• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2011 Intel Corporation; author Matt Fleming
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * Some firmware implementations have problems reading files in one go.
20  * A read chunk size of 1MB seems to work for most platforms.
21  *
22  * Unfortunately, reading files in chunks triggers *other* bugs on some
23  * platforms, so we provide a way to disable this workaround, which can
24  * be done by passing "efi=nochunk" on the EFI boot stub command line.
25  *
26  * If you experience issues with initrd images being corrupt it's worth
27  * trying efi=nochunk, but chunking is enabled by default because there
28  * are far more machines that require the workaround than those that
29  * break with it enabled.
30  */
31 #define EFI_READ_CHUNK_SIZE	(1024 * 1024)
32 
33 static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
34 
35 /*
36  * Allow the platform to override the allocation granularity: this allows
37  * systems that have the capability to run with a larger page size to deal
38  * with the allocations for initrd and fdt more efficiently.
39  */
40 #ifndef EFI_ALLOC_ALIGN
41 #define EFI_ALLOC_ALIGN		EFI_PAGE_SIZE
42 #endif
43 
44 static int __section(.data) __nokaslr;
45 
nokaslr(void)46 int __pure nokaslr(void)
47 {
48 	return __nokaslr;
49 }
50 
51 struct file_info {
52 	efi_file_handle_t *handle;
53 	u64 size;
54 };
55 
efi_printk(efi_system_table_t * sys_table_arg,char * str)56 void efi_printk(efi_system_table_t *sys_table_arg, char *str)
57 {
58 	char *s8;
59 
60 	for (s8 = str; *s8; s8++) {
61 		efi_char16_t ch[2] = { 0 };
62 
63 		ch[0] = *s8;
64 		if (*s8 == '\n') {
65 			efi_char16_t nl[2] = { '\r', 0 };
66 			efi_char16_printk(sys_table_arg, nl);
67 		}
68 
69 		efi_char16_printk(sys_table_arg, ch);
70 	}
71 }
72 
efi_get_memory_map(efi_system_table_t * sys_table_arg,efi_memory_desc_t ** map,unsigned long * map_size,unsigned long * desc_size,u32 * desc_ver,unsigned long * key_ptr)73 efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
74 				efi_memory_desc_t **map,
75 				unsigned long *map_size,
76 				unsigned long *desc_size,
77 				u32 *desc_ver,
78 				unsigned long *key_ptr)
79 {
80 	efi_memory_desc_t *m = NULL;
81 	efi_status_t status;
82 	unsigned long key;
83 	u32 desc_version;
84 
85 	*map_size = sizeof(*m) * 32;
86 again:
87 	/*
88 	 * Add an additional efi_memory_desc_t because we're doing an
89 	 * allocation which may be in a new descriptor region.
90 	 */
91 	*map_size += sizeof(*m);
92 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
93 				*map_size, (void **)&m);
94 	if (status != EFI_SUCCESS)
95 		goto fail;
96 
97 	*desc_size = 0;
98 	key = 0;
99 	status = efi_call_early(get_memory_map, map_size, m,
100 				&key, desc_size, &desc_version);
101 	if (status == EFI_BUFFER_TOO_SMALL) {
102 		efi_call_early(free_pool, m);
103 		goto again;
104 	}
105 
106 	if (status != EFI_SUCCESS)
107 		efi_call_early(free_pool, m);
108 
109 	if (key_ptr && status == EFI_SUCCESS)
110 		*key_ptr = key;
111 	if (desc_ver && status == EFI_SUCCESS)
112 		*desc_ver = desc_version;
113 
114 fail:
115 	*map = m;
116 	return status;
117 }
118 
119 
get_dram_base(efi_system_table_t * sys_table_arg)120 unsigned long get_dram_base(efi_system_table_t *sys_table_arg)
121 {
122 	efi_status_t status;
123 	unsigned long map_size;
124 	unsigned long membase  = EFI_ERROR;
125 	struct efi_memory_map map;
126 	efi_memory_desc_t *md;
127 
128 	status = efi_get_memory_map(sys_table_arg, (efi_memory_desc_t **)&map.map,
129 				    &map_size, &map.desc_size, NULL, NULL);
130 	if (status != EFI_SUCCESS)
131 		return membase;
132 
133 	map.map_end = map.map + map_size;
134 
135 	for_each_efi_memory_desc(&map, md)
136 		if (md->attribute & EFI_MEMORY_WB)
137 			if (membase > md->phys_addr)
138 				membase = md->phys_addr;
139 
140 	efi_call_early(free_pool, map.map);
141 
142 	return membase;
143 }
144 
145 /*
146  * Allocate at the highest possible address that is not above 'max'.
147  */
efi_high_alloc(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long align,unsigned long * addr,unsigned long max)148 efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
149 			    unsigned long size, unsigned long align,
150 			    unsigned long *addr, unsigned long max)
151 {
152 	unsigned long map_size, desc_size;
153 	efi_memory_desc_t *map;
154 	efi_status_t status;
155 	unsigned long nr_pages;
156 	u64 max_addr = 0;
157 	int i;
158 
159 	status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
160 				    NULL, NULL);
161 	if (status != EFI_SUCCESS)
162 		goto fail;
163 
164 	/*
165 	 * Enforce minimum alignment that EFI requires when requesting
166 	 * a specific address.  We are doing page-based allocations,
167 	 * so we must be aligned to a page.
168 	 */
169 	if (align < EFI_ALLOC_ALIGN)
170 		align = EFI_ALLOC_ALIGN;
171 
172 	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
173 again:
174 	for (i = 0; i < map_size / desc_size; i++) {
175 		efi_memory_desc_t *desc;
176 		unsigned long m = (unsigned long)map;
177 		u64 start, end;
178 
179 		desc = (efi_memory_desc_t *)(m + (i * desc_size));
180 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
181 			continue;
182 
183 		if (desc->num_pages < nr_pages)
184 			continue;
185 
186 		start = desc->phys_addr;
187 		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
188 
189 		if (end > max)
190 			end = max;
191 
192 		if ((start + size) > end)
193 			continue;
194 
195 		if (round_down(end - size, align) < start)
196 			continue;
197 
198 		start = round_down(end - size, align);
199 
200 		/*
201 		 * Don't allocate at 0x0. It will confuse code that
202 		 * checks pointers against NULL.
203 		 */
204 		if (start == 0x0)
205 			continue;
206 
207 		if (start > max_addr)
208 			max_addr = start;
209 	}
210 
211 	if (!max_addr)
212 		status = EFI_NOT_FOUND;
213 	else {
214 		status = efi_call_early(allocate_pages,
215 					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
216 					nr_pages, &max_addr);
217 		if (status != EFI_SUCCESS) {
218 			max = max_addr;
219 			max_addr = 0;
220 			goto again;
221 		}
222 
223 		*addr = max_addr;
224 	}
225 
226 	efi_call_early(free_pool, map);
227 fail:
228 	return status;
229 }
230 
231 /*
232  * Allocate at the lowest possible address.
233  */
efi_low_alloc(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long align,unsigned long * addr)234 efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
235 			   unsigned long size, unsigned long align,
236 			   unsigned long *addr)
237 {
238 	unsigned long map_size, desc_size;
239 	efi_memory_desc_t *map;
240 	efi_status_t status;
241 	unsigned long nr_pages;
242 	int i;
243 
244 	status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
245 				    NULL, NULL);
246 	if (status != EFI_SUCCESS)
247 		goto fail;
248 
249 	/*
250 	 * Enforce minimum alignment that EFI requires when requesting
251 	 * a specific address.  We are doing page-based allocations,
252 	 * so we must be aligned to a page.
253 	 */
254 	if (align < EFI_ALLOC_ALIGN)
255 		align = EFI_ALLOC_ALIGN;
256 
257 	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
258 	for (i = 0; i < map_size / desc_size; i++) {
259 		efi_memory_desc_t *desc;
260 		unsigned long m = (unsigned long)map;
261 		u64 start, end;
262 
263 		desc = (efi_memory_desc_t *)(m + (i * desc_size));
264 
265 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
266 			continue;
267 
268 		if (desc->num_pages < nr_pages)
269 			continue;
270 
271 		start = desc->phys_addr;
272 		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
273 
274 		/*
275 		 * Don't allocate at 0x0. It will confuse code that
276 		 * checks pointers against NULL. Skip the first 8
277 		 * bytes so we start at a nice even number.
278 		 */
279 		if (start == 0x0)
280 			start += 8;
281 
282 		start = round_up(start, align);
283 		if ((start + size) > end)
284 			continue;
285 
286 		status = efi_call_early(allocate_pages,
287 					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
288 					nr_pages, &start);
289 		if (status == EFI_SUCCESS) {
290 			*addr = start;
291 			break;
292 		}
293 	}
294 
295 	if (i == map_size / desc_size)
296 		status = EFI_NOT_FOUND;
297 
298 	efi_call_early(free_pool, map);
299 fail:
300 	return status;
301 }
302 
efi_free(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long addr)303 void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
304 	      unsigned long addr)
305 {
306 	unsigned long nr_pages;
307 
308 	if (!size)
309 		return;
310 
311 	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
312 	efi_call_early(free_pages, addr, nr_pages);
313 }
314 
315 /*
316  * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
317  * option, e.g. efi=nochunk.
318  *
319  * It should be noted that efi= is parsed in two very different
320  * environments, first in the early boot environment of the EFI boot
321  * stub, and subsequently during the kernel boot.
322  */
efi_parse_options(char const * cmdline)323 efi_status_t efi_parse_options(char const *cmdline)
324 {
325 	char *str;
326 
327 	str = strstr(cmdline, "nokaslr");
328 	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
329 		__nokaslr = 1;
330 
331 	/*
332 	 * If no EFI parameters were specified on the cmdline we've got
333 	 * nothing to do.
334 	 */
335 	str = strstr(cmdline, "efi=");
336 	if (!str)
337 		return EFI_SUCCESS;
338 
339 	/* Skip ahead to first argument */
340 	str += strlen("efi=");
341 
342 	/*
343 	 * Remember, because efi= is also used by the kernel we need to
344 	 * skip over arguments we don't understand.
345 	 */
346 	while (*str) {
347 		if (!strncmp(str, "nochunk", 7)) {
348 			str += strlen("nochunk");
349 			__chunk_size = -1UL;
350 		}
351 
352 		/* Group words together, delimited by "," */
353 		while (*str && *str != ',')
354 			str++;
355 
356 		if (*str == ',')
357 			str++;
358 	}
359 
360 	return EFI_SUCCESS;
361 }
362 
363 /*
364  * Check the cmdline for a LILO-style file= arguments.
365  *
366  * We only support loading a file from the same filesystem as
367  * the kernel image.
368  */
handle_cmdline_files(efi_system_table_t * sys_table_arg,efi_loaded_image_t * image,char * cmd_line,char * option_string,unsigned long max_addr,unsigned long * load_addr,unsigned long * load_size)369 efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
370 				  efi_loaded_image_t *image,
371 				  char *cmd_line, char *option_string,
372 				  unsigned long max_addr,
373 				  unsigned long *load_addr,
374 				  unsigned long *load_size)
375 {
376 	struct file_info *files;
377 	unsigned long file_addr;
378 	u64 file_size_total;
379 	efi_file_handle_t *fh = NULL;
380 	efi_status_t status;
381 	int nr_files;
382 	char *str;
383 	int i, j, k;
384 
385 	file_addr = 0;
386 	file_size_total = 0;
387 
388 	str = cmd_line;
389 
390 	j = 0;			/* See close_handles */
391 
392 	if (!load_addr || !load_size)
393 		return EFI_INVALID_PARAMETER;
394 
395 	*load_addr = 0;
396 	*load_size = 0;
397 
398 	if (!str || !*str)
399 		return EFI_SUCCESS;
400 
401 	for (nr_files = 0; *str; nr_files++) {
402 		str = strstr(str, option_string);
403 		if (!str)
404 			break;
405 
406 		str += strlen(option_string);
407 
408 		/* Skip any leading slashes */
409 		while (*str == '/' || *str == '\\')
410 			str++;
411 
412 		while (*str && *str != ' ' && *str != '\n')
413 			str++;
414 	}
415 
416 	if (!nr_files)
417 		return EFI_SUCCESS;
418 
419 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
420 				nr_files * sizeof(*files), (void **)&files);
421 	if (status != EFI_SUCCESS) {
422 		pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
423 		goto fail;
424 	}
425 
426 	str = cmd_line;
427 	for (i = 0; i < nr_files; i++) {
428 		struct file_info *file;
429 		efi_char16_t filename_16[256];
430 		efi_char16_t *p;
431 
432 		str = strstr(str, option_string);
433 		if (!str)
434 			break;
435 
436 		str += strlen(option_string);
437 
438 		file = &files[i];
439 		p = filename_16;
440 
441 		/* Skip any leading slashes */
442 		while (*str == '/' || *str == '\\')
443 			str++;
444 
445 		while (*str && *str != ' ' && *str != '\n') {
446 			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
447 				break;
448 
449 			if (*str == '/') {
450 				*p++ = '\\';
451 				str++;
452 			} else {
453 				*p++ = *str++;
454 			}
455 		}
456 
457 		*p = '\0';
458 
459 		/* Only open the volume once. */
460 		if (!i) {
461 			status = efi_open_volume(sys_table_arg, image,
462 						 (void **)&fh);
463 			if (status != EFI_SUCCESS)
464 				goto free_files;
465 		}
466 
467 		status = efi_file_size(sys_table_arg, fh, filename_16,
468 				       (void **)&file->handle, &file->size);
469 		if (status != EFI_SUCCESS)
470 			goto close_handles;
471 
472 		file_size_total += file->size;
473 	}
474 
475 	if (file_size_total) {
476 		unsigned long addr;
477 
478 		/*
479 		 * Multiple files need to be at consecutive addresses in memory,
480 		 * so allocate enough memory for all the files.  This is used
481 		 * for loading multiple files.
482 		 */
483 		status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
484 				    &file_addr, max_addr);
485 		if (status != EFI_SUCCESS) {
486 			pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
487 			goto close_handles;
488 		}
489 
490 		/* We've run out of free low memory. */
491 		if (file_addr > max_addr) {
492 			pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
493 			status = EFI_INVALID_PARAMETER;
494 			goto free_file_total;
495 		}
496 
497 		addr = file_addr;
498 		for (j = 0; j < nr_files; j++) {
499 			unsigned long size;
500 
501 			size = files[j].size;
502 			while (size) {
503 				unsigned long chunksize;
504 				if (size > __chunk_size)
505 					chunksize = __chunk_size;
506 				else
507 					chunksize = size;
508 
509 				status = efi_file_read(files[j].handle,
510 						       &chunksize,
511 						       (void *)addr);
512 				if (status != EFI_SUCCESS) {
513 					pr_efi_err(sys_table_arg, "Failed to read file\n");
514 					goto free_file_total;
515 				}
516 				addr += chunksize;
517 				size -= chunksize;
518 			}
519 
520 			efi_file_close(files[j].handle);
521 		}
522 
523 	}
524 
525 	efi_call_early(free_pool, files);
526 
527 	*load_addr = file_addr;
528 	*load_size = file_size_total;
529 
530 	return status;
531 
532 free_file_total:
533 	efi_free(sys_table_arg, file_size_total, file_addr);
534 
535 close_handles:
536 	for (k = j; k < i; k++)
537 		efi_file_close(files[k].handle);
538 free_files:
539 	efi_call_early(free_pool, files);
540 fail:
541 	*load_addr = 0;
542 	*load_size = 0;
543 
544 	return status;
545 }
546 /*
547  * Relocate a kernel image, either compressed or uncompressed.
548  * In the ARM64 case, all kernel images are currently
549  * uncompressed, and as such when we relocate it we need to
550  * allocate additional space for the BSS segment. Any low
551  * memory that this function should avoid needs to be
552  * unavailable in the EFI memory map, as if the preferred
553  * address is not available the lowest available address will
554  * be used.
555  */
efi_relocate_kernel(efi_system_table_t * sys_table_arg,unsigned long * image_addr,unsigned long image_size,unsigned long alloc_size,unsigned long preferred_addr,unsigned long alignment)556 efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
557 				 unsigned long *image_addr,
558 				 unsigned long image_size,
559 				 unsigned long alloc_size,
560 				 unsigned long preferred_addr,
561 				 unsigned long alignment)
562 {
563 	unsigned long cur_image_addr;
564 	unsigned long new_addr = 0;
565 	efi_status_t status;
566 	unsigned long nr_pages;
567 	efi_physical_addr_t efi_addr = preferred_addr;
568 
569 	if (!image_addr || !image_size || !alloc_size)
570 		return EFI_INVALID_PARAMETER;
571 	if (alloc_size < image_size)
572 		return EFI_INVALID_PARAMETER;
573 
574 	cur_image_addr = *image_addr;
575 
576 	/*
577 	 * The EFI firmware loader could have placed the kernel image
578 	 * anywhere in memory, but the kernel has restrictions on the
579 	 * max physical address it can run at.  Some architectures
580 	 * also have a prefered address, so first try to relocate
581 	 * to the preferred address.  If that fails, allocate as low
582 	 * as possible while respecting the required alignment.
583 	 */
584 	nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
585 	status = efi_call_early(allocate_pages,
586 				EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
587 				nr_pages, &efi_addr);
588 	new_addr = efi_addr;
589 	/*
590 	 * If preferred address allocation failed allocate as low as
591 	 * possible.
592 	 */
593 	if (status != EFI_SUCCESS) {
594 		status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
595 				       &new_addr);
596 	}
597 	if (status != EFI_SUCCESS) {
598 		pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
599 		return status;
600 	}
601 
602 	/*
603 	 * We know source/dest won't overlap since both memory ranges
604 	 * have been allocated by UEFI, so we can safely use memcpy.
605 	 */
606 	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
607 
608 	/* Return the new address of the relocated image. */
609 	*image_addr = new_addr;
610 
611 	return status;
612 }
613 
614 /*
615  * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
616  * This overestimates for surrogates, but that is okay.
617  */
efi_utf8_bytes(u16 c)618 static int efi_utf8_bytes(u16 c)
619 {
620 	return 1 + (c >= 0x80) + (c >= 0x800);
621 }
622 
623 /*
624  * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
625  */
efi_utf16_to_utf8(u8 * dst,const u16 * src,int n)626 static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
627 {
628 	unsigned int c;
629 
630 	while (n--) {
631 		c = *src++;
632 		if (n && c >= 0xd800 && c <= 0xdbff &&
633 		    *src >= 0xdc00 && *src <= 0xdfff) {
634 			c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
635 			src++;
636 			n--;
637 		}
638 		if (c >= 0xd800 && c <= 0xdfff)
639 			c = 0xfffd; /* Unmatched surrogate */
640 		if (c < 0x80) {
641 			*dst++ = c;
642 			continue;
643 		}
644 		if (c < 0x800) {
645 			*dst++ = 0xc0 + (c >> 6);
646 			goto t1;
647 		}
648 		if (c < 0x10000) {
649 			*dst++ = 0xe0 + (c >> 12);
650 			goto t2;
651 		}
652 		*dst++ = 0xf0 + (c >> 18);
653 		*dst++ = 0x80 + ((c >> 12) & 0x3f);
654 	t2:
655 		*dst++ = 0x80 + ((c >> 6) & 0x3f);
656 	t1:
657 		*dst++ = 0x80 + (c & 0x3f);
658 	}
659 
660 	return dst;
661 }
662 
663 #ifndef MAX_CMDLINE_ADDRESS
664 #define MAX_CMDLINE_ADDRESS	ULONG_MAX
665 #endif
666 
667 /*
668  * Convert the unicode UEFI command line to ASCII to pass to kernel.
669  * Size of memory allocated return in *cmd_line_len.
670  * Returns NULL on error.
671  */
efi_convert_cmdline(efi_system_table_t * sys_table_arg,efi_loaded_image_t * image,int * cmd_line_len)672 char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
673 			  efi_loaded_image_t *image,
674 			  int *cmd_line_len)
675 {
676 	const u16 *s2;
677 	u8 *s1 = NULL;
678 	unsigned long cmdline_addr = 0;
679 	int load_options_chars = image->load_options_size / 2; /* UTF-16 */
680 	const u16 *options = image->load_options;
681 	int options_bytes = 0;  /* UTF-8 bytes */
682 	int options_chars = 0;  /* UTF-16 chars */
683 	efi_status_t status;
684 	u16 zero = 0;
685 
686 	if (options) {
687 		s2 = options;
688 		while (*s2 && *s2 != '\n'
689 		       && options_chars < load_options_chars) {
690 			options_bytes += efi_utf8_bytes(*s2++);
691 			options_chars++;
692 		}
693 	}
694 
695 	if (!options_chars) {
696 		/* No command line options, so return empty string*/
697 		options = &zero;
698 	}
699 
700 	options_bytes++;	/* NUL termination */
701 
702 	status = efi_high_alloc(sys_table_arg, options_bytes, 0,
703 				&cmdline_addr, MAX_CMDLINE_ADDRESS);
704 	if (status != EFI_SUCCESS)
705 		return NULL;
706 
707 	s1 = (u8 *)cmdline_addr;
708 	s2 = (const u16 *)options;
709 
710 	s1 = efi_utf16_to_utf8(s1, s2, options_chars);
711 	*s1 = '\0';
712 
713 	*cmd_line_len = options_bytes;
714 	return (char *)cmdline_addr;
715 }
716