		return;
1466 
1467 	spin_lock(&echan->vchan.lock);
1468 
1469 	edma_read_slot(ecc, echan->slot[0], &p);
1470 	/*
1471 	 * Issue later based on missed flag which will be sure
1472 	 * to happen as:
1473 	 * (1) we finished transmitting an intermediate slot and
1474 	 *     edma_execute is coming up.
1475 	 * (2) or we finished current transfer and issue will
1476 	 *     call edma_execute.
1477 	 *
1478 	 * Important note: issuing can be dangerous here and
1479 	 * lead to some nasty recursion when we are in a NULL
1480 	 * slot. So we avoid doing so and set the missed flag.
1481 	 */
1482 	if (p.a_b_cnt == 0 && p.ccnt == 0) {
1483 		dev_dbg(dev, "Error on null slot, setting miss\n");
1484 		echan->missed = 1;
1485 	} else {
1486 		/*
1487 		 * The slot is already programmed but the event got
1488 		 * missed, so its safe to issue it here.
1489 		 */
1490 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1491 		edma_clean_channel(echan);
1492 		edma_stop(echan);
1493 		edma_start(echan);
1494 		edma_trigger_channel(echan);
1495 	}
1496 	spin_unlock(&echan->vchan.lock);
1497 }
1498 
edma_error_pending(struct edma_cc * ecc)1499 static inline bool edma_error_pending(struct edma_cc *ecc)
1500 {
1501 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1502 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1503 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1504 		return true;
1505 
1506 	return false;
1507 }
1508 
1509 /* eDMA error interrupt handler */
dma_ccerr_handler(int irq,void * data)1510 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1511 {
1512 	struct edma_cc *ecc = data;
1513 	int i, j;
1514 	int ctlr;
1515 	unsigned int cnt = 0;
1516 	unsigned int val;
1517 
1518 	ctlr = ecc->id;
1519 	if (ctlr < 0)
1520 		return IRQ_NONE;
1521 
1522 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1523 
1524 	if (!edma_error_pending(ecc))
1525 		return IRQ_NONE;
1526 
1527 	while (1) {
1528 		/* Event missed register(s) */
1529 		for (j = 0; j < 2; j++) {
1530 			unsigned long emr;
1531 
1532 			val = edma_read_array(ecc, EDMA_EMR, j);
1533 			if (!val)
1534 				continue;
1535 
1536 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1537 			emr = val;
1538 			for (i = find_next_bit(&emr, 32, 0); i < 32;
1539 			     i = find_next_bit(&emr, 32, i + 1)) {
1540 				int k = (j << 5) + i;
1541 
1542 				/* Clear the corresponding EMR bits */
1543 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1544 				/* Clear any SER */
1545 				edma_shadow0_write_array(ecc, SH_SECR, j,
1546 							 BIT(i));
1547 				edma_error_handler(&ecc->slave_chans[k]);
1548 			}
1549 		}
1550 
1551 		val = edma_read(ecc, EDMA_QEMR);
1552 		if (val) {
1553 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1554 			/* Not reported, just clear the interrupt reason. */
1555 			edma_write(ecc, EDMA_QEMCR, val);
1556 			edma_shadow0_write(ecc, SH_QSECR, val);
1557 		}
1558 
1559 		val = edma_read(ecc, EDMA_CCERR);
1560 		if (val) {
1561 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1562 			/* Not reported, just clear the interrupt reason. */
1563 			edma_write(ecc, EDMA_CCERRCLR, val);
1564 		}
1565 
1566 		if (!edma_error_pending(ecc))
1567 			break;
1568 		cnt++;
1569 		if (cnt > 10)
1570 			break;
1571 	}
1572 	edma_write(ecc, EDMA_EEVAL, 1);
1573 	return IRQ_HANDLED;
1574 }
1575 
edma_tc_set_pm_state(struct edma_tc * tc,bool enable)1576 static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
1577 {
1578 	struct platform_device *tc_pdev;
1579 	int ret;
1580 
1581 	if (!IS_ENABLED(CONFIG_OF) || !tc)
1582 		return;
1583 
1584 	tc_pdev = of_find_device_by_node(tc->node);
1585 	if (!tc_pdev) {
1586 		pr_err("%s: TPTC device is not found\n", __func__);
1587 		return;
1588 	}
1589 	if (!pm_runtime_enabled(&tc_pdev->dev))
1590 		pm_runtime_enable(&tc_pdev->dev);
1591 
1592 	if (enable)
1593 		ret = pm_runtime_get_sync(&tc_pdev->dev);
1594 	else
1595 		ret = pm_runtime_put_sync(&tc_pdev->dev);
1596 
1597 	if (ret < 0)
1598 		pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
1599 		       enable ? "get" : "put", dev_name(&tc_pdev->dev));
1600 }
1601 
1602 /* Alloc channel resources */
edma_alloc_chan_resources(struct dma_chan * chan)1603 static int edma_alloc_chan_resources(struct dma_chan *chan)
1604 {
1605 	struct edma_chan *echan = to_edma_chan(chan);
1606 	struct edma_cc *ecc = echan->ecc;
1607 	struct device *dev = ecc->dev;
1608 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1609 	int ret;
1610 
1611 	if (echan->tc) {
1612 		eventq_no = echan->tc->id;
1613 	} else if (ecc->tc_list) {
1614 		/* memcpy channel */
1615 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1616 		eventq_no = echan->tc->id;
1617 	}
1618 
1619 	ret = edma_alloc_channel(echan, eventq_no);
1620 	if (ret)
1621 		return ret;
1622 
1623 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1624 	if (echan->slot[0] < 0) {
1625 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1626 			EDMA_CHAN_SLOT(echan->ch_num));
1627 		goto err_slot;
1628 	}
1629 
1630 	/* Set up channel -> slot mapping for the entry slot */
1631 	edma_set_chmap(echan, echan->slot[0]);
1632 	echan->alloced = true;
1633 
1634 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1635 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1636 		echan->hw_triggered ? "HW" : "SW");
1637 
1638 	edma_tc_set_pm_state(echan->tc, true);
1639 
1640 	return 0;
1641 
1642 err_slot:
1643 	edma_free_channel(echan);
1644 	return ret;
1645 }
1646 
1647 /* Free channel resources */
edma_free_chan_resources(struct dma_chan * chan)1648 static void edma_free_chan_resources(struct dma_chan *chan)
1649 {
1650 	struct edma_chan *echan = to_edma_chan(chan);
1651 	struct device *dev = echan->ecc->dev;
1652 	int i;
1653 
1654 	/* Terminate transfers */
1655 	edma_stop(echan);
1656 
1657 	vchan_free_chan_resources(&echan->vchan);
1658 
1659 	/* Free EDMA PaRAM slots */
1660 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1661 		if (echan->slot[i] >= 0) {
1662 			edma_free_slot(echan->ecc, echan->slot[i]);
1663 			echan->slot[i] = -1;
1664 		}
1665 	}
1666 
1667 	/* Set entry slot to the dummy slot */
1668 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1669 
1670 	/* Free EDMA channel */
1671 	if (echan->alloced) {
1672 		edma_free_channel(echan);
1673 		echan->alloced = false;
1674 	}
1675 
1676 	edma_tc_set_pm_state(echan->tc, false);
1677 	echan->tc = NULL;
1678 	echan->hw_triggered = false;
1679 
1680 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1681 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1682 }
1683 
1684 /* Send pending descriptor to hardware */
edma_issue_pending(struct dma_chan * chan)1685 static void edma_issue_pending(struct dma_chan *chan)
1686 {
1687 	struct edma_chan *echan = to_edma_chan(chan);
1688 	unsigned long flags;
1689 
1690 	spin_lock_irqsave(&echan->vchan.lock, flags);
1691 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1692 		edma_execute(echan);
1693 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1694 }
1695 
edma_residue(struct edma_desc * edesc)1696 static u32 edma_residue(struct edma_desc *edesc)
1697 {
1698 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1699 	struct edma_pset *pset = edesc->pset;
1700 	dma_addr_t done, pos;
1701 	int i;
1702 
1703 	/*
1704 	 * We always read the dst/src position from the first RamPar
1705 	 * pset. That's the one which is active now.
1706 	 */
1707 	pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1708 
1709 	/*
1710 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1711 	 *
1712 	 * We never update edesc->residue in the cyclic case, so we
1713 	 * can tell the remaining room to the end of the circular
1714 	 * buffer.
1715 	 */
1716 	if (edesc->cyclic) {
1717 		done = pos - pset->addr;
1718 		edesc->residue_stat = edesc->residue - done;
1719 		return edesc->residue_stat;
1720 	}
1721 
1722 	/*
1723 	 * For SG operation we catch up with the last processed
1724 	 * status.
1725 	 */
1726 	pset += edesc->processed_stat;
1727 
1728 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1729 		/*
1730 		 * If we are inside this pset address range, we know
1731 		 * this is the active one. Get the current delta and
1732 		 * stop walking the psets.
1733 		 */
1734 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1735 			return edesc->residue_stat - (pos - pset->addr);
1736 
1737 		/* Otherwise mark it done and update residue_stat. */
1738 		edesc->processed_stat++;
1739 		edesc->residue_stat -= pset->len;
1740 	}
1741 	return edesc->residue_stat;
1742 }
1743 
1744 /* Check request completion status */
edma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1745 static enum dma_status edma_tx_status(struct dma_chan *chan,
1746 				      dma_cookie_t cookie,
1747 				      struct dma_tx_state *txstate)
1748 {
1749 	struct edma_chan *echan = to_edma_chan(chan);
1750 	struct virt_dma_desc *vdesc;
1751 	enum dma_status ret;
1752 	unsigned long flags;
1753 
1754 	ret = dma_cookie_status(chan, cookie, txstate);
1755 	if (ret == DMA_COMPLETE || !txstate)
1756 		return ret;
1757 
1758 	spin_lock_irqsave(&echan->vchan.lock, flags);
1759 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1760 		txstate->residue = edma_residue(echan->edesc);
1761 	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1762 		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1763 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1764 
1765 	return ret;
1766 }
1767 
edma_is_memcpy_channel(int ch_num,s32 * memcpy_channels)1768 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1769 {
1770 	if (!memcpy_channels)
1771 		return false;
1772 	while (*memcpy_channels != -1) {
1773 		if (*memcpy_channels == ch_num)
1774 			return true;
1775 		memcpy_channels++;
1776 	}
1777 	return false;
1778 }
1779 
1780 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1781 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1782 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1783 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1784 
edma_dma_init(struct edma_cc * ecc,bool legacy_mode)1785 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1786 {
1787 	struct dma_device *s_ddev = &ecc->dma_slave;
1788 	struct dma_device *m_ddev = NULL;
1789 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1790 	int i, j;
1791 
1792 	dma_cap_zero(s_ddev->cap_mask);
1793 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1794 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1795 	if (ecc->legacy_mode && !memcpy_channels) {
1796 		dev_warn(ecc->dev,
1797 			 "Legacy memcpy is enabled, things might not work\n");
1798 
1799 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1800 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1801 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1802 	}
1803 
1804 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1805 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1806 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1807 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1808 	s_ddev->device_issue_pending = edma_issue_pending;
1809 	s_ddev->device_tx_status = edma_tx_status;
1810 	s_ddev->device_config = edma_slave_config;
1811 	s_ddev->device_pause = edma_dma_pause;
1812 	s_ddev->device_resume = edma_dma_resume;
1813 	s_ddev->device_terminate_all = edma_terminate_all;
1814 
1815 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1816 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1817 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1818 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1819 
1820 	s_ddev->dev = ecc->dev;
1821 	INIT_LIST_HEAD(&s_ddev->channels);
1822 
1823 	if (memcpy_channels) {
1824 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1825 		ecc->dma_memcpy = m_ddev;
1826 
1827 		dma_cap_zero(m_ddev->cap_mask);
1828 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1829 
1830 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1831 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1832 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1833 		m_ddev->device_issue_pending = edma_issue_pending;
1834 		m_ddev->device_tx_status = edma_tx_status;
1835 		m_ddev->device_config = edma_slave_config;
1836 		m_ddev->device_pause = edma_dma_pause;
1837 		m_ddev->device_resume = edma_dma_resume;
1838 		m_ddev->device_terminate_all = edma_terminate_all;
1839 
1840 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1841 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1842 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1843 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1844 
1845 		m_ddev->dev = ecc->dev;
1846 		INIT_LIST_HEAD(&m_ddev->channels);
1847 	} else if (!ecc->legacy_mode) {
1848 		dev_info(ecc->dev, "memcpy is disabled\n");
1849 	}
1850 
1851 	for (i = 0; i < ecc->num_channels; i++) {
1852 		struct edma_chan *echan = &ecc->slave_chans[i];
1853 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1854 		echan->ecc = ecc;
1855 		echan->vchan.desc_free = edma_desc_free;
1856 
1857 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1858 			vchan_init(&echan->vchan, m_ddev);
1859 		else
1860 			vchan_init(&echan->vchan, s_ddev);
1861 
1862 		INIT_LIST_HEAD(&echan->node);
1863 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
1864 			echan->slot[j] = -1;
1865 	}
1866 }
1867 
edma_setup_from_hw(struct device * dev,struct edma_soc_info * pdata,struct edma_cc * ecc)1868 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1869 			      struct edma_cc *ecc)
1870 {
1871 	int i;
1872 	u32 value, cccfg;
1873 	s8 (*queue_priority_map)[2];
1874 
1875 	/* Decode the eDMA3 configuration from CCCFG register */
1876 	cccfg = edma_read(ecc, EDMA_CCCFG);
1877 
1878 	value = GET_NUM_REGN(cccfg);
1879 	ecc->num_region = BIT(value);
1880 
1881 	value = GET_NUM_DMACH(cccfg);
1882 	ecc->num_channels = BIT(value + 1);
1883 
1884 	value = GET_NUM_QDMACH(cccfg);
1885 	ecc->num_qchannels = value * 2;
1886 
1887 	value = GET_NUM_PAENTRY(cccfg);
1888 	ecc->num_slots = BIT(value + 4);
1889 
1890 	value = GET_NUM_EVQUE(cccfg);
1891 	ecc->num_tc = value + 1;
1892 
1893 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1894 
1895 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1896 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1897 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1898 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1899 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1900 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1901 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1902 
1903 	/* Nothing need to be done if queue priority is provided */
1904 	if (pdata->queue_priority_mapping)
1905 		return 0;
1906 
1907 	/*
1908 	 * Configure TC/queue priority as follows:
1909 	 * Q0 - priority 0
1910 	 * Q1 - priority 1
1911 	 * Q2 - priority 2
1912 	 * ...
1913 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
1914 	 * priority. So Q0 is the highest priority queue and the last queue has
1915 	 * the lowest priority.
1916 	 */
1917 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1918 					  GFP_KERNEL);
1919 	if (!queue_priority_map)
1920 		return -ENOMEM;
1921 
1922 	for (i = 0; i < ecc->num_tc; i++) {
1923 		queue_priority_map[i][0] = i;
1924 		queue_priority_map[i][1] = i;
1925 	}
1926 	queue_priority_map[i][0] = -1;
1927 	queue_priority_map[i][1] = -1;
1928 
1929 	pdata->queue_priority_mapping = queue_priority_map;
1930 	/* Default queue has the lowest priority */
1931 	pdata->default_queue = i - 1;
1932 
1933 	return 0;
1934 }
1935 
1936 #if IS_ENABLED(CONFIG_OF)
edma_xbar_event_map(struct device * dev,struct edma_soc_info * pdata,size_t sz)1937 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1938 			       size_t sz)
1939 {
1940 	const char pname[] = "ti,edma-xbar-event-map";
1941 	struct resource res;
1942 	void __iomem *xbar;
1943 	s16 (*xbar_chans)[2];
1944 	size_t nelm = sz / sizeof(s16);
1945 	u32 shift, offset, mux;
1946 	int ret, i;
1947 
1948 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1949 	if (!xbar_chans)
1950 		return -ENOMEM;
1951 
1952 	ret = of_address_to_resource(dev->of_node, 1, &res);
1953 	if (ret)
1954 		return -ENOMEM;
1955 
1956 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
1957 	if (!xbar)
1958 		return -ENOMEM;
1959 
1960 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1961 					 nelm);
1962 	if (ret)
1963 		return -EIO;
1964 
1965 	/* Invalidate last entry for the other user of this mess */
1966 	nelm >>= 1;
1967 	xbar_chans[nelm][0] = -1;
1968 	xbar_chans[nelm][1] = -1;
1969 
1970 	for (i = 0; i < nelm; i++) {
1971 		shift = (xbar_chans[i][1] & 0x03) << 3;
1972 		offset = xbar_chans[i][1] & 0xfffffffc;
1973 		mux = readl(xbar + offset);
1974 		mux &= ~(0xff << shift);
1975 		mux |= xbar_chans[i][0] << shift;
1976 		writel(mux, (xbar + offset));
1977 	}
1978 
1979 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1980 	return 0;
1981 }
1982 
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)1983 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1984 						     bool legacy_mode)
1985 {
1986 	struct edma_soc_info *info;
1987 	struct property *prop;
1988 	size_t sz;
1989 	int ret;
1990 
1991 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1992 	if (!info)
1993 		return ERR_PTR(-ENOMEM);
1994 
1995 	if (legacy_mode) {
1996 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
1997 					&sz);
1998 		if (prop) {
1999 			ret = edma_xbar_event_map(dev, info, sz);
2000 			if (ret)
2001 				return ERR_PTR(ret);
2002 		}
2003 		return info;
2004 	}
2005 
2006 	/* Get the list of channels allocated to be used for memcpy */
2007 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2008 	if (prop) {
2009 		const char pname[] = "ti,edma-memcpy-channels";
2010 		size_t nelm = sz / sizeof(s32);
2011 		s32 *memcpy_ch;
2012 
2013 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2014 					 GFP_KERNEL);
2015 		if (!memcpy_ch)
2016 			return ERR_PTR(-ENOMEM);
2017 
2018 		ret = of_property_read_u32_array(dev->of_node, pname,
2019 						 (u32 *)memcpy_ch, nelm);
2020 		if (ret)
2021 			return ERR_PTR(ret);
2022 
2023 		memcpy_ch[nelm] = -1;
2024 		info->memcpy_channels = memcpy_ch;
2025 	}
2026 
2027 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2028 				&sz);
2029 	if (prop) {
2030 		const char pname[] = "ti,edma-reserved-slot-ranges";
2031 		u32 (*tmp)[2];
2032 		s16 (*rsv_slots)[2];
2033 		size_t nelm = sz / sizeof(*tmp);
2034 		struct edma_rsv_info *rsv_info;
2035 		int i;
2036 
2037 		if (!nelm)
2038 			return info;
2039 
2040 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2041 		if (!tmp)
2042 			return ERR_PTR(-ENOMEM);
2043 
2044 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2045 		if (!rsv_info) {
2046 			kfree(tmp);
2047 			return ERR_PTR(-ENOMEM);
2048 		}
2049 
2050 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2051 					 GFP_KERNEL);
2052 		if (!rsv_slots) {
2053 			kfree(tmp);
2054 			return ERR_PTR(-ENOMEM);
2055 		}
2056 
2057 		ret = of_property_read_u32_array(dev->of_node, pname,
2058 						 (u32 *)tmp, nelm * 2);
2059 		if (ret) {
2060 			kfree(tmp);
2061 			return ERR_PTR(ret);
2062 		}
2063 
2064 		for (i = 0; i < nelm; i++) {
2065 			rsv_slots[i][0] = tmp[i][0];
2066 			rsv_slots[i][1] = tmp[i][1];
2067 		}
2068 		rsv_slots[nelm][0] = -1;
2069 		rsv_slots[nelm][1] = -1;
2070 
2071 		info->rsv = rsv_info;
2072 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2073 
2074 		kfree(tmp);
2075 	}
2076 
2077 	return info;
2078 }
2079 
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2080 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2081 				      struct of_dma *ofdma)
2082 {
2083 	struct edma_cc *ecc = ofdma->of_dma_data;
2084 	struct dma_chan *chan = NULL;
2085 	struct edma_chan *echan;
2086 	int i;
2087 
2088 	if (!ecc || dma_spec->args_count < 1)
2089 		return NULL;
2090 
2091 	for (i = 0; i < ecc->num_channels; i++) {
2092 		echan = &ecc->slave_chans[i];
2093 		if (echan->ch_num == dma_spec->args[0]) {
2094 			chan = &echan->vchan.chan;
2095 			break;
2096 		}
2097 	}
2098 
2099 	if (!chan)
2100 		return NULL;
2101 
2102 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2103 		goto out;
2104 
2105 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2106 	    dma_spec->args[1] < echan->ecc->num_tc) {
2107 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2108 		goto out;
2109 	}
2110 
2111 	return NULL;
2112 out:
2113 	/* The channel is going to be used as HW synchronized */
2114 	echan->hw_triggered = true;
2115 	return dma_get_slave_channel(chan);
2116 }
2117 #else
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2118 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2119 						     bool legacy_mode)
2120 {
2121 	return ERR_PTR(-EINVAL);
2122 }
2123 
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2124 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2125 				      struct of_dma *ofdma)
2126 {
2127 	return NULL;
2128 }
2129 #endif
2130 
edma_probe(struct platform_device * pdev)2131 static int edma_probe(struct platform_device *pdev)
2132 {
2133 	struct edma_soc_info	*info = pdev->dev.platform_data;
2134 	s8			(*queue_priority_mapping)[2];
2135 	int			i, off, ln;
2136 	const s16		(*rsv_slots)[2];
2137 	const s16		(*xbar_chans)[2];
2138 	int			irq;
2139 	char			*irq_name;
2140 	struct resource		*mem;
2141 	struct device_node	*node = pdev->dev.of_node;
2142 	struct device		*dev = &pdev->dev;
2143 	struct edma_cc		*ecc;
2144 	bool			legacy_mode = true;
2145 	int ret;
2146 
2147 	if (node) {
2148 		const struct of_device_id *match;
2149 
2150 		match = of_match_node(edma_of_ids, node);
2151 		if (match && (u32)match->data == EDMA_BINDING_TPCC)
2152 			legacy_mode = false;
2153 
2154 		info = edma_setup_info_from_dt(dev, legacy_mode);
2155 		if (IS_ERR(info)) {
2156 			dev_err(dev, "failed to get DT data\n");
2157 			return PTR_ERR(info);
2158 		}
2159 	}
2160 
2161 	if (!info)
2162 		return -ENODEV;
2163 
2164 	pm_runtime_enable(dev);
2165 	ret = pm_runtime_get_sync(dev);
2166 	if (ret < 0) {
2167 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2168 		return ret;
2169 	}
2170 
2171 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2172 	if (ret)
2173 		return ret;
2174 
2175 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2176 	if (!ecc) {
2177 		dev_err(dev, "Can't allocate controller\n");
2178 		return -ENOMEM;
2179 	}
2180 
2181 	ecc->dev = dev;
2182 	ecc->id = pdev->id;
2183 	ecc->legacy_mode = legacy_mode;
2184 	/* When booting with DT the pdev->id is -1 */
2185 	if (ecc->id < 0)
2186 		ecc->id = 0;
2187 
2188 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2189 	if (!mem) {
2190 		dev_dbg(dev, "mem resource not found, using index 0\n");
2191 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2192 		if (!mem) {
2193 			dev_err(dev, "no mem resource?\n");
2194 			return -ENODEV;
2195 		}
2196 	}
2197 	ecc->base = devm_ioremap_resource(dev, mem);
2198 	if (IS_ERR(ecc->base))
2199 		return PTR_ERR(ecc->base);
2200 
2201 	platform_set_drvdata(pdev, ecc);
2202 
2203 	/* Get eDMA3 configuration from IP */
2204 	ret = edma_setup_from_hw(dev, info, ecc);
2205 	if (ret)
2206 		return ret;
2207 
2208 	/* Allocate memory based on the information we got from the IP */
2209 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2210 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2211 	if (!ecc->slave_chans)
2212 		return -ENOMEM;
2213 
2214 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2215 				       sizeof(unsigned long), GFP_KERNEL);
2216 	if (!ecc->slot_inuse)
2217 		return -ENOMEM;
2218 
2219 	ecc->default_queue = info->default_queue;
2220 
2221 	if (info->rsv) {
2222 		/* Set the reserved slots in inuse list */
2223 		rsv_slots = info->rsv->rsv_slots;
2224 		if (rsv_slots) {
2225 			for (i = 0; rsv_slots[i][0] != -1; i++) {
2226 				off = rsv_slots[i][0];
2227 				ln = rsv_slots[i][1];
2228 				set_bits(off, ln, ecc->slot_inuse);
2229 			}
2230 		}
2231 	}
2232 
2233 	for (i = 0; i < ecc->num_slots; i++) {
2234 		/* Reset only unused - not reserved - paRAM slots */
2235 		if (!test_bit(i, ecc->slot_inuse))
2236 			edma_write_slot(ecc, i, &dummy_paramset);
2237 	}
2238 
2239 	/* Clear the xbar mapped channels in unused list */
2240 	xbar_chans = info->xbar_chans;
2241 	if (xbar_chans) {
2242 		for (i = 0; xbar_chans[i][1] != -1; i++) {
2243 			off = xbar_chans[i][1];
2244 		}
2245 	}
2246 
2247 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2248 	if (irq < 0 && node)
2249 		irq = irq_of_parse_and_map(node, 0);
2250 
2251 	if (irq >= 0) {
2252 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2253 					  dev_name(dev));
2254 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2255 				       ecc);
2256 		if (ret) {
2257 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2258 			return ret;
2259 		}
2260 	}
2261 
2262 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2263 	if (irq < 0 && node)
2264 		irq = irq_of_parse_and_map(node, 2);
2265 
2266 	if (irq >= 0) {
2267 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2268 					  dev_name(dev));
2269 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2270 				       ecc);
2271 		if (ret) {
2272 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2273 			return ret;
2274 		}
2275 	}
2276 
2277 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2278 	if (ecc->dummy_slot < 0) {
2279 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2280 		return ecc->dummy_slot;
2281 	}
2282 
2283 	queue_priority_mapping = info->queue_priority_mapping;
2284 
2285 	if (!ecc->legacy_mode) {
2286 		int lowest_priority = 0;
2287 		struct of_phandle_args tc_args;
2288 
2289 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2290 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2291 		if (!ecc->tc_list) {
2292 			ret = -ENOMEM;
2293 			goto err_reg1;
2294 		}
2295 
2296 		for (i = 0;; i++) {
2297 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2298 							       1, i, &tc_args);
2299 			if (ret || i == ecc->num_tc)
2300 				break;
2301 
2302 			ecc->tc_list[i].node = tc_args.np;
2303 			ecc->tc_list[i].id = i;
2304 			queue_priority_mapping[i][1] = tc_args.args[0];
2305 			if (queue_priority_mapping[i][1] > lowest_priority) {
2306 				lowest_priority = queue_priority_mapping[i][1];
2307 				info->default_queue = i;
2308 			}
2309 		}
2310 	}
2311 
2312 	/* Event queue priority mapping */
2313 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2314 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2315 					      queue_priority_mapping[i][1]);
2316 
2317 	for (i = 0; i < ecc->num_region; i++) {
2318 		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2319 		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2320 		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2321 	}
2322 	ecc->info = info;
2323 
2324 	/* Init the dma device and channels */
2325 	edma_dma_init(ecc, legacy_mode);
2326 
2327 	for (i = 0; i < ecc->num_channels; i++) {
2328 		/* Assign all channels to the default queue */
2329 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2330 					   info->default_queue);
2331 		/* Set entry slot to the dummy slot */
2332 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2333 	}
2334 
2335 	ret = dma_async_device_register(&ecc->dma_slave);
2336 	if (ret) {
2337 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2338 		goto err_reg1;
2339 	}
2340 
2341 	if (ecc->dma_memcpy) {
2342 		ret = dma_async_device_register(ecc->dma_memcpy);
2343 		if (ret) {
2344 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2345 				ret);
2346 			dma_async_device_unregister(&ecc->dma_slave);
2347 			goto err_reg1;
2348 		}
2349 	}
2350 
2351 	if (node)
2352 		of_dma_controller_register(node, of_edma_xlate, ecc);
2353 
2354 	dev_info(dev, "TI EDMA DMA engine driver\n");
2355 
2356 	return 0;
2357 
2358 err_reg1:
2359 	edma_free_slot(ecc, ecc->dummy_slot);
2360 	return ret;
2361 }
2362 
edma_remove(struct platform_device * pdev)2363 static int edma_remove(struct platform_device *pdev)
2364 {
2365 	struct device *dev = &pdev->dev;
2366 	struct edma_cc *ecc = dev_get_drvdata(dev);
2367 
2368 	if (dev->of_node)
2369 		of_dma_controller_free(dev->of_node);
2370 	dma_async_device_unregister(&ecc->dma_slave);
2371 	if (ecc->dma_memcpy)
2372 		dma_async_device_unregister(ecc->dma_memcpy);
2373 	edma_free_slot(ecc, ecc->dummy_slot);
2374 
2375 	return 0;
2376 }
2377 
2378 #ifdef CONFIG_PM_SLEEP
edma_pm_suspend(struct device * dev)2379 static int edma_pm_suspend(struct device *dev)
2380 {
2381 	struct edma_cc *ecc = dev_get_drvdata(dev);
2382 	struct edma_chan *echan = ecc->slave_chans;
2383 	int i;
2384 
2385 	for (i = 0; i < ecc->num_channels; i++) {
2386 		if (echan[i].alloced) {
2387 			edma_setup_interrupt(&echan[i], false);
2388 			edma_tc_set_pm_state(echan[i].tc, false);
2389 		}
2390 	}
2391 
2392 	return 0;
2393 }
2394 
edma_pm_resume(struct device * dev)2395 static int edma_pm_resume(struct device *dev)
2396 {
2397 	struct edma_cc *ecc = dev_get_drvdata(dev);
2398 	struct edma_chan *echan = ecc->slave_chans;
2399 	int i;
2400 	s8 (*queue_priority_mapping)[2];
2401 
2402 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2403 
2404 	/* Event queue priority mapping */
2405 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2406 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2407 					      queue_priority_mapping[i][1]);
2408 
2409 	for (i = 0; i < ecc->num_channels; i++) {
2410 		if (echan[i].alloced) {
2411 			/* ensure access through shadow region 0 */
2412 			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2413 				       BIT(i & 0x1f));
2414 
2415 			edma_setup_interrupt(&echan[i], true);
2416 
2417 			/* Set up channel -> slot mapping for the entry slot */
2418 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2419 
2420 			edma_tc_set_pm_state(echan[i].tc, true);
2421 		}
2422 	}
2423 
2424 	return 0;
2425 }
2426 #endif
2427 
2428 static const struct dev_pm_ops edma_pm_ops = {
2429 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2430 };
2431 
2432 static struct platform_driver edma_driver = {
2433 	.probe		= edma_probe,
2434 	.remove		= edma_remove,
2435 	.driver = {
2436 		.name	= "edma",
2437 		.pm	= &edma_pm_ops,
2438 		.of_match_table = edma_of_ids,
2439 	},
2440 };
2441 
edma_tptc_probe(struct platform_device * pdev)2442 static int edma_tptc_probe(struct platform_device *pdev)
2443 {
2444 	return 0;
2445 }
2446 
2447 static struct platform_driver edma_tptc_driver = {
2448 	.probe		= edma_tptc_probe,
2449 	.driver = {
2450 		.name	= "edma3-tptc",
2451 		.of_match_table = edma_tptc_of_ids,
2452 	},
2453 };
2454 
edma_filter_fn(struct dma_chan * chan,void * param)2455 bool edma_filter_fn(struct dma_chan *chan, void *param)
2456 {
2457 	bool match = false;
2458 
2459 	if (chan->device->dev->driver == &edma_driver.driver) {
2460 		struct edma_chan *echan = to_edma_chan(chan);
2461 		unsigned ch_req = *(unsigned *)param;
2462 		if (ch_req == echan->ch_num) {
2463 			/* The channel is going to be used as HW synchronized */
2464 			echan->hw_triggered = true;
2465 			match = true;
2466 		}
2467 	}
2468 	return match;
2469 }
2470 EXPORT_SYMBOL(edma_filter_fn);
2471 
edma_init(void)2472 static int edma_init(void)
2473 {
2474 	int ret;
2475 
2476 	ret = platform_driver_register(&edma_tptc_driver);
2477 	if (ret)
2478 		return ret;
2479 
2480 	return platform_driver_register(&edma_driver);
2481 }
2482 subsys_initcall(edma_init);
2483 
edma_exit(void)2484 static void __exit edma_exit(void)
2485 {
2486 	platform_driver_unregister(&edma_driver);
2487 	platform_driver_unregister(&edma_tptc_driver);
2488 }
2489 module_exit(edma_exit);
2490 
2491 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2492 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2493 MODULE_LICENSE("GPL v2");
2494