• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel MIC Platform Software Stack (MPSS)
3  *
4  * Copyright(c) 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13  * General Public License for more details.
14  *
15  * The full GNU General Public License is included in this distribution in
16  * the file called "COPYING".
17  *
18  * Intel MIC X100 DMA Driver.
19  *
20  * Adapted from IOAT dma driver.
21  */
22 #include <linux/module.h>
23 #include <linux/io.h>
24 #include <linux/seq_file.h>
25 #include <linux/vmalloc.h>
26 
27 #include "mic_x100_dma.h"
28 
29 #define MIC_DMA_MAX_XFER_SIZE_CARD  (1 * 1024 * 1024 -\
30 				       MIC_DMA_ALIGN_BYTES)
31 #define MIC_DMA_MAX_XFER_SIZE_HOST  (1 * 1024 * 1024 >> 1)
32 #define MIC_DMA_DESC_TYPE_SHIFT	60
33 #define MIC_DMA_MEMCPY_LEN_SHIFT 46
34 #define MIC_DMA_STAT_INTR_SHIFT 59
35 
36 /* high-water mark for pushing dma descriptors */
37 static int mic_dma_pending_level = 4;
38 
39 /* Status descriptor is used to write a 64 bit value to a memory location */
40 enum mic_dma_desc_format_type {
41 	MIC_DMA_MEMCPY = 1,
42 	MIC_DMA_STATUS,
43 };
44 
mic_dma_hw_ring_inc(u32 val)45 static inline u32 mic_dma_hw_ring_inc(u32 val)
46 {
47 	return (val + 1) % MIC_DMA_DESC_RX_SIZE;
48 }
49 
mic_dma_hw_ring_dec(u32 val)50 static inline u32 mic_dma_hw_ring_dec(u32 val)
51 {
52 	return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1;
53 }
54 
mic_dma_hw_ring_inc_head(struct mic_dma_chan * ch)55 static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch)
56 {
57 	ch->head = mic_dma_hw_ring_inc(ch->head);
58 }
59 
60 /* Prepare a memcpy desc */
mic_dma_memcpy_desc(struct mic_dma_desc * desc,dma_addr_t src_phys,dma_addr_t dst_phys,u64 size)61 static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc,
62 	dma_addr_t src_phys, dma_addr_t dst_phys, u64 size)
63 {
64 	u64 qw0, qw1;
65 
66 	qw0 = src_phys;
67 	qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT;
68 	qw1 = MIC_DMA_MEMCPY;
69 	qw1 <<= MIC_DMA_DESC_TYPE_SHIFT;
70 	qw1 |= dst_phys;
71 	desc->qw0 = qw0;
72 	desc->qw1 = qw1;
73 }
74 
75 /* Prepare a status desc. with @data to be written at @dst_phys */
mic_dma_prep_status_desc(struct mic_dma_desc * desc,u64 data,dma_addr_t dst_phys,bool generate_intr)76 static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data,
77 	dma_addr_t dst_phys, bool generate_intr)
78 {
79 	u64 qw0, qw1;
80 
81 	qw0 = data;
82 	qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys;
83 	if (generate_intr)
84 		qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT);
85 	desc->qw0 = qw0;
86 	desc->qw1 = qw1;
87 }
88 
mic_dma_cleanup(struct mic_dma_chan * ch)89 static void mic_dma_cleanup(struct mic_dma_chan *ch)
90 {
91 	struct dma_async_tx_descriptor *tx;
92 	u32 tail;
93 	u32 last_tail;
94 
95 	spin_lock(&ch->cleanup_lock);
96 	tail = mic_dma_read_cmp_cnt(ch);
97 	/*
98 	 * This is the barrier pair for smp_wmb() in fn.
99 	 * mic_dma_tx_submit_unlock. It's required so that we read the
100 	 * updated cookie value from tx->cookie.
101 	 */
102 	smp_rmb();
103 	for (last_tail = ch->last_tail; tail != last_tail;) {
104 		tx = &ch->tx_array[last_tail];
105 		if (tx->cookie) {
106 			dma_cookie_complete(tx);
107 			if (tx->callback) {
108 				tx->callback(tx->callback_param);
109 				tx->callback = NULL;
110 			}
111 		}
112 		last_tail = mic_dma_hw_ring_inc(last_tail);
113 	}
114 	/* finish all completion callbacks before incrementing tail */
115 	smp_mb();
116 	ch->last_tail = last_tail;
117 	spin_unlock(&ch->cleanup_lock);
118 }
119 
mic_dma_ring_count(u32 head,u32 tail)120 static u32 mic_dma_ring_count(u32 head, u32 tail)
121 {
122 	u32 count;
123 
124 	if (head >= tail)
125 		count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head);
126 	else
127 		count = tail - head;
128 	return count - 1;
129 }
130 
131 /* Returns the num. of free descriptors on success, -ENOMEM on failure */
mic_dma_avail_desc_ring_space(struct mic_dma_chan * ch,int required)132 static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required)
133 {
134 	struct device *dev = mic_dma_ch_to_device(ch);
135 	u32 count;
136 
137 	count = mic_dma_ring_count(ch->head, ch->last_tail);
138 	if (count < required) {
139 		mic_dma_cleanup(ch);
140 		count = mic_dma_ring_count(ch->head, ch->last_tail);
141 	}
142 
143 	if (count < required) {
144 		dev_dbg(dev, "Not enough desc space");
145 		dev_dbg(dev, "%s %d required=%u, avail=%u\n",
146 			__func__, __LINE__, required, count);
147 		return -ENOMEM;
148 	} else {
149 		return count;
150 	}
151 }
152 
153 /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/
mic_dma_prog_memcpy_desc(struct mic_dma_chan * ch,dma_addr_t src,dma_addr_t dst,size_t len)154 static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src,
155 				    dma_addr_t dst, size_t len)
156 {
157 	size_t current_transfer_len;
158 	size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size;
159 	/* 3 is added to make sure we have enough space for status desc */
160 	int num_desc = len / max_xfer_size + 3;
161 	int ret;
162 
163 	if (len % max_xfer_size)
164 		num_desc++;
165 
166 	ret = mic_dma_avail_desc_ring_space(ch, num_desc);
167 	if (ret < 0)
168 		return ret;
169 	do {
170 		current_transfer_len = min(len, max_xfer_size);
171 		mic_dma_memcpy_desc(&ch->desc_ring[ch->head],
172 				    src, dst, current_transfer_len);
173 		mic_dma_hw_ring_inc_head(ch);
174 		len -= current_transfer_len;
175 		dst = dst + current_transfer_len;
176 		src = src + current_transfer_len;
177 	} while (len > 0);
178 	return 0;
179 }
180 
181 /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */
mic_dma_prog_intr(struct mic_dma_chan * ch)182 static void mic_dma_prog_intr(struct mic_dma_chan *ch)
183 {
184 	mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
185 				 ch->status_dest_micpa, false);
186 	mic_dma_hw_ring_inc_head(ch);
187 	mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
188 				 ch->status_dest_micpa, true);
189 	mic_dma_hw_ring_inc_head(ch);
190 }
191 
192 /* Wrapper function to program memcpy descriptors/status descriptors */
mic_dma_do_dma(struct mic_dma_chan * ch,int flags,dma_addr_t src,dma_addr_t dst,size_t len)193 static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src,
194 			  dma_addr_t dst, size_t len)
195 {
196 	if (len && -ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) {
197 		return -ENOMEM;
198 	} else {
199 		/* 3 is the maximum number of status descriptors */
200 		int ret = mic_dma_avail_desc_ring_space(ch, 3);
201 
202 		if (ret < 0)
203 			return ret;
204 	}
205 
206 	/* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */
207 	if (flags & DMA_PREP_FENCE) {
208 		mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
209 					 ch->status_dest_micpa, false);
210 		mic_dma_hw_ring_inc_head(ch);
211 	}
212 
213 	if (flags & DMA_PREP_INTERRUPT)
214 		mic_dma_prog_intr(ch);
215 
216 	return 0;
217 }
218 
mic_dma_issue_pending(struct dma_chan * ch)219 static inline void mic_dma_issue_pending(struct dma_chan *ch)
220 {
221 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
222 
223 	spin_lock(&mic_ch->issue_lock);
224 	/*
225 	 * Write to head triggers h/w to act on the descriptors.
226 	 * On MIC, writing the same head value twice causes
227 	 * a h/w error. On second write, h/w assumes we filled
228 	 * the entire ring & overwrote some of the descriptors.
229 	 */
230 	if (mic_ch->issued == mic_ch->submitted)
231 		goto out;
232 	mic_ch->issued = mic_ch->submitted;
233 	/*
234 	 * make descriptor updates visible before advancing head,
235 	 * this is purposefully not smp_wmb() since we are also
236 	 * publishing the descriptor updates to a dma device
237 	 */
238 	wmb();
239 	mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued);
240 out:
241 	spin_unlock(&mic_ch->issue_lock);
242 }
243 
mic_dma_update_pending(struct mic_dma_chan * ch)244 static inline void mic_dma_update_pending(struct mic_dma_chan *ch)
245 {
246 	if (mic_dma_ring_count(ch->issued, ch->submitted)
247 			> mic_dma_pending_level)
248 		mic_dma_issue_pending(&ch->api_ch);
249 }
250 
mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor * tx)251 static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
252 {
253 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan);
254 	dma_cookie_t cookie;
255 
256 	dma_cookie_assign(tx);
257 	cookie = tx->cookie;
258 	/*
259 	 * We need an smp write barrier here because another CPU might see
260 	 * an update to submitted and update h/w head even before we
261 	 * assigned a cookie to this tx.
262 	 */
263 	smp_wmb();
264 	mic_ch->submitted = mic_ch->head;
265 	spin_unlock(&mic_ch->prep_lock);
266 	mic_dma_update_pending(mic_ch);
267 	return cookie;
268 }
269 
270 static inline struct dma_async_tx_descriptor *
allocate_tx(struct mic_dma_chan * ch)271 allocate_tx(struct mic_dma_chan *ch)
272 {
273 	u32 idx = mic_dma_hw_ring_dec(ch->head);
274 	struct dma_async_tx_descriptor *tx = &ch->tx_array[idx];
275 
276 	dma_async_tx_descriptor_init(tx, &ch->api_ch);
277 	tx->tx_submit = mic_dma_tx_submit_unlock;
278 	return tx;
279 }
280 
281 /* Program a status descriptor with dst as address and value to be written */
282 static struct dma_async_tx_descriptor *
mic_dma_prep_status_lock(struct dma_chan * ch,dma_addr_t dst,u64 src_val,unsigned long flags)283 mic_dma_prep_status_lock(struct dma_chan *ch, dma_addr_t dst, u64 src_val,
284 			 unsigned long flags)
285 {
286 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
287 	int result;
288 
289 	spin_lock(&mic_ch->prep_lock);
290 	result = mic_dma_avail_desc_ring_space(mic_ch, 4);
291 	if (result < 0)
292 		goto error;
293 	mic_dma_prep_status_desc(&mic_ch->desc_ring[mic_ch->head], src_val, dst,
294 				 false);
295 	mic_dma_hw_ring_inc_head(mic_ch);
296 	result = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
297 	if (result < 0)
298 		goto error;
299 
300 	return allocate_tx(mic_ch);
301 error:
302 	dev_err(mic_dma_ch_to_device(mic_ch),
303 		"Error enqueueing dma status descriptor, error=%d\n", result);
304 	spin_unlock(&mic_ch->prep_lock);
305 	return NULL;
306 }
307 
308 /*
309  * Prepare a memcpy descriptor to be added to the ring.
310  * Note that the temporary descriptor adds an extra overhead of copying the
311  * descriptor to ring. So, we copy directly to the descriptor ring
312  */
313 static struct dma_async_tx_descriptor *
mic_dma_prep_memcpy_lock(struct dma_chan * ch,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)314 mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
315 			 dma_addr_t dma_src, size_t len, unsigned long flags)
316 {
317 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
318 	struct device *dev = mic_dma_ch_to_device(mic_ch);
319 	int result;
320 
321 	if (!len && !flags)
322 		return NULL;
323 
324 	spin_lock(&mic_ch->prep_lock);
325 	result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
326 	if (result >= 0)
327 		return allocate_tx(mic_ch);
328 	dev_err(dev, "Error enqueueing dma, error=%d\n", result);
329 	spin_unlock(&mic_ch->prep_lock);
330 	return NULL;
331 }
332 
333 static struct dma_async_tx_descriptor *
mic_dma_prep_interrupt_lock(struct dma_chan * ch,unsigned long flags)334 mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
335 {
336 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
337 	int ret;
338 
339 	spin_lock(&mic_ch->prep_lock);
340 	ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
341 	if (!ret)
342 		return allocate_tx(mic_ch);
343 	spin_unlock(&mic_ch->prep_lock);
344 	return NULL;
345 }
346 
347 /* Return the status of the transaction */
348 static enum dma_status
mic_dma_tx_status(struct dma_chan * ch,dma_cookie_t cookie,struct dma_tx_state * txstate)349 mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie,
350 		  struct dma_tx_state *txstate)
351 {
352 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
353 
354 	if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate))
355 		mic_dma_cleanup(mic_ch);
356 
357 	return dma_cookie_status(ch, cookie, txstate);
358 }
359 
mic_dma_thread_fn(int irq,void * data)360 static irqreturn_t mic_dma_thread_fn(int irq, void *data)
361 {
362 	mic_dma_cleanup((struct mic_dma_chan *)data);
363 	return IRQ_HANDLED;
364 }
365 
mic_dma_intr_handler(int irq,void * data)366 static irqreturn_t mic_dma_intr_handler(int irq, void *data)
367 {
368 	struct mic_dma_chan *ch = ((struct mic_dma_chan *)data);
369 
370 	mic_dma_ack_interrupt(ch);
371 	return IRQ_WAKE_THREAD;
372 }
373 
mic_dma_alloc_desc_ring(struct mic_dma_chan * ch)374 static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch)
375 {
376 	u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
377 	struct device *dev = &to_mbus_device(ch)->dev;
378 
379 	desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
380 	ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL);
381 
382 	if (!ch->desc_ring)
383 		return -ENOMEM;
384 
385 	ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring,
386 					     desc_ring_size, DMA_BIDIRECTIONAL);
387 	if (dma_mapping_error(dev, ch->desc_ring_micpa))
388 		goto map_error;
389 
390 	ch->tx_array = vzalloc(MIC_DMA_DESC_RX_SIZE * sizeof(*ch->tx_array));
391 	if (!ch->tx_array)
392 		goto tx_error;
393 	return 0;
394 tx_error:
395 	dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size,
396 			 DMA_BIDIRECTIONAL);
397 map_error:
398 	kfree(ch->desc_ring);
399 	return -ENOMEM;
400 }
401 
mic_dma_free_desc_ring(struct mic_dma_chan * ch)402 static void mic_dma_free_desc_ring(struct mic_dma_chan *ch)
403 {
404 	u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
405 
406 	vfree(ch->tx_array);
407 	desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
408 	dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa,
409 			 desc_ring_size, DMA_BIDIRECTIONAL);
410 	kfree(ch->desc_ring);
411 	ch->desc_ring = NULL;
412 }
413 
mic_dma_free_status_dest(struct mic_dma_chan * ch)414 static void mic_dma_free_status_dest(struct mic_dma_chan *ch)
415 {
416 	dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa,
417 			 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
418 	kfree(ch->status_dest);
419 }
420 
mic_dma_alloc_status_dest(struct mic_dma_chan * ch)421 static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch)
422 {
423 	struct device *dev = &to_mbus_device(ch)->dev;
424 
425 	ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL);
426 	if (!ch->status_dest)
427 		return -ENOMEM;
428 	ch->status_dest_micpa = dma_map_single(dev, ch->status_dest,
429 					L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
430 	if (dma_mapping_error(dev, ch->status_dest_micpa)) {
431 		kfree(ch->status_dest);
432 		ch->status_dest = NULL;
433 		return -ENOMEM;
434 	}
435 	return 0;
436 }
437 
mic_dma_check_chan(struct mic_dma_chan * ch)438 static int mic_dma_check_chan(struct mic_dma_chan *ch)
439 {
440 	if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) ||
441 	    mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) {
442 		mic_dma_disable_chan(ch);
443 		mic_dma_chan_mask_intr(ch);
444 		dev_err(mic_dma_ch_to_device(ch),
445 			"%s %d error setting up mic dma chan %d\n",
446 			__func__, __LINE__, ch->ch_num);
447 		return -EBUSY;
448 	}
449 	return 0;
450 }
451 
mic_dma_chan_setup(struct mic_dma_chan * ch)452 static int mic_dma_chan_setup(struct mic_dma_chan *ch)
453 {
454 	if (MIC_DMA_CHAN_MIC == ch->owner)
455 		mic_dma_chan_set_owner(ch);
456 	mic_dma_disable_chan(ch);
457 	mic_dma_chan_mask_intr(ch);
458 	mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0);
459 	mic_dma_chan_set_desc_ring(ch);
460 	ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR);
461 	ch->head = ch->last_tail;
462 	ch->issued = 0;
463 	mic_dma_chan_unmask_intr(ch);
464 	mic_dma_enable_chan(ch);
465 	return mic_dma_check_chan(ch);
466 }
467 
mic_dma_chan_destroy(struct mic_dma_chan * ch)468 static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
469 {
470 	mic_dma_disable_chan(ch);
471 	mic_dma_chan_mask_intr(ch);
472 }
473 
mic_dma_unregister_dma_device(struct mic_dma_device * mic_dma_dev)474 static void mic_dma_unregister_dma_device(struct mic_dma_device *mic_dma_dev)
475 {
476 	dma_async_device_unregister(&mic_dma_dev->dma_dev);
477 }
478 
mic_dma_setup_irq(struct mic_dma_chan * ch)479 static int mic_dma_setup_irq(struct mic_dma_chan *ch)
480 {
481 	ch->cookie =
482 		to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch),
483 			mic_dma_intr_handler, mic_dma_thread_fn,
484 			"mic dma_channel", ch, ch->ch_num);
485 	if (IS_ERR(ch->cookie))
486 		return IS_ERR(ch->cookie);
487 	return 0;
488 }
489 
mic_dma_free_irq(struct mic_dma_chan * ch)490 static inline void mic_dma_free_irq(struct mic_dma_chan *ch)
491 {
492 	to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch);
493 }
494 
mic_dma_chan_init(struct mic_dma_chan * ch)495 static int mic_dma_chan_init(struct mic_dma_chan *ch)
496 {
497 	int ret = mic_dma_alloc_desc_ring(ch);
498 
499 	if (ret)
500 		goto ring_error;
501 	ret = mic_dma_alloc_status_dest(ch);
502 	if (ret)
503 		goto status_error;
504 	ret = mic_dma_chan_setup(ch);
505 	if (ret)
506 		goto chan_error;
507 	return ret;
508 chan_error:
509 	mic_dma_free_status_dest(ch);
510 status_error:
511 	mic_dma_free_desc_ring(ch);
512 ring_error:
513 	return ret;
514 }
515 
mic_dma_drain_chan(struct mic_dma_chan * ch)516 static int mic_dma_drain_chan(struct mic_dma_chan *ch)
517 {
518 	struct dma_async_tx_descriptor *tx;
519 	int err = 0;
520 	dma_cookie_t cookie;
521 
522 	tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE);
523 	if (!tx) {
524 		err = -ENOMEM;
525 		goto error;
526 	}
527 
528 	cookie = tx->tx_submit(tx);
529 	if (dma_submit_error(cookie))
530 		err = -ENOMEM;
531 	else
532 		err = dma_sync_wait(&ch->api_ch, cookie);
533 	if (err) {
534 		dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n",
535 			__func__, __LINE__, ch->ch_num);
536 		err = -EIO;
537 	}
538 error:
539 	mic_dma_cleanup(ch);
540 	return err;
541 }
542 
mic_dma_chan_uninit(struct mic_dma_chan * ch)543 static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch)
544 {
545 	mic_dma_chan_destroy(ch);
546 	mic_dma_cleanup(ch);
547 	mic_dma_free_status_dest(ch);
548 	mic_dma_free_desc_ring(ch);
549 }
550 
mic_dma_init(struct mic_dma_device * mic_dma_dev,enum mic_dma_chan_owner owner)551 static int mic_dma_init(struct mic_dma_device *mic_dma_dev,
552 			enum mic_dma_chan_owner owner)
553 {
554 	int i, first_chan = mic_dma_dev->start_ch;
555 	struct mic_dma_chan *ch;
556 	int ret;
557 
558 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
559 		unsigned long data;
560 		ch = &mic_dma_dev->mic_ch[i];
561 		data = (unsigned long)ch;
562 		ch->ch_num = i;
563 		ch->owner = owner;
564 		spin_lock_init(&ch->cleanup_lock);
565 		spin_lock_init(&ch->prep_lock);
566 		spin_lock_init(&ch->issue_lock);
567 		ret = mic_dma_setup_irq(ch);
568 		if (ret)
569 			goto error;
570 	}
571 	return 0;
572 error:
573 	for (i = i - 1; i >= first_chan; i--)
574 		mic_dma_free_irq(ch);
575 	return ret;
576 }
577 
mic_dma_uninit(struct mic_dma_device * mic_dma_dev)578 static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev)
579 {
580 	int i, first_chan = mic_dma_dev->start_ch;
581 	struct mic_dma_chan *ch;
582 
583 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
584 		ch = &mic_dma_dev->mic_ch[i];
585 		mic_dma_free_irq(ch);
586 	}
587 }
588 
mic_dma_alloc_chan_resources(struct dma_chan * ch)589 static int mic_dma_alloc_chan_resources(struct dma_chan *ch)
590 {
591 	int ret = mic_dma_chan_init(to_mic_dma_chan(ch));
592 	if (ret)
593 		return ret;
594 	return MIC_DMA_DESC_RX_SIZE;
595 }
596 
mic_dma_free_chan_resources(struct dma_chan * ch)597 static void mic_dma_free_chan_resources(struct dma_chan *ch)
598 {
599 	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
600 	mic_dma_drain_chan(mic_ch);
601 	mic_dma_chan_uninit(mic_ch);
602 }
603 
604 /* Set the fn. handlers and register the dma device with dma api */
mic_dma_register_dma_device(struct mic_dma_device * mic_dma_dev,enum mic_dma_chan_owner owner)605 static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
606 				       enum mic_dma_chan_owner owner)
607 {
608 	int i, first_chan = mic_dma_dev->start_ch;
609 
610 	dma_cap_zero(mic_dma_dev->dma_dev.cap_mask);
611 	/*
612 	 * This dma engine is not capable of host memory to host memory
613 	 * transfers
614 	 */
615 	dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask);
616 
617 	if (MIC_DMA_CHAN_HOST == owner)
618 		dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask);
619 	mic_dma_dev->dma_dev.device_alloc_chan_resources =
620 		mic_dma_alloc_chan_resources;
621 	mic_dma_dev->dma_dev.device_free_chan_resources =
622 		mic_dma_free_chan_resources;
623 	mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status;
624 	mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock;
625 	mic_dma_dev->dma_dev.device_prep_dma_imm_data =
626 		mic_dma_prep_status_lock;
627 	mic_dma_dev->dma_dev.device_prep_dma_interrupt =
628 		mic_dma_prep_interrupt_lock;
629 	mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending;
630 	mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT;
631 	INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels);
632 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
633 		mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev;
634 		dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch);
635 		list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
636 			      &mic_dma_dev->dma_dev.channels);
637 	}
638 	return dma_async_device_register(&mic_dma_dev->dma_dev);
639 }
640 
641 /*
642  * Initializes dma channels and registers the dma device with the
643  * dma engine api.
644  */
mic_dma_dev_reg(struct mbus_device * mbdev,enum mic_dma_chan_owner owner)645 static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
646 					      enum mic_dma_chan_owner owner)
647 {
648 	struct mic_dma_device *mic_dma_dev;
649 	int ret;
650 	struct device *dev = &mbdev->dev;
651 
652 	mic_dma_dev = kzalloc(sizeof(*mic_dma_dev), GFP_KERNEL);
653 	if (!mic_dma_dev) {
654 		ret = -ENOMEM;
655 		goto alloc_error;
656 	}
657 	mic_dma_dev->mbdev = mbdev;
658 	mic_dma_dev->dma_dev.dev = dev;
659 	mic_dma_dev->mmio = mbdev->mmio_va;
660 	if (MIC_DMA_CHAN_HOST == owner) {
661 		mic_dma_dev->start_ch = 0;
662 		mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST;
663 	} else {
664 		mic_dma_dev->start_ch = 4;
665 		mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD;
666 	}
667 	ret = mic_dma_init(mic_dma_dev, owner);
668 	if (ret)
669 		goto init_error;
670 	ret = mic_dma_register_dma_device(mic_dma_dev, owner);
671 	if (ret)
672 		goto reg_error;
673 	return mic_dma_dev;
674 reg_error:
675 	mic_dma_uninit(mic_dma_dev);
676 init_error:
677 	kfree(mic_dma_dev);
678 	mic_dma_dev = NULL;
679 alloc_error:
680 	dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret);
681 	return mic_dma_dev;
682 }
683 
mic_dma_dev_unreg(struct mic_dma_device * mic_dma_dev)684 static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
685 {
686 	mic_dma_unregister_dma_device(mic_dma_dev);
687 	mic_dma_uninit(mic_dma_dev);
688 	kfree(mic_dma_dev);
689 }
690 
691 /* DEBUGFS CODE */
mic_dma_reg_seq_show(struct seq_file * s,void * pos)692 static int mic_dma_reg_seq_show(struct seq_file *s, void *pos)
693 {
694 	struct mic_dma_device *mic_dma_dev = s->private;
695 	int i, chan_num, first_chan = mic_dma_dev->start_ch;
696 	struct mic_dma_chan *ch;
697 
698 	seq_printf(s, "SBOX_DCR: %#x\n",
699 		   mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan],
700 				     MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR));
701 	seq_puts(s, "DMA Channel Registers\n");
702 	seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s",
703 		   "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO");
704 	seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT");
705 	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
706 		ch = &mic_dma_dev->mic_ch[i];
707 		chan_num = ch->ch_num;
708 		seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x",
709 			   chan_num,
710 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCAR),
711 			   mic_dma_read_reg(ch, MIC_DMA_REG_DTPR),
712 			   mic_dma_read_reg(ch, MIC_DMA_REG_DHPR),
713 			   mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI));
714 		seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n",
715 			   mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO),
716 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR),
717 			   mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK),
718 			   mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT));
719 	}
720 	return 0;
721 }
722 
mic_dma_reg_debug_open(struct inode * inode,struct file * file)723 static int mic_dma_reg_debug_open(struct inode *inode, struct file *file)
724 {
725 	return single_open(file, mic_dma_reg_seq_show, inode->i_private);
726 }
727 
mic_dma_reg_debug_release(struct inode * inode,struct file * file)728 static int mic_dma_reg_debug_release(struct inode *inode, struct file *file)
729 {
730 	return single_release(inode, file);
731 }
732 
733 static const struct file_operations mic_dma_reg_ops = {
734 	.owner   = THIS_MODULE,
735 	.open    = mic_dma_reg_debug_open,
736 	.read    = seq_read,
737 	.llseek  = seq_lseek,
738 	.release = mic_dma_reg_debug_release
739 };
740 
741 /* Debugfs parent dir */
742 static struct dentry *mic_dma_dbg;
743 
mic_dma_driver_probe(struct mbus_device * mbdev)744 static int mic_dma_driver_probe(struct mbus_device *mbdev)
745 {
746 	struct mic_dma_device *mic_dma_dev;
747 	enum mic_dma_chan_owner owner;
748 
749 	if (MBUS_DEV_DMA_MIC == mbdev->id.device)
750 		owner = MIC_DMA_CHAN_MIC;
751 	else
752 		owner = MIC_DMA_CHAN_HOST;
753 
754 	mic_dma_dev = mic_dma_dev_reg(mbdev, owner);
755 	dev_set_drvdata(&mbdev->dev, mic_dma_dev);
756 
757 	if (mic_dma_dbg) {
758 		mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev),
759 							  mic_dma_dbg);
760 		if (mic_dma_dev->dbg_dir)
761 			debugfs_create_file("mic_dma_reg", 0444,
762 					    mic_dma_dev->dbg_dir, mic_dma_dev,
763 					    &mic_dma_reg_ops);
764 	}
765 	return 0;
766 }
767 
mic_dma_driver_remove(struct mbus_device * mbdev)768 static void mic_dma_driver_remove(struct mbus_device *mbdev)
769 {
770 	struct mic_dma_device *mic_dma_dev;
771 
772 	mic_dma_dev = dev_get_drvdata(&mbdev->dev);
773 	debugfs_remove_recursive(mic_dma_dev->dbg_dir);
774 	mic_dma_dev_unreg(mic_dma_dev);
775 }
776 
777 static struct mbus_device_id id_table[] = {
778 	{MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID},
779 	{MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID},
780 	{0},
781 };
782 
783 static struct mbus_driver mic_dma_driver = {
784 	.driver.name =	KBUILD_MODNAME,
785 	.driver.owner =	THIS_MODULE,
786 	.id_table = id_table,
787 	.probe = mic_dma_driver_probe,
788 	.remove = mic_dma_driver_remove,
789 };
790 
mic_x100_dma_init(void)791 static int __init mic_x100_dma_init(void)
792 {
793 	int rc = mbus_register_driver(&mic_dma_driver);
794 	if (rc)
795 		return rc;
796 	mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
797 	return 0;
798 }
799 
mic_x100_dma_exit(void)800 static void __exit mic_x100_dma_exit(void)
801 {
802 	debugfs_remove_recursive(mic_dma_dbg);
803 	mbus_unregister_driver(&mic_dma_driver);
804 }
805 
806 module_init(mic_x100_dma_init);
807 module_exit(mic_x100_dma_exit);
808 
809 MODULE_DEVICE_TABLE(mbus, id_table);
810 MODULE_AUTHOR("Intel Corporation");
811 MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver");
812 MODULE_LICENSE("GPL v2");
813