1 /*
2 * TI EDMA DMA engine driver
3 *
4 * Copyright 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
48
49 #define PARM_SIZE 0x20
50
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
74
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
97
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
103
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
107
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
115
116 /*
117 * Max of 20 segments per channel to conserve PaRAM slots
118 * Also note that MAX_NR_SG should be atleast the no.of periods
119 * that are required for ASoC, otherwise DMA prep calls will
120 * fail. Today davinci-pcm is the only user of this driver and
121 * requires atleast 17 slots, so we setup the default to 20.
122 */
123 #define MAX_NR_SG 20
124 #define EDMA_MAX_SLOTS MAX_NR_SG
125 #define EDMA_DESCRIPTORS 16
126
127 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
128 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
129 #define EDMA_CONT_PARAMS_ANY 1001
130 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
131 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
132
133 /* PaRAM slots are laid out like this */
134 struct edmacc_param {
135 u32 opt;
136 u32 src;
137 u32 a_b_cnt;
138 u32 dst;
139 u32 src_dst_bidx;
140 u32 link_bcntrld;
141 u32 src_dst_cidx;
142 u32 ccnt;
143 } __packed;
144
145 /* fields in edmacc_param.opt */
146 #define SAM BIT(0)
147 #define DAM BIT(1)
148 #define SYNCDIM BIT(2)
149 #define STATIC BIT(3)
150 #define EDMA_FWID (0x07 << 8)
151 #define TCCMODE BIT(11)
152 #define EDMA_TCC(t) ((t) << 12)
153 #define TCINTEN BIT(20)
154 #define ITCINTEN BIT(21)
155 #define TCCHEN BIT(22)
156 #define ITCCHEN BIT(23)
157
158 struct edma_pset {
159 u32 len;
160 dma_addr_t addr;
161 struct edmacc_param param;
162 };
163
164 struct edma_desc {
165 struct virt_dma_desc vdesc;
166 struct list_head node;
167 enum dma_transfer_direction direction;
168 int cyclic;
169 int absync;
170 int pset_nr;
171 struct edma_chan *echan;
172 int processed;
173
174 /*
175 * The following 4 elements are used for residue accounting.
176 *
177 * - processed_stat: the number of SG elements we have traversed
178 * so far to cover accounting. This is updated directly to processed
179 * during edma_callback and is always <= processed, because processed
180 * refers to the number of pending transfer (programmed to EDMA
181 * controller), where as processed_stat tracks number of transfers
182 * accounted for so far.
183 *
184 * - residue: The amount of bytes we have left to transfer for this desc
185 *
186 * - residue_stat: The residue in bytes of data we have covered
187 * so far for accounting. This is updated directly to residue
188 * during callbacks to keep it current.
189 *
190 * - sg_len: Tracks the length of the current intermediate transfer,
191 * this is required to update the residue during intermediate transfer
192 * completion callback.
193 */
194 int processed_stat;
195 u32 sg_len;
196 u32 residue;
197 u32 residue_stat;
198
199 struct edma_pset pset[0];
200 };
201
202 struct edma_cc;
203
204 struct edma_tc {
205 struct device_node *node;
206 u16 id;
207 };
208
209 struct edma_chan {
210 struct virt_dma_chan vchan;
211 struct list_head node;
212 struct edma_desc *edesc;
213 struct edma_cc *ecc;
214 struct edma_tc *tc;
215 int ch_num;
216 bool alloced;
217 bool hw_triggered;
218 int slot[EDMA_MAX_SLOTS];
219 int missed;
220 struct dma_slave_config cfg;
221 };
222
223 struct edma_cc {
224 struct device *dev;
225 struct edma_soc_info *info;
226 void __iomem *base;
227 int id;
228 bool legacy_mode;
229
230 /* eDMA3 resource information */
231 unsigned num_channels;
232 unsigned num_qchannels;
233 unsigned num_region;
234 unsigned num_slots;
235 unsigned num_tc;
236 bool chmap_exist;
237 enum dma_event_q default_queue;
238
239 /*
240 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
241 * in use by Linux or if it is allocated to be used by DSP.
242 */
243 unsigned long *slot_inuse;
244
245 struct dma_device dma_slave;
246 struct dma_device *dma_memcpy;
247 struct edma_chan *slave_chans;
248 struct edma_tc *tc_list;
249 int dummy_slot;
250 };
251
252 /* dummy param set used to (re)initialize parameter RAM slots */
253 static const struct edmacc_param dummy_paramset = {
254 .link_bcntrld = 0xffff,
255 .ccnt = 1,
256 };
257
258 #define EDMA_BINDING_LEGACY 0
259 #define EDMA_BINDING_TPCC 1
260 static const struct of_device_id edma_of_ids[] = {
261 {
262 .compatible = "ti,edma3",
263 .data = (void *)EDMA_BINDING_LEGACY,
264 },
265 {
266 .compatible = "ti,edma3-tpcc",
267 .data = (void *)EDMA_BINDING_TPCC,
268 },
269 {}
270 };
271
272 static const struct of_device_id edma_tptc_of_ids[] = {
273 { .compatible = "ti,edma3-tptc", },
274 {}
275 };
276
edma_read(struct edma_cc * ecc,int offset)277 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
278 {
279 return (unsigned int)__raw_readl(ecc->base + offset);
280 }
281
edma_write(struct edma_cc * ecc,int offset,int val)282 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
283 {
284 __raw_writel(val, ecc->base + offset);
285 }
286
edma_modify(struct edma_cc * ecc,int offset,unsigned and,unsigned or)287 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
288 unsigned or)
289 {
290 unsigned val = edma_read(ecc, offset);
291
292 val &= and;
293 val |= or;
294 edma_write(ecc, offset, val);
295 }
296
edma_and(struct edma_cc * ecc,int offset,unsigned and)297 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
298 {
299 unsigned val = edma_read(ecc, offset);
300
301 val &= and;
302 edma_write(ecc, offset, val);
303 }
304
edma_or(struct edma_cc * ecc,int offset,unsigned or)305 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
306 {
307 unsigned val = edma_read(ecc, offset);
308
309 val |= or;
310 edma_write(ecc, offset, val);
311 }
312
edma_read_array(struct edma_cc * ecc,int offset,int i)313 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
314 int i)
315 {
316 return edma_read(ecc, offset + (i << 2));
317 }
318
edma_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)319 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
320 unsigned val)
321 {
322 edma_write(ecc, offset + (i << 2), val);
323 }
324
edma_modify_array(struct edma_cc * ecc,int offset,int i,unsigned and,unsigned or)325 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
326 unsigned and, unsigned or)
327 {
328 edma_modify(ecc, offset + (i << 2), and, or);
329 }
330
edma_or_array(struct edma_cc * ecc,int offset,int i,unsigned or)331 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
332 unsigned or)
333 {
334 edma_or(ecc, offset + (i << 2), or);
335 }
336
edma_or_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned or)337 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
338 unsigned or)
339 {
340 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
341 }
342
edma_write_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned val)343 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
344 int j, unsigned val)
345 {
346 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
347 }
348
edma_shadow0_read(struct edma_cc * ecc,int offset)349 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
350 {
351 return edma_read(ecc, EDMA_SHADOW0 + offset);
352 }
353
edma_shadow0_read_array(struct edma_cc * ecc,int offset,int i)354 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
355 int offset, int i)
356 {
357 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
358 }
359
edma_shadow0_write(struct edma_cc * ecc,int offset,unsigned val)360 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
361 unsigned val)
362 {
363 edma_write(ecc, EDMA_SHADOW0 + offset, val);
364 }
365
edma_shadow0_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)366 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
367 int i, unsigned val)
368 {
369 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
370 }
371
edma_param_read(struct edma_cc * ecc,int offset,int param_no)372 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
373 int param_no)
374 {
375 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
376 }
377
edma_param_write(struct edma_cc * ecc,int offset,int param_no,unsigned val)378 static inline void edma_param_write(struct edma_cc *ecc, int offset,
379 int param_no, unsigned val)
380 {
381 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
382 }
383
edma_param_modify(struct edma_cc * ecc,int offset,int param_no,unsigned and,unsigned or)384 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
385 int param_no, unsigned and, unsigned or)
386 {
387 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
388 }
389
edma_param_and(struct edma_cc * ecc,int offset,int param_no,unsigned and)390 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
391 unsigned and)
392 {
393 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
394 }
395
edma_param_or(struct edma_cc * ecc,int offset,int param_no,unsigned or)396 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
397 unsigned or)
398 {
399 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
400 }
401
set_bits(int offset,int len,unsigned long * p)402 static inline void set_bits(int offset, int len, unsigned long *p)
403 {
404 for (; len > 0; len--)
405 set_bit(offset + (len - 1), p);
406 }
407
clear_bits(int offset,int len,unsigned long * p)408 static inline void clear_bits(int offset, int len, unsigned long *p)
409 {
410 for (; len > 0; len--)
411 clear_bit(offset + (len - 1), p);
412 }
413
edma_assign_priority_to_queue(struct edma_cc * ecc,int queue_no,int priority)414 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
415 int priority)
416 {
417 int bit = queue_no * 4;
418
419 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
420 }
421
edma_set_chmap(struct edma_chan * echan,int slot)422 static void edma_set_chmap(struct edma_chan *echan, int slot)
423 {
424 struct edma_cc *ecc = echan->ecc;
425 int channel = EDMA_CHAN_SLOT(echan->ch_num);
426
427 if (ecc->chmap_exist) {
428 slot = EDMA_CHAN_SLOT(slot);
429 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
430 }
431 }
432
edma_setup_interrupt(struct edma_chan * echan,bool enable)433 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
434 {
435 struct edma_cc *ecc = echan->ecc;
436 int channel = EDMA_CHAN_SLOT(echan->ch_num);
437
438 if (enable) {
439 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
440 BIT(channel & 0x1f));
441 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
442 BIT(channel & 0x1f));
443 } else {
444 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
445 BIT(channel & 0x1f));
446 }
447 }
448
449 /*
450 * paRAM slot management functions
451 */
edma_write_slot(struct edma_cc * ecc,unsigned slot,const struct edmacc_param * param)452 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
453 const struct edmacc_param *param)
454 {
455 slot = EDMA_CHAN_SLOT(slot);
456 if (slot >= ecc->num_slots)
457 return;
458 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
459 }
460
edma_read_slot(struct edma_cc * ecc,unsigned slot,struct edmacc_param * param)461 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
462 struct edmacc_param *param)
463 {
464 slot = EDMA_CHAN_SLOT(slot);
465 if (slot >= ecc->num_slots)
466 return;
467 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
468 }
469
470 /**
471 * edma_alloc_slot - allocate DMA parameter RAM
472 * @ecc: pointer to edma_cc struct
473 * @slot: specific slot to allocate; negative for "any unused slot"
474 *
475 * This allocates a parameter RAM slot, initializing it to hold a
476 * dummy transfer. Slots allocated using this routine have not been
477 * mapped to a hardware DMA channel, and will normally be used by
478 * linking to them from a slot associated with a DMA channel.
479 *
480 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
481 * slots may be allocated on behalf of DSP firmware.
482 *
483 * Returns the number of the slot, else negative errno.
484 */
edma_alloc_slot(struct edma_cc * ecc,int slot)485 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
486 {
487 if (slot > 0) {
488 slot = EDMA_CHAN_SLOT(slot);
489 /* Requesting entry paRAM slot for a HW triggered channel. */
490 if (ecc->chmap_exist && slot < ecc->num_channels)
491 slot = EDMA_SLOT_ANY;
492 }
493
494 if (slot < 0) {
495 if (ecc->chmap_exist)
496 slot = 0;
497 else
498 slot = ecc->num_channels;
499 for (;;) {
500 slot = find_next_zero_bit(ecc->slot_inuse,
501 ecc->num_slots,
502 slot);
503 if (slot == ecc->num_slots)
504 return -ENOMEM;
505 if (!test_and_set_bit(slot, ecc->slot_inuse))
506 break;
507 }
508 } else if (slot >= ecc->num_slots) {
509 return -EINVAL;
510 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
511 return -EBUSY;
512 }
513
514 edma_write_slot(ecc, slot, &dummy_paramset);
515
516 return EDMA_CTLR_CHAN(ecc->id, slot);
517 }
518
edma_free_slot(struct edma_cc * ecc,unsigned slot)519 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
520 {
521 slot = EDMA_CHAN_SLOT(slot);
522 if (slot >= ecc->num_slots)
523 return;
524
525 edma_write_slot(ecc, slot, &dummy_paramset);
526 clear_bit(slot, ecc->slot_inuse);
527 }
528
529 /**
530 * edma_link - link one parameter RAM slot to another
531 * @ecc: pointer to edma_cc struct
532 * @from: parameter RAM slot originating the link
533 * @to: parameter RAM slot which is the link target
534 *
535 * The originating slot should not be part of any active DMA transfer.
536 */
edma_link(struct edma_cc * ecc,unsigned from,unsigned to)537 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
538 {
539 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
540 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
541
542 from = EDMA_CHAN_SLOT(from);
543 to = EDMA_CHAN_SLOT(to);
544 if (from >= ecc->num_slots || to >= ecc->num_slots)
545 return;
546
547 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
548 PARM_OFFSET(to));
549 }
550
551 /**
552 * edma_get_position - returns the current transfer point
553 * @ecc: pointer to edma_cc struct
554 * @slot: parameter RAM slot being examined
555 * @dst: true selects the dest position, false the source
556 *
557 * Returns the position of the current active slot
558 */
edma_get_position(struct edma_cc * ecc,unsigned slot,bool dst)559 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
560 bool dst)
561 {
562 u32 offs;
563
564 slot = EDMA_CHAN_SLOT(slot);
565 offs = PARM_OFFSET(slot);
566 offs += dst ? PARM_DST : PARM_SRC;
567
568 return edma_read(ecc, offs);
569 }
570
571 /*
572 * Channels with event associations will be triggered by their hardware
573 * events, and channels without such associations will be triggered by
574 * software. (At this writing there is no interface for using software
575 * triggers except with channels that don't support hardware triggers.)
576 */
edma_start(struct edma_chan * echan)577 static void edma_start(struct edma_chan *echan)
578 {
579 struct edma_cc *ecc = echan->ecc;
580 int channel = EDMA_CHAN_SLOT(echan->ch_num);
581 int j = (channel >> 5);
582 unsigned int mask = BIT(channel & 0x1f);
583
584 if (!echan->hw_triggered) {
585 /* EDMA channels without event association */
586 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
587 edma_shadow0_read_array(ecc, SH_ESR, j));
588 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
589 } else {
590 /* EDMA channel with event association */
591 dev_dbg(ecc->dev, "ER%d %08x\n", j,
592 edma_shadow0_read_array(ecc, SH_ER, j));
593 /* Clear any pending event or error */
594 edma_write_array(ecc, EDMA_ECR, j, mask);
595 edma_write_array(ecc, EDMA_EMCR, j, mask);
596 /* Clear any SER */
597 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
598 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
599 dev_dbg(ecc->dev, "EER%d %08x\n", j,
600 edma_shadow0_read_array(ecc, SH_EER, j));
601 }
602 }
603
edma_stop(struct edma_chan * echan)604 static void edma_stop(struct edma_chan *echan)
605 {
606 struct edma_cc *ecc = echan->ecc;
607 int channel = EDMA_CHAN_SLOT(echan->ch_num);
608 int j = (channel >> 5);
609 unsigned int mask = BIT(channel & 0x1f);
610
611 edma_shadow0_write_array(ecc, SH_EECR, j, mask);
612 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
613 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
614 edma_write_array(ecc, EDMA_EMCR, j, mask);
615
616 /* clear possibly pending completion interrupt */
617 edma_shadow0_write_array(ecc, SH_ICR, j, mask);
618
619 dev_dbg(ecc->dev, "EER%d %08x\n", j,
620 edma_shadow0_read_array(ecc, SH_EER, j));
621
622 /* REVISIT: consider guarding against inappropriate event
623 * chaining by overwriting with dummy_paramset.
624 */
625 }
626
627 /*
628 * Temporarily disable EDMA hardware events on the specified channel,
629 * preventing them from triggering new transfers
630 */
edma_pause(struct edma_chan * echan)631 static void edma_pause(struct edma_chan *echan)
632 {
633 int channel = EDMA_CHAN_SLOT(echan->ch_num);
634 unsigned int mask = BIT(channel & 0x1f);
635
636 edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
637 }
638
639 /* Re-enable EDMA hardware events on the specified channel. */
edma_resume(struct edma_chan * echan)640 static void edma_resume(struct edma_chan *echan)
641 {
642 int channel = EDMA_CHAN_SLOT(echan->ch_num);
643 unsigned int mask = BIT(channel & 0x1f);
644
645 edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
646 }
647
edma_trigger_channel(struct edma_chan * echan)648 static void edma_trigger_channel(struct edma_chan *echan)
649 {
650 struct edma_cc *ecc = echan->ecc;
651 int channel = EDMA_CHAN_SLOT(echan->ch_num);
652 unsigned int mask = BIT(channel & 0x1f);
653
654 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
655
656 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
657 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
658 }
659
edma_clean_channel(struct edma_chan * echan)660 static void edma_clean_channel(struct edma_chan *echan)
661 {
662 struct edma_cc *ecc = echan->ecc;
663 int channel = EDMA_CHAN_SLOT(echan->ch_num);
664 int j = (channel >> 5);
665 unsigned int mask = BIT(channel & 0x1f);
666
667 dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
668 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
669 /* Clear the corresponding EMR bits */
670 edma_write_array(ecc, EDMA_EMCR, j, mask);
671 /* Clear any SER */
672 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
673 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
674 }
675
676 /* Move channel to a specific event queue */
edma_assign_channel_eventq(struct edma_chan * echan,enum dma_event_q eventq_no)677 static void edma_assign_channel_eventq(struct edma_chan *echan,
678 enum dma_event_q eventq_no)
679 {
680 struct edma_cc *ecc = echan->ecc;
681 int channel = EDMA_CHAN_SLOT(echan->ch_num);
682 int bit = (channel & 0x7) * 4;
683
684 /* default to low priority queue */
685 if (eventq_no == EVENTQ_DEFAULT)
686 eventq_no = ecc->default_queue;
687 if (eventq_no >= ecc->num_tc)
688 return;
689
690 eventq_no &= 7;
691 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
692 eventq_no << bit);
693 }
694
edma_alloc_channel(struct edma_chan * echan,enum dma_event_q eventq_no)695 static int edma_alloc_channel(struct edma_chan *echan,
696 enum dma_event_q eventq_no)
697 {
698 struct edma_cc *ecc = echan->ecc;
699 int channel = EDMA_CHAN_SLOT(echan->ch_num);
700
701 /* ensure access through shadow region 0 */
702 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
703
704 /* ensure no events are pending */
705 edma_stop(echan);
706
707 edma_setup_interrupt(echan, true);
708
709 edma_assign_channel_eventq(echan, eventq_no);
710
711 return 0;
712 }
713
edma_free_channel(struct edma_chan * echan)714 static void edma_free_channel(struct edma_chan *echan)
715 {
716 /* ensure no events are pending */
717 edma_stop(echan);
718 /* REVISIT should probably take out of shadow region 0 */
719 edma_setup_interrupt(echan, false);
720 }
721
to_edma_cc(struct dma_device * d)722 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
723 {
724 return container_of(d, struct edma_cc, dma_slave);
725 }
726
to_edma_chan(struct dma_chan * c)727 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
728 {
729 return container_of(c, struct edma_chan, vchan.chan);
730 }
731
to_edma_desc(struct dma_async_tx_descriptor * tx)732 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
733 {
734 return container_of(tx, struct edma_desc, vdesc.tx);
735 }
736
edma_desc_free(struct virt_dma_desc * vdesc)737 static void edma_desc_free(struct virt_dma_desc *vdesc)
738 {
739 kfree(container_of(vdesc, struct edma_desc, vdesc));
740 }
741
742 /* Dispatch a queued descriptor to the controller (caller holds lock) */
edma_execute(struct edma_chan * echan)743 static void edma_execute(struct edma_chan *echan)
744 {
745 struct edma_cc *ecc = echan->ecc;
746 struct virt_dma_desc *vdesc;
747 struct edma_desc *edesc;
748 struct device *dev = echan->vchan.chan.device->dev;
749 int i, j, left, nslots;
750
751 if (!echan->edesc) {
752 /* Setup is needed for the first transfer */
753 vdesc = vchan_next_desc(&echan->vchan);
754 if (!vdesc)
755 return;
756 list_del(&vdesc->node);
757 echan->edesc = to_edma_desc(&vdesc->tx);
758 }
759
760 edesc = echan->edesc;
761
762 /* Find out how many left */
763 left = edesc->pset_nr - edesc->processed;
764 nslots = min(MAX_NR_SG, left);
765 edesc->sg_len = 0;
766
767 /* Write descriptor PaRAM set(s) */
768 for (i = 0; i < nslots; i++) {
769 j = i + edesc->processed;
770 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
771 edesc->sg_len += edesc->pset[j].len;
772 dev_vdbg(dev,
773 "\n pset[%d]:\n"
774 " chnum\t%d\n"
775 " slot\t%d\n"
776 " opt\t%08x\n"
777 " src\t%08x\n"
778 " dst\t%08x\n"
779 " abcnt\t%08x\n"
780 " ccnt\t%08x\n"
781 " bidx\t%08x\n"
782 " cidx\t%08x\n"
783 " lkrld\t%08x\n",
784 j, echan->ch_num, echan->slot[i],
785 edesc->pset[j].param.opt,
786 edesc->pset[j].param.src,
787 edesc->pset[j].param.dst,
788 edesc->pset[j].param.a_b_cnt,
789 edesc->pset[j].param.ccnt,
790 edesc->pset[j].param.src_dst_bidx,
791 edesc->pset[j].param.src_dst_cidx,
792 edesc->pset[j].param.link_bcntrld);
793 /* Link to the previous slot if not the last set */
794 if (i != (nslots - 1))
795 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
796 }
797
798 edesc->processed += nslots;
799
800 /*
801 * If this is either the last set in a set of SG-list transactions
802 * then setup a link to the dummy slot, this results in all future
803 * events being absorbed and that's OK because we're done
804 */
805 if (edesc->processed == edesc->pset_nr) {
806 if (edesc->cyclic)
807 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
808 else
809 edma_link(ecc, echan->slot[nslots - 1],
810 echan->ecc->dummy_slot);
811 }
812
813 if (echan->missed) {
814 /*
815 * This happens due to setup times between intermediate
816 * transfers in long SG lists which have to be broken up into
817 * transfers of MAX_NR_SG
818 */
819 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
820 edma_clean_channel(echan);
821 edma_stop(echan);
822 edma_start(echan);
823 edma_trigger_channel(echan);
824 echan->missed = 0;
825 } else if (edesc->processed <= MAX_NR_SG) {
826 dev_dbg(dev, "first transfer starting on channel %d\n",
827 echan->ch_num);
828 edma_start(echan);
829 } else {
830 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
831 echan->ch_num, edesc->processed);
832 edma_resume(echan);
833 }
834 }
835
edma_terminate_all(struct dma_chan * chan)836 static int edma_terminate_all(struct dma_chan *chan)
837 {
838 struct edma_chan *echan = to_edma_chan(chan);
839 unsigned long flags;
840 LIST_HEAD(head);
841
842 spin_lock_irqsave(&echan->vchan.lock, flags);
843
844 /*
845 * Stop DMA activity: we assume the callback will not be called
846 * after edma_dma() returns (even if it does, it will see
847 * echan->edesc is NULL and exit.)
848 */
849 if (echan->edesc) {
850 edma_stop(echan);
851 /* Move the cyclic channel back to default queue */
852 if (!echan->tc && echan->edesc->cyclic)
853 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
854 /*
855 * free the running request descriptor
856 * since it is not in any of the vdesc lists
857 */
858 edma_desc_free(&echan->edesc->vdesc);
859 echan->edesc = NULL;
860 }
861
862 vchan_get_all_descriptors(&echan->vchan, &head);
863 spin_unlock_irqrestore(&echan->vchan.lock, flags);
864 vchan_dma_desc_free_list(&echan->vchan, &head);
865
866 return 0;
867 }
868
edma_slave_config(struct dma_chan * chan,struct dma_slave_config * cfg)869 static int edma_slave_config(struct dma_chan *chan,
870 struct dma_slave_config *cfg)
871 {
872 struct edma_chan *echan = to_edma_chan(chan);
873
874 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
875 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
876 return -EINVAL;
877
878 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
879
880 return 0;
881 }
882
edma_dma_pause(struct dma_chan * chan)883 static int edma_dma_pause(struct dma_chan *chan)
884 {
885 struct edma_chan *echan = to_edma_chan(chan);
886
887 if (!echan->edesc)
888 return -EINVAL;
889
890 edma_pause(echan);
891 return 0;
892 }
893
edma_dma_resume(struct dma_chan * chan)894 static int edma_dma_resume(struct dma_chan *chan)
895 {
896 struct edma_chan *echan = to_edma_chan(chan);
897
898 edma_resume(echan);
899 return 0;
900 }
901
902 /*
903 * A PaRAM set configuration abstraction used by other modes
904 * @chan: Channel who's PaRAM set we're configuring
905 * @pset: PaRAM set to initialize and setup.
906 * @src_addr: Source address of the DMA
907 * @dst_addr: Destination address of the DMA
908 * @burst: In units of dev_width, how much to send
909 * @dev_width: How much is the dev_width
910 * @dma_length: Total length of the DMA transfer
911 * @direction: Direction of the transfer
912 */
edma_config_pset(struct dma_chan * chan,struct edma_pset * epset,dma_addr_t src_addr,dma_addr_t dst_addr,u32 burst,unsigned int acnt,unsigned int dma_length,enum dma_transfer_direction direction)913 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
914 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
915 unsigned int acnt, unsigned int dma_length,
916 enum dma_transfer_direction direction)
917 {
918 struct edma_chan *echan = to_edma_chan(chan);
919 struct device *dev = chan->device->dev;
920 struct edmacc_param *param = &epset->param;
921 int bcnt, ccnt, cidx;
922 int src_bidx, dst_bidx, src_cidx, dst_cidx;
923 int absync;
924
925 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
926 if (!burst)
927 burst = 1;
928 /*
929 * If the maxburst is equal to the fifo width, use
930 * A-synced transfers. This allows for large contiguous
931 * buffer transfers using only one PaRAM set.
932 */
933 if (burst == 1) {
934 /*
935 * For the A-sync case, bcnt and ccnt are the remainder
936 * and quotient respectively of the division of:
937 * (dma_length / acnt) by (SZ_64K -1). This is so
938 * that in case bcnt over flows, we have ccnt to use.
939 * Note: In A-sync tranfer only, bcntrld is used, but it
940 * only applies for sg_dma_len(sg) >= SZ_64K.
941 * In this case, the best way adopted is- bccnt for the
942 * first frame will be the remainder below. Then for
943 * every successive frame, bcnt will be SZ_64K-1. This
944 * is assured as bcntrld = 0xffff in end of function.
945 */
946 absync = false;
947 ccnt = dma_length / acnt / (SZ_64K - 1);
948 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
949 /*
950 * If bcnt is non-zero, we have a remainder and hence an
951 * extra frame to transfer, so increment ccnt.
952 */
953 if (bcnt)
954 ccnt++;
955 else
956 bcnt = SZ_64K - 1;
957 cidx = acnt;
958 } else {
959 /*
960 * If maxburst is greater than the fifo address_width,
961 * use AB-synced transfers where A count is the fifo
962 * address_width and B count is the maxburst. In this
963 * case, we are limited to transfers of C count frames
964 * of (address_width * maxburst) where C count is limited
965 * to SZ_64K-1. This places an upper bound on the length
966 * of an SG segment that can be handled.
967 */
968 absync = true;
969 bcnt = burst;
970 ccnt = dma_length / (acnt * bcnt);
971 if (ccnt > (SZ_64K - 1)) {
972 dev_err(dev, "Exceeded max SG segment size\n");
973 return -EINVAL;
974 }
975 cidx = acnt * bcnt;
976 }
977
978 epset->len = dma_length;
979
980 if (direction == DMA_MEM_TO_DEV) {
981 src_bidx = acnt;
982 src_cidx = cidx;
983 dst_bidx = 0;
984 dst_cidx = 0;
985 epset->addr = src_addr;
986 } else if (direction == DMA_DEV_TO_MEM) {
987 src_bidx = 0;
988 src_cidx = 0;
989 dst_bidx = acnt;
990 dst_cidx = cidx;
991 epset->addr = dst_addr;
992 } else if (direction == DMA_MEM_TO_MEM) {
993 src_bidx = acnt;
994 src_cidx = cidx;
995 dst_bidx = acnt;
996 dst_cidx = cidx;
997 } else {
998 dev_err(dev, "%s: direction not implemented yet\n", __func__);
999 return -EINVAL;
1000 }
1001
1002 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1003 /* Configure A or AB synchronized transfers */
1004 if (absync)
1005 param->opt |= SYNCDIM;
1006
1007 param->src = src_addr;
1008 param->dst = dst_addr;
1009
1010 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1011 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1012
1013 param->a_b_cnt = bcnt << 16 | acnt;
1014 param->ccnt = ccnt;
1015 /*
1016 * Only time when (bcntrld) auto reload is required is for
1017 * A-sync case, and in this case, a requirement of reload value
1018 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1019 * and then later will be populated by edma_execute.
1020 */
1021 param->link_bcntrld = 0xffffffff;
1022 return absync;
1023 }
1024
edma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long tx_flags,void * context)1025 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1026 struct dma_chan *chan, struct scatterlist *sgl,
1027 unsigned int sg_len, enum dma_transfer_direction direction,
1028 unsigned long tx_flags, void *context)
1029 {
1030 struct edma_chan *echan = to_edma_chan(chan);
1031 struct device *dev = chan->device->dev;
1032 struct edma_desc *edesc;
1033 dma_addr_t src_addr = 0, dst_addr = 0;
1034 enum dma_slave_buswidth dev_width;
1035 u32 burst;
1036 struct scatterlist *sg;
1037 int i, nslots, ret;
1038
1039 if (unlikely(!echan || !sgl || !sg_len))
1040 return NULL;
1041
1042 if (direction == DMA_DEV_TO_MEM) {
1043 src_addr = echan->cfg.src_addr;
1044 dev_width = echan->cfg.src_addr_width;
1045 burst = echan->cfg.src_maxburst;
1046 } else if (direction == DMA_MEM_TO_DEV) {
1047 dst_addr = echan->cfg.dst_addr;
1048 dev_width = echan->cfg.dst_addr_width;
1049 burst = echan->cfg.dst_maxburst;
1050 } else {
1051 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1052 return NULL;
1053 }
1054
1055 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1056 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1057 return NULL;
1058 }
1059
1060 edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1061 GFP_ATOMIC);
1062 if (!edesc) {
1063 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1064 return NULL;
1065 }
1066
1067 edesc->pset_nr = sg_len;
1068 edesc->residue = 0;
1069 edesc->direction = direction;
1070 edesc->echan = echan;
1071
1072 /* Allocate a PaRAM slot, if needed */
1073 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1074
1075 for (i = 0; i < nslots; i++) {
1076 if (echan->slot[i] < 0) {
1077 echan->slot[i] =
1078 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1079 if (echan->slot[i] < 0) {
1080 kfree(edesc);
1081 dev_err(dev, "%s: Failed to allocate slot\n",
1082 __func__);
1083 return NULL;
1084 }
1085 }
1086 }
1087
1088 /* Configure PaRAM sets for each SG */
1089 for_each_sg(sgl, sg, sg_len, i) {
1090 /* Get address for each SG */
1091 if (direction == DMA_DEV_TO_MEM)
1092 dst_addr = sg_dma_address(sg);
1093 else
1094 src_addr = sg_dma_address(sg);
1095
1096 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1097 dst_addr, burst, dev_width,
1098 sg_dma_len(sg), direction);
1099 if (ret < 0) {
1100 kfree(edesc);
1101 return NULL;
1102 }
1103
1104 edesc->absync = ret;
1105 edesc->residue += sg_dma_len(sg);
1106
1107 /* If this is the last in a current SG set of transactions,
1108 enable interrupts so that next set is processed */
1109 if (!((i+1) % MAX_NR_SG))
1110 edesc->pset[i].param.opt |= TCINTEN;
1111
1112 /* If this is the last set, enable completion interrupt flag */
1113 if (i == sg_len - 1)
1114 edesc->pset[i].param.opt |= TCINTEN;
1115 }
1116 edesc->residue_stat = edesc->residue;
1117
1118 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1119 }
1120
edma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long tx_flags)1121 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1122 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1123 size_t len, unsigned long tx_flags)
1124 {
1125 int ret, nslots;
1126 struct edma_desc *edesc;
1127 struct device *dev = chan->device->dev;
1128 struct edma_chan *echan = to_edma_chan(chan);
1129 unsigned int width, pset_len, array_size;
1130
1131 if (unlikely(!echan || !len))
1132 return NULL;
1133
1134 /* Align the array size (acnt block) with the transfer properties */
1135 switch (__ffs((src | dest | len))) {
1136 case 0:
1137 array_size = SZ_32K - 1;
1138 break;
1139 case 1:
1140 array_size = SZ_32K - 2;
1141 break;
1142 default:
1143 array_size = SZ_32K - 4;
1144 break;
1145 }
1146
1147 if (len < SZ_64K) {
1148 /*
1149 * Transfer size less than 64K can be handled with one paRAM
1150 * slot and with one burst.
1151 * ACNT = length
1152 */
1153 width = len;
1154 pset_len = len;
1155 nslots = 1;
1156 } else {
1157 /*
1158 * Transfer size bigger than 64K will be handled with maximum of
1159 * two paRAM slots.
1160 * slot1: (full_length / 32767) times 32767 bytes bursts.
1161 * ACNT = 32767, length1: (full_length / 32767) * 32767
1162 * slot2: the remaining amount of data after slot1.
1163 * ACNT = full_length - length1, length2 = ACNT
1164 *
1165 * When the full_length is multibple of 32767 one slot can be
1166 * used to complete the transfer.
1167 */
1168 width = array_size;
1169 pset_len = rounddown(len, width);
1170 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1171 if (unlikely(pset_len == len))
1172 nslots = 1;
1173 else
1174 nslots = 2;
1175 }
1176
1177 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1178 GFP_ATOMIC);
1179 if (!edesc) {
1180 dev_dbg(dev, "Failed to allocate a descriptor\n");
1181 return NULL;
1182 }
1183
1184 edesc->pset_nr = nslots;
1185 edesc->residue = edesc->residue_stat = len;
1186 edesc->direction = DMA_MEM_TO_MEM;
1187 edesc->echan = echan;
1188
1189 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1190 width, pset_len, DMA_MEM_TO_MEM);
1191 if (ret < 0) {
1192 kfree(edesc);
1193 return NULL;
1194 }
1195
1196 edesc->absync = ret;
1197
1198 edesc->pset[0].param.opt |= ITCCHEN;
1199 if (nslots == 1) {
1200 /* Enable transfer complete interrupt */
1201 edesc->pset[0].param.opt |= TCINTEN;
1202 } else {
1203 /* Enable transfer complete chaining for the first slot */
1204 edesc->pset[0].param.opt |= TCCHEN;
1205
1206 if (echan->slot[1] < 0) {
1207 echan->slot[1] = edma_alloc_slot(echan->ecc,
1208 EDMA_SLOT_ANY);
1209 if (echan->slot[1] < 0) {
1210 kfree(edesc);
1211 dev_err(dev, "%s: Failed to allocate slot\n",
1212 __func__);
1213 return NULL;
1214 }
1215 }
1216 dest += pset_len;
1217 src += pset_len;
1218 pset_len = width = len % array_size;
1219
1220 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1221 width, pset_len, DMA_MEM_TO_MEM);
1222 if (ret < 0) {
1223 kfree(edesc);
1224 return NULL;
1225 }
1226
1227 edesc->pset[1].param.opt |= ITCCHEN;
1228 edesc->pset[1].param.opt |= TCINTEN;
1229 }
1230
1231 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1232 }
1233
edma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long tx_flags)1234 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1235 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1236 size_t period_len, enum dma_transfer_direction direction,
1237 unsigned long tx_flags)
1238 {
1239 struct edma_chan *echan = to_edma_chan(chan);
1240 struct device *dev = chan->device->dev;
1241 struct edma_desc *edesc;
1242 dma_addr_t src_addr, dst_addr;
1243 enum dma_slave_buswidth dev_width;
1244 u32 burst;
1245 int i, ret, nslots;
1246
1247 if (unlikely(!echan || !buf_len || !period_len))
1248 return NULL;
1249
1250 if (direction == DMA_DEV_TO_MEM) {
1251 src_addr = echan->cfg.src_addr;
1252 dst_addr = buf_addr;
1253 dev_width = echan->cfg.src_addr_width;
1254 burst = echan->cfg.src_maxburst;
1255 } else if (direction == DMA_MEM_TO_DEV) {
1256 src_addr = buf_addr;
1257 dst_addr = echan->cfg.dst_addr;
1258 dev_width = echan->cfg.dst_addr_width;
1259 burst = echan->cfg.dst_maxburst;
1260 } else {
1261 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1262 return NULL;
1263 }
1264
1265 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1266 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1267 return NULL;
1268 }
1269
1270 if (unlikely(buf_len % period_len)) {
1271 dev_err(dev, "Period should be multiple of Buffer length\n");
1272 return NULL;
1273 }
1274
1275 nslots = (buf_len / period_len) + 1;
1276
1277 /*
1278 * Cyclic DMA users such as audio cannot tolerate delays introduced
1279 * by cases where the number of periods is more than the maximum
1280 * number of SGs the EDMA driver can handle at a time. For DMA types
1281 * such as Slave SGs, such delays are tolerable and synchronized,
1282 * but the synchronization is difficult to achieve with Cyclic and
1283 * cannot be guaranteed, so we error out early.
1284 */
1285 if (nslots > MAX_NR_SG)
1286 return NULL;
1287
1288 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1289 GFP_ATOMIC);
1290 if (!edesc) {
1291 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1292 return NULL;
1293 }
1294
1295 edesc->cyclic = 1;
1296 edesc->pset_nr = nslots;
1297 edesc->residue = edesc->residue_stat = buf_len;
1298 edesc->direction = direction;
1299 edesc->echan = echan;
1300
1301 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1302 __func__, echan->ch_num, nslots, period_len, buf_len);
1303
1304 for (i = 0; i < nslots; i++) {
1305 /* Allocate a PaRAM slot, if needed */
1306 if (echan->slot[i] < 0) {
1307 echan->slot[i] =
1308 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1309 if (echan->slot[i] < 0) {
1310 kfree(edesc);
1311 dev_err(dev, "%s: Failed to allocate slot\n",
1312 __func__);
1313 return NULL;
1314 }
1315 }
1316
1317 if (i == nslots - 1) {
1318 memcpy(&edesc->pset[i], &edesc->pset[0],
1319 sizeof(edesc->pset[0]));
1320 break;
1321 }
1322
1323 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1324 dst_addr, burst, dev_width, period_len,
1325 direction);
1326 if (ret < 0) {
1327 kfree(edesc);
1328 return NULL;
1329 }
1330
1331 if (direction == DMA_DEV_TO_MEM)
1332 dst_addr += period_len;
1333 else
1334 src_addr += period_len;
1335
1336 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1337 dev_vdbg(dev,
1338 "\n pset[%d]:\n"
1339 " chnum\t%d\n"
1340 " slot\t%d\n"
1341 " opt\t%08x\n"
1342 " src\t%08x\n"
1343 " dst\t%08x\n"
1344 " abcnt\t%08x\n"
1345 " ccnt\t%08x\n"
1346 " bidx\t%08x\n"
1347 " cidx\t%08x\n"
1348 " lkrld\t%08x\n",
1349 i, echan->ch_num, echan->slot[i],
1350 edesc->pset[i].param.opt,
1351 edesc->pset[i].param.src,
1352 edesc->pset[i].param.dst,
1353 edesc->pset[i].param.a_b_cnt,
1354 edesc->pset[i].param.ccnt,
1355 edesc->pset[i].param.src_dst_bidx,
1356 edesc->pset[i].param.src_dst_cidx,
1357 edesc->pset[i].param.link_bcntrld);
1358
1359 edesc->absync = ret;
1360
1361 /*
1362 * Enable period interrupt only if it is requested
1363 */
1364 if (tx_flags & DMA_PREP_INTERRUPT)
1365 edesc->pset[i].param.opt |= TCINTEN;
1366 }
1367
1368 /* Place the cyclic channel to highest priority queue */
1369 if (!echan->tc)
1370 edma_assign_channel_eventq(echan, EVENTQ_0);
1371
1372 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1373 }
1374
edma_completion_handler(struct edma_chan * echan)1375 static void edma_completion_handler(struct edma_chan *echan)
1376 {
1377 struct device *dev = echan->vchan.chan.device->dev;
1378 struct edma_desc *edesc = echan->edesc;
1379
1380 if (!edesc)
1381 return;
1382
1383 spin_lock(&echan->vchan.lock);
1384 if (edesc->cyclic) {
1385 vchan_cyclic_callback(&edesc->vdesc);
1386 spin_unlock(&echan->vchan.lock);
1387 return;
1388 } else if (edesc->processed == edesc->pset_nr) {
1389 edesc->residue = 0;
1390 edma_stop(echan);
1391 vchan_cookie_complete(&edesc->vdesc);
1392 echan->edesc = NULL;
1393
1394 dev_dbg(dev, "Transfer completed on channel %d\n",
1395 echan->ch_num);
1396 } else {
1397 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1398 echan->ch_num);
1399
1400 edma_pause(echan);
1401
1402 /* Update statistics for tx_status */
1403 edesc->residue -= edesc->sg_len;
1404 edesc->residue_stat = edesc->residue;
1405 edesc->processed_stat = edesc->processed;
1406 }
1407 edma_execute(echan);
1408
1409 spin_unlock(&echan->vchan.lock);
1410 }
1411
1412 /* eDMA interrupt handler */
dma_irq_handler(int irq,void * data)1413 static irqreturn_t dma_irq_handler(int irq, void *data)
1414 {
1415 struct edma_cc *ecc = data;
1416 int ctlr;
1417 u32 sh_ier;
1418 u32 sh_ipr;
1419 u32 bank;
1420
1421 ctlr = ecc->id;
1422 if (ctlr < 0)
1423 return IRQ_NONE;
1424
1425 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1426
1427 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1428 if (!sh_ipr) {
1429 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1430 if (!sh_ipr)
1431 return IRQ_NONE;
1432 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1433 bank = 1;
1434 } else {
1435 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1436 bank = 0;
1437 }
1438
1439 do {
1440 u32 slot;
1441 u32 channel;
1442
1443 slot = __ffs(sh_ipr);
1444 sh_ipr &= ~(BIT(slot));
1445
1446 if (sh_ier & BIT(slot)) {
1447 channel = (bank << 5) | slot;
1448 /* Clear the corresponding IPR bits */
1449 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1450 edma_completion_handler(&ecc->slave_chans[channel]);
1451 }
1452 } while (sh_ipr);
1453
1454 edma_shadow0_write(ecc, SH_IEVAL, 1);
1455 return IRQ_HANDLED;
1456 }
1457
edma_error_handler(struct edma_chan * echan)1458 static void edma_error_handler(struct edma_chan *echan)
1459 {
1460 struct edma_cc *ecc = echan->ecc;
1461 struct device *dev = echan->vchan.chan.device->dev;
1462 struct edmacc_param p;
1463
1464 if (!echan->edesc)
1465 return;
1466
1467 spin_lock(&echan->vchan.lock);
1468
1469 edma_read_slot(ecc, echan->slot[0], &p);
1470 /*
1471 * Issue later based on missed flag which will be sure
1472 * to happen as:
1473 * (1) we finished transmitting an intermediate slot and
1474 * edma_execute is coming up.
1475 * (2) or we finished current transfer and issue will
1476 * call edma_execute.
1477 *
1478 * Important note: issuing can be dangerous here and
1479 * lead to some nasty recursion when we are in a NULL
1480 * slot. So we avoid doing so and set the missed flag.
1481 */
1482 if (p.a_b_cnt == 0 && p.ccnt == 0) {
1483 dev_dbg(dev, "Error on null slot, setting miss\n");
1484 echan->missed = 1;
1485 } else {
1486 /*
1487 * The slot is already programmed but the event got
1488 * missed, so its safe to issue it here.
1489 */
1490 dev_dbg(dev, "Missed event, TRIGGERING\n");
1491 edma_clean_channel(echan);
1492 edma_stop(echan);
1493 edma_start(echan);
1494 edma_trigger_channel(echan);
1495 }
1496 spin_unlock(&echan->vchan.lock);
1497 }
1498
edma_error_pending(struct edma_cc * ecc)1499 static inline bool edma_error_pending(struct edma_cc *ecc)
1500 {
1501 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1502 edma_read_array(ecc, EDMA_EMR, 1) ||
1503 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1504 return true;
1505
1506 return false;
1507 }
1508
1509 /* eDMA error interrupt handler */
dma_ccerr_handler(int irq,void * data)1510 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1511 {
1512 struct edma_cc *ecc = data;
1513 int i, j;
1514 int ctlr;
1515 unsigned int cnt = 0;
1516 unsigned int val;
1517
1518 ctlr = ecc->id;
1519 if (ctlr < 0)
1520 return IRQ_NONE;
1521
1522 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1523
1524 if (!edma_error_pending(ecc))
1525 return IRQ_NONE;
1526
1527 while (1) {
1528 /* Event missed register(s) */
1529 for (j = 0; j < 2; j++) {
1530 unsigned long emr;
1531
1532 val = edma_read_array(ecc, EDMA_EMR, j);
1533 if (!val)
1534 continue;
1535
1536 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1537 emr = val;
1538 for (i = find_next_bit(&emr, 32, 0); i < 32;
1539 i = find_next_bit(&emr, 32, i + 1)) {
1540 int k = (j << 5) + i;
1541
1542 /* Clear the corresponding EMR bits */
1543 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1544 /* Clear any SER */
1545 edma_shadow0_write_array(ecc, SH_SECR, j,
1546 BIT(i));
1547 edma_error_handler(&ecc->slave_chans[k]);
1548 }
1549 }
1550
1551 val = edma_read(ecc, EDMA_QEMR);
1552 if (val) {
1553 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1554 /* Not reported, just clear the interrupt reason. */
1555 edma_write(ecc, EDMA_QEMCR, val);
1556 edma_shadow0_write(ecc, SH_QSECR, val);
1557 }
1558
1559 val = edma_read(ecc, EDMA_CCERR);
1560 if (val) {
1561 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1562 /* Not reported, just clear the interrupt reason. */
1563 edma_write(ecc, EDMA_CCERRCLR, val);
1564 }
1565
1566 if (!edma_error_pending(ecc))
1567 break;
1568 cnt++;
1569 if (cnt > 10)
1570 break;
1571 }
1572 edma_write(ecc, EDMA_EEVAL, 1);
1573 return IRQ_HANDLED;
1574 }
1575
edma_tc_set_pm_state(struct edma_tc * tc,bool enable)1576 static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
1577 {
1578 struct platform_device *tc_pdev;
1579 int ret;
1580
1581 if (!IS_ENABLED(CONFIG_OF) || !tc)
1582 return;
1583
1584 tc_pdev = of_find_device_by_node(tc->node);
1585 if (!tc_pdev) {
1586 pr_err("%s: TPTC device is not found\n", __func__);
1587 return;
1588 }
1589 if (!pm_runtime_enabled(&tc_pdev->dev))
1590 pm_runtime_enable(&tc_pdev->dev);
1591
1592 if (enable)
1593 ret = pm_runtime_get_sync(&tc_pdev->dev);
1594 else
1595 ret = pm_runtime_put_sync(&tc_pdev->dev);
1596
1597 if (ret < 0)
1598 pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
1599 enable ? "get" : "put", dev_name(&tc_pdev->dev));
1600 }
1601
1602 /* Alloc channel resources */
edma_alloc_chan_resources(struct dma_chan * chan)1603 static int edma_alloc_chan_resources(struct dma_chan *chan)
1604 {
1605 struct edma_chan *echan = to_edma_chan(chan);
1606 struct edma_cc *ecc = echan->ecc;
1607 struct device *dev = ecc->dev;
1608 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1609 int ret;
1610
1611 if (echan->tc) {
1612 eventq_no = echan->tc->id;
1613 } else if (ecc->tc_list) {
1614 /* memcpy channel */
1615 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1616 eventq_no = echan->tc->id;
1617 }
1618
1619 ret = edma_alloc_channel(echan, eventq_no);
1620 if (ret)
1621 return ret;
1622
1623 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1624 if (echan->slot[0] < 0) {
1625 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1626 EDMA_CHAN_SLOT(echan->ch_num));
1627 goto err_slot;
1628 }
1629
1630 /* Set up channel -> slot mapping for the entry slot */
1631 edma_set_chmap(echan, echan->slot[0]);
1632 echan->alloced = true;
1633
1634 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1635 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1636 echan->hw_triggered ? "HW" : "SW");
1637
1638 edma_tc_set_pm_state(echan->tc, true);
1639
1640 return 0;
1641
1642 err_slot:
1643 edma_free_channel(echan);
1644 return ret;
1645 }
1646
1647 /* Free channel resources */
edma_free_chan_resources(struct dma_chan * chan)1648 static void edma_free_chan_resources(struct dma_chan *chan)
1649 {
1650 struct edma_chan *echan = to_edma_chan(chan);
1651 struct device *dev = echan->ecc->dev;
1652 int i;
1653
1654 /* Terminate transfers */
1655 edma_stop(echan);
1656
1657 vchan_free_chan_resources(&echan->vchan);
1658
1659 /* Free EDMA PaRAM slots */
1660 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1661 if (echan->slot[i] >= 0) {
1662 edma_free_slot(echan->ecc, echan->slot[i]);
1663 echan->slot[i] = -1;
1664 }
1665 }
1666
1667 /* Set entry slot to the dummy slot */
1668 edma_set_chmap(echan, echan->ecc->dummy_slot);
1669
1670 /* Free EDMA channel */
1671 if (echan->alloced) {
1672 edma_free_channel(echan);
1673 echan->alloced = false;
1674 }
1675
1676 edma_tc_set_pm_state(echan->tc, false);
1677 echan->tc = NULL;
1678 echan->hw_triggered = false;
1679
1680 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1681 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1682 }
1683
1684 /* Send pending descriptor to hardware */
edma_issue_pending(struct dma_chan * chan)1685 static void edma_issue_pending(struct dma_chan *chan)
1686 {
1687 struct edma_chan *echan = to_edma_chan(chan);
1688 unsigned long flags;
1689
1690 spin_lock_irqsave(&echan->vchan.lock, flags);
1691 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1692 edma_execute(echan);
1693 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1694 }
1695
edma_residue(struct edma_desc * edesc)1696 static u32 edma_residue(struct edma_desc *edesc)
1697 {
1698 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1699 struct edma_pset *pset = edesc->pset;
1700 dma_addr_t done, pos;
1701 int i;
1702
1703 /*
1704 * We always read the dst/src position from the first RamPar
1705 * pset. That's the one which is active now.
1706 */
1707 pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1708
1709 /*
1710 * Cyclic is simple. Just subtract pset[0].addr from pos.
1711 *
1712 * We never update edesc->residue in the cyclic case, so we
1713 * can tell the remaining room to the end of the circular
1714 * buffer.
1715 */
1716 if (edesc->cyclic) {
1717 done = pos - pset->addr;
1718 edesc->residue_stat = edesc->residue - done;
1719 return edesc->residue_stat;
1720 }
1721
1722 /*
1723 * For SG operation we catch up with the last processed
1724 * status.
1725 */
1726 pset += edesc->processed_stat;
1727
1728 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1729 /*
1730 * If we are inside this pset address range, we know
1731 * this is the active one. Get the current delta and
1732 * stop walking the psets.
1733 */
1734 if (pos >= pset->addr && pos < pset->addr + pset->len)
1735 return edesc->residue_stat - (pos - pset->addr);
1736
1737 /* Otherwise mark it done and update residue_stat. */
1738 edesc->processed_stat++;
1739 edesc->residue_stat -= pset->len;
1740 }
1741 return edesc->residue_stat;
1742 }
1743
1744 /* Check request completion status */
edma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1745 static enum dma_status edma_tx_status(struct dma_chan *chan,
1746 dma_cookie_t cookie,
1747 struct dma_tx_state *txstate)
1748 {
1749 struct edma_chan *echan = to_edma_chan(chan);
1750 struct virt_dma_desc *vdesc;
1751 enum dma_status ret;
1752 unsigned long flags;
1753
1754 ret = dma_cookie_status(chan, cookie, txstate);
1755 if (ret == DMA_COMPLETE || !txstate)
1756 return ret;
1757
1758 spin_lock_irqsave(&echan->vchan.lock, flags);
1759 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1760 txstate->residue = edma_residue(echan->edesc);
1761 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1762 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1763 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1764
1765 return ret;
1766 }
1767
edma_is_memcpy_channel(int ch_num,s32 * memcpy_channels)1768 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1769 {
1770 if (!memcpy_channels)
1771 return false;
1772 while (*memcpy_channels != -1) {
1773 if (*memcpy_channels == ch_num)
1774 return true;
1775 memcpy_channels++;
1776 }
1777 return false;
1778 }
1779
1780 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1781 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1782 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1783 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1784
edma_dma_init(struct edma_cc * ecc,bool legacy_mode)1785 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1786 {
1787 struct dma_device *s_ddev = &ecc->dma_slave;
1788 struct dma_device *m_ddev = NULL;
1789 s32 *memcpy_channels = ecc->info->memcpy_channels;
1790 int i, j;
1791
1792 dma_cap_zero(s_ddev->cap_mask);
1793 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1794 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1795 if (ecc->legacy_mode && !memcpy_channels) {
1796 dev_warn(ecc->dev,
1797 "Legacy memcpy is enabled, things might not work\n");
1798
1799 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1800 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1801 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1802 }
1803
1804 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1805 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1806 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1807 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1808 s_ddev->device_issue_pending = edma_issue_pending;
1809 s_ddev->device_tx_status = edma_tx_status;
1810 s_ddev->device_config = edma_slave_config;
1811 s_ddev->device_pause = edma_dma_pause;
1812 s_ddev->device_resume = edma_dma_resume;
1813 s_ddev->device_terminate_all = edma_terminate_all;
1814
1815 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1816 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1817 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1818 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1819
1820 s_ddev->dev = ecc->dev;
1821 INIT_LIST_HEAD(&s_ddev->channels);
1822
1823 if (memcpy_channels) {
1824 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1825 ecc->dma_memcpy = m_ddev;
1826
1827 dma_cap_zero(m_ddev->cap_mask);
1828 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1829
1830 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1831 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1832 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1833 m_ddev->device_issue_pending = edma_issue_pending;
1834 m_ddev->device_tx_status = edma_tx_status;
1835 m_ddev->device_config = edma_slave_config;
1836 m_ddev->device_pause = edma_dma_pause;
1837 m_ddev->device_resume = edma_dma_resume;
1838 m_ddev->device_terminate_all = edma_terminate_all;
1839
1840 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1841 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1842 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1843 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1844
1845 m_ddev->dev = ecc->dev;
1846 INIT_LIST_HEAD(&m_ddev->channels);
1847 } else if (!ecc->legacy_mode) {
1848 dev_info(ecc->dev, "memcpy is disabled\n");
1849 }
1850
1851 for (i = 0; i < ecc->num_channels; i++) {
1852 struct edma_chan *echan = &ecc->slave_chans[i];
1853 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1854 echan->ecc = ecc;
1855 echan->vchan.desc_free = edma_desc_free;
1856
1857 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1858 vchan_init(&echan->vchan, m_ddev);
1859 else
1860 vchan_init(&echan->vchan, s_ddev);
1861
1862 INIT_LIST_HEAD(&echan->node);
1863 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1864 echan->slot[j] = -1;
1865 }
1866 }
1867
edma_setup_from_hw(struct device * dev,struct edma_soc_info * pdata,struct edma_cc * ecc)1868 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1869 struct edma_cc *ecc)
1870 {
1871 int i;
1872 u32 value, cccfg;
1873 s8 (*queue_priority_map)[2];
1874
1875 /* Decode the eDMA3 configuration from CCCFG register */
1876 cccfg = edma_read(ecc, EDMA_CCCFG);
1877
1878 value = GET_NUM_REGN(cccfg);
1879 ecc->num_region = BIT(value);
1880
1881 value = GET_NUM_DMACH(cccfg);
1882 ecc->num_channels = BIT(value + 1);
1883
1884 value = GET_NUM_QDMACH(cccfg);
1885 ecc->num_qchannels = value * 2;
1886
1887 value = GET_NUM_PAENTRY(cccfg);
1888 ecc->num_slots = BIT(value + 4);
1889
1890 value = GET_NUM_EVQUE(cccfg);
1891 ecc->num_tc = value + 1;
1892
1893 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1894
1895 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1896 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1897 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1898 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1899 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1900 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1901 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1902
1903 /* Nothing need to be done if queue priority is provided */
1904 if (pdata->queue_priority_mapping)
1905 return 0;
1906
1907 /*
1908 * Configure TC/queue priority as follows:
1909 * Q0 - priority 0
1910 * Q1 - priority 1
1911 * Q2 - priority 2
1912 * ...
1913 * The meaning of priority numbers: 0 highest priority, 7 lowest
1914 * priority. So Q0 is the highest priority queue and the last queue has
1915 * the lowest priority.
1916 */
1917 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1918 GFP_KERNEL);
1919 if (!queue_priority_map)
1920 return -ENOMEM;
1921
1922 for (i = 0; i < ecc->num_tc; i++) {
1923 queue_priority_map[i][0] = i;
1924 queue_priority_map[i][1] = i;
1925 }
1926 queue_priority_map[i][0] = -1;
1927 queue_priority_map[i][1] = -1;
1928
1929 pdata->queue_priority_mapping = queue_priority_map;
1930 /* Default queue has the lowest priority */
1931 pdata->default_queue = i - 1;
1932
1933 return 0;
1934 }
1935
1936 #if IS_ENABLED(CONFIG_OF)
edma_xbar_event_map(struct device * dev,struct edma_soc_info * pdata,size_t sz)1937 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1938 size_t sz)
1939 {
1940 const char pname[] = "ti,edma-xbar-event-map";
1941 struct resource res;
1942 void __iomem *xbar;
1943 s16 (*xbar_chans)[2];
1944 size_t nelm = sz / sizeof(s16);
1945 u32 shift, offset, mux;
1946 int ret, i;
1947
1948 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1949 if (!xbar_chans)
1950 return -ENOMEM;
1951
1952 ret = of_address_to_resource(dev->of_node, 1, &res);
1953 if (ret)
1954 return -ENOMEM;
1955
1956 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1957 if (!xbar)
1958 return -ENOMEM;
1959
1960 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1961 nelm);
1962 if (ret)
1963 return -EIO;
1964
1965 /* Invalidate last entry for the other user of this mess */
1966 nelm >>= 1;
1967 xbar_chans[nelm][0] = -1;
1968 xbar_chans[nelm][1] = -1;
1969
1970 for (i = 0; i < nelm; i++) {
1971 shift = (xbar_chans[i][1] & 0x03) << 3;
1972 offset = xbar_chans[i][1] & 0xfffffffc;
1973 mux = readl(xbar + offset);
1974 mux &= ~(0xff << shift);
1975 mux |= xbar_chans[i][0] << shift;
1976 writel(mux, (xbar + offset));
1977 }
1978
1979 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1980 return 0;
1981 }
1982
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)1983 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1984 bool legacy_mode)
1985 {
1986 struct edma_soc_info *info;
1987 struct property *prop;
1988 size_t sz;
1989 int ret;
1990
1991 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1992 if (!info)
1993 return ERR_PTR(-ENOMEM);
1994
1995 if (legacy_mode) {
1996 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
1997 &sz);
1998 if (prop) {
1999 ret = edma_xbar_event_map(dev, info, sz);
2000 if (ret)
2001 return ERR_PTR(ret);
2002 }
2003 return info;
2004 }
2005
2006 /* Get the list of channels allocated to be used for memcpy */
2007 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2008 if (prop) {
2009 const char pname[] = "ti,edma-memcpy-channels";
2010 size_t nelm = sz / sizeof(s32);
2011 s32 *memcpy_ch;
2012
2013 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2014 GFP_KERNEL);
2015 if (!memcpy_ch)
2016 return ERR_PTR(-ENOMEM);
2017
2018 ret = of_property_read_u32_array(dev->of_node, pname,
2019 (u32 *)memcpy_ch, nelm);
2020 if (ret)
2021 return ERR_PTR(ret);
2022
2023 memcpy_ch[nelm] = -1;
2024 info->memcpy_channels = memcpy_ch;
2025 }
2026
2027 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2028 &sz);
2029 if (prop) {
2030 const char pname[] = "ti,edma-reserved-slot-ranges";
2031 u32 (*tmp)[2];
2032 s16 (*rsv_slots)[2];
2033 size_t nelm = sz / sizeof(*tmp);
2034 struct edma_rsv_info *rsv_info;
2035 int i;
2036
2037 if (!nelm)
2038 return info;
2039
2040 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2041 if (!tmp)
2042 return ERR_PTR(-ENOMEM);
2043
2044 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2045 if (!rsv_info) {
2046 kfree(tmp);
2047 return ERR_PTR(-ENOMEM);
2048 }
2049
2050 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2051 GFP_KERNEL);
2052 if (!rsv_slots) {
2053 kfree(tmp);
2054 return ERR_PTR(-ENOMEM);
2055 }
2056
2057 ret = of_property_read_u32_array(dev->of_node, pname,
2058 (u32 *)tmp, nelm * 2);
2059 if (ret) {
2060 kfree(tmp);
2061 return ERR_PTR(ret);
2062 }
2063
2064 for (i = 0; i < nelm; i++) {
2065 rsv_slots[i][0] = tmp[i][0];
2066 rsv_slots[i][1] = tmp[i][1];
2067 }
2068 rsv_slots[nelm][0] = -1;
2069 rsv_slots[nelm][1] = -1;
2070
2071 info->rsv = rsv_info;
2072 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2073
2074 kfree(tmp);
2075 }
2076
2077 return info;
2078 }
2079
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2080 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2081 struct of_dma *ofdma)
2082 {
2083 struct edma_cc *ecc = ofdma->of_dma_data;
2084 struct dma_chan *chan = NULL;
2085 struct edma_chan *echan;
2086 int i;
2087
2088 if (!ecc || dma_spec->args_count < 1)
2089 return NULL;
2090
2091 for (i = 0; i < ecc->num_channels; i++) {
2092 echan = &ecc->slave_chans[i];
2093 if (echan->ch_num == dma_spec->args[0]) {
2094 chan = &echan->vchan.chan;
2095 break;
2096 }
2097 }
2098
2099 if (!chan)
2100 return NULL;
2101
2102 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2103 goto out;
2104
2105 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2106 dma_spec->args[1] < echan->ecc->num_tc) {
2107 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2108 goto out;
2109 }
2110
2111 return NULL;
2112 out:
2113 /* The channel is going to be used as HW synchronized */
2114 echan->hw_triggered = true;
2115 return dma_get_slave_channel(chan);
2116 }
2117 #else
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2118 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2119 bool legacy_mode)
2120 {
2121 return ERR_PTR(-EINVAL);
2122 }
2123
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2124 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2125 struct of_dma *ofdma)
2126 {
2127 return NULL;
2128 }
2129 #endif
2130
edma_probe(struct platform_device * pdev)2131 static int edma_probe(struct platform_device *pdev)
2132 {
2133 struct edma_soc_info *info = pdev->dev.platform_data;
2134 s8 (*queue_priority_mapping)[2];
2135 int i, off, ln;
2136 const s16 (*rsv_slots)[2];
2137 const s16 (*xbar_chans)[2];
2138 int irq;
2139 char *irq_name;
2140 struct resource *mem;
2141 struct device_node *node = pdev->dev.of_node;
2142 struct device *dev = &pdev->dev;
2143 struct edma_cc *ecc;
2144 bool legacy_mode = true;
2145 int ret;
2146
2147 if (node) {
2148 const struct of_device_id *match;
2149
2150 match = of_match_node(edma_of_ids, node);
2151 if (match && (u32)match->data == EDMA_BINDING_TPCC)
2152 legacy_mode = false;
2153
2154 info = edma_setup_info_from_dt(dev, legacy_mode);
2155 if (IS_ERR(info)) {
2156 dev_err(dev, "failed to get DT data\n");
2157 return PTR_ERR(info);
2158 }
2159 }
2160
2161 if (!info)
2162 return -ENODEV;
2163
2164 pm_runtime_enable(dev);
2165 ret = pm_runtime_get_sync(dev);
2166 if (ret < 0) {
2167 dev_err(dev, "pm_runtime_get_sync() failed\n");
2168 return ret;
2169 }
2170
2171 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2172 if (ret)
2173 return ret;
2174
2175 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2176 if (!ecc) {
2177 dev_err(dev, "Can't allocate controller\n");
2178 return -ENOMEM;
2179 }
2180
2181 ecc->dev = dev;
2182 ecc->id = pdev->id;
2183 ecc->legacy_mode = legacy_mode;
2184 /* When booting with DT the pdev->id is -1 */
2185 if (ecc->id < 0)
2186 ecc->id = 0;
2187
2188 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2189 if (!mem) {
2190 dev_dbg(dev, "mem resource not found, using index 0\n");
2191 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2192 if (!mem) {
2193 dev_err(dev, "no mem resource?\n");
2194 return -ENODEV;
2195 }
2196 }
2197 ecc->base = devm_ioremap_resource(dev, mem);
2198 if (IS_ERR(ecc->base))
2199 return PTR_ERR(ecc->base);
2200
2201 platform_set_drvdata(pdev, ecc);
2202
2203 /* Get eDMA3 configuration from IP */
2204 ret = edma_setup_from_hw(dev, info, ecc);
2205 if (ret)
2206 return ret;
2207
2208 /* Allocate memory based on the information we got from the IP */
2209 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2210 sizeof(*ecc->slave_chans), GFP_KERNEL);
2211 if (!ecc->slave_chans)
2212 return -ENOMEM;
2213
2214 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2215 sizeof(unsigned long), GFP_KERNEL);
2216 if (!ecc->slot_inuse)
2217 return -ENOMEM;
2218
2219 ecc->default_queue = info->default_queue;
2220
2221 if (info->rsv) {
2222 /* Set the reserved slots in inuse list */
2223 rsv_slots = info->rsv->rsv_slots;
2224 if (rsv_slots) {
2225 for (i = 0; rsv_slots[i][0] != -1; i++) {
2226 off = rsv_slots[i][0];
2227 ln = rsv_slots[i][1];
2228 set_bits(off, ln, ecc->slot_inuse);
2229 }
2230 }
2231 }
2232
2233 for (i = 0; i < ecc->num_slots; i++) {
2234 /* Reset only unused - not reserved - paRAM slots */
2235 if (!test_bit(i, ecc->slot_inuse))
2236 edma_write_slot(ecc, i, &dummy_paramset);
2237 }
2238
2239 /* Clear the xbar mapped channels in unused list */
2240 xbar_chans = info->xbar_chans;
2241 if (xbar_chans) {
2242 for (i = 0; xbar_chans[i][1] != -1; i++) {
2243 off = xbar_chans[i][1];
2244 }
2245 }
2246
2247 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2248 if (irq < 0 && node)
2249 irq = irq_of_parse_and_map(node, 0);
2250
2251 if (irq >= 0) {
2252 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2253 dev_name(dev));
2254 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2255 ecc);
2256 if (ret) {
2257 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2258 return ret;
2259 }
2260 }
2261
2262 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2263 if (irq < 0 && node)
2264 irq = irq_of_parse_and_map(node, 2);
2265
2266 if (irq >= 0) {
2267 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2268 dev_name(dev));
2269 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2270 ecc);
2271 if (ret) {
2272 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2273 return ret;
2274 }
2275 }
2276
2277 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2278 if (ecc->dummy_slot < 0) {
2279 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2280 return ecc->dummy_slot;
2281 }
2282
2283 queue_priority_mapping = info->queue_priority_mapping;
2284
2285 if (!ecc->legacy_mode) {
2286 int lowest_priority = 0;
2287 struct of_phandle_args tc_args;
2288
2289 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2290 sizeof(*ecc->tc_list), GFP_KERNEL);
2291 if (!ecc->tc_list) {
2292 ret = -ENOMEM;
2293 goto err_reg1;
2294 }
2295
2296 for (i = 0;; i++) {
2297 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2298 1, i, &tc_args);
2299 if (ret || i == ecc->num_tc)
2300 break;
2301
2302 ecc->tc_list[i].node = tc_args.np;
2303 ecc->tc_list[i].id = i;
2304 queue_priority_mapping[i][1] = tc_args.args[0];
2305 if (queue_priority_mapping[i][1] > lowest_priority) {
2306 lowest_priority = queue_priority_mapping[i][1];
2307 info->default_queue = i;
2308 }
2309 }
2310 }
2311
2312 /* Event queue priority mapping */
2313 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2314 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2315 queue_priority_mapping[i][1]);
2316
2317 for (i = 0; i < ecc->num_region; i++) {
2318 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2319 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2320 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2321 }
2322 ecc->info = info;
2323
2324 /* Init the dma device and channels */
2325 edma_dma_init(ecc, legacy_mode);
2326
2327 for (i = 0; i < ecc->num_channels; i++) {
2328 /* Assign all channels to the default queue */
2329 edma_assign_channel_eventq(&ecc->slave_chans[i],
2330 info->default_queue);
2331 /* Set entry slot to the dummy slot */
2332 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2333 }
2334
2335 ret = dma_async_device_register(&ecc->dma_slave);
2336 if (ret) {
2337 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2338 goto err_reg1;
2339 }
2340
2341 if (ecc->dma_memcpy) {
2342 ret = dma_async_device_register(ecc->dma_memcpy);
2343 if (ret) {
2344 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2345 ret);
2346 dma_async_device_unregister(&ecc->dma_slave);
2347 goto err_reg1;
2348 }
2349 }
2350
2351 if (node)
2352 of_dma_controller_register(node, of_edma_xlate, ecc);
2353
2354 dev_info(dev, "TI EDMA DMA engine driver\n");
2355
2356 return 0;
2357
2358 err_reg1:
2359 edma_free_slot(ecc, ecc->dummy_slot);
2360 return ret;
2361 }
2362
edma_remove(struct platform_device * pdev)2363 static int edma_remove(struct platform_device *pdev)
2364 {
2365 struct device *dev = &pdev->dev;
2366 struct edma_cc *ecc = dev_get_drvdata(dev);
2367
2368 if (dev->of_node)
2369 of_dma_controller_free(dev->of_node);
2370 dma_async_device_unregister(&ecc->dma_slave);
2371 if (ecc->dma_memcpy)
2372 dma_async_device_unregister(ecc->dma_memcpy);
2373 edma_free_slot(ecc, ecc->dummy_slot);
2374
2375 return 0;
2376 }
2377
2378 #ifdef CONFIG_PM_SLEEP
edma_pm_suspend(struct device * dev)2379 static int edma_pm_suspend(struct device *dev)
2380 {
2381 struct edma_cc *ecc = dev_get_drvdata(dev);
2382 struct edma_chan *echan = ecc->slave_chans;
2383 int i;
2384
2385 for (i = 0; i < ecc->num_channels; i++) {
2386 if (echan[i].alloced) {
2387 edma_setup_interrupt(&echan[i], false);
2388 edma_tc_set_pm_state(echan[i].tc, false);
2389 }
2390 }
2391
2392 return 0;
2393 }
2394
edma_pm_resume(struct device * dev)2395 static int edma_pm_resume(struct device *dev)
2396 {
2397 struct edma_cc *ecc = dev_get_drvdata(dev);
2398 struct edma_chan *echan = ecc->slave_chans;
2399 int i;
2400 s8 (*queue_priority_mapping)[2];
2401
2402 queue_priority_mapping = ecc->info->queue_priority_mapping;
2403
2404 /* Event queue priority mapping */
2405 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2406 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2407 queue_priority_mapping[i][1]);
2408
2409 for (i = 0; i < ecc->num_channels; i++) {
2410 if (echan[i].alloced) {
2411 /* ensure access through shadow region 0 */
2412 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2413 BIT(i & 0x1f));
2414
2415 edma_setup_interrupt(&echan[i], true);
2416
2417 /* Set up channel -> slot mapping for the entry slot */
2418 edma_set_chmap(&echan[i], echan[i].slot[0]);
2419
2420 edma_tc_set_pm_state(echan[i].tc, true);
2421 }
2422 }
2423
2424 return 0;
2425 }
2426 #endif
2427
2428 static const struct dev_pm_ops edma_pm_ops = {
2429 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2430 };
2431
2432 static struct platform_driver edma_driver = {
2433 .probe = edma_probe,
2434 .remove = edma_remove,
2435 .driver = {
2436 .name = "edma",
2437 .pm = &edma_pm_ops,
2438 .of_match_table = edma_of_ids,
2439 },
2440 };
2441
edma_tptc_probe(struct platform_device * pdev)2442 static int edma_tptc_probe(struct platform_device *pdev)
2443 {
2444 return 0;
2445 }
2446
2447 static struct platform_driver edma_tptc_driver = {
2448 .probe = edma_tptc_probe,
2449 .driver = {
2450 .name = "edma3-tptc",
2451 .of_match_table = edma_tptc_of_ids,
2452 },
2453 };
2454
edma_filter_fn(struct dma_chan * chan,void * param)2455 bool edma_filter_fn(struct dma_chan *chan, void *param)
2456 {
2457 bool match = false;
2458
2459 if (chan->device->dev->driver == &edma_driver.driver) {
2460 struct edma_chan *echan = to_edma_chan(chan);
2461 unsigned ch_req = *(unsigned *)param;
2462 if (ch_req == echan->ch_num) {
2463 /* The channel is going to be used as HW synchronized */
2464 echan->hw_triggered = true;
2465 match = true;
2466 }
2467 }
2468 return match;
2469 }
2470 EXPORT_SYMBOL(edma_filter_fn);
2471
edma_init(void)2472 static int edma_init(void)
2473 {
2474 int ret;
2475
2476 ret = platform_driver_register(&edma_tptc_driver);
2477 if (ret)
2478 return ret;
2479
2480 return platform_driver_register(&edma_driver);
2481 }
2482 subsys_initcall(edma_init);
2483
edma_exit(void)2484 static void __exit edma_exit(void)
2485 {
2486 platform_driver_unregister(&edma_driver);
2487 platform_driver_unregister(&edma_tptc_driver);
2488 }
2489 module_exit(edma_exit);
2490
2491 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2492 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2493 MODULE_LICENSE("GPL v2");
2494