1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
intel_ring_initialized(struct intel_engine_cs * ring)37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
__intel_ring_space(int head,int tail,int size)53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
intel_ring_update_space(struct intel_ringbuffer * ringbuf)61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
intel_ring_space(struct intel_ringbuffer * ringbuf)72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
intel_ring_stopped(struct intel_engine_cs * ring)78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
__intel_ring_advance(struct intel_engine_cs * ring)84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
gen2_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(req, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
gen4_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(req, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request * req)217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223 ret = intel_ring_begin(req, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 intel_ring_emit(ring, 0); /* low dword */
232 intel_ring_emit(ring, 0); /* high dword */
233 intel_ring_emit(ring, MI_NOOP);
234 intel_ring_advance(ring);
235
236 ret = intel_ring_begin(req, 6);
237 if (ret)
238 return ret;
239
240 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 intel_ring_emit(ring, 0);
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, MI_NOOP);
246 intel_ring_advance(ring);
247
248 return 0;
249 }
250
251 static int
gen6_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 u32 invalidate_domains, u32 flush_domains)
254 {
255 struct intel_engine_cs *ring = req->ring;
256 u32 flags = 0;
257 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 int ret;
259
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret = intel_emit_post_sync_nonzero_flush(req);
262 if (ret)
263 return ret;
264
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
267 * impact.
268 */
269 if (flush_domains) {
270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 /*
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
275 */
276 flags |= PIPE_CONTROL_CS_STALL;
277 }
278 if (invalidate_domains) {
279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 /*
286 * TLB invalidate requires a post-sync write.
287 */
288 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 }
290
291 ret = intel_ring_begin(req, 4);
292 if (ret)
293 return ret;
294
295 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring, flags);
297 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 intel_ring_emit(ring, 0);
299 intel_ring_advance(ring);
300
301 return 0;
302 }
303
304 static int
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request * req)305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 struct intel_engine_cs *ring = req->ring;
308 int ret;
309
310 ret = intel_ring_begin(req, 4);
311 if (ret)
312 return ret;
313
314 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 intel_ring_emit(ring, 0);
318 intel_ring_emit(ring, 0);
319 intel_ring_advance(ring);
320
321 return 0;
322 }
323
324 static int
gen7_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 u32 invalidate_domains, u32 flush_domains)
327 {
328 struct intel_engine_cs *ring = req->ring;
329 u32 flags = 0;
330 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 int ret;
332
333 /*
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
336 *
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
340 */
341 flags |= PIPE_CONTROL_CS_STALL;
342
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
345 * impact.
346 */
347 if (flush_domains) {
348 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
351 flags |= PIPE_CONTROL_FLUSH_ENABLE;
352 }
353 if (invalidate_domains) {
354 flags |= PIPE_CONTROL_TLB_INVALIDATE;
355 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
359 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
360 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
361 /*
362 * TLB invalidate requires a post-sync write.
363 */
364 flags |= PIPE_CONTROL_QW_WRITE;
365 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
366
367 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
368
369 /* Workaround: we must issue a pipe_control with CS-stall bit
370 * set before a pipe_control command that has the state cache
371 * invalidate bit set. */
372 gen7_render_ring_cs_stall_wa(req);
373 }
374
375 ret = intel_ring_begin(req, 4);
376 if (ret)
377 return ret;
378
379 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
380 intel_ring_emit(ring, flags);
381 intel_ring_emit(ring, scratch_addr);
382 intel_ring_emit(ring, 0);
383 intel_ring_advance(ring);
384
385 return 0;
386 }
387
388 static int
gen8_emit_pipe_control(struct drm_i915_gem_request * req,u32 flags,u32 scratch_addr)389 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
390 u32 flags, u32 scratch_addr)
391 {
392 struct intel_engine_cs *ring = req->ring;
393 int ret;
394
395 ret = intel_ring_begin(req, 6);
396 if (ret)
397 return ret;
398
399 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
400 intel_ring_emit(ring, flags);
401 intel_ring_emit(ring, scratch_addr);
402 intel_ring_emit(ring, 0);
403 intel_ring_emit(ring, 0);
404 intel_ring_emit(ring, 0);
405 intel_ring_advance(ring);
406
407 return 0;
408 }
409
410 static int
gen8_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)411 gen8_render_ring_flush(struct drm_i915_gem_request *req,
412 u32 invalidate_domains, u32 flush_domains)
413 {
414 u32 flags = 0;
415 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
416 int ret;
417
418 flags |= PIPE_CONTROL_CS_STALL;
419
420 if (flush_domains) {
421 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
422 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
423 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
424 flags |= PIPE_CONTROL_FLUSH_ENABLE;
425 }
426 if (invalidate_domains) {
427 flags |= PIPE_CONTROL_TLB_INVALIDATE;
428 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
430 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_QW_WRITE;
434 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
435
436 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
437 ret = gen8_emit_pipe_control(req,
438 PIPE_CONTROL_CS_STALL |
439 PIPE_CONTROL_STALL_AT_SCOREBOARD,
440 0);
441 if (ret)
442 return ret;
443 }
444
445 return gen8_emit_pipe_control(req, flags, scratch_addr);
446 }
447
ring_write_tail(struct intel_engine_cs * ring,u32 value)448 static void ring_write_tail(struct intel_engine_cs *ring,
449 u32 value)
450 {
451 struct drm_i915_private *dev_priv = ring->dev->dev_private;
452 I915_WRITE_TAIL(ring, value);
453 }
454
intel_ring_get_active_head(struct intel_engine_cs * ring)455 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
456 {
457 struct drm_i915_private *dev_priv = ring->dev->dev_private;
458 u64 acthd;
459
460 if (INTEL_INFO(ring->dev)->gen >= 8)
461 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
462 RING_ACTHD_UDW(ring->mmio_base));
463 else if (INTEL_INFO(ring->dev)->gen >= 4)
464 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
465 else
466 acthd = I915_READ(ACTHD);
467
468 return acthd;
469 }
470
ring_setup_phys_status_page(struct intel_engine_cs * ring)471 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
472 {
473 struct drm_i915_private *dev_priv = ring->dev->dev_private;
474 u32 addr;
475
476 addr = dev_priv->status_page_dmah->busaddr;
477 if (INTEL_INFO(ring->dev)->gen >= 4)
478 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
479 I915_WRITE(HWS_PGA, addr);
480 }
481
intel_ring_setup_status_page(struct intel_engine_cs * ring)482 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
483 {
484 struct drm_device *dev = ring->dev;
485 struct drm_i915_private *dev_priv = ring->dev->dev_private;
486 u32 mmio = 0;
487
488 /* The ring status page addresses are no longer next to the rest of
489 * the ring registers as of gen7.
490 */
491 if (IS_GEN7(dev)) {
492 switch (ring->id) {
493 case RCS:
494 mmio = RENDER_HWS_PGA_GEN7;
495 break;
496 case BCS:
497 mmio = BLT_HWS_PGA_GEN7;
498 break;
499 /*
500 * VCS2 actually doesn't exist on Gen7. Only shut up
501 * gcc switch check warning
502 */
503 case VCS2:
504 case VCS:
505 mmio = BSD_HWS_PGA_GEN7;
506 break;
507 case VECS:
508 mmio = VEBOX_HWS_PGA_GEN7;
509 break;
510 }
511 } else if (IS_GEN6(ring->dev)) {
512 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
513 } else {
514 /* XXX: gen8 returns to sanity */
515 mmio = RING_HWS_PGA(ring->mmio_base);
516 }
517
518 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
519 POSTING_READ(mmio);
520
521 /*
522 * Flush the TLB for this page
523 *
524 * FIXME: These two bits have disappeared on gen8, so a question
525 * arises: do we still need this and if so how should we go about
526 * invalidating the TLB?
527 */
528 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
529 u32 reg = RING_INSTPM(ring->mmio_base);
530
531 /* ring should be idle before issuing a sync flush*/
532 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
533
534 I915_WRITE(reg,
535 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
536 INSTPM_SYNC_FLUSH));
537 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
538 1000))
539 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
540 ring->name);
541 }
542 }
543
stop_ring(struct intel_engine_cs * ring)544 static bool stop_ring(struct intel_engine_cs *ring)
545 {
546 struct drm_i915_private *dev_priv = to_i915(ring->dev);
547
548 if (!IS_GEN2(ring->dev)) {
549 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
550 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
551 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
552 /* Sometimes we observe that the idle flag is not
553 * set even though the ring is empty. So double
554 * check before giving up.
555 */
556 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
557 return false;
558 }
559 }
560
561 I915_WRITE_CTL(ring, 0);
562 I915_WRITE_HEAD(ring, 0);
563 ring->write_tail(ring, 0);
564
565 if (!IS_GEN2(ring->dev)) {
566 (void)I915_READ_CTL(ring);
567 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
568 }
569
570 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
571 }
572
init_ring_common(struct intel_engine_cs * ring)573 static int init_ring_common(struct intel_engine_cs *ring)
574 {
575 struct drm_device *dev = ring->dev;
576 struct drm_i915_private *dev_priv = dev->dev_private;
577 struct intel_ringbuffer *ringbuf = ring->buffer;
578 struct drm_i915_gem_object *obj = ringbuf->obj;
579 int ret = 0;
580
581 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
582
583 if (!stop_ring(ring)) {
584 /* G45 ring initialization often fails to reset head to zero */
585 DRM_DEBUG_KMS("%s head not reset to zero "
586 "ctl %08x head %08x tail %08x start %08x\n",
587 ring->name,
588 I915_READ_CTL(ring),
589 I915_READ_HEAD(ring),
590 I915_READ_TAIL(ring),
591 I915_READ_START(ring));
592
593 if (!stop_ring(ring)) {
594 DRM_ERROR("failed to set %s head to zero "
595 "ctl %08x head %08x tail %08x start %08x\n",
596 ring->name,
597 I915_READ_CTL(ring),
598 I915_READ_HEAD(ring),
599 I915_READ_TAIL(ring),
600 I915_READ_START(ring));
601 ret = -EIO;
602 goto out;
603 }
604 }
605
606 if (I915_NEED_GFX_HWS(dev))
607 intel_ring_setup_status_page(ring);
608 else
609 ring_setup_phys_status_page(ring);
610
611 /* Enforce ordering by reading HEAD register back */
612 I915_READ_HEAD(ring);
613
614 /* Initialize the ring. This must happen _after_ we've cleared the ring
615 * registers with the above sequence (the readback of the HEAD registers
616 * also enforces ordering), otherwise the hw might lose the new ring
617 * register values. */
618 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
619
620 /* WaClearRingBufHeadRegAtInit:ctg,elk */
621 if (I915_READ_HEAD(ring))
622 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
623 ring->name, I915_READ_HEAD(ring));
624 I915_WRITE_HEAD(ring, 0);
625 (void)I915_READ_HEAD(ring);
626
627 I915_WRITE_CTL(ring,
628 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
629 | RING_VALID);
630
631 /* If the head is still not zero, the ring is dead */
632 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
633 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
634 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
635 DRM_ERROR("%s initialization failed "
636 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
637 ring->name,
638 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
639 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
640 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
641 ret = -EIO;
642 goto out;
643 }
644
645 ringbuf->last_retired_head = -1;
646 ringbuf->head = I915_READ_HEAD(ring);
647 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
648 intel_ring_update_space(ringbuf);
649
650 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
651
652 out:
653 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
654
655 return ret;
656 }
657
658 void
intel_fini_pipe_control(struct intel_engine_cs * ring)659 intel_fini_pipe_control(struct intel_engine_cs *ring)
660 {
661 struct drm_device *dev = ring->dev;
662
663 if (ring->scratch.obj == NULL)
664 return;
665
666 if (INTEL_INFO(dev)->gen >= 5) {
667 kunmap(sg_page(ring->scratch.obj->pages->sgl));
668 i915_gem_object_ggtt_unpin(ring->scratch.obj);
669 }
670
671 drm_gem_object_unreference(&ring->scratch.obj->base);
672 ring->scratch.obj = NULL;
673 }
674
675 int
intel_init_pipe_control(struct intel_engine_cs * ring)676 intel_init_pipe_control(struct intel_engine_cs *ring)
677 {
678 int ret;
679
680 WARN_ON(ring->scratch.obj);
681
682 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
683 if (ring->scratch.obj == NULL) {
684 DRM_ERROR("Failed to allocate seqno page\n");
685 ret = -ENOMEM;
686 goto err;
687 }
688
689 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
690 if (ret)
691 goto err_unref;
692
693 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
694 if (ret)
695 goto err_unref;
696
697 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
698 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
699 if (ring->scratch.cpu_page == NULL) {
700 ret = -ENOMEM;
701 goto err_unpin;
702 }
703
704 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
705 ring->name, ring->scratch.gtt_offset);
706 return 0;
707
708 err_unpin:
709 i915_gem_object_ggtt_unpin(ring->scratch.obj);
710 err_unref:
711 drm_gem_object_unreference(&ring->scratch.obj->base);
712 err:
713 return ret;
714 }
715
intel_ring_workarounds_emit(struct drm_i915_gem_request * req)716 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
717 {
718 int ret, i;
719 struct intel_engine_cs *ring = req->ring;
720 struct drm_device *dev = ring->dev;
721 struct drm_i915_private *dev_priv = dev->dev_private;
722 struct i915_workarounds *w = &dev_priv->workarounds;
723
724 if (w->count == 0)
725 return 0;
726
727 ring->gpu_caches_dirty = true;
728 ret = intel_ring_flush_all_caches(req);
729 if (ret)
730 return ret;
731
732 ret = intel_ring_begin(req, (w->count * 2 + 2));
733 if (ret)
734 return ret;
735
736 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
737 for (i = 0; i < w->count; i++) {
738 intel_ring_emit(ring, w->reg[i].addr);
739 intel_ring_emit(ring, w->reg[i].value);
740 }
741 intel_ring_emit(ring, MI_NOOP);
742
743 intel_ring_advance(ring);
744
745 ring->gpu_caches_dirty = true;
746 ret = intel_ring_flush_all_caches(req);
747 if (ret)
748 return ret;
749
750 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
751
752 return 0;
753 }
754
intel_rcs_ctx_init(struct drm_i915_gem_request * req)755 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
756 {
757 int ret;
758
759 ret = intel_ring_workarounds_emit(req);
760 if (ret != 0)
761 return ret;
762
763 ret = i915_gem_render_state_init(req);
764 if (ret)
765 DRM_ERROR("init render state: %d\n", ret);
766
767 return ret;
768 }
769
wa_add(struct drm_i915_private * dev_priv,const u32 addr,const u32 mask,const u32 val)770 static int wa_add(struct drm_i915_private *dev_priv,
771 const u32 addr, const u32 mask, const u32 val)
772 {
773 const u32 idx = dev_priv->workarounds.count;
774
775 if (WARN_ON(idx >= I915_MAX_WA_REGS))
776 return -ENOSPC;
777
778 dev_priv->workarounds.reg[idx].addr = addr;
779 dev_priv->workarounds.reg[idx].value = val;
780 dev_priv->workarounds.reg[idx].mask = mask;
781
782 dev_priv->workarounds.count++;
783
784 return 0;
785 }
786
787 #define WA_REG(addr, mask, val) do { \
788 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
789 if (r) \
790 return r; \
791 } while (0)
792
793 #define WA_SET_BIT_MASKED(addr, mask) \
794 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
795
796 #define WA_CLR_BIT_MASKED(addr, mask) \
797 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
798
799 #define WA_SET_FIELD_MASKED(addr, mask, value) \
800 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
801
802 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
803 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
804
805 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
806
gen8_init_workarounds(struct intel_engine_cs * ring)807 static int gen8_init_workarounds(struct intel_engine_cs *ring)
808 {
809 struct drm_device *dev = ring->dev;
810 struct drm_i915_private *dev_priv = dev->dev_private;
811
812 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
813
814 /* WaDisableAsyncFlipPerfMode:bdw,chv */
815 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
816
817 /* WaDisablePartialInstShootdown:bdw,chv */
818 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
819 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
820
821 /* Use Force Non-Coherent whenever executing a 3D context. This is a
822 * workaround for for a possible hang in the unlikely event a TLB
823 * invalidation occurs during a PSD flush.
824 */
825 /* WaForceEnableNonCoherent:bdw,chv */
826 /* WaHdcDisableFetchWhenMasked:bdw,chv */
827 WA_SET_BIT_MASKED(HDC_CHICKEN0,
828 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
829 HDC_FORCE_NON_COHERENT);
830
831 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
832 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
833 * polygons in the same 8x4 pixel/sample area to be processed without
834 * stalling waiting for the earlier ones to write to Hierarchical Z
835 * buffer."
836 *
837 * This optimization is off by default for BDW and CHV; turn it on.
838 */
839 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
840
841 /* Wa4x4STCOptimizationDisable:bdw,chv */
842 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
844 /*
845 * BSpec recommends 8x4 when MSAA is used,
846 * however in practice 16x4 seems fastest.
847 *
848 * Note that PS/WM thread counts depend on the WIZ hashing
849 * disable bit, which we don't touch here, but it's good
850 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851 */
852 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853 GEN6_WIZ_HASHING_MASK,
854 GEN6_WIZ_HASHING_16x4);
855
856 return 0;
857 }
858
bdw_init_workarounds(struct intel_engine_cs * ring)859 static int bdw_init_workarounds(struct intel_engine_cs *ring)
860 {
861 int ret;
862 struct drm_device *dev = ring->dev;
863 struct drm_i915_private *dev_priv = dev->dev_private;
864
865 ret = gen8_init_workarounds(ring);
866 if (ret)
867 return ret;
868
869 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
870 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
871
872 /* WaDisableDopClockGating:bdw */
873 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
874 DOP_CLOCK_GATING_DISABLE);
875
876 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
877 GEN8_SAMPLER_POWER_BYPASS_DIS);
878
879 WA_SET_BIT_MASKED(HDC_CHICKEN0,
880 /* WaForceContextSaveRestoreNonCoherent:bdw */
881 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
882 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
883 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
884
885 return 0;
886 }
887
chv_init_workarounds(struct intel_engine_cs * ring)888 static int chv_init_workarounds(struct intel_engine_cs *ring)
889 {
890 int ret;
891 struct drm_device *dev = ring->dev;
892 struct drm_i915_private *dev_priv = dev->dev_private;
893
894 ret = gen8_init_workarounds(ring);
895 if (ret)
896 return ret;
897
898 /* WaDisableThreadStallDopClockGating:chv */
899 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
900
901 /* Improve HiZ throughput on CHV. */
902 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
903
904 return 0;
905 }
906
gen9_init_workarounds(struct intel_engine_cs * ring)907 static int gen9_init_workarounds(struct intel_engine_cs *ring)
908 {
909 struct drm_device *dev = ring->dev;
910 struct drm_i915_private *dev_priv = dev->dev_private;
911 uint32_t tmp;
912
913 /* WaEnableLbsSlaRetryTimerDecrement:skl */
914 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
915 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
916
917 /* WaDisableKillLogic:bxt,skl */
918 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
919 ECOCHK_DIS_TLB);
920
921 /* WaDisablePartialInstShootdown:skl,bxt */
922 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
923 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
924
925 /* Syncing dependencies between camera and graphics:skl,bxt */
926 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
927 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
928
929 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
930 INTEL_REVID(dev) == SKL_REVID_B0)) ||
931 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
932 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
933 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
934 GEN9_DG_MIRROR_FIX_ENABLE);
935 }
936
937 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
938 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
939 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
940 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941 GEN9_RHWO_OPTIMIZATION_DISABLE);
942 /*
943 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944 * but we do that in per ctx batchbuffer as there is an issue
945 * with this register not getting restored on ctx restore
946 */
947 }
948
949 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
950 IS_BROXTON(dev)) {
951 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
952 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
953 GEN9_ENABLE_YV12_BUGFIX);
954 }
955
956 /* Wa4x4STCOptimizationDisable:skl,bxt */
957 /* WaDisablePartialResolveInVc:skl,bxt */
958 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
959 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
960
961 /* WaCcsTlbPrefetchDisable:skl,bxt */
962 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
963 GEN9_CCS_TLB_PREFETCH_ENABLE);
964
965 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
966 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
967 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
968 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
969 PIXEL_MASK_CAMMING_DISABLE);
970
971 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
972 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
973 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
974 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
975 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
976 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
977
978 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
979 if (IS_SKYLAKE(dev) ||
980 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
981 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
982 GEN8_SAMPLER_POWER_BYPASS_DIS);
983 }
984
985 /* WaDisableSTUnitPowerOptimization:skl,bxt */
986 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
987
988 return 0;
989 }
990
skl_tune_iz_hashing(struct intel_engine_cs * ring)991 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
992 {
993 struct drm_device *dev = ring->dev;
994 struct drm_i915_private *dev_priv = dev->dev_private;
995 u8 vals[3] = { 0, 0, 0 };
996 unsigned int i;
997
998 for (i = 0; i < 3; i++) {
999 u8 ss;
1000
1001 /*
1002 * Only consider slices where one, and only one, subslice has 7
1003 * EUs
1004 */
1005 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1006 continue;
1007
1008 /*
1009 * subslice_7eu[i] != 0 (because of the check above) and
1010 * ss_max == 4 (maximum number of subslices possible per slice)
1011 *
1012 * -> 0 <= ss <= 3;
1013 */
1014 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1015 vals[i] = 3 - ss;
1016 }
1017
1018 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1019 return 0;
1020
1021 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1022 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1023 GEN9_IZ_HASHING_MASK(2) |
1024 GEN9_IZ_HASHING_MASK(1) |
1025 GEN9_IZ_HASHING_MASK(0),
1026 GEN9_IZ_HASHING(2, vals[2]) |
1027 GEN9_IZ_HASHING(1, vals[1]) |
1028 GEN9_IZ_HASHING(0, vals[0]));
1029
1030 return 0;
1031 }
1032
skl_init_workarounds(struct intel_engine_cs * ring)1033 static int skl_init_workarounds(struct intel_engine_cs *ring)
1034 {
1035 int ret;
1036 struct drm_device *dev = ring->dev;
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038
1039 ret = gen9_init_workarounds(ring);
1040 if (ret)
1041 return ret;
1042
1043 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1044 /* WaDisableHDCInvalidation:skl */
1045 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1046 BDW_DISABLE_HDC_INVALIDATION);
1047
1048 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1049 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1050 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1051 }
1052
1053 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1054 * involving this register should also be added to WA batch as required.
1055 */
1056 if (INTEL_REVID(dev) <= SKL_REVID_E0)
1057 /* WaDisableLSQCROPERFforOCL:skl */
1058 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1059 GEN8_LQSC_RO_PERF_DIS);
1060
1061 /* WaEnableGapsTsvCreditFix:skl */
1062 if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
1063 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1064 GEN9_GAPS_TSV_CREDIT_DISABLE));
1065 }
1066
1067 /* WaDisablePowerCompilerClockGating:skl */
1068 if (INTEL_REVID(dev) == SKL_REVID_B0)
1069 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1070 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1071
1072 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1073 /*
1074 *Use Force Non-Coherent whenever executing a 3D context. This
1075 * is a workaround for a possible hang in the unlikely event
1076 * a TLB invalidation occurs during a PSD flush.
1077 */
1078 /* WaForceEnableNonCoherent:skl */
1079 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1080 HDC_FORCE_NON_COHERENT);
1081 }
1082
1083 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1084 INTEL_REVID(dev) == SKL_REVID_D0)
1085 /* WaBarrierPerformanceFixDisable:skl */
1086 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1087 HDC_FENCE_DEST_SLM_DISABLE |
1088 HDC_BARRIER_PERFORMANCE_DISABLE);
1089
1090 /* WaDisableSbeCacheDispatchPortSharing:skl */
1091 if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1092 WA_SET_BIT_MASKED(
1093 GEN7_HALF_SLICE_CHICKEN1,
1094 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1095 }
1096
1097 return skl_tune_iz_hashing(ring);
1098 }
1099
bxt_init_workarounds(struct intel_engine_cs * ring)1100 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1101 {
1102 int ret;
1103 struct drm_device *dev = ring->dev;
1104 struct drm_i915_private *dev_priv = dev->dev_private;
1105
1106 ret = gen9_init_workarounds(ring);
1107 if (ret)
1108 return ret;
1109
1110 /* WaStoreMultiplePTEenable:bxt */
1111 /* This is a requirement according to Hardware specification */
1112 if (INTEL_REVID(dev) == BXT_REVID_A0)
1113 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1114
1115 /* WaSetClckGatingDisableMedia:bxt */
1116 if (INTEL_REVID(dev) == BXT_REVID_A0) {
1117 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1118 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1119 }
1120
1121 /* WaDisableThreadStallDopClockGating:bxt */
1122 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1123 STALL_DOP_GATING_DISABLE);
1124
1125 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1126 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1127 WA_SET_BIT_MASKED(
1128 GEN7_HALF_SLICE_CHICKEN1,
1129 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1130 }
1131
1132 return 0;
1133 }
1134
init_workarounds_ring(struct intel_engine_cs * ring)1135 int init_workarounds_ring(struct intel_engine_cs *ring)
1136 {
1137 struct drm_device *dev = ring->dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139
1140 WARN_ON(ring->id != RCS);
1141
1142 dev_priv->workarounds.count = 0;
1143
1144 if (IS_BROADWELL(dev))
1145 return bdw_init_workarounds(ring);
1146
1147 if (IS_CHERRYVIEW(dev))
1148 return chv_init_workarounds(ring);
1149
1150 if (IS_SKYLAKE(dev))
1151 return skl_init_workarounds(ring);
1152
1153 if (IS_BROXTON(dev))
1154 return bxt_init_workarounds(ring);
1155
1156 return 0;
1157 }
1158
init_render_ring(struct intel_engine_cs * ring)1159 static int init_render_ring(struct intel_engine_cs *ring)
1160 {
1161 struct drm_device *dev = ring->dev;
1162 struct drm_i915_private *dev_priv = dev->dev_private;
1163 int ret = init_ring_common(ring);
1164 if (ret)
1165 return ret;
1166
1167 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1168 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1169 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1170
1171 /* We need to disable the AsyncFlip performance optimisations in order
1172 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1173 * programmed to '1' on all products.
1174 *
1175 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1176 */
1177 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1178 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1179
1180 /* Required for the hardware to program scanline values for waiting */
1181 /* WaEnableFlushTlbInvalidationMode:snb */
1182 if (INTEL_INFO(dev)->gen == 6)
1183 I915_WRITE(GFX_MODE,
1184 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1185
1186 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1187 if (IS_GEN7(dev))
1188 I915_WRITE(GFX_MODE_GEN7,
1189 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1190 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1191
1192 if (IS_GEN6(dev)) {
1193 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1194 * "If this bit is set, STCunit will have LRA as replacement
1195 * policy. [...] This bit must be reset. LRA replacement
1196 * policy is not supported."
1197 */
1198 I915_WRITE(CACHE_MODE_0,
1199 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1200 }
1201
1202 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1203 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1204
1205 if (HAS_L3_DPF(dev))
1206 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1207
1208 return init_workarounds_ring(ring);
1209 }
1210
render_ring_cleanup(struct intel_engine_cs * ring)1211 static void render_ring_cleanup(struct intel_engine_cs *ring)
1212 {
1213 struct drm_device *dev = ring->dev;
1214 struct drm_i915_private *dev_priv = dev->dev_private;
1215
1216 if (dev_priv->semaphore_obj) {
1217 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1218 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1219 dev_priv->semaphore_obj = NULL;
1220 }
1221
1222 intel_fini_pipe_control(ring);
1223 }
1224
gen8_rcs_signal(struct drm_i915_gem_request * signaller_req,unsigned int num_dwords)1225 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1226 unsigned int num_dwords)
1227 {
1228 #define MBOX_UPDATE_DWORDS 8
1229 struct intel_engine_cs *signaller = signaller_req->ring;
1230 struct drm_device *dev = signaller->dev;
1231 struct drm_i915_private *dev_priv = dev->dev_private;
1232 struct intel_engine_cs *waiter;
1233 int i, ret, num_rings;
1234
1235 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1236 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1237 #undef MBOX_UPDATE_DWORDS
1238
1239 ret = intel_ring_begin(signaller_req, num_dwords);
1240 if (ret)
1241 return ret;
1242
1243 for_each_ring(waiter, dev_priv, i) {
1244 u32 seqno;
1245 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1246 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1247 continue;
1248
1249 seqno = i915_gem_request_get_seqno(signaller_req);
1250 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1251 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1252 PIPE_CONTROL_QW_WRITE |
1253 PIPE_CONTROL_FLUSH_ENABLE);
1254 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1255 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1256 intel_ring_emit(signaller, seqno);
1257 intel_ring_emit(signaller, 0);
1258 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1259 MI_SEMAPHORE_TARGET(waiter->id));
1260 intel_ring_emit(signaller, 0);
1261 }
1262
1263 return 0;
1264 }
1265
gen8_xcs_signal(struct drm_i915_gem_request * signaller_req,unsigned int num_dwords)1266 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1267 unsigned int num_dwords)
1268 {
1269 #define MBOX_UPDATE_DWORDS 6
1270 struct intel_engine_cs *signaller = signaller_req->ring;
1271 struct drm_device *dev = signaller->dev;
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1273 struct intel_engine_cs *waiter;
1274 int i, ret, num_rings;
1275
1276 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1277 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1278 #undef MBOX_UPDATE_DWORDS
1279
1280 ret = intel_ring_begin(signaller_req, num_dwords);
1281 if (ret)
1282 return ret;
1283
1284 for_each_ring(waiter, dev_priv, i) {
1285 u32 seqno;
1286 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1287 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1288 continue;
1289
1290 seqno = i915_gem_request_get_seqno(signaller_req);
1291 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1292 MI_FLUSH_DW_OP_STOREDW);
1293 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1294 MI_FLUSH_DW_USE_GTT);
1295 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1296 intel_ring_emit(signaller, seqno);
1297 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298 MI_SEMAPHORE_TARGET(waiter->id));
1299 intel_ring_emit(signaller, 0);
1300 }
1301
1302 return 0;
1303 }
1304
gen6_signal(struct drm_i915_gem_request * signaller_req,unsigned int num_dwords)1305 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1306 unsigned int num_dwords)
1307 {
1308 struct intel_engine_cs *signaller = signaller_req->ring;
1309 struct drm_device *dev = signaller->dev;
1310 struct drm_i915_private *dev_priv = dev->dev_private;
1311 struct intel_engine_cs *useless;
1312 int i, ret, num_rings;
1313
1314 #define MBOX_UPDATE_DWORDS 3
1315 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1317 #undef MBOX_UPDATE_DWORDS
1318
1319 ret = intel_ring_begin(signaller_req, num_dwords);
1320 if (ret)
1321 return ret;
1322
1323 for_each_ring(useless, dev_priv, i) {
1324 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1325 if (mbox_reg != GEN6_NOSYNC) {
1326 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1327 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1328 intel_ring_emit(signaller, mbox_reg);
1329 intel_ring_emit(signaller, seqno);
1330 }
1331 }
1332
1333 /* If num_dwords was rounded, make sure the tail pointer is correct */
1334 if (num_rings % 2 == 0)
1335 intel_ring_emit(signaller, MI_NOOP);
1336
1337 return 0;
1338 }
1339
1340 /**
1341 * gen6_add_request - Update the semaphore mailbox registers
1342 *
1343 * @request - request to write to the ring
1344 *
1345 * Update the mailbox registers in the *other* rings with the current seqno.
1346 * This acts like a signal in the canonical semaphore.
1347 */
1348 static int
gen6_add_request(struct drm_i915_gem_request * req)1349 gen6_add_request(struct drm_i915_gem_request *req)
1350 {
1351 struct intel_engine_cs *ring = req->ring;
1352 int ret;
1353
1354 if (ring->semaphore.signal)
1355 ret = ring->semaphore.signal(req, 4);
1356 else
1357 ret = intel_ring_begin(req, 4);
1358
1359 if (ret)
1360 return ret;
1361
1362 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1363 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1364 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1365 intel_ring_emit(ring, MI_USER_INTERRUPT);
1366 __intel_ring_advance(ring);
1367
1368 return 0;
1369 }
1370
i915_gem_has_seqno_wrapped(struct drm_device * dev,u32 seqno)1371 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1372 u32 seqno)
1373 {
1374 struct drm_i915_private *dev_priv = dev->dev_private;
1375 return dev_priv->last_seqno < seqno;
1376 }
1377
1378 /**
1379 * intel_ring_sync - sync the waiter to the signaller on seqno
1380 *
1381 * @waiter - ring that is waiting
1382 * @signaller - ring which has, or will signal
1383 * @seqno - seqno which the waiter will block on
1384 */
1385
1386 static int
gen8_ring_sync(struct drm_i915_gem_request * waiter_req,struct intel_engine_cs * signaller,u32 seqno)1387 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1388 struct intel_engine_cs *signaller,
1389 u32 seqno)
1390 {
1391 struct intel_engine_cs *waiter = waiter_req->ring;
1392 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1393 int ret;
1394
1395 ret = intel_ring_begin(waiter_req, 4);
1396 if (ret)
1397 return ret;
1398
1399 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1400 MI_SEMAPHORE_GLOBAL_GTT |
1401 MI_SEMAPHORE_POLL |
1402 MI_SEMAPHORE_SAD_GTE_SDD);
1403 intel_ring_emit(waiter, seqno);
1404 intel_ring_emit(waiter,
1405 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1406 intel_ring_emit(waiter,
1407 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1408 intel_ring_advance(waiter);
1409 return 0;
1410 }
1411
1412 static int
gen6_ring_sync(struct drm_i915_gem_request * waiter_req,struct intel_engine_cs * signaller,u32 seqno)1413 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1414 struct intel_engine_cs *signaller,
1415 u32 seqno)
1416 {
1417 struct intel_engine_cs *waiter = waiter_req->ring;
1418 u32 dw1 = MI_SEMAPHORE_MBOX |
1419 MI_SEMAPHORE_COMPARE |
1420 MI_SEMAPHORE_REGISTER;
1421 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1422 int ret;
1423
1424 /* Throughout all of the GEM code, seqno passed implies our current
1425 * seqno is >= the last seqno executed. However for hardware the
1426 * comparison is strictly greater than.
1427 */
1428 seqno -= 1;
1429
1430 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1431
1432 ret = intel_ring_begin(waiter_req, 4);
1433 if (ret)
1434 return ret;
1435
1436 /* If seqno wrap happened, omit the wait with no-ops */
1437 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1438 intel_ring_emit(waiter, dw1 | wait_mbox);
1439 intel_ring_emit(waiter, seqno);
1440 intel_ring_emit(waiter, 0);
1441 intel_ring_emit(waiter, MI_NOOP);
1442 } else {
1443 intel_ring_emit(waiter, MI_NOOP);
1444 intel_ring_emit(waiter, MI_NOOP);
1445 intel_ring_emit(waiter, MI_NOOP);
1446 intel_ring_emit(waiter, MI_NOOP);
1447 }
1448 intel_ring_advance(waiter);
1449
1450 return 0;
1451 }
1452
1453 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1454 do { \
1455 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1456 PIPE_CONTROL_DEPTH_STALL); \
1457 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1458 intel_ring_emit(ring__, 0); \
1459 intel_ring_emit(ring__, 0); \
1460 } while (0)
1461
1462 static int
pc_render_add_request(struct drm_i915_gem_request * req)1463 pc_render_add_request(struct drm_i915_gem_request *req)
1464 {
1465 struct intel_engine_cs *ring = req->ring;
1466 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1467 int ret;
1468
1469 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1470 * incoherent with writes to memory, i.e. completely fubar,
1471 * so we need to use PIPE_NOTIFY instead.
1472 *
1473 * However, we also need to workaround the qword write
1474 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1475 * memory before requesting an interrupt.
1476 */
1477 ret = intel_ring_begin(req, 32);
1478 if (ret)
1479 return ret;
1480
1481 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1482 PIPE_CONTROL_WRITE_FLUSH |
1483 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1484 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1485 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1486 intel_ring_emit(ring, 0);
1487 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1488 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1489 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1490 scratch_addr += 2 * CACHELINE_BYTES;
1491 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1492 scratch_addr += 2 * CACHELINE_BYTES;
1493 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1494 scratch_addr += 2 * CACHELINE_BYTES;
1495 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1496 scratch_addr += 2 * CACHELINE_BYTES;
1497 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1498
1499 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1500 PIPE_CONTROL_WRITE_FLUSH |
1501 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1502 PIPE_CONTROL_NOTIFY);
1503 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1504 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1505 intel_ring_emit(ring, 0);
1506 __intel_ring_advance(ring);
1507
1508 return 0;
1509 }
1510
1511 static u32
gen6_ring_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1512 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1513 {
1514 /* Workaround to force correct ordering between irq and seqno writes on
1515 * ivb (and maybe also on snb) by reading from a CS register (like
1516 * ACTHD) before reading the status page. */
1517 if (!lazy_coherency) {
1518 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1519 POSTING_READ(RING_ACTHD(ring->mmio_base));
1520 }
1521
1522 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1523 }
1524
1525 static u32
ring_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1526 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1527 {
1528 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1529 }
1530
1531 static void
ring_set_seqno(struct intel_engine_cs * ring,u32 seqno)1532 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1533 {
1534 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1535 }
1536
1537 static u32
pc_render_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1538 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1539 {
1540 return ring->scratch.cpu_page[0];
1541 }
1542
1543 static void
pc_render_set_seqno(struct intel_engine_cs * ring,u32 seqno)1544 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1545 {
1546 ring->scratch.cpu_page[0] = seqno;
1547 }
1548
1549 static bool
gen5_ring_get_irq(struct intel_engine_cs * ring)1550 gen5_ring_get_irq(struct intel_engine_cs *ring)
1551 {
1552 struct drm_device *dev = ring->dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 unsigned long flags;
1555
1556 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1557 return false;
1558
1559 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1560 if (ring->irq_refcount++ == 0)
1561 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1562 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1563
1564 return true;
1565 }
1566
1567 static void
gen5_ring_put_irq(struct intel_engine_cs * ring)1568 gen5_ring_put_irq(struct intel_engine_cs *ring)
1569 {
1570 struct drm_device *dev = ring->dev;
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572 unsigned long flags;
1573
1574 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1575 if (--ring->irq_refcount == 0)
1576 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1577 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1578 }
1579
1580 static bool
i9xx_ring_get_irq(struct intel_engine_cs * ring)1581 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1582 {
1583 struct drm_device *dev = ring->dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 unsigned long flags;
1586
1587 if (!intel_irqs_enabled(dev_priv))
1588 return false;
1589
1590 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1591 if (ring->irq_refcount++ == 0) {
1592 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1593 I915_WRITE(IMR, dev_priv->irq_mask);
1594 POSTING_READ(IMR);
1595 }
1596 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1597
1598 return true;
1599 }
1600
1601 static void
i9xx_ring_put_irq(struct intel_engine_cs * ring)1602 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1603 {
1604 struct drm_device *dev = ring->dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 unsigned long flags;
1607
1608 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1609 if (--ring->irq_refcount == 0) {
1610 dev_priv->irq_mask |= ring->irq_enable_mask;
1611 I915_WRITE(IMR, dev_priv->irq_mask);
1612 POSTING_READ(IMR);
1613 }
1614 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1615 }
1616
1617 static bool
i8xx_ring_get_irq(struct intel_engine_cs * ring)1618 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1619 {
1620 struct drm_device *dev = ring->dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 unsigned long flags;
1623
1624 if (!intel_irqs_enabled(dev_priv))
1625 return false;
1626
1627 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1628 if (ring->irq_refcount++ == 0) {
1629 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1630 I915_WRITE16(IMR, dev_priv->irq_mask);
1631 POSTING_READ16(IMR);
1632 }
1633 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1634
1635 return true;
1636 }
1637
1638 static void
i8xx_ring_put_irq(struct intel_engine_cs * ring)1639 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1640 {
1641 struct drm_device *dev = ring->dev;
1642 struct drm_i915_private *dev_priv = dev->dev_private;
1643 unsigned long flags;
1644
1645 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646 if (--ring->irq_refcount == 0) {
1647 dev_priv->irq_mask |= ring->irq_enable_mask;
1648 I915_WRITE16(IMR, dev_priv->irq_mask);
1649 POSTING_READ16(IMR);
1650 }
1651 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1652 }
1653
1654 static int
bsd_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)1655 bsd_ring_flush(struct drm_i915_gem_request *req,
1656 u32 invalidate_domains,
1657 u32 flush_domains)
1658 {
1659 struct intel_engine_cs *ring = req->ring;
1660 int ret;
1661
1662 ret = intel_ring_begin(req, 2);
1663 if (ret)
1664 return ret;
1665
1666 intel_ring_emit(ring, MI_FLUSH);
1667 intel_ring_emit(ring, MI_NOOP);
1668 intel_ring_advance(ring);
1669 return 0;
1670 }
1671
1672 static int
i9xx_add_request(struct drm_i915_gem_request * req)1673 i9xx_add_request(struct drm_i915_gem_request *req)
1674 {
1675 struct intel_engine_cs *ring = req->ring;
1676 int ret;
1677
1678 ret = intel_ring_begin(req, 4);
1679 if (ret)
1680 return ret;
1681
1682 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1683 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1684 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1685 intel_ring_emit(ring, MI_USER_INTERRUPT);
1686 __intel_ring_advance(ring);
1687
1688 return 0;
1689 }
1690
1691 static bool
gen6_ring_get_irq(struct intel_engine_cs * ring)1692 gen6_ring_get_irq(struct intel_engine_cs *ring)
1693 {
1694 struct drm_device *dev = ring->dev;
1695 struct drm_i915_private *dev_priv = dev->dev_private;
1696 unsigned long flags;
1697
1698 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1699 return false;
1700
1701 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1702 if (ring->irq_refcount++ == 0) {
1703 if (HAS_L3_DPF(dev) && ring->id == RCS)
1704 I915_WRITE_IMR(ring,
1705 ~(ring->irq_enable_mask |
1706 GT_PARITY_ERROR(dev)));
1707 else
1708 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1709 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1710 }
1711 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1712
1713 return true;
1714 }
1715
1716 static void
gen6_ring_put_irq(struct intel_engine_cs * ring)1717 gen6_ring_put_irq(struct intel_engine_cs *ring)
1718 {
1719 struct drm_device *dev = ring->dev;
1720 struct drm_i915_private *dev_priv = dev->dev_private;
1721 unsigned long flags;
1722
1723 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724 if (--ring->irq_refcount == 0) {
1725 if (HAS_L3_DPF(dev) && ring->id == RCS)
1726 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1727 else
1728 I915_WRITE_IMR(ring, ~0);
1729 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1730 }
1731 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1732 }
1733
1734 static bool
hsw_vebox_get_irq(struct intel_engine_cs * ring)1735 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1736 {
1737 struct drm_device *dev = ring->dev;
1738 struct drm_i915_private *dev_priv = dev->dev_private;
1739 unsigned long flags;
1740
1741 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1742 return false;
1743
1744 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1745 if (ring->irq_refcount++ == 0) {
1746 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1747 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1748 }
1749 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1750
1751 return true;
1752 }
1753
1754 static void
hsw_vebox_put_irq(struct intel_engine_cs * ring)1755 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1756 {
1757 struct drm_device *dev = ring->dev;
1758 struct drm_i915_private *dev_priv = dev->dev_private;
1759 unsigned long flags;
1760
1761 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1762 if (--ring->irq_refcount == 0) {
1763 I915_WRITE_IMR(ring, ~0);
1764 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1765 }
1766 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1767 }
1768
1769 static bool
gen8_ring_get_irq(struct intel_engine_cs * ring)1770 gen8_ring_get_irq(struct intel_engine_cs *ring)
1771 {
1772 struct drm_device *dev = ring->dev;
1773 struct drm_i915_private *dev_priv = dev->dev_private;
1774 unsigned long flags;
1775
1776 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1777 return false;
1778
1779 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1780 if (ring->irq_refcount++ == 0) {
1781 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1782 I915_WRITE_IMR(ring,
1783 ~(ring->irq_enable_mask |
1784 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1785 } else {
1786 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1787 }
1788 POSTING_READ(RING_IMR(ring->mmio_base));
1789 }
1790 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791
1792 return true;
1793 }
1794
1795 static void
gen8_ring_put_irq(struct intel_engine_cs * ring)1796 gen8_ring_put_irq(struct intel_engine_cs *ring)
1797 {
1798 struct drm_device *dev = ring->dev;
1799 struct drm_i915_private *dev_priv = dev->dev_private;
1800 unsigned long flags;
1801
1802 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803 if (--ring->irq_refcount == 0) {
1804 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1805 I915_WRITE_IMR(ring,
1806 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1807 } else {
1808 I915_WRITE_IMR(ring, ~0);
1809 }
1810 POSTING_READ(RING_IMR(ring->mmio_base));
1811 }
1812 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1813 }
1814
1815 static int
i965_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 length,unsigned dispatch_flags)1816 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1817 u64 offset, u32 length,
1818 unsigned dispatch_flags)
1819 {
1820 struct intel_engine_cs *ring = req->ring;
1821 int ret;
1822
1823 ret = intel_ring_begin(req, 2);
1824 if (ret)
1825 return ret;
1826
1827 intel_ring_emit(ring,
1828 MI_BATCH_BUFFER_START |
1829 MI_BATCH_GTT |
1830 (dispatch_flags & I915_DISPATCH_SECURE ?
1831 0 : MI_BATCH_NON_SECURE_I965));
1832 intel_ring_emit(ring, offset);
1833 intel_ring_advance(ring);
1834
1835 return 0;
1836 }
1837
1838 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1839 #define I830_BATCH_LIMIT (256*1024)
1840 #define I830_TLB_ENTRIES (2)
1841 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1842 static int
i830_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)1843 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1844 u64 offset, u32 len,
1845 unsigned dispatch_flags)
1846 {
1847 struct intel_engine_cs *ring = req->ring;
1848 u32 cs_offset = ring->scratch.gtt_offset;
1849 int ret;
1850
1851 ret = intel_ring_begin(req, 6);
1852 if (ret)
1853 return ret;
1854
1855 /* Evict the invalid PTE TLBs */
1856 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1857 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1858 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1859 intel_ring_emit(ring, cs_offset);
1860 intel_ring_emit(ring, 0xdeadbeef);
1861 intel_ring_emit(ring, MI_NOOP);
1862 intel_ring_advance(ring);
1863
1864 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1865 if (len > I830_BATCH_LIMIT)
1866 return -ENOSPC;
1867
1868 ret = intel_ring_begin(req, 6 + 2);
1869 if (ret)
1870 return ret;
1871
1872 /* Blit the batch (which has now all relocs applied) to the
1873 * stable batch scratch bo area (so that the CS never
1874 * stumbles over its tlb invalidation bug) ...
1875 */
1876 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1877 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1878 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1879 intel_ring_emit(ring, cs_offset);
1880 intel_ring_emit(ring, 4096);
1881 intel_ring_emit(ring, offset);
1882
1883 intel_ring_emit(ring, MI_FLUSH);
1884 intel_ring_emit(ring, MI_NOOP);
1885 intel_ring_advance(ring);
1886
1887 /* ... and execute it. */
1888 offset = cs_offset;
1889 }
1890
1891 ret = intel_ring_begin(req, 4);
1892 if (ret)
1893 return ret;
1894
1895 intel_ring_emit(ring, MI_BATCH_BUFFER);
1896 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1897 0 : MI_BATCH_NON_SECURE));
1898 intel_ring_emit(ring, offset + len - 8);
1899 intel_ring_emit(ring, MI_NOOP);
1900 intel_ring_advance(ring);
1901
1902 return 0;
1903 }
1904
1905 static int
i915_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)1906 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1907 u64 offset, u32 len,
1908 unsigned dispatch_flags)
1909 {
1910 struct intel_engine_cs *ring = req->ring;
1911 int ret;
1912
1913 ret = intel_ring_begin(req, 2);
1914 if (ret)
1915 return ret;
1916
1917 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1918 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1919 0 : MI_BATCH_NON_SECURE));
1920 intel_ring_advance(ring);
1921
1922 return 0;
1923 }
1924
cleanup_phys_status_page(struct intel_engine_cs * ring)1925 static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1926 {
1927 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1928
1929 if (!dev_priv->status_page_dmah)
1930 return;
1931
1932 drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1933 ring->status_page.page_addr = NULL;
1934 }
1935
cleanup_status_page(struct intel_engine_cs * ring)1936 static void cleanup_status_page(struct intel_engine_cs *ring)
1937 {
1938 struct drm_i915_gem_object *obj;
1939
1940 obj = ring->status_page.obj;
1941 if (obj == NULL)
1942 return;
1943
1944 kunmap(sg_page(obj->pages->sgl));
1945 i915_gem_object_ggtt_unpin(obj);
1946 drm_gem_object_unreference(&obj->base);
1947 ring->status_page.obj = NULL;
1948 }
1949
init_status_page(struct intel_engine_cs * ring)1950 static int init_status_page(struct intel_engine_cs *ring)
1951 {
1952 struct drm_i915_gem_object *obj = ring->status_page.obj;
1953
1954 if (obj == NULL) {
1955 unsigned flags;
1956 int ret;
1957
1958 obj = i915_gem_alloc_object(ring->dev, 4096);
1959 if (obj == NULL) {
1960 DRM_ERROR("Failed to allocate status page\n");
1961 return -ENOMEM;
1962 }
1963
1964 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1965 if (ret)
1966 goto err_unref;
1967
1968 flags = 0;
1969 if (!HAS_LLC(ring->dev))
1970 /* On g33, we cannot place HWS above 256MiB, so
1971 * restrict its pinning to the low mappable arena.
1972 * Though this restriction is not documented for
1973 * gen4, gen5, or byt, they also behave similarly
1974 * and hang if the HWS is placed at the top of the
1975 * GTT. To generalise, it appears that all !llc
1976 * platforms have issues with us placing the HWS
1977 * above the mappable region (even though we never
1978 * actualy map it).
1979 */
1980 flags |= PIN_MAPPABLE;
1981 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1982 if (ret) {
1983 err_unref:
1984 drm_gem_object_unreference(&obj->base);
1985 return ret;
1986 }
1987
1988 ring->status_page.obj = obj;
1989 }
1990
1991 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1992 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1993 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1994
1995 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1996 ring->name, ring->status_page.gfx_addr);
1997
1998 return 0;
1999 }
2000
init_phys_status_page(struct intel_engine_cs * ring)2001 static int init_phys_status_page(struct intel_engine_cs *ring)
2002 {
2003 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2004
2005 if (!dev_priv->status_page_dmah) {
2006 dev_priv->status_page_dmah =
2007 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2008 if (!dev_priv->status_page_dmah)
2009 return -ENOMEM;
2010 }
2011
2012 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2013 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2014
2015 return 0;
2016 }
2017
intel_unpin_ringbuffer_obj(struct intel_ringbuffer * ringbuf)2018 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2019 {
2020 iounmap(ringbuf->virtual_start);
2021 ringbuf->virtual_start = NULL;
2022 i915_gem_object_ggtt_unpin(ringbuf->obj);
2023 }
2024
intel_pin_and_map_ringbuffer_obj(struct drm_device * dev,struct intel_ringbuffer * ringbuf)2025 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2026 struct intel_ringbuffer *ringbuf)
2027 {
2028 struct drm_i915_private *dev_priv = to_i915(dev);
2029 struct drm_i915_gem_object *obj = ringbuf->obj;
2030 int ret;
2031
2032 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2033 if (ret)
2034 return ret;
2035
2036 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2037 if (ret) {
2038 i915_gem_object_ggtt_unpin(obj);
2039 return ret;
2040 }
2041
2042 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2043 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2044 if (ringbuf->virtual_start == NULL) {
2045 i915_gem_object_ggtt_unpin(obj);
2046 return -EINVAL;
2047 }
2048
2049 return 0;
2050 }
2051
intel_destroy_ringbuffer_obj(struct intel_ringbuffer * ringbuf)2052 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2053 {
2054 drm_gem_object_unreference(&ringbuf->obj->base);
2055 ringbuf->obj = NULL;
2056 }
2057
intel_alloc_ringbuffer_obj(struct drm_device * dev,struct intel_ringbuffer * ringbuf)2058 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2059 struct intel_ringbuffer *ringbuf)
2060 {
2061 struct drm_i915_private *dev_priv = to_i915(dev);
2062 struct i915_address_space *vm = &dev_priv->gtt.base;
2063 struct drm_i915_gem_object *obj;
2064
2065 obj = NULL;
2066 if (!HAS_LLC(dev))
2067 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2068 if (obj == NULL)
2069 obj = i915_gem_alloc_object(dev, ringbuf->size);
2070 if (obj == NULL)
2071 return -ENOMEM;
2072
2073 /*
2074 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
2075 * if supported by the platform's GGTT.
2076 */
2077 if (vm->has_read_only)
2078 obj->gt_ro = 1;
2079
2080 ringbuf->obj = obj;
2081
2082 return 0;
2083 }
2084
2085 struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs * engine,int size)2086 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2087 {
2088 struct intel_ringbuffer *ring;
2089 int ret;
2090
2091 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2092 if (ring == NULL)
2093 return ERR_PTR(-ENOMEM);
2094
2095 ring->ring = engine;
2096
2097 ring->size = size;
2098 /* Workaround an erratum on the i830 which causes a hang if
2099 * the TAIL pointer points to within the last 2 cachelines
2100 * of the buffer.
2101 */
2102 ring->effective_size = size;
2103 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2104 ring->effective_size -= 2 * CACHELINE_BYTES;
2105
2106 ring->last_retired_head = -1;
2107 intel_ring_update_space(ring);
2108
2109 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2110 if (ret) {
2111 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2112 engine->name, ret);
2113 kfree(ring);
2114 return ERR_PTR(ret);
2115 }
2116
2117 return ring;
2118 }
2119
2120 void
intel_ringbuffer_free(struct intel_ringbuffer * ring)2121 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2122 {
2123 intel_destroy_ringbuffer_obj(ring);
2124 kfree(ring);
2125 }
2126
intel_init_ring_buffer(struct drm_device * dev,struct intel_engine_cs * ring)2127 static int intel_init_ring_buffer(struct drm_device *dev,
2128 struct intel_engine_cs *ring)
2129 {
2130 struct intel_ringbuffer *ringbuf;
2131 int ret;
2132
2133 WARN_ON(ring->buffer);
2134
2135 ring->dev = dev;
2136 INIT_LIST_HEAD(&ring->active_list);
2137 INIT_LIST_HEAD(&ring->request_list);
2138 INIT_LIST_HEAD(&ring->execlist_queue);
2139 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2140 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2141
2142 init_waitqueue_head(&ring->irq_queue);
2143
2144 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2145 if (IS_ERR(ringbuf))
2146 return PTR_ERR(ringbuf);
2147 ring->buffer = ringbuf;
2148
2149 if (I915_NEED_GFX_HWS(dev)) {
2150 ret = init_status_page(ring);
2151 if (ret)
2152 goto error;
2153 } else {
2154 WARN_ON(ring->id != RCS);
2155 ret = init_phys_status_page(ring);
2156 if (ret)
2157 goto error;
2158 }
2159
2160 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2161 if (ret) {
2162 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2163 ring->name, ret);
2164 intel_destroy_ringbuffer_obj(ringbuf);
2165 goto error;
2166 }
2167
2168 ret = i915_cmd_parser_init_ring(ring);
2169 if (ret)
2170 goto error;
2171
2172 return 0;
2173
2174 error:
2175 intel_ringbuffer_free(ringbuf);
2176 ring->buffer = NULL;
2177 return ret;
2178 }
2179
intel_cleanup_ring_buffer(struct intel_engine_cs * ring)2180 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2181 {
2182 struct drm_i915_private *dev_priv;
2183
2184 if (!intel_ring_initialized(ring))
2185 return;
2186
2187 dev_priv = to_i915(ring->dev);
2188
2189 intel_stop_ring_buffer(ring);
2190 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2191
2192 intel_unpin_ringbuffer_obj(ring->buffer);
2193 intel_ringbuffer_free(ring->buffer);
2194 ring->buffer = NULL;
2195
2196 if (ring->cleanup)
2197 ring->cleanup(ring);
2198
2199 if (I915_NEED_GFX_HWS(ring->dev)) {
2200 cleanup_status_page(ring);
2201 } else {
2202 WARN_ON(ring->id != RCS);
2203 cleanup_phys_status_page(ring);
2204 }
2205
2206 i915_cmd_parser_fini_ring(ring);
2207 i915_gem_batch_pool_fini(&ring->batch_pool);
2208 }
2209
ring_wait_for_space(struct intel_engine_cs * ring,int n)2210 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2211 {
2212 struct intel_ringbuffer *ringbuf = ring->buffer;
2213 struct drm_i915_gem_request *request;
2214 unsigned space;
2215 int ret;
2216
2217 if (intel_ring_space(ringbuf) >= n)
2218 return 0;
2219
2220 /* The whole point of reserving space is to not wait! */
2221 WARN_ON(ringbuf->reserved_in_use);
2222
2223 list_for_each_entry(request, &ring->request_list, list) {
2224 space = __intel_ring_space(request->postfix, ringbuf->tail,
2225 ringbuf->size);
2226 if (space >= n)
2227 break;
2228 }
2229
2230 if (WARN_ON(&request->list == &ring->request_list))
2231 return -ENOSPC;
2232
2233 ret = i915_wait_request(request);
2234 if (ret)
2235 return ret;
2236
2237 ringbuf->space = space;
2238 return 0;
2239 }
2240
__wrap_ring_buffer(struct intel_ringbuffer * ringbuf)2241 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2242 {
2243 uint32_t __iomem *virt;
2244 int rem = ringbuf->size - ringbuf->tail;
2245
2246 virt = ringbuf->virtual_start + ringbuf->tail;
2247 rem /= 4;
2248 while (rem--)
2249 iowrite32(MI_NOOP, virt++);
2250
2251 ringbuf->tail = 0;
2252 intel_ring_update_space(ringbuf);
2253 }
2254
intel_ring_idle(struct intel_engine_cs * ring)2255 int intel_ring_idle(struct intel_engine_cs *ring)
2256 {
2257 struct drm_i915_gem_request *req;
2258
2259 /* Wait upon the last request to be completed */
2260 if (list_empty(&ring->request_list))
2261 return 0;
2262
2263 req = list_entry(ring->request_list.prev,
2264 struct drm_i915_gem_request,
2265 list);
2266
2267 /* Make sure we do not trigger any retires */
2268 return __i915_wait_request(req,
2269 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2270 to_i915(ring->dev)->mm.interruptible,
2271 NULL, NULL);
2272 }
2273
intel_ring_alloc_request_extras(struct drm_i915_gem_request * request)2274 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2275 {
2276 request->ringbuf = request->ring->buffer;
2277 return 0;
2278 }
2279
intel_ring_reserve_space(struct drm_i915_gem_request * request)2280 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2281 {
2282 /*
2283 * The first call merely notes the reserve request and is common for
2284 * all back ends. The subsequent localised _begin() call actually
2285 * ensures that the reservation is available. Without the begin, if
2286 * the request creator immediately submitted the request without
2287 * adding any commands to it then there might not actually be
2288 * sufficient room for the submission commands.
2289 */
2290 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2291
2292 return intel_ring_begin(request, 0);
2293 }
2294
intel_ring_reserved_space_reserve(struct intel_ringbuffer * ringbuf,int size)2295 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2296 {
2297 WARN_ON(ringbuf->reserved_size);
2298 WARN_ON(ringbuf->reserved_in_use);
2299
2300 ringbuf->reserved_size = size;
2301 }
2302
intel_ring_reserved_space_cancel(struct intel_ringbuffer * ringbuf)2303 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2304 {
2305 WARN_ON(ringbuf->reserved_in_use);
2306
2307 ringbuf->reserved_size = 0;
2308 ringbuf->reserved_in_use = false;
2309 }
2310
intel_ring_reserved_space_use(struct intel_ringbuffer * ringbuf)2311 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2312 {
2313 WARN_ON(ringbuf->reserved_in_use);
2314
2315 ringbuf->reserved_in_use = true;
2316 ringbuf->reserved_tail = ringbuf->tail;
2317 }
2318
intel_ring_reserved_space_end(struct intel_ringbuffer * ringbuf)2319 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2320 {
2321 WARN_ON(!ringbuf->reserved_in_use);
2322 if (ringbuf->tail > ringbuf->reserved_tail) {
2323 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2324 "request reserved size too small: %d vs %d!\n",
2325 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2326 } else {
2327 /*
2328 * The ring was wrapped while the reserved space was in use.
2329 * That means that some unknown amount of the ring tail was
2330 * no-op filled and skipped. Thus simply adding the ring size
2331 * to the tail and doing the above space check will not work.
2332 * Rather than attempt to track how much tail was skipped,
2333 * it is much simpler to say that also skipping the sanity
2334 * check every once in a while is not a big issue.
2335 */
2336 }
2337
2338 ringbuf->reserved_size = 0;
2339 ringbuf->reserved_in_use = false;
2340 }
2341
__intel_ring_prepare(struct intel_engine_cs * ring,int bytes)2342 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2343 {
2344 struct intel_ringbuffer *ringbuf = ring->buffer;
2345 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2346 int remain_actual = ringbuf->size - ringbuf->tail;
2347 int ret, total_bytes, wait_bytes = 0;
2348 bool need_wrap = false;
2349
2350 if (ringbuf->reserved_in_use)
2351 total_bytes = bytes;
2352 else
2353 total_bytes = bytes + ringbuf->reserved_size;
2354
2355 if (unlikely(bytes > remain_usable)) {
2356 /*
2357 * Not enough space for the basic request. So need to flush
2358 * out the remainder and then wait for base + reserved.
2359 */
2360 wait_bytes = remain_actual + total_bytes;
2361 need_wrap = true;
2362 } else {
2363 if (unlikely(total_bytes > remain_usable)) {
2364 /*
2365 * The base request will fit but the reserved space
2366 * falls off the end. So don't need an immediate wrap
2367 * and only need to effectively wait for the reserved
2368 * size space from the start of ringbuffer.
2369 */
2370 wait_bytes = remain_actual + ringbuf->reserved_size;
2371 } else if (total_bytes > ringbuf->space) {
2372 /* No wrapping required, just waiting. */
2373 wait_bytes = total_bytes;
2374 }
2375 }
2376
2377 if (wait_bytes) {
2378 ret = ring_wait_for_space(ring, wait_bytes);
2379 if (unlikely(ret))
2380 return ret;
2381
2382 if (need_wrap)
2383 __wrap_ring_buffer(ringbuf);
2384 }
2385
2386 return 0;
2387 }
2388
intel_ring_begin(struct drm_i915_gem_request * req,int num_dwords)2389 int intel_ring_begin(struct drm_i915_gem_request *req,
2390 int num_dwords)
2391 {
2392 struct intel_engine_cs *ring;
2393 struct drm_i915_private *dev_priv;
2394 int ret;
2395
2396 WARN_ON(req == NULL);
2397 ring = req->ring;
2398 dev_priv = ring->dev->dev_private;
2399
2400 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2401 dev_priv->mm.interruptible);
2402 if (ret)
2403 return ret;
2404
2405 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2406 if (ret)
2407 return ret;
2408
2409 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2410 return 0;
2411 }
2412
2413 /* Align the ring tail to a cacheline boundary */
intel_ring_cacheline_align(struct drm_i915_gem_request * req)2414 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2415 {
2416 struct intel_engine_cs *ring = req->ring;
2417 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2418 int ret;
2419
2420 if (num_dwords == 0)
2421 return 0;
2422
2423 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2424 ret = intel_ring_begin(req, num_dwords);
2425 if (ret)
2426 return ret;
2427
2428 while (num_dwords--)
2429 intel_ring_emit(ring, MI_NOOP);
2430
2431 intel_ring_advance(ring);
2432
2433 return 0;
2434 }
2435
intel_ring_init_seqno(struct intel_engine_cs * ring,u32 seqno)2436 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2437 {
2438 struct drm_device *dev = ring->dev;
2439 struct drm_i915_private *dev_priv = dev->dev_private;
2440
2441 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2442 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2443 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2444 if (HAS_VEBOX(dev))
2445 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2446 }
2447
2448 ring->set_seqno(ring, seqno);
2449 ring->hangcheck.seqno = seqno;
2450 }
2451
gen6_bsd_ring_write_tail(struct intel_engine_cs * ring,u32 value)2452 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2453 u32 value)
2454 {
2455 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2456
2457 /* Every tail move must follow the sequence below */
2458
2459 /* Disable notification that the ring is IDLE. The GT
2460 * will then assume that it is busy and bring it out of rc6.
2461 */
2462 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2463 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2464
2465 /* Clear the context id. Here be magic! */
2466 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2467
2468 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2469 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2470 GEN6_BSD_SLEEP_INDICATOR) == 0,
2471 50))
2472 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2473
2474 /* Now that the ring is fully powered up, update the tail */
2475 I915_WRITE_TAIL(ring, value);
2476 POSTING_READ(RING_TAIL(ring->mmio_base));
2477
2478 /* Let the ring send IDLE messages to the GT again,
2479 * and so let it sleep to conserve power when idle.
2480 */
2481 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2482 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2483 }
2484
gen6_bsd_ring_flush(struct drm_i915_gem_request * req,u32 invalidate,u32 flush)2485 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2486 u32 invalidate, u32 flush)
2487 {
2488 struct intel_engine_cs *ring = req->ring;
2489 uint32_t cmd;
2490 int ret;
2491
2492 ret = intel_ring_begin(req, 4);
2493 if (ret)
2494 return ret;
2495
2496 cmd = MI_FLUSH_DW;
2497 if (INTEL_INFO(ring->dev)->gen >= 8)
2498 cmd += 1;
2499
2500 /* We always require a command barrier so that subsequent
2501 * commands, such as breadcrumb interrupts, are strictly ordered
2502 * wrt the contents of the write cache being flushed to memory
2503 * (and thus being coherent from the CPU).
2504 */
2505 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2506
2507 /*
2508 * Bspec vol 1c.5 - video engine command streamer:
2509 * "If ENABLED, all TLBs will be invalidated once the flush
2510 * operation is complete. This bit is only valid when the
2511 * Post-Sync Operation field is a value of 1h or 3h."
2512 */
2513 if (invalidate & I915_GEM_GPU_DOMAINS)
2514 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2515
2516 intel_ring_emit(ring, cmd);
2517 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2518 if (INTEL_INFO(ring->dev)->gen >= 8) {
2519 intel_ring_emit(ring, 0); /* upper addr */
2520 intel_ring_emit(ring, 0); /* value */
2521 } else {
2522 intel_ring_emit(ring, 0);
2523 intel_ring_emit(ring, MI_NOOP);
2524 }
2525 intel_ring_advance(ring);
2526 return 0;
2527 }
2528
2529 static int
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)2530 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2531 u64 offset, u32 len,
2532 unsigned dispatch_flags)
2533 {
2534 struct intel_engine_cs *ring = req->ring;
2535 bool ppgtt = USES_PPGTT(ring->dev) &&
2536 !(dispatch_flags & I915_DISPATCH_SECURE);
2537 int ret;
2538
2539 ret = intel_ring_begin(req, 4);
2540 if (ret)
2541 return ret;
2542
2543 /* FIXME(BDW): Address space and security selectors. */
2544 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2545 (dispatch_flags & I915_DISPATCH_RS ?
2546 MI_BATCH_RESOURCE_STREAMER : 0));
2547 intel_ring_emit(ring, lower_32_bits(offset));
2548 intel_ring_emit(ring, upper_32_bits(offset));
2549 intel_ring_emit(ring, MI_NOOP);
2550 intel_ring_advance(ring);
2551
2552 return 0;
2553 }
2554
2555 static int
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)2556 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2557 u64 offset, u32 len,
2558 unsigned dispatch_flags)
2559 {
2560 struct intel_engine_cs *ring = req->ring;
2561 int ret;
2562
2563 ret = intel_ring_begin(req, 2);
2564 if (ret)
2565 return ret;
2566
2567 intel_ring_emit(ring,
2568 MI_BATCH_BUFFER_START |
2569 (dispatch_flags & I915_DISPATCH_SECURE ?
2570 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2571 (dispatch_flags & I915_DISPATCH_RS ?
2572 MI_BATCH_RESOURCE_STREAMER : 0));
2573 /* bit0-7 is the length on GEN6+ */
2574 intel_ring_emit(ring, offset);
2575 intel_ring_advance(ring);
2576
2577 return 0;
2578 }
2579
2580 static int
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)2581 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2582 u64 offset, u32 len,
2583 unsigned dispatch_flags)
2584 {
2585 struct intel_engine_cs *ring = req->ring;
2586 int ret;
2587
2588 ret = intel_ring_begin(req, 2);
2589 if (ret)
2590 return ret;
2591
2592 intel_ring_emit(ring,
2593 MI_BATCH_BUFFER_START |
2594 (dispatch_flags & I915_DISPATCH_SECURE ?
2595 0 : MI_BATCH_NON_SECURE_I965));
2596 /* bit0-7 is the length on GEN6+ */
2597 intel_ring_emit(ring, offset);
2598 intel_ring_advance(ring);
2599
2600 return 0;
2601 }
2602
2603 /* Blitter support (SandyBridge+) */
2604
gen6_ring_flush(struct drm_i915_gem_request * req,u32 invalidate,u32 flush)2605 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2606 u32 invalidate, u32 flush)
2607 {
2608 struct intel_engine_cs *ring = req->ring;
2609 struct drm_device *dev = ring->dev;
2610 uint32_t cmd;
2611 int ret;
2612
2613 ret = intel_ring_begin(req, 4);
2614 if (ret)
2615 return ret;
2616
2617 cmd = MI_FLUSH_DW;
2618 if (INTEL_INFO(dev)->gen >= 8)
2619 cmd += 1;
2620
2621 /* We always require a command barrier so that subsequent
2622 * commands, such as breadcrumb interrupts, are strictly ordered
2623 * wrt the contents of the write cache being flushed to memory
2624 * (and thus being coherent from the CPU).
2625 */
2626 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2627
2628 /*
2629 * Bspec vol 1c.3 - blitter engine command streamer:
2630 * "If ENABLED, all TLBs will be invalidated once the flush
2631 * operation is complete. This bit is only valid when the
2632 * Post-Sync Operation field is a value of 1h or 3h."
2633 */
2634 if (invalidate & I915_GEM_DOMAIN_RENDER)
2635 cmd |= MI_INVALIDATE_TLB;
2636 intel_ring_emit(ring, cmd);
2637 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2638 if (INTEL_INFO(dev)->gen >= 8) {
2639 intel_ring_emit(ring, 0); /* upper addr */
2640 intel_ring_emit(ring, 0); /* value */
2641 } else {
2642 intel_ring_emit(ring, 0);
2643 intel_ring_emit(ring, MI_NOOP);
2644 }
2645 intel_ring_advance(ring);
2646
2647 return 0;
2648 }
2649
intel_init_render_ring_buffer(struct drm_device * dev)2650 int intel_init_render_ring_buffer(struct drm_device *dev)
2651 {
2652 struct drm_i915_private *dev_priv = dev->dev_private;
2653 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2654 struct drm_i915_gem_object *obj;
2655 int ret;
2656
2657 ring->name = "render ring";
2658 ring->id = RCS;
2659 ring->mmio_base = RENDER_RING_BASE;
2660
2661 if (INTEL_INFO(dev)->gen >= 8) {
2662 if (i915_semaphore_is_enabled(dev)) {
2663 obj = i915_gem_alloc_object(dev, 4096);
2664 if (obj == NULL) {
2665 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2666 i915.semaphores = 0;
2667 } else {
2668 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2669 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2670 if (ret != 0) {
2671 drm_gem_object_unreference(&obj->base);
2672 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2673 i915.semaphores = 0;
2674 } else
2675 dev_priv->semaphore_obj = obj;
2676 }
2677 }
2678
2679 ring->init_context = intel_rcs_ctx_init;
2680 ring->add_request = gen6_add_request;
2681 ring->flush = gen8_render_ring_flush;
2682 ring->irq_get = gen8_ring_get_irq;
2683 ring->irq_put = gen8_ring_put_irq;
2684 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2685 ring->get_seqno = gen6_ring_get_seqno;
2686 ring->set_seqno = ring_set_seqno;
2687 if (i915_semaphore_is_enabled(dev)) {
2688 WARN_ON(!dev_priv->semaphore_obj);
2689 ring->semaphore.sync_to = gen8_ring_sync;
2690 ring->semaphore.signal = gen8_rcs_signal;
2691 GEN8_RING_SEMAPHORE_INIT;
2692 }
2693 } else if (INTEL_INFO(dev)->gen >= 6) {
2694 ring->init_context = intel_rcs_ctx_init;
2695 ring->add_request = gen6_add_request;
2696 ring->flush = gen7_render_ring_flush;
2697 if (INTEL_INFO(dev)->gen == 6)
2698 ring->flush = gen6_render_ring_flush;
2699 ring->irq_get = gen6_ring_get_irq;
2700 ring->irq_put = gen6_ring_put_irq;
2701 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2702 ring->get_seqno = gen6_ring_get_seqno;
2703 ring->set_seqno = ring_set_seqno;
2704 if (i915_semaphore_is_enabled(dev)) {
2705 ring->semaphore.sync_to = gen6_ring_sync;
2706 ring->semaphore.signal = gen6_signal;
2707 /*
2708 * The current semaphore is only applied on pre-gen8
2709 * platform. And there is no VCS2 ring on the pre-gen8
2710 * platform. So the semaphore between RCS and VCS2 is
2711 * initialized as INVALID. Gen8 will initialize the
2712 * sema between VCS2 and RCS later.
2713 */
2714 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2715 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2716 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2717 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2718 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2719 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2720 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2721 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2722 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2723 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2724 }
2725 } else if (IS_GEN5(dev)) {
2726 ring->add_request = pc_render_add_request;
2727 ring->flush = gen4_render_ring_flush;
2728 ring->get_seqno = pc_render_get_seqno;
2729 ring->set_seqno = pc_render_set_seqno;
2730 ring->irq_get = gen5_ring_get_irq;
2731 ring->irq_put = gen5_ring_put_irq;
2732 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2733 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2734 } else {
2735 ring->add_request = i9xx_add_request;
2736 if (INTEL_INFO(dev)->gen < 4)
2737 ring->flush = gen2_render_ring_flush;
2738 else
2739 ring->flush = gen4_render_ring_flush;
2740 ring->get_seqno = ring_get_seqno;
2741 ring->set_seqno = ring_set_seqno;
2742 if (IS_GEN2(dev)) {
2743 ring->irq_get = i8xx_ring_get_irq;
2744 ring->irq_put = i8xx_ring_put_irq;
2745 } else {
2746 ring->irq_get = i9xx_ring_get_irq;
2747 ring->irq_put = i9xx_ring_put_irq;
2748 }
2749 ring->irq_enable_mask = I915_USER_INTERRUPT;
2750 }
2751 ring->write_tail = ring_write_tail;
2752
2753 if (IS_HASWELL(dev))
2754 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2755 else if (IS_GEN8(dev))
2756 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2757 else if (INTEL_INFO(dev)->gen >= 6)
2758 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2759 else if (INTEL_INFO(dev)->gen >= 4)
2760 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2761 else if (IS_I830(dev) || IS_845G(dev))
2762 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2763 else
2764 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2765 ring->init_hw = init_render_ring;
2766 ring->cleanup = render_ring_cleanup;
2767
2768 /* Workaround batchbuffer to combat CS tlb bug. */
2769 if (HAS_BROKEN_CS_TLB(dev)) {
2770 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2771 if (obj == NULL) {
2772 DRM_ERROR("Failed to allocate batch bo\n");
2773 return -ENOMEM;
2774 }
2775
2776 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2777 if (ret != 0) {
2778 drm_gem_object_unreference(&obj->base);
2779 DRM_ERROR("Failed to ping batch bo\n");
2780 return ret;
2781 }
2782
2783 ring->scratch.obj = obj;
2784 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2785 }
2786
2787 ret = intel_init_ring_buffer(dev, ring);
2788 if (ret)
2789 return ret;
2790
2791 if (INTEL_INFO(dev)->gen >= 5) {
2792 ret = intel_init_pipe_control(ring);
2793 if (ret)
2794 return ret;
2795 }
2796
2797 return 0;
2798 }
2799
intel_init_bsd_ring_buffer(struct drm_device * dev)2800 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2801 {
2802 struct drm_i915_private *dev_priv = dev->dev_private;
2803 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2804
2805 ring->name = "bsd ring";
2806 ring->id = VCS;
2807
2808 ring->write_tail = ring_write_tail;
2809 if (INTEL_INFO(dev)->gen >= 6) {
2810 ring->mmio_base = GEN6_BSD_RING_BASE;
2811 /* gen6 bsd needs a special wa for tail updates */
2812 if (IS_GEN6(dev))
2813 ring->write_tail = gen6_bsd_ring_write_tail;
2814 ring->flush = gen6_bsd_ring_flush;
2815 ring->add_request = gen6_add_request;
2816 ring->get_seqno = gen6_ring_get_seqno;
2817 ring->set_seqno = ring_set_seqno;
2818 if (INTEL_INFO(dev)->gen >= 8) {
2819 ring->irq_enable_mask =
2820 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2821 ring->irq_get = gen8_ring_get_irq;
2822 ring->irq_put = gen8_ring_put_irq;
2823 ring->dispatch_execbuffer =
2824 gen8_ring_dispatch_execbuffer;
2825 if (i915_semaphore_is_enabled(dev)) {
2826 ring->semaphore.sync_to = gen8_ring_sync;
2827 ring->semaphore.signal = gen8_xcs_signal;
2828 GEN8_RING_SEMAPHORE_INIT;
2829 }
2830 } else {
2831 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2832 ring->irq_get = gen6_ring_get_irq;
2833 ring->irq_put = gen6_ring_put_irq;
2834 ring->dispatch_execbuffer =
2835 gen6_ring_dispatch_execbuffer;
2836 if (i915_semaphore_is_enabled(dev)) {
2837 ring->semaphore.sync_to = gen6_ring_sync;
2838 ring->semaphore.signal = gen6_signal;
2839 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2840 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2841 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2842 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2843 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2844 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2845 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2846 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2847 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2848 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2849 }
2850 }
2851 } else {
2852 ring->mmio_base = BSD_RING_BASE;
2853 ring->flush = bsd_ring_flush;
2854 ring->add_request = i9xx_add_request;
2855 ring->get_seqno = ring_get_seqno;
2856 ring->set_seqno = ring_set_seqno;
2857 if (IS_GEN5(dev)) {
2858 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2859 ring->irq_get = gen5_ring_get_irq;
2860 ring->irq_put = gen5_ring_put_irq;
2861 } else {
2862 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2863 ring->irq_get = i9xx_ring_get_irq;
2864 ring->irq_put = i9xx_ring_put_irq;
2865 }
2866 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2867 }
2868 ring->init_hw = init_ring_common;
2869
2870 return intel_init_ring_buffer(dev, ring);
2871 }
2872
2873 /**
2874 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2875 */
intel_init_bsd2_ring_buffer(struct drm_device * dev)2876 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2877 {
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2880
2881 ring->name = "bsd2 ring";
2882 ring->id = VCS2;
2883
2884 ring->write_tail = ring_write_tail;
2885 ring->mmio_base = GEN8_BSD2_RING_BASE;
2886 ring->flush = gen6_bsd_ring_flush;
2887 ring->add_request = gen6_add_request;
2888 ring->get_seqno = gen6_ring_get_seqno;
2889 ring->set_seqno = ring_set_seqno;
2890 ring->irq_enable_mask =
2891 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2892 ring->irq_get = gen8_ring_get_irq;
2893 ring->irq_put = gen8_ring_put_irq;
2894 ring->dispatch_execbuffer =
2895 gen8_ring_dispatch_execbuffer;
2896 if (i915_semaphore_is_enabled(dev)) {
2897 ring->semaphore.sync_to = gen8_ring_sync;
2898 ring->semaphore.signal = gen8_xcs_signal;
2899 GEN8_RING_SEMAPHORE_INIT;
2900 }
2901 ring->init_hw = init_ring_common;
2902
2903 return intel_init_ring_buffer(dev, ring);
2904 }
2905
intel_init_blt_ring_buffer(struct drm_device * dev)2906 int intel_init_blt_ring_buffer(struct drm_device *dev)
2907 {
2908 struct drm_i915_private *dev_priv = dev->dev_private;
2909 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2910
2911 ring->name = "blitter ring";
2912 ring->id = BCS;
2913
2914 ring->mmio_base = BLT_RING_BASE;
2915 ring->write_tail = ring_write_tail;
2916 ring->flush = gen6_ring_flush;
2917 ring->add_request = gen6_add_request;
2918 ring->get_seqno = gen6_ring_get_seqno;
2919 ring->set_seqno = ring_set_seqno;
2920 if (INTEL_INFO(dev)->gen >= 8) {
2921 ring->irq_enable_mask =
2922 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2923 ring->irq_get = gen8_ring_get_irq;
2924 ring->irq_put = gen8_ring_put_irq;
2925 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2926 if (i915_semaphore_is_enabled(dev)) {
2927 ring->semaphore.sync_to = gen8_ring_sync;
2928 ring->semaphore.signal = gen8_xcs_signal;
2929 GEN8_RING_SEMAPHORE_INIT;
2930 }
2931 } else {
2932 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2933 ring->irq_get = gen6_ring_get_irq;
2934 ring->irq_put = gen6_ring_put_irq;
2935 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2936 if (i915_semaphore_is_enabled(dev)) {
2937 ring->semaphore.signal = gen6_signal;
2938 ring->semaphore.sync_to = gen6_ring_sync;
2939 /*
2940 * The current semaphore is only applied on pre-gen8
2941 * platform. And there is no VCS2 ring on the pre-gen8
2942 * platform. So the semaphore between BCS and VCS2 is
2943 * initialized as INVALID. Gen8 will initialize the
2944 * sema between BCS and VCS2 later.
2945 */
2946 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2947 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2948 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2949 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2950 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2951 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2952 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2953 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2954 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2955 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2956 }
2957 }
2958 ring->init_hw = init_ring_common;
2959
2960 return intel_init_ring_buffer(dev, ring);
2961 }
2962
intel_init_vebox_ring_buffer(struct drm_device * dev)2963 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2964 {
2965 struct drm_i915_private *dev_priv = dev->dev_private;
2966 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2967
2968 ring->name = "video enhancement ring";
2969 ring->id = VECS;
2970
2971 ring->mmio_base = VEBOX_RING_BASE;
2972 ring->write_tail = ring_write_tail;
2973 ring->flush = gen6_ring_flush;
2974 ring->add_request = gen6_add_request;
2975 ring->get_seqno = gen6_ring_get_seqno;
2976 ring->set_seqno = ring_set_seqno;
2977
2978 if (INTEL_INFO(dev)->gen >= 8) {
2979 ring->irq_enable_mask =
2980 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2981 ring->irq_get = gen8_ring_get_irq;
2982 ring->irq_put = gen8_ring_put_irq;
2983 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2984 if (i915_semaphore_is_enabled(dev)) {
2985 ring->semaphore.sync_to = gen8_ring_sync;
2986 ring->semaphore.signal = gen8_xcs_signal;
2987 GEN8_RING_SEMAPHORE_INIT;
2988 }
2989 } else {
2990 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2991 ring->irq_get = hsw_vebox_get_irq;
2992 ring->irq_put = hsw_vebox_put_irq;
2993 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2994 if (i915_semaphore_is_enabled(dev)) {
2995 ring->semaphore.sync_to = gen6_ring_sync;
2996 ring->semaphore.signal = gen6_signal;
2997 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2998 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2999 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3000 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3001 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3002 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3003 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3004 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3005 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3006 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3007 }
3008 }
3009 ring->init_hw = init_ring_common;
3010
3011 return intel_init_ring_buffer(dev, ring);
3012 }
3013
3014 int
intel_ring_flush_all_caches(struct drm_i915_gem_request * req)3015 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3016 {
3017 struct intel_engine_cs *ring = req->ring;
3018 int ret;
3019
3020 if (!ring->gpu_caches_dirty)
3021 return 0;
3022
3023 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3024 if (ret)
3025 return ret;
3026
3027 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3028
3029 ring->gpu_caches_dirty = false;
3030 return 0;
3031 }
3032
3033 int
intel_ring_invalidate_all_caches(struct drm_i915_gem_request * req)3034 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3035 {
3036 struct intel_engine_cs *ring = req->ring;
3037 uint32_t flush_domains;
3038 int ret;
3039
3040 flush_domains = 0;
3041 if (ring->gpu_caches_dirty)
3042 flush_domains = I915_GEM_GPU_DOMAINS;
3043
3044 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3045 if (ret)
3046 return ret;
3047
3048 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3049
3050 ring->gpu_caches_dirty = false;
3051 return 0;
3052 }
3053
3054 void
intel_stop_ring_buffer(struct intel_engine_cs * ring)3055 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3056 {
3057 int ret;
3058
3059 if (!intel_ring_initialized(ring))
3060 return;
3061
3062 ret = intel_ring_idle(ring);
3063 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3064 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3065 ring->name, ret);
3066
3067 stop_ring(ring);
3068 }
3069