1 /*
2 * Copyright (C) 2011-2013 Renesas Electronics Corporation
3 * Copyright (C) 2013 Cogent Embedded, Inc.
4 *
5 * This file is based on the drivers/dma/sh/shdma.c
6 *
7 * Renesas SuperH DMA Engine support
8 *
9 * This is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * - DMA of SuperH does not have Hardware DMA chain mode.
15 * - max DMA size is 16MB.
16 *
17 */
18
19 #include <linux/dmaengine.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/platform_data/dma-rcar-hpbdma.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/shdma-base.h>
29 #include <linux/slab.h>
30
31 /* DMA channel registers */
32 #define HPB_DMAE_DSAR0 0x00
33 #define HPB_DMAE_DDAR0 0x04
34 #define HPB_DMAE_DTCR0 0x08
35 #define HPB_DMAE_DSAR1 0x0C
36 #define HPB_DMAE_DDAR1 0x10
37 #define HPB_DMAE_DTCR1 0x14
38 #define HPB_DMAE_DSASR 0x18
39 #define HPB_DMAE_DDASR 0x1C
40 #define HPB_DMAE_DTCSR 0x20
41 #define HPB_DMAE_DPTR 0x24
42 #define HPB_DMAE_DCR 0x28
43 #define HPB_DMAE_DCMDR 0x2C
44 #define HPB_DMAE_DSTPR 0x30
45 #define HPB_DMAE_DSTSR 0x34
46 #define HPB_DMAE_DDBGR 0x38
47 #define HPB_DMAE_DDBGR2 0x3C
48 #define HPB_DMAE_CHAN(n) (0x40 * (n))
49
50 /* DMA command register (DCMDR) bits */
51 #define HPB_DMAE_DCMDR_BDOUT BIT(7)
52 #define HPB_DMAE_DCMDR_DQSPD BIT(6)
53 #define HPB_DMAE_DCMDR_DQSPC BIT(5)
54 #define HPB_DMAE_DCMDR_DMSPD BIT(4)
55 #define HPB_DMAE_DCMDR_DMSPC BIT(3)
56 #define HPB_DMAE_DCMDR_DQEND BIT(2)
57 #define HPB_DMAE_DCMDR_DNXT BIT(1)
58 #define HPB_DMAE_DCMDR_DMEN BIT(0)
59
60 /* DMA forced stop register (DSTPR) bits */
61 #define HPB_DMAE_DSTPR_DMSTP BIT(0)
62
63 /* DMA status register (DSTSR) bits */
64 #define HPB_DMAE_DSTSR_DQSTS BIT(2)
65 #define HPB_DMAE_DSTSR_DMSTS BIT(0)
66
67 /* DMA common registers */
68 #define HPB_DMAE_DTIMR 0x00
69 #define HPB_DMAE_DINTSR0 0x0C
70 #define HPB_DMAE_DINTSR1 0x10
71 #define HPB_DMAE_DINTCR0 0x14
72 #define HPB_DMAE_DINTCR1 0x18
73 #define HPB_DMAE_DINTMR0 0x1C
74 #define HPB_DMAE_DINTMR1 0x20
75 #define HPB_DMAE_DACTSR0 0x24
76 #define HPB_DMAE_DACTSR1 0x28
77 #define HPB_DMAE_HSRSTR(n) (0x40 + (n) * 4)
78 #define HPB_DMAE_HPB_DMASPR(n) (0x140 + (n) * 4)
79 #define HPB_DMAE_HPB_DMLVLR0 0x160
80 #define HPB_DMAE_HPB_DMLVLR1 0x164
81 #define HPB_DMAE_HPB_DMSHPT0 0x168
82 #define HPB_DMAE_HPB_DMSHPT1 0x16C
83
84 #define HPB_DMA_SLAVE_NUMBER 256
85 #define HPB_DMA_TCR_MAX 0x01000000 /* 16 MiB */
86
87 struct hpb_dmae_chan {
88 struct shdma_chan shdma_chan;
89 int xfer_mode; /* DMA transfer mode */
90 #define XFER_SINGLE 1
91 #define XFER_DOUBLE 2
92 unsigned plane_idx; /* current DMA information set */
93 bool first_desc; /* first/next transfer */
94 int xmit_shift; /* log_2(bytes_per_xfer) */
95 void __iomem *base;
96 const struct hpb_dmae_slave_config *cfg;
97 char dev_id[16]; /* unique name per DMAC of channel */
98 dma_addr_t slave_addr;
99 };
100
101 struct hpb_dmae_device {
102 struct shdma_dev shdma_dev;
103 spinlock_t reg_lock; /* comm_reg operation lock */
104 struct hpb_dmae_pdata *pdata;
105 void __iomem *chan_reg;
106 void __iomem *comm_reg;
107 void __iomem *reset_reg;
108 void __iomem *mode_reg;
109 };
110
111 struct hpb_dmae_regs {
112 u32 sar; /* SAR / source address */
113 u32 dar; /* DAR / destination address */
114 u32 tcr; /* TCR / transfer count */
115 };
116
117 struct hpb_desc {
118 struct shdma_desc shdma_desc;
119 struct hpb_dmae_regs hw;
120 unsigned plane_idx;
121 };
122
123 #define to_chan(schan) container_of(schan, struct hpb_dmae_chan, shdma_chan)
124 #define to_desc(sdesc) container_of(sdesc, struct hpb_desc, shdma_desc)
125 #define to_dev(sc) container_of(sc->shdma_chan.dma_chan.device, \
126 struct hpb_dmae_device, shdma_dev.dma_dev)
127
ch_reg_write(struct hpb_dmae_chan * hpb_dc,u32 data,u32 reg)128 static void ch_reg_write(struct hpb_dmae_chan *hpb_dc, u32 data, u32 reg)
129 {
130 iowrite32(data, hpb_dc->base + reg);
131 }
132
ch_reg_read(struct hpb_dmae_chan * hpb_dc,u32 reg)133 static u32 ch_reg_read(struct hpb_dmae_chan *hpb_dc, u32 reg)
134 {
135 return ioread32(hpb_dc->base + reg);
136 }
137
dcmdr_write(struct hpb_dmae_device * hpbdev,u32 data)138 static void dcmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
139 {
140 iowrite32(data, hpbdev->chan_reg + HPB_DMAE_DCMDR);
141 }
142
hsrstr_write(struct hpb_dmae_device * hpbdev,u32 ch)143 static void hsrstr_write(struct hpb_dmae_device *hpbdev, u32 ch)
144 {
145 iowrite32(0x1, hpbdev->comm_reg + HPB_DMAE_HSRSTR(ch));
146 }
147
dintsr_read(struct hpb_dmae_device * hpbdev,u32 ch)148 static u32 dintsr_read(struct hpb_dmae_device *hpbdev, u32 ch)
149 {
150 u32 v;
151
152 if (ch < 32)
153 v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR0) >> ch;
154 else
155 v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR1) >> (ch - 32);
156 return v & 0x1;
157 }
158
dintcr_write(struct hpb_dmae_device * hpbdev,u32 ch)159 static void dintcr_write(struct hpb_dmae_device *hpbdev, u32 ch)
160 {
161 if (ch < 32)
162 iowrite32((0x1 << ch), hpbdev->comm_reg + HPB_DMAE_DINTCR0);
163 else
164 iowrite32((0x1 << (ch - 32)),
165 hpbdev->comm_reg + HPB_DMAE_DINTCR1);
166 }
167
asyncmdr_write(struct hpb_dmae_device * hpbdev,u32 data)168 static void asyncmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
169 {
170 iowrite32(data, hpbdev->mode_reg);
171 }
172
asyncmdr_read(struct hpb_dmae_device * hpbdev)173 static u32 asyncmdr_read(struct hpb_dmae_device *hpbdev)
174 {
175 return ioread32(hpbdev->mode_reg);
176 }
177
hpb_dmae_enable_int(struct hpb_dmae_device * hpbdev,u32 ch)178 static void hpb_dmae_enable_int(struct hpb_dmae_device *hpbdev, u32 ch)
179 {
180 u32 intreg;
181
182 spin_lock_irq(&hpbdev->reg_lock);
183 if (ch < 32) {
184 intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR0);
185 iowrite32(BIT(ch) | intreg,
186 hpbdev->comm_reg + HPB_DMAE_DINTMR0);
187 } else {
188 intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR1);
189 iowrite32(BIT(ch - 32) | intreg,
190 hpbdev->comm_reg + HPB_DMAE_DINTMR1);
191 }
192 spin_unlock_irq(&hpbdev->reg_lock);
193 }
194
hpb_dmae_async_reset(struct hpb_dmae_device * hpbdev,u32 data)195 static void hpb_dmae_async_reset(struct hpb_dmae_device *hpbdev, u32 data)
196 {
197 u32 rstr;
198 int timeout = 10000; /* 100 ms */
199
200 spin_lock(&hpbdev->reg_lock);
201 rstr = ioread32(hpbdev->reset_reg);
202 rstr |= data;
203 iowrite32(rstr, hpbdev->reset_reg);
204 do {
205 rstr = ioread32(hpbdev->reset_reg);
206 if ((rstr & data) == data)
207 break;
208 udelay(10);
209 } while (timeout--);
210
211 if (timeout < 0)
212 dev_err(hpbdev->shdma_dev.dma_dev.dev,
213 "%s timeout\n", __func__);
214
215 rstr &= ~data;
216 iowrite32(rstr, hpbdev->reset_reg);
217 spin_unlock(&hpbdev->reg_lock);
218 }
219
hpb_dmae_set_async_mode(struct hpb_dmae_device * hpbdev,u32 mask,u32 data)220 static void hpb_dmae_set_async_mode(struct hpb_dmae_device *hpbdev,
221 u32 mask, u32 data)
222 {
223 u32 mode;
224
225 spin_lock_irq(&hpbdev->reg_lock);
226 mode = asyncmdr_read(hpbdev);
227 mode &= ~mask;
228 mode |= data;
229 asyncmdr_write(hpbdev, mode);
230 spin_unlock_irq(&hpbdev->reg_lock);
231 }
232
hpb_dmae_ctl_stop(struct hpb_dmae_device * hpbdev)233 static void hpb_dmae_ctl_stop(struct hpb_dmae_device *hpbdev)
234 {
235 dcmdr_write(hpbdev, HPB_DMAE_DCMDR_DQSPD);
236 }
237
hpb_dmae_reset(struct hpb_dmae_device * hpbdev)238 static void hpb_dmae_reset(struct hpb_dmae_device *hpbdev)
239 {
240 u32 ch;
241
242 for (ch = 0; ch < hpbdev->pdata->num_hw_channels; ch++)
243 hsrstr_write(hpbdev, ch);
244 }
245
calc_xmit_shift(struct hpb_dmae_chan * hpb_chan)246 static unsigned int calc_xmit_shift(struct hpb_dmae_chan *hpb_chan)
247 {
248 struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
249 struct hpb_dmae_pdata *pdata = hpbdev->pdata;
250 int width = ch_reg_read(hpb_chan, HPB_DMAE_DCR);
251 int i;
252
253 switch (width & (HPB_DMAE_DCR_SPDS_MASK | HPB_DMAE_DCR_DPDS_MASK)) {
254 case HPB_DMAE_DCR_SPDS_8BIT | HPB_DMAE_DCR_DPDS_8BIT:
255 default:
256 i = XMIT_SZ_8BIT;
257 break;
258 case HPB_DMAE_DCR_SPDS_16BIT | HPB_DMAE_DCR_DPDS_16BIT:
259 i = XMIT_SZ_16BIT;
260 break;
261 case HPB_DMAE_DCR_SPDS_32BIT | HPB_DMAE_DCR_DPDS_32BIT:
262 i = XMIT_SZ_32BIT;
263 break;
264 }
265 return pdata->ts_shift[i];
266 }
267
hpb_dmae_set_reg(struct hpb_dmae_chan * hpb_chan,struct hpb_dmae_regs * hw,unsigned plane)268 static void hpb_dmae_set_reg(struct hpb_dmae_chan *hpb_chan,
269 struct hpb_dmae_regs *hw, unsigned plane)
270 {
271 ch_reg_write(hpb_chan, hw->sar,
272 plane ? HPB_DMAE_DSAR1 : HPB_DMAE_DSAR0);
273 ch_reg_write(hpb_chan, hw->dar,
274 plane ? HPB_DMAE_DDAR1 : HPB_DMAE_DDAR0);
275 ch_reg_write(hpb_chan, hw->tcr >> hpb_chan->xmit_shift,
276 plane ? HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
277 }
278
hpb_dmae_start(struct hpb_dmae_chan * hpb_chan,bool next)279 static void hpb_dmae_start(struct hpb_dmae_chan *hpb_chan, bool next)
280 {
281 ch_reg_write(hpb_chan, (next ? HPB_DMAE_DCMDR_DNXT : 0) |
282 HPB_DMAE_DCMDR_DMEN, HPB_DMAE_DCMDR);
283 }
284
hpb_dmae_halt(struct shdma_chan * schan)285 static void hpb_dmae_halt(struct shdma_chan *schan)
286 {
287 struct hpb_dmae_chan *chan = to_chan(schan);
288
289 ch_reg_write(chan, HPB_DMAE_DCMDR_DQEND, HPB_DMAE_DCMDR);
290 ch_reg_write(chan, HPB_DMAE_DSTPR_DMSTP, HPB_DMAE_DSTPR);
291
292 chan->plane_idx = 0;
293 chan->first_desc = true;
294 }
295
296 static const struct hpb_dmae_slave_config *
hpb_dmae_find_slave(struct hpb_dmae_chan * hpb_chan,int slave_id)297 hpb_dmae_find_slave(struct hpb_dmae_chan *hpb_chan, int slave_id)
298 {
299 struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
300 struct hpb_dmae_pdata *pdata = hpbdev->pdata;
301 int i;
302
303 if (slave_id >= HPB_DMA_SLAVE_NUMBER)
304 return NULL;
305
306 for (i = 0; i < pdata->num_slaves; i++)
307 if (pdata->slaves[i].id == slave_id)
308 return pdata->slaves + i;
309
310 return NULL;
311 }
312
hpb_dmae_start_xfer(struct shdma_chan * schan,struct shdma_desc * sdesc)313 static void hpb_dmae_start_xfer(struct shdma_chan *schan,
314 struct shdma_desc *sdesc)
315 {
316 struct hpb_dmae_chan *chan = to_chan(schan);
317 struct hpb_dmae_device *hpbdev = to_dev(chan);
318 struct hpb_desc *desc = to_desc(sdesc);
319
320 if (chan->cfg->flags & HPB_DMAE_SET_ASYNC_RESET)
321 hpb_dmae_async_reset(hpbdev, chan->cfg->rstr);
322
323 desc->plane_idx = chan->plane_idx;
324 hpb_dmae_set_reg(chan, &desc->hw, chan->plane_idx);
325 hpb_dmae_start(chan, !chan->first_desc);
326
327 if (chan->xfer_mode == XFER_DOUBLE) {
328 chan->plane_idx ^= 1;
329 chan->first_desc = false;
330 }
331 }
332
hpb_dmae_desc_completed(struct shdma_chan * schan,struct shdma_desc * sdesc)333 static bool hpb_dmae_desc_completed(struct shdma_chan *schan,
334 struct shdma_desc *sdesc)
335 {
336 /*
337 * This is correct since we always have at most single
338 * outstanding DMA transfer per channel, and by the time
339 * we get completion interrupt the transfer is completed.
340 * This will change if we ever use alternating DMA
341 * information sets and submit two descriptors at once.
342 */
343 return true;
344 }
345
hpb_dmae_chan_irq(struct shdma_chan * schan,int irq)346 static bool hpb_dmae_chan_irq(struct shdma_chan *schan, int irq)
347 {
348 struct hpb_dmae_chan *chan = to_chan(schan);
349 struct hpb_dmae_device *hpbdev = to_dev(chan);
350 int ch = chan->cfg->dma_ch;
351
352 /* Check Complete DMA Transfer */
353 if (dintsr_read(hpbdev, ch)) {
354 /* Clear Interrupt status */
355 dintcr_write(hpbdev, ch);
356 return true;
357 }
358 return false;
359 }
360
hpb_dmae_desc_setup(struct shdma_chan * schan,struct shdma_desc * sdesc,dma_addr_t src,dma_addr_t dst,size_t * len)361 static int hpb_dmae_desc_setup(struct shdma_chan *schan,
362 struct shdma_desc *sdesc,
363 dma_addr_t src, dma_addr_t dst, size_t *len)
364 {
365 struct hpb_desc *desc = to_desc(sdesc);
366
367 if (*len > (size_t)HPB_DMA_TCR_MAX)
368 *len = (size_t)HPB_DMA_TCR_MAX;
369
370 desc->hw.sar = src;
371 desc->hw.dar = dst;
372 desc->hw.tcr = *len;
373
374 return 0;
375 }
376
hpb_dmae_get_partial(struct shdma_chan * schan,struct shdma_desc * sdesc)377 static size_t hpb_dmae_get_partial(struct shdma_chan *schan,
378 struct shdma_desc *sdesc)
379 {
380 struct hpb_desc *desc = to_desc(sdesc);
381 struct hpb_dmae_chan *chan = to_chan(schan);
382 u32 tcr = ch_reg_read(chan, desc->plane_idx ?
383 HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
384
385 return (desc->hw.tcr - tcr) << chan->xmit_shift;
386 }
387
hpb_dmae_channel_busy(struct shdma_chan * schan)388 static bool hpb_dmae_channel_busy(struct shdma_chan *schan)
389 {
390 struct hpb_dmae_chan *chan = to_chan(schan);
391 u32 dstsr = ch_reg_read(chan, HPB_DMAE_DSTSR);
392
393 if (chan->xfer_mode == XFER_DOUBLE)
394 return dstsr & HPB_DMAE_DSTSR_DQSTS;
395 else
396 return dstsr & HPB_DMAE_DSTSR_DMSTS;
397 }
398
399 static int
hpb_dmae_alloc_chan_resources(struct hpb_dmae_chan * hpb_chan,const struct hpb_dmae_slave_config * cfg)400 hpb_dmae_alloc_chan_resources(struct hpb_dmae_chan *hpb_chan,
401 const struct hpb_dmae_slave_config *cfg)
402 {
403 struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
404 struct hpb_dmae_pdata *pdata = hpbdev->pdata;
405 const struct hpb_dmae_channel *channel = pdata->channels;
406 int slave_id = cfg->id;
407 int i, err;
408
409 for (i = 0; i < pdata->num_channels; i++, channel++) {
410 if (channel->s_id == slave_id) {
411 struct device *dev = hpb_chan->shdma_chan.dev;
412
413 hpb_chan->base = hpbdev->chan_reg +
414 HPB_DMAE_CHAN(cfg->dma_ch);
415
416 dev_dbg(dev, "Detected Slave device\n");
417 dev_dbg(dev, " -- slave_id : 0x%x\n", slave_id);
418 dev_dbg(dev, " -- cfg->dma_ch : %d\n", cfg->dma_ch);
419 dev_dbg(dev, " -- channel->ch_irq: %d\n",
420 channel->ch_irq);
421 break;
422 }
423 }
424
425 err = shdma_request_irq(&hpb_chan->shdma_chan, channel->ch_irq,
426 IRQF_SHARED, hpb_chan->dev_id);
427 if (err) {
428 dev_err(hpb_chan->shdma_chan.dev,
429 "DMA channel request_irq %d failed with error %d\n",
430 channel->ch_irq, err);
431 return err;
432 }
433
434 hpb_chan->plane_idx = 0;
435 hpb_chan->first_desc = true;
436
437 if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) == 0) {
438 hpb_chan->xfer_mode = XFER_SINGLE;
439 } else if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) ==
440 (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) {
441 hpb_chan->xfer_mode = XFER_DOUBLE;
442 } else {
443 dev_err(hpb_chan->shdma_chan.dev, "DCR setting error");
444 return -EINVAL;
445 }
446
447 if (cfg->flags & HPB_DMAE_SET_ASYNC_MODE)
448 hpb_dmae_set_async_mode(hpbdev, cfg->mdm, cfg->mdr);
449 ch_reg_write(hpb_chan, cfg->dcr, HPB_DMAE_DCR);
450 ch_reg_write(hpb_chan, cfg->port, HPB_DMAE_DPTR);
451 hpb_chan->xmit_shift = calc_xmit_shift(hpb_chan);
452 hpb_dmae_enable_int(hpbdev, cfg->dma_ch);
453
454 return 0;
455 }
456
hpb_dmae_set_slave(struct shdma_chan * schan,int slave_id,dma_addr_t slave_addr,bool try)457 static int hpb_dmae_set_slave(struct shdma_chan *schan, int slave_id,
458 dma_addr_t slave_addr, bool try)
459 {
460 struct hpb_dmae_chan *chan = to_chan(schan);
461 const struct hpb_dmae_slave_config *sc =
462 hpb_dmae_find_slave(chan, slave_id);
463
464 if (!sc)
465 return -ENODEV;
466 if (try)
467 return 0;
468 chan->cfg = sc;
469 chan->slave_addr = slave_addr ? : sc->addr;
470 return hpb_dmae_alloc_chan_resources(chan, sc);
471 }
472
hpb_dmae_setup_xfer(struct shdma_chan * schan,int slave_id)473 static void hpb_dmae_setup_xfer(struct shdma_chan *schan, int slave_id)
474 {
475 }
476
hpb_dmae_slave_addr(struct shdma_chan * schan)477 static dma_addr_t hpb_dmae_slave_addr(struct shdma_chan *schan)
478 {
479 struct hpb_dmae_chan *chan = to_chan(schan);
480
481 return chan->slave_addr;
482 }
483
hpb_dmae_embedded_desc(void * buf,int i)484 static struct shdma_desc *hpb_dmae_embedded_desc(void *buf, int i)
485 {
486 return &((struct hpb_desc *)buf)[i].shdma_desc;
487 }
488
489 static const struct shdma_ops hpb_dmae_ops = {
490 .desc_completed = hpb_dmae_desc_completed,
491 .halt_channel = hpb_dmae_halt,
492 .channel_busy = hpb_dmae_channel_busy,
493 .slave_addr = hpb_dmae_slave_addr,
494 .desc_setup = hpb_dmae_desc_setup,
495 .set_slave = hpb_dmae_set_slave,
496 .setup_xfer = hpb_dmae_setup_xfer,
497 .start_xfer = hpb_dmae_start_xfer,
498 .embedded_desc = hpb_dmae_embedded_desc,
499 .chan_irq = hpb_dmae_chan_irq,
500 .get_partial = hpb_dmae_get_partial,
501 };
502
hpb_dmae_chan_probe(struct hpb_dmae_device * hpbdev,int id)503 static int hpb_dmae_chan_probe(struct hpb_dmae_device *hpbdev, int id)
504 {
505 struct shdma_dev *sdev = &hpbdev->shdma_dev;
506 struct platform_device *pdev =
507 to_platform_device(hpbdev->shdma_dev.dma_dev.dev);
508 struct hpb_dmae_chan *new_hpb_chan;
509 struct shdma_chan *schan;
510
511 /* Alloc channel */
512 new_hpb_chan = devm_kzalloc(&pdev->dev,
513 sizeof(struct hpb_dmae_chan), GFP_KERNEL);
514 if (!new_hpb_chan) {
515 dev_err(hpbdev->shdma_dev.dma_dev.dev,
516 "No free memory for allocating DMA channels!\n");
517 return -ENOMEM;
518 }
519
520 schan = &new_hpb_chan->shdma_chan;
521 schan->max_xfer_len = HPB_DMA_TCR_MAX;
522
523 shdma_chan_probe(sdev, schan, id);
524
525 if (pdev->id >= 0)
526 snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
527 "hpb-dmae%d.%d", pdev->id, id);
528 else
529 snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
530 "hpb-dma.%d", id);
531
532 return 0;
533 }
534
hpb_dmae_probe(struct platform_device * pdev)535 static int hpb_dmae_probe(struct platform_device *pdev)
536 {
537 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
538 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES;
539 struct hpb_dmae_pdata *pdata = pdev->dev.platform_data;
540 struct hpb_dmae_device *hpbdev;
541 struct dma_device *dma_dev;
542 struct resource *chan, *comm, *rest, *mode, *irq_res;
543 int err, i;
544
545 /* Get platform data */
546 if (!pdata || !pdata->num_channels)
547 return -ENODEV;
548
549 chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
550 comm = platform_get_resource(pdev, IORESOURCE_MEM, 1);
551 rest = platform_get_resource(pdev, IORESOURCE_MEM, 2);
552 mode = platform_get_resource(pdev, IORESOURCE_MEM, 3);
553
554 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
555 if (!irq_res)
556 return -ENODEV;
557
558 hpbdev = devm_kzalloc(&pdev->dev, sizeof(struct hpb_dmae_device),
559 GFP_KERNEL);
560 if (!hpbdev) {
561 dev_err(&pdev->dev, "Not enough memory\n");
562 return -ENOMEM;
563 }
564
565 hpbdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan);
566 if (IS_ERR(hpbdev->chan_reg))
567 return PTR_ERR(hpbdev->chan_reg);
568
569 hpbdev->comm_reg = devm_ioremap_resource(&pdev->dev, comm);
570 if (IS_ERR(hpbdev->comm_reg))
571 return PTR_ERR(hpbdev->comm_reg);
572
573 hpbdev->reset_reg = devm_ioremap_resource(&pdev->dev, rest);
574 if (IS_ERR(hpbdev->reset_reg))
575 return PTR_ERR(hpbdev->reset_reg);
576
577 hpbdev->mode_reg = devm_ioremap_resource(&pdev->dev, mode);
578 if (IS_ERR(hpbdev->mode_reg))
579 return PTR_ERR(hpbdev->mode_reg);
580
581 dma_dev = &hpbdev->shdma_dev.dma_dev;
582
583 spin_lock_init(&hpbdev->reg_lock);
584
585 /* Platform data */
586 hpbdev->pdata = pdata;
587
588 pm_runtime_enable(&pdev->dev);
589 err = pm_runtime_get_sync(&pdev->dev);
590 if (err < 0)
591 dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err);
592
593 /* Reset DMA controller */
594 hpb_dmae_reset(hpbdev);
595
596 pm_runtime_put(&pdev->dev);
597
598 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
599 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
600 dma_dev->src_addr_widths = widths;
601 dma_dev->dst_addr_widths = widths;
602 dma_dev->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
603 dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
604
605 hpbdev->shdma_dev.ops = &hpb_dmae_ops;
606 hpbdev->shdma_dev.desc_size = sizeof(struct hpb_desc);
607 err = shdma_init(&pdev->dev, &hpbdev->shdma_dev, pdata->num_channels);
608 if (err < 0)
609 goto error;
610
611 /* Create DMA channels */
612 for (i = 0; i < pdata->num_channels; i++)
613 hpb_dmae_chan_probe(hpbdev, i);
614
615 platform_set_drvdata(pdev, hpbdev);
616 err = dma_async_device_register(dma_dev);
617 if (!err)
618 return 0;
619
620 shdma_cleanup(&hpbdev->shdma_dev);
621 error:
622 pm_runtime_disable(&pdev->dev);
623 return err;
624 }
625
hpb_dmae_chan_remove(struct hpb_dmae_device * hpbdev)626 static void hpb_dmae_chan_remove(struct hpb_dmae_device *hpbdev)
627 {
628 struct shdma_chan *schan;
629 int i;
630
631 shdma_for_each_chan(schan, &hpbdev->shdma_dev, i) {
632 BUG_ON(!schan);
633
634 shdma_chan_remove(schan);
635 }
636 }
637
hpb_dmae_remove(struct platform_device * pdev)638 static int hpb_dmae_remove(struct platform_device *pdev)
639 {
640 struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
641
642 dma_async_device_unregister(&hpbdev->shdma_dev.dma_dev);
643
644 pm_runtime_disable(&pdev->dev);
645
646 hpb_dmae_chan_remove(hpbdev);
647
648 return 0;
649 }
650
hpb_dmae_shutdown(struct platform_device * pdev)651 static void hpb_dmae_shutdown(struct platform_device *pdev)
652 {
653 struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
654 hpb_dmae_ctl_stop(hpbdev);
655 }
656
657 static struct platform_driver hpb_dmae_driver = {
658 .probe = hpb_dmae_probe,
659 .remove = hpb_dmae_remove,
660 .shutdown = hpb_dmae_shutdown,
661 .driver = {
662 .name = "hpb-dma-engine",
663 },
664 };
665 module_platform_driver(hpb_dmae_driver);
666
667 MODULE_AUTHOR("Max Filippov <max.filippov@cogentembedded.com>");
668 MODULE_DESCRIPTION("Renesas HPB DMA Engine driver");
669 MODULE_LICENSE("GPL");
670