• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * EFI stub implementation that is shared by arm and arm64 architectures.
3  * This should be #included by the EFI stub implementation files.
4  *
5  * Copyright (C) 2013,2014 Linaro Limited
6  *     Roy Franz <roy.franz@linaro.org
7  * Copyright (C) 2013 Red Hat, Inc.
8  *     Mark Salter <msalter@redhat.com>
9  *
10  * This file is part of the Linux kernel, and is made available under the
11  * terms of the GNU General Public License version 2.
12  *
13  */
14 
15 #include <linux/efi.h>
16 #include <linux/sort.h>
17 #include <asm/efi.h>
18 
19 #include "efistub.h"
20 
efi_secureboot_enabled(efi_system_table_t * sys_table_arg)21 static int efi_secureboot_enabled(efi_system_table_t *sys_table_arg)
22 {
23 	static efi_guid_t const var_guid = EFI_GLOBAL_VARIABLE_GUID;
24 	static efi_char16_t const var_name[] = {
25 		'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
26 
27 	efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
28 	unsigned long size = sizeof(u8);
29 	efi_status_t status;
30 	u8 val;
31 
32 	status = f_getvar((efi_char16_t *)var_name, (efi_guid_t *)&var_guid,
33 			  NULL, &size, &val);
34 
35 	switch (status) {
36 	case EFI_SUCCESS:
37 		return val;
38 	case EFI_NOT_FOUND:
39 		return 0;
40 	default:
41 		return 1;
42 	}
43 }
44 
efi_open_volume(efi_system_table_t * sys_table_arg,void * __image,void ** __fh)45 efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
46 			     void *__image, void **__fh)
47 {
48 	efi_file_io_interface_t *io;
49 	efi_loaded_image_t *image = __image;
50 	efi_file_handle_t *fh;
51 	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
52 	efi_status_t status;
53 	void *handle = (void *)(unsigned long)image->device_handle;
54 
55 	status = sys_table_arg->boottime->handle_protocol(handle,
56 				 &fs_proto, (void **)&io);
57 	if (status != EFI_SUCCESS) {
58 		efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
59 		return status;
60 	}
61 
62 	status = io->open_volume(io, &fh);
63 	if (status != EFI_SUCCESS)
64 		efi_printk(sys_table_arg, "Failed to open volume\n");
65 
66 	*__fh = fh;
67 	return status;
68 }
69 
efi_file_close(void * handle)70 efi_status_t efi_file_close(void *handle)
71 {
72 	efi_file_handle_t *fh = handle;
73 
74 	return fh->close(handle);
75 }
76 
77 efi_status_t
efi_file_read(void * handle,unsigned long * size,void * addr)78 efi_file_read(void *handle, unsigned long *size, void *addr)
79 {
80 	efi_file_handle_t *fh = handle;
81 
82 	return fh->read(handle, size, addr);
83 }
84 
85 
86 efi_status_t
efi_file_size(efi_system_table_t * sys_table_arg,void * __fh,efi_char16_t * filename_16,void ** handle,u64 * file_sz)87 efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
88 	      efi_char16_t *filename_16, void **handle, u64 *file_sz)
89 {
90 	efi_file_handle_t *h, *fh = __fh;
91 	efi_file_info_t *info;
92 	efi_status_t status;
93 	efi_guid_t info_guid = EFI_FILE_INFO_ID;
94 	unsigned long info_sz;
95 
96 	status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0);
97 	if (status != EFI_SUCCESS) {
98 		efi_printk(sys_table_arg, "Failed to open file: ");
99 		efi_char16_printk(sys_table_arg, filename_16);
100 		efi_printk(sys_table_arg, "\n");
101 		return status;
102 	}
103 
104 	*handle = h;
105 
106 	info_sz = 0;
107 	status = h->get_info(h, &info_guid, &info_sz, NULL);
108 	if (status != EFI_BUFFER_TOO_SMALL) {
109 		efi_printk(sys_table_arg, "Failed to get file info size\n");
110 		return status;
111 	}
112 
113 grow:
114 	status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA,
115 				 info_sz, (void **)&info);
116 	if (status != EFI_SUCCESS) {
117 		efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
118 		return status;
119 	}
120 
121 	status = h->get_info(h, &info_guid, &info_sz,
122 						   info);
123 	if (status == EFI_BUFFER_TOO_SMALL) {
124 		sys_table_arg->boottime->free_pool(info);
125 		goto grow;
126 	}
127 
128 	*file_sz = info->file_size;
129 	sys_table_arg->boottime->free_pool(info);
130 
131 	if (status != EFI_SUCCESS)
132 		efi_printk(sys_table_arg, "Failed to get initrd info\n");
133 
134 	return status;
135 }
136 
137 
138 
efi_char16_printk(efi_system_table_t * sys_table_arg,efi_char16_t * str)139 void efi_char16_printk(efi_system_table_t *sys_table_arg,
140 			      efi_char16_t *str)
141 {
142 	struct efi_simple_text_output_protocol *out;
143 
144 	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
145 	out->output_string(out, str);
146 }
147 
148 
149 /*
150  * This function handles the architcture specific differences between arm and
151  * arm64 regarding where the kernel image must be loaded and any memory that
152  * must be reserved. On failure it is required to free all
153  * all allocations it has made.
154  */
155 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
156 				 unsigned long *image_addr,
157 				 unsigned long *image_size,
158 				 unsigned long *reserve_addr,
159 				 unsigned long *reserve_size,
160 				 unsigned long dram_base,
161 				 efi_loaded_image_t *image);
162 /*
163  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
164  * that is described in the PE/COFF header.  Most of the code is the same
165  * for both archictectures, with the arch-specific code provided in the
166  * handle_kernel_image() function.
167  */
efi_entry(void * handle,efi_system_table_t * sys_table,unsigned long * image_addr)168 unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
169 			       unsigned long *image_addr)
170 {
171 	efi_loaded_image_t *image;
172 	efi_status_t status;
173 	unsigned long image_size = 0;
174 	unsigned long dram_base;
175 	/* addr/point and size pairs for memory management*/
176 	unsigned long initrd_addr;
177 	u64 initrd_size = 0;
178 	unsigned long fdt_addr = 0;  /* Original DTB */
179 	unsigned long fdt_size = 0;
180 	char *cmdline_ptr = NULL;
181 	int cmdline_size = 0;
182 	unsigned long new_fdt_addr;
183 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
184 	unsigned long reserve_addr = 0;
185 	unsigned long reserve_size = 0;
186 
187 	/* Check if we were booted by the EFI firmware */
188 	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
189 		goto fail;
190 
191 	pr_efi(sys_table, "Booting Linux Kernel...\n");
192 
193 	/*
194 	 * Get a handle to the loaded image protocol.  This is used to get
195 	 * information about the running image, such as size and the command
196 	 * line.
197 	 */
198 	status = sys_table->boottime->handle_protocol(handle,
199 					&loaded_image_proto, (void *)&image);
200 	if (status != EFI_SUCCESS) {
201 		pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
202 		goto fail;
203 	}
204 
205 	dram_base = get_dram_base(sys_table);
206 	if (dram_base == EFI_ERROR) {
207 		pr_efi_err(sys_table, "Failed to find DRAM base\n");
208 		goto fail;
209 	}
210 
211 	/*
212 	 * Get the command line from EFI, using the LOADED_IMAGE
213 	 * protocol. We are going to copy the command line into the
214 	 * device tree, so this can be allocated anywhere.
215 	 */
216 	cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
217 	if (!cmdline_ptr) {
218 		pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
219 		goto fail;
220 	}
221 
222 	status = handle_kernel_image(sys_table, image_addr, &image_size,
223 				     &reserve_addr,
224 				     &reserve_size,
225 				     dram_base, image);
226 	if (status != EFI_SUCCESS) {
227 		pr_efi_err(sys_table, "Failed to relocate kernel\n");
228 		goto fail_free_cmdline;
229 	}
230 
231 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
232 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
233 	    cmdline_size == 0)
234 		efi_parse_options(CONFIG_CMDLINE);
235 
236 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
237 		efi_parse_options(cmdline_ptr);
238 
239 	/*
240 	 * Unauthenticated device tree data is a security hazard, so
241 	 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
242 	 */
243 	if (efi_secureboot_enabled(sys_table)) {
244 		pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
245 	} else {
246 		status = handle_cmdline_files(sys_table, image, cmdline_ptr,
247 					      "dtb=",
248 					      ~0UL, &fdt_addr, &fdt_size);
249 
250 		if (status != EFI_SUCCESS) {
251 			pr_efi_err(sys_table, "Failed to load device tree!\n");
252 			goto fail_free_image;
253 		}
254 	}
255 
256 	if (fdt_addr) {
257 		pr_efi(sys_table, "Using DTB from command line\n");
258 	} else {
259 		/* Look for a device tree configuration table entry. */
260 		fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
261 		if (fdt_addr)
262 			pr_efi(sys_table, "Using DTB from configuration table\n");
263 	}
264 
265 	if (!fdt_addr)
266 		pr_efi(sys_table, "Generating empty DTB\n");
267 
268 	status = handle_cmdline_files(sys_table, image, cmdline_ptr,
269 				      "initrd=", dram_base + SZ_512M,
270 				      (unsigned long *)&initrd_addr,
271 				      (unsigned long *)&initrd_size);
272 	if (status != EFI_SUCCESS)
273 		pr_efi_err(sys_table, "Failed initrd from command line!\n");
274 
275 	new_fdt_addr = fdt_addr;
276 	status = allocate_new_fdt_and_exit_boot(sys_table, handle,
277 				&new_fdt_addr, dram_base + MAX_FDT_OFFSET,
278 				initrd_addr, initrd_size, cmdline_ptr,
279 				fdt_addr, fdt_size);
280 
281 	/*
282 	 * If all went well, we need to return the FDT address to the
283 	 * calling function so it can be passed to kernel as part of
284 	 * the kernel boot protocol.
285 	 */
286 	if (status == EFI_SUCCESS)
287 		return new_fdt_addr;
288 
289 	pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
290 
291 	efi_free(sys_table, initrd_size, initrd_addr);
292 	efi_free(sys_table, fdt_size, fdt_addr);
293 
294 fail_free_image:
295 	efi_free(sys_table, image_size, *image_addr);
296 	efi_free(sys_table, reserve_size, reserve_addr);
297 fail_free_cmdline:
298 	efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
299 fail:
300 	return EFI_ERROR;
301 }
302 
303 /*
304  * This is the base address at which to start allocating virtual memory ranges
305  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
306  * any allocation we choose, and eliminate the risk of a conflict after kexec.
307  * The value chosen is the largest non-zero power of 2 suitable for this purpose
308  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
309  * be mapped efficiently.
310  */
311 #define EFI_RT_VIRTUAL_BASE	0x40000000
312 
cmp_mem_desc(const void * l,const void * r)313 static int cmp_mem_desc(const void *l, const void *r)
314 {
315 	const efi_memory_desc_t *left = l, *right = r;
316 
317 	return (left->phys_addr > right->phys_addr) ? 1 : -1;
318 }
319 
320 /*
321  * Returns whether region @left ends exactly where region @right starts,
322  * or false if either argument is NULL.
323  */
regions_are_adjacent(efi_memory_desc_t * left,efi_memory_desc_t * right)324 static bool regions_are_adjacent(efi_memory_desc_t *left,
325 				 efi_memory_desc_t *right)
326 {
327 	u64 left_end;
328 
329 	if (left == NULL || right == NULL)
330 		return false;
331 
332 	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
333 
334 	return left_end == right->phys_addr;
335 }
336 
337 /*
338  * Returns whether region @left and region @right have compatible memory type
339  * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
340  */
regions_have_compatible_memory_type_attrs(efi_memory_desc_t * left,efi_memory_desc_t * right)341 static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
342 						      efi_memory_desc_t *right)
343 {
344 	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
345 					 EFI_MEMORY_WC | EFI_MEMORY_UC |
346 					 EFI_MEMORY_RUNTIME;
347 
348 	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
349 }
350 
351 /*
352  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
353  *
354  * This function populates the virt_addr fields of all memory region descriptors
355  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
356  * are also copied to @runtime_map, and their total count is returned in @count.
357  */
efi_get_virtmap(efi_memory_desc_t * memory_map,unsigned long map_size,unsigned long desc_size,efi_memory_desc_t * runtime_map,int * count)358 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
359 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
360 		     int *count)
361 {
362 	u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
363 	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
364 	int l;
365 
366 	/*
367 	 * To work around potential issues with the Properties Table feature
368 	 * introduced in UEFI 2.5, which may split PE/COFF executable images
369 	 * in memory into several RuntimeServicesCode and RuntimeServicesData
370 	 * regions, we need to preserve the relative offsets between adjacent
371 	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
372 	 * The easiest way to find adjacent regions is to sort the memory map
373 	 * before traversing it.
374 	 */
375 	sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);
376 
377 	for (l = 0; l < map_size; l += desc_size, prev = in) {
378 		u64 paddr, size;
379 
380 		in = (void *)memory_map + l;
381 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
382 			continue;
383 
384 		paddr = in->phys_addr;
385 		size = in->num_pages * EFI_PAGE_SIZE;
386 
387 		/*
388 		 * Make the mapping compatible with 64k pages: this allows
389 		 * a 4k page size kernel to kexec a 64k page size kernel and
390 		 * vice versa.
391 		 */
392 		if (!regions_are_adjacent(prev, in) ||
393 		    !regions_have_compatible_memory_type_attrs(prev, in)) {
394 
395 			paddr = round_down(in->phys_addr, SZ_64K);
396 			size += in->phys_addr - paddr;
397 
398 			/*
399 			 * Avoid wasting memory on PTEs by choosing a virtual
400 			 * base that is compatible with section mappings if this
401 			 * region has the appropriate size and physical
402 			 * alignment. (Sections are 2 MB on 4k granule kernels)
403 			 */
404 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
405 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
406 			else
407 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
408 		}
409 
410 		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
411 		efi_virt_base += size;
412 
413 		memcpy(out, in, desc_size);
414 		out = (void *)out + desc_size;
415 		++*count;
416 	}
417 }
418