• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
intel_ring_initialized(struct intel_engine_cs * ring)37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
__intel_ring_space(int head,int tail,int size)53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - tail;
56 	if (space <= 0)
57 		space += size;
58 	return space - I915_RING_FREE_SPACE;
59 }
60 
intel_ring_update_space(struct intel_ringbuffer * ringbuf)61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 	if (ringbuf->last_retired_head != -1) {
64 		ringbuf->head = ringbuf->last_retired_head;
65 		ringbuf->last_retired_head = -1;
66 	}
67 
68 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 					    ringbuf->tail, ringbuf->size);
70 }
71 
intel_ring_space(struct intel_ringbuffer * ringbuf)72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 	intel_ring_update_space(ringbuf);
75 	return ringbuf->space;
76 }
77 
intel_ring_stopped(struct intel_engine_cs * ring)78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83 
__intel_ring_advance(struct intel_engine_cs * ring)84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 	struct intel_ringbuffer *ringbuf = ring->buffer;
87 	ringbuf->tail &= ringbuf->size - 1;
88 	if (intel_ring_stopped(ring))
89 		return;
90 	ring->write_tail(ring, ringbuf->tail);
91 }
92 
93 static int
gen2_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 		       u32	invalidate_domains,
96 		       u32	flush_domains)
97 {
98 	struct intel_engine_cs *ring = req->ring;
99 	u32 cmd;
100 	int ret;
101 
102 	cmd = MI_FLUSH;
103 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 		cmd |= MI_NO_WRITE_FLUSH;
105 
106 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 		cmd |= MI_READ_FLUSH;
108 
109 	ret = intel_ring_begin(req, 2);
110 	if (ret)
111 		return ret;
112 
113 	intel_ring_emit(ring, cmd);
114 	intel_ring_emit(ring, MI_NOOP);
115 	intel_ring_advance(ring);
116 
117 	return 0;
118 }
119 
120 static int
gen4_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 		       u32	invalidate_domains,
123 		       u32	flush_domains)
124 {
125 	struct intel_engine_cs *ring = req->ring;
126 	struct drm_device *dev = ring->dev;
127 	u32 cmd;
128 	int ret;
129 
130 	/*
131 	 * read/write caches:
132 	 *
133 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135 	 * also flushed at 2d versus 3d pipeline switches.
136 	 *
137 	 * read-only caches:
138 	 *
139 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 	 * MI_READ_FLUSH is set, and is always flushed on 965.
141 	 *
142 	 * I915_GEM_DOMAIN_COMMAND may not exist?
143 	 *
144 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 	 * invalidated when MI_EXE_FLUSH is set.
146 	 *
147 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 	 * invalidated with every MI_FLUSH.
149 	 *
150 	 * TLBs:
151 	 *
152 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 	 * are flushed at any MI_FLUSH.
156 	 */
157 
158 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 		cmd &= ~MI_NO_WRITE_FLUSH;
161 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 		cmd |= MI_EXE_FLUSH;
163 
164 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 	    (IS_G4X(dev) || IS_GEN5(dev)))
166 		cmd |= MI_INVALIDATE_ISP;
167 
168 	ret = intel_ring_begin(req, 2);
169 	if (ret)
170 		return ret;
171 
172 	intel_ring_emit(ring, cmd);
173 	intel_ring_emit(ring, MI_NOOP);
174 	intel_ring_advance(ring);
175 
176 	return 0;
177 }
178 
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request * req)217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 	struct intel_engine_cs *ring = req->ring;
220 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 	int ret;
222 
223 	ret = intel_ring_begin(req, 6);
224 	if (ret)
225 		return ret;
226 
227 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 	intel_ring_emit(ring, 0); /* low dword */
232 	intel_ring_emit(ring, 0); /* high dword */
233 	intel_ring_emit(ring, MI_NOOP);
234 	intel_ring_advance(ring);
235 
236 	ret = intel_ring_begin(req, 6);
237 	if (ret)
238 		return ret;
239 
240 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 	intel_ring_emit(ring, 0);
244 	intel_ring_emit(ring, 0);
245 	intel_ring_emit(ring, MI_NOOP);
246 	intel_ring_advance(ring);
247 
248 	return 0;
249 }
250 
251 static int
gen6_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 		       u32 invalidate_domains, u32 flush_domains)
254 {
255 	struct intel_engine_cs *ring = req->ring;
256 	u32 flags = 0;
257 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 	int ret;
259 
260 	/* Force SNB workarounds for PIPE_CONTROL flushes */
261 	ret = intel_emit_post_sync_nonzero_flush(req);
262 	if (ret)
263 		return ret;
264 
265 	/* Just flush everything.  Experiments have shown that reducing the
266 	 * number of bits based on the write domains has little performance
267 	 * impact.
268 	 */
269 	if (flush_domains) {
270 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 		/*
273 		 * Ensure that any following seqno writes only happen
274 		 * when the render cache is indeed flushed.
275 		 */
276 		flags |= PIPE_CONTROL_CS_STALL;
277 	}
278 	if (invalidate_domains) {
279 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 		/*
286 		 * TLB invalidate requires a post-sync write.
287 		 */
288 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 	}
290 
291 	ret = intel_ring_begin(req, 4);
292 	if (ret)
293 		return ret;
294 
295 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 	intel_ring_emit(ring, flags);
297 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 	intel_ring_emit(ring, 0);
299 	intel_ring_advance(ring);
300 
301 	return 0;
302 }
303 
304 static int
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request * req)305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 	struct intel_engine_cs *ring = req->ring;
308 	int ret;
309 
310 	ret = intel_ring_begin(req, 4);
311 	if (ret)
312 		return ret;
313 
314 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 	intel_ring_emit(ring, 0);
318 	intel_ring_emit(ring, 0);
319 	intel_ring_advance(ring);
320 
321 	return 0;
322 }
323 
324 static int
gen7_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 		       u32 invalidate_domains, u32 flush_domains)
327 {
328 	struct intel_engine_cs *ring = req->ring;
329 	u32 flags = 0;
330 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 	int ret;
332 
333 	/*
334 	 * Ensure that any following seqno writes only happen when the render
335 	 * cache is indeed flushed.
336 	 *
337 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 	 * don't try to be clever and just set it unconditionally.
340 	 */
341 	flags |= PIPE_CONTROL_CS_STALL;
342 
343 	/* Just flush everything.  Experiments have shown that reducing the
344 	 * number of bits based on the write domains has little performance
345 	 * impact.
346 	 */
347 	if (flush_domains) {
348 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
351 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
352 	}
353 	if (invalidate_domains) {
354 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
355 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
356 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
357 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
358 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
359 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
360 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
361 		/*
362 		 * TLB invalidate requires a post-sync write.
363 		 */
364 		flags |= PIPE_CONTROL_QW_WRITE;
365 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
366 
367 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
368 
369 		/* Workaround: we must issue a pipe_control with CS-stall bit
370 		 * set before a pipe_control command that has the state cache
371 		 * invalidate bit set. */
372 		gen7_render_ring_cs_stall_wa(req);
373 	}
374 
375 	ret = intel_ring_begin(req, 4);
376 	if (ret)
377 		return ret;
378 
379 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
380 	intel_ring_emit(ring, flags);
381 	intel_ring_emit(ring, scratch_addr);
382 	intel_ring_emit(ring, 0);
383 	intel_ring_advance(ring);
384 
385 	return 0;
386 }
387 
388 static int
gen8_emit_pipe_control(struct drm_i915_gem_request * req,u32 flags,u32 scratch_addr)389 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
390 		       u32 flags, u32 scratch_addr)
391 {
392 	struct intel_engine_cs *ring = req->ring;
393 	int ret;
394 
395 	ret = intel_ring_begin(req, 6);
396 	if (ret)
397 		return ret;
398 
399 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
400 	intel_ring_emit(ring, flags);
401 	intel_ring_emit(ring, scratch_addr);
402 	intel_ring_emit(ring, 0);
403 	intel_ring_emit(ring, 0);
404 	intel_ring_emit(ring, 0);
405 	intel_ring_advance(ring);
406 
407 	return 0;
408 }
409 
410 static int
gen8_render_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)411 gen8_render_ring_flush(struct drm_i915_gem_request *req,
412 		       u32 invalidate_domains, u32 flush_domains)
413 {
414 	u32 flags = 0;
415 	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
416 	int ret;
417 
418 	flags |= PIPE_CONTROL_CS_STALL;
419 
420 	if (flush_domains) {
421 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
422 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
423 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
424 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
425 	}
426 	if (invalidate_domains) {
427 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
428 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
429 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
430 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
431 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
432 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
433 		flags |= PIPE_CONTROL_QW_WRITE;
434 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
435 
436 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
437 		ret = gen8_emit_pipe_control(req,
438 					     PIPE_CONTROL_CS_STALL |
439 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
440 					     0);
441 		if (ret)
442 			return ret;
443 	}
444 
445 	return gen8_emit_pipe_control(req, flags, scratch_addr);
446 }
447 
ring_write_tail(struct intel_engine_cs * ring,u32 value)448 static void ring_write_tail(struct intel_engine_cs *ring,
449 			    u32 value)
450 {
451 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
452 	I915_WRITE_TAIL(ring, value);
453 }
454 
intel_ring_get_active_head(struct intel_engine_cs * ring)455 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
456 {
457 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
458 	u64 acthd;
459 
460 	if (INTEL_INFO(ring->dev)->gen >= 8)
461 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
462 					 RING_ACTHD_UDW(ring->mmio_base));
463 	else if (INTEL_INFO(ring->dev)->gen >= 4)
464 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
465 	else
466 		acthd = I915_READ(ACTHD);
467 
468 	return acthd;
469 }
470 
ring_setup_phys_status_page(struct intel_engine_cs * ring)471 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
472 {
473 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
474 	u32 addr;
475 
476 	addr = dev_priv->status_page_dmah->busaddr;
477 	if (INTEL_INFO(ring->dev)->gen >= 4)
478 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
479 	I915_WRITE(HWS_PGA, addr);
480 }
481 
intel_ring_setup_status_page(struct intel_engine_cs * ring)482 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
483 {
484 	struct drm_device *dev = ring->dev;
485 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
486 	u32 mmio = 0;
487 
488 	/* The ring status page addresses are no longer next to the rest of
489 	 * the ring registers as of gen7.
490 	 */
491 	if (IS_GEN7(dev)) {
492 		switch (ring->id) {
493 		case RCS:
494 			mmio = RENDER_HWS_PGA_GEN7;
495 			break;
496 		case BCS:
497 			mmio = BLT_HWS_PGA_GEN7;
498 			break;
499 		/*
500 		 * VCS2 actually doesn't exist on Gen7. Only shut up
501 		 * gcc switch check warning
502 		 */
503 		case VCS2:
504 		case VCS:
505 			mmio = BSD_HWS_PGA_GEN7;
506 			break;
507 		case VECS:
508 			mmio = VEBOX_HWS_PGA_GEN7;
509 			break;
510 		}
511 	} else if (IS_GEN6(ring->dev)) {
512 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
513 	} else {
514 		/* XXX: gen8 returns to sanity */
515 		mmio = RING_HWS_PGA(ring->mmio_base);
516 	}
517 
518 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
519 	POSTING_READ(mmio);
520 
521 	/*
522 	 * Flush the TLB for this page
523 	 *
524 	 * FIXME: These two bits have disappeared on gen8, so a question
525 	 * arises: do we still need this and if so how should we go about
526 	 * invalidating the TLB?
527 	 */
528 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
529 		u32 reg = RING_INSTPM(ring->mmio_base);
530 
531 		/* ring should be idle before issuing a sync flush*/
532 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
533 
534 		I915_WRITE(reg,
535 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
536 					      INSTPM_SYNC_FLUSH));
537 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
538 			     1000))
539 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
540 				  ring->name);
541 	}
542 }
543 
stop_ring(struct intel_engine_cs * ring)544 static bool stop_ring(struct intel_engine_cs *ring)
545 {
546 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
547 
548 	if (!IS_GEN2(ring->dev)) {
549 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
550 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
551 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
552 			/* Sometimes we observe that the idle flag is not
553 			 * set even though the ring is empty. So double
554 			 * check before giving up.
555 			 */
556 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
557 				return false;
558 		}
559 	}
560 
561 	I915_WRITE_CTL(ring, 0);
562 	I915_WRITE_HEAD(ring, 0);
563 	ring->write_tail(ring, 0);
564 
565 	if (!IS_GEN2(ring->dev)) {
566 		(void)I915_READ_CTL(ring);
567 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
568 	}
569 
570 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
571 }
572 
init_ring_common(struct intel_engine_cs * ring)573 static int init_ring_common(struct intel_engine_cs *ring)
574 {
575 	struct drm_device *dev = ring->dev;
576 	struct drm_i915_private *dev_priv = dev->dev_private;
577 	struct intel_ringbuffer *ringbuf = ring->buffer;
578 	struct drm_i915_gem_object *obj = ringbuf->obj;
579 	int ret = 0;
580 
581 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
582 
583 	if (!stop_ring(ring)) {
584 		/* G45 ring initialization often fails to reset head to zero */
585 		DRM_DEBUG_KMS("%s head not reset to zero "
586 			      "ctl %08x head %08x tail %08x start %08x\n",
587 			      ring->name,
588 			      I915_READ_CTL(ring),
589 			      I915_READ_HEAD(ring),
590 			      I915_READ_TAIL(ring),
591 			      I915_READ_START(ring));
592 
593 		if (!stop_ring(ring)) {
594 			DRM_ERROR("failed to set %s head to zero "
595 				  "ctl %08x head %08x tail %08x start %08x\n",
596 				  ring->name,
597 				  I915_READ_CTL(ring),
598 				  I915_READ_HEAD(ring),
599 				  I915_READ_TAIL(ring),
600 				  I915_READ_START(ring));
601 			ret = -EIO;
602 			goto out;
603 		}
604 	}
605 
606 	if (I915_NEED_GFX_HWS(dev))
607 		intel_ring_setup_status_page(ring);
608 	else
609 		ring_setup_phys_status_page(ring);
610 
611 	/* Enforce ordering by reading HEAD register back */
612 	I915_READ_HEAD(ring);
613 
614 	/* Initialize the ring. This must happen _after_ we've cleared the ring
615 	 * registers with the above sequence (the readback of the HEAD registers
616 	 * also enforces ordering), otherwise the hw might lose the new ring
617 	 * register values. */
618 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
619 
620 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
621 	if (I915_READ_HEAD(ring))
622 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
623 			  ring->name, I915_READ_HEAD(ring));
624 	I915_WRITE_HEAD(ring, 0);
625 	(void)I915_READ_HEAD(ring);
626 
627 	I915_WRITE_CTL(ring,
628 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
629 			| RING_VALID);
630 
631 	/* If the head is still not zero, the ring is dead */
632 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
633 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
634 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
635 		DRM_ERROR("%s initialization failed "
636 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
637 			  ring->name,
638 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
639 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
640 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
641 		ret = -EIO;
642 		goto out;
643 	}
644 
645 	ringbuf->last_retired_head = -1;
646 	ringbuf->head = I915_READ_HEAD(ring);
647 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
648 	intel_ring_update_space(ringbuf);
649 
650 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
651 
652 out:
653 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
654 
655 	return ret;
656 }
657 
658 void
intel_fini_pipe_control(struct intel_engine_cs * ring)659 intel_fini_pipe_control(struct intel_engine_cs *ring)
660 {
661 	struct drm_device *dev = ring->dev;
662 
663 	if (ring->scratch.obj == NULL)
664 		return;
665 
666 	if (INTEL_INFO(dev)->gen >= 5) {
667 		kunmap(sg_page(ring->scratch.obj->pages->sgl));
668 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
669 	}
670 
671 	drm_gem_object_unreference(&ring->scratch.obj->base);
672 	ring->scratch.obj = NULL;
673 }
674 
675 int
intel_init_pipe_control(struct intel_engine_cs * ring)676 intel_init_pipe_control(struct intel_engine_cs *ring)
677 {
678 	int ret;
679 
680 	WARN_ON(ring->scratch.obj);
681 
682 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
683 	if (ring->scratch.obj == NULL) {
684 		DRM_ERROR("Failed to allocate seqno page\n");
685 		ret = -ENOMEM;
686 		goto err;
687 	}
688 
689 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
690 	if (ret)
691 		goto err_unref;
692 
693 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
694 	if (ret)
695 		goto err_unref;
696 
697 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
698 	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
699 	if (ring->scratch.cpu_page == NULL) {
700 		ret = -ENOMEM;
701 		goto err_unpin;
702 	}
703 
704 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
705 			 ring->name, ring->scratch.gtt_offset);
706 	return 0;
707 
708 err_unpin:
709 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
710 err_unref:
711 	drm_gem_object_unreference(&ring->scratch.obj->base);
712 err:
713 	return ret;
714 }
715 
intel_ring_workarounds_emit(struct drm_i915_gem_request * req)716 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
717 {
718 	int ret, i;
719 	struct intel_engine_cs *ring = req->ring;
720 	struct drm_device *dev = ring->dev;
721 	struct drm_i915_private *dev_priv = dev->dev_private;
722 	struct i915_workarounds *w = &dev_priv->workarounds;
723 
724 	if (w->count == 0)
725 		return 0;
726 
727 	ring->gpu_caches_dirty = true;
728 	ret = intel_ring_flush_all_caches(req);
729 	if (ret)
730 		return ret;
731 
732 	ret = intel_ring_begin(req, (w->count * 2 + 2));
733 	if (ret)
734 		return ret;
735 
736 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
737 	for (i = 0; i < w->count; i++) {
738 		intel_ring_emit(ring, w->reg[i].addr);
739 		intel_ring_emit(ring, w->reg[i].value);
740 	}
741 	intel_ring_emit(ring, MI_NOOP);
742 
743 	intel_ring_advance(ring);
744 
745 	ring->gpu_caches_dirty = true;
746 	ret = intel_ring_flush_all_caches(req);
747 	if (ret)
748 		return ret;
749 
750 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
751 
752 	return 0;
753 }
754 
intel_rcs_ctx_init(struct drm_i915_gem_request * req)755 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
756 {
757 	int ret;
758 
759 	ret = intel_ring_workarounds_emit(req);
760 	if (ret != 0)
761 		return ret;
762 
763 	ret = i915_gem_render_state_init(req);
764 	if (ret)
765 		DRM_ERROR("init render state: %d\n", ret);
766 
767 	return ret;
768 }
769 
wa_add(struct drm_i915_private * dev_priv,const u32 addr,const u32 mask,const u32 val)770 static int wa_add(struct drm_i915_private *dev_priv,
771 		  const u32 addr, const u32 mask, const u32 val)
772 {
773 	const u32 idx = dev_priv->workarounds.count;
774 
775 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
776 		return -ENOSPC;
777 
778 	dev_priv->workarounds.reg[idx].addr = addr;
779 	dev_priv->workarounds.reg[idx].value = val;
780 	dev_priv->workarounds.reg[idx].mask = mask;
781 
782 	dev_priv->workarounds.count++;
783 
784 	return 0;
785 }
786 
787 #define WA_REG(addr, mask, val) do { \
788 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
789 		if (r) \
790 			return r; \
791 	} while (0)
792 
793 #define WA_SET_BIT_MASKED(addr, mask) \
794 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
795 
796 #define WA_CLR_BIT_MASKED(addr, mask) \
797 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
798 
799 #define WA_SET_FIELD_MASKED(addr, mask, value) \
800 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
801 
802 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
803 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
804 
805 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
806 
gen8_init_workarounds(struct intel_engine_cs * ring)807 static int gen8_init_workarounds(struct intel_engine_cs *ring)
808 {
809 	struct drm_device *dev = ring->dev;
810 	struct drm_i915_private *dev_priv = dev->dev_private;
811 
812 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
813 
814 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
815 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
816 
817 	/* WaDisablePartialInstShootdown:bdw,chv */
818 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
819 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
820 
821 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
822 	 * workaround for for a possible hang in the unlikely event a TLB
823 	 * invalidation occurs during a PSD flush.
824 	 */
825 	/* WaForceEnableNonCoherent:bdw,chv */
826 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
827 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
828 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
829 			  HDC_FORCE_NON_COHERENT);
830 
831 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
832 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
833 	 *  polygons in the same 8x4 pixel/sample area to be processed without
834 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
835 	 *  buffer."
836 	 *
837 	 * This optimization is off by default for BDW and CHV; turn it on.
838 	 */
839 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
840 
841 	/* Wa4x4STCOptimizationDisable:bdw,chv */
842 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843 
844 	/*
845 	 * BSpec recommends 8x4 when MSAA is used,
846 	 * however in practice 16x4 seems fastest.
847 	 *
848 	 * Note that PS/WM thread counts depend on the WIZ hashing
849 	 * disable bit, which we don't touch here, but it's good
850 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851 	 */
852 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853 			    GEN6_WIZ_HASHING_MASK,
854 			    GEN6_WIZ_HASHING_16x4);
855 
856 	return 0;
857 }
858 
bdw_init_workarounds(struct intel_engine_cs * ring)859 static int bdw_init_workarounds(struct intel_engine_cs *ring)
860 {
861 	int ret;
862 	struct drm_device *dev = ring->dev;
863 	struct drm_i915_private *dev_priv = dev->dev_private;
864 
865 	ret = gen8_init_workarounds(ring);
866 	if (ret)
867 		return ret;
868 
869 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
870 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
871 
872 	/* WaDisableDopClockGating:bdw */
873 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
874 			  DOP_CLOCK_GATING_DISABLE);
875 
876 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
877 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
878 
879 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
880 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
881 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
882 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
883 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
884 
885 	return 0;
886 }
887 
chv_init_workarounds(struct intel_engine_cs * ring)888 static int chv_init_workarounds(struct intel_engine_cs *ring)
889 {
890 	int ret;
891 	struct drm_device *dev = ring->dev;
892 	struct drm_i915_private *dev_priv = dev->dev_private;
893 
894 	ret = gen8_init_workarounds(ring);
895 	if (ret)
896 		return ret;
897 
898 	/* WaDisableThreadStallDopClockGating:chv */
899 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
900 
901 	/* Improve HiZ throughput on CHV. */
902 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
903 
904 	return 0;
905 }
906 
gen9_init_workarounds(struct intel_engine_cs * ring)907 static int gen9_init_workarounds(struct intel_engine_cs *ring)
908 {
909 	struct drm_device *dev = ring->dev;
910 	struct drm_i915_private *dev_priv = dev->dev_private;
911 	uint32_t tmp;
912 
913 	/* WaEnableLbsSlaRetryTimerDecrement:skl */
914 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
915 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
916 
917 	/* WaDisableKillLogic:bxt,skl */
918 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
919 		   ECOCHK_DIS_TLB);
920 
921 	/* WaDisablePartialInstShootdown:skl,bxt */
922 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
923 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
924 
925 	/* Syncing dependencies between camera and graphics:skl,bxt */
926 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
927 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
928 
929 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
930 	    INTEL_REVID(dev) == SKL_REVID_B0)) ||
931 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
932 		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
933 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
934 				  GEN9_DG_MIRROR_FIX_ENABLE);
935 	}
936 
937 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
938 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
939 		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
940 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
942 		/*
943 		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944 		 * but we do that in per ctx batchbuffer as there is an issue
945 		 * with this register not getting restored on ctx restore
946 		 */
947 	}
948 
949 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
950 	    IS_BROXTON(dev)) {
951 		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
952 		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
953 				  GEN9_ENABLE_YV12_BUGFIX);
954 	}
955 
956 	/* Wa4x4STCOptimizationDisable:skl,bxt */
957 	/* WaDisablePartialResolveInVc:skl,bxt */
958 	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
959 					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
960 
961 	/* WaCcsTlbPrefetchDisable:skl,bxt */
962 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
963 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
964 
965 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
966 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
967 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
968 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
969 				  PIXEL_MASK_CAMMING_DISABLE);
970 
971 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
972 	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
973 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
974 	    (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
975 		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
976 	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
977 
978 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
979 	if (IS_SKYLAKE(dev) ||
980 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
981 		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
982 				  GEN8_SAMPLER_POWER_BYPASS_DIS);
983 	}
984 
985 	/* WaDisableSTUnitPowerOptimization:skl,bxt */
986 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
987 
988 	return 0;
989 }
990 
skl_tune_iz_hashing(struct intel_engine_cs * ring)991 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
992 {
993 	struct drm_device *dev = ring->dev;
994 	struct drm_i915_private *dev_priv = dev->dev_private;
995 	u8 vals[3] = { 0, 0, 0 };
996 	unsigned int i;
997 
998 	for (i = 0; i < 3; i++) {
999 		u8 ss;
1000 
1001 		/*
1002 		 * Only consider slices where one, and only one, subslice has 7
1003 		 * EUs
1004 		 */
1005 		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1006 			continue;
1007 
1008 		/*
1009 		 * subslice_7eu[i] != 0 (because of the check above) and
1010 		 * ss_max == 4 (maximum number of subslices possible per slice)
1011 		 *
1012 		 * ->    0 <= ss <= 3;
1013 		 */
1014 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1015 		vals[i] = 3 - ss;
1016 	}
1017 
1018 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1019 		return 0;
1020 
1021 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1022 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1023 			    GEN9_IZ_HASHING_MASK(2) |
1024 			    GEN9_IZ_HASHING_MASK(1) |
1025 			    GEN9_IZ_HASHING_MASK(0),
1026 			    GEN9_IZ_HASHING(2, vals[2]) |
1027 			    GEN9_IZ_HASHING(1, vals[1]) |
1028 			    GEN9_IZ_HASHING(0, vals[0]));
1029 
1030 	return 0;
1031 }
1032 
skl_init_workarounds(struct intel_engine_cs * ring)1033 static int skl_init_workarounds(struct intel_engine_cs *ring)
1034 {
1035 	int ret;
1036 	struct drm_device *dev = ring->dev;
1037 	struct drm_i915_private *dev_priv = dev->dev_private;
1038 
1039 	ret = gen9_init_workarounds(ring);
1040 	if (ret)
1041 		return ret;
1042 
1043 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1044 		/* WaDisableHDCInvalidation:skl */
1045 		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1046 			   BDW_DISABLE_HDC_INVALIDATION);
1047 
1048 		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1049 		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1050 			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1051 	}
1052 
1053 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1054 	 * involving this register should also be added to WA batch as required.
1055 	 */
1056 	if (INTEL_REVID(dev) <= SKL_REVID_E0)
1057 		/* WaDisableLSQCROPERFforOCL:skl */
1058 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1059 			   GEN8_LQSC_RO_PERF_DIS);
1060 
1061 	/* WaEnableGapsTsvCreditFix:skl */
1062 	if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
1063 		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1064 					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1065 	}
1066 
1067 	/* WaDisablePowerCompilerClockGating:skl */
1068 	if (INTEL_REVID(dev) == SKL_REVID_B0)
1069 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1070 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1071 
1072 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1073 		/*
1074 		 *Use Force Non-Coherent whenever executing a 3D context. This
1075 		 * is a workaround for a possible hang in the unlikely event
1076 		 * a TLB invalidation occurs during a PSD flush.
1077 		 */
1078 		/* WaForceEnableNonCoherent:skl */
1079 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1080 				  HDC_FORCE_NON_COHERENT);
1081 	}
1082 
1083 	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1084 	    INTEL_REVID(dev) == SKL_REVID_D0)
1085 		/* WaBarrierPerformanceFixDisable:skl */
1086 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1087 				  HDC_FENCE_DEST_SLM_DISABLE |
1088 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1089 
1090 	/* WaDisableSbeCacheDispatchPortSharing:skl */
1091 	if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1092 		WA_SET_BIT_MASKED(
1093 			GEN7_HALF_SLICE_CHICKEN1,
1094 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1095 	}
1096 
1097 	return skl_tune_iz_hashing(ring);
1098 }
1099 
bxt_init_workarounds(struct intel_engine_cs * ring)1100 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1101 {
1102 	int ret;
1103 	struct drm_device *dev = ring->dev;
1104 	struct drm_i915_private *dev_priv = dev->dev_private;
1105 
1106 	ret = gen9_init_workarounds(ring);
1107 	if (ret)
1108 		return ret;
1109 
1110 	/* WaStoreMultiplePTEenable:bxt */
1111 	/* This is a requirement according to Hardware specification */
1112 	if (INTEL_REVID(dev) == BXT_REVID_A0)
1113 		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1114 
1115 	/* WaSetClckGatingDisableMedia:bxt */
1116 	if (INTEL_REVID(dev) == BXT_REVID_A0) {
1117 		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1118 					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1119 	}
1120 
1121 	/* WaDisableThreadStallDopClockGating:bxt */
1122 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1123 			  STALL_DOP_GATING_DISABLE);
1124 
1125 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1126 	if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1127 		WA_SET_BIT_MASKED(
1128 			GEN7_HALF_SLICE_CHICKEN1,
1129 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1130 	}
1131 
1132 	return 0;
1133 }
1134 
init_workarounds_ring(struct intel_engine_cs * ring)1135 int init_workarounds_ring(struct intel_engine_cs *ring)
1136 {
1137 	struct drm_device *dev = ring->dev;
1138 	struct drm_i915_private *dev_priv = dev->dev_private;
1139 
1140 	WARN_ON(ring->id != RCS);
1141 
1142 	dev_priv->workarounds.count = 0;
1143 
1144 	if (IS_BROADWELL(dev))
1145 		return bdw_init_workarounds(ring);
1146 
1147 	if (IS_CHERRYVIEW(dev))
1148 		return chv_init_workarounds(ring);
1149 
1150 	if (IS_SKYLAKE(dev))
1151 		return skl_init_workarounds(ring);
1152 
1153 	if (IS_BROXTON(dev))
1154 		return bxt_init_workarounds(ring);
1155 
1156 	return 0;
1157 }
1158 
init_render_ring(struct intel_engine_cs * ring)1159 static int init_render_ring(struct intel_engine_cs *ring)
1160 {
1161 	struct drm_device *dev = ring->dev;
1162 	struct drm_i915_private *dev_priv = dev->dev_private;
1163 	int ret = init_ring_common(ring);
1164 	if (ret)
1165 		return ret;
1166 
1167 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1168 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1169 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1170 
1171 	/* We need to disable the AsyncFlip performance optimisations in order
1172 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1173 	 * programmed to '1' on all products.
1174 	 *
1175 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1176 	 */
1177 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1178 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1179 
1180 	/* Required for the hardware to program scanline values for waiting */
1181 	/* WaEnableFlushTlbInvalidationMode:snb */
1182 	if (INTEL_INFO(dev)->gen == 6)
1183 		I915_WRITE(GFX_MODE,
1184 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1185 
1186 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1187 	if (IS_GEN7(dev))
1188 		I915_WRITE(GFX_MODE_GEN7,
1189 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1190 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1191 
1192 	if (IS_GEN6(dev)) {
1193 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1194 		 * "If this bit is set, STCunit will have LRA as replacement
1195 		 *  policy. [...] This bit must be reset.  LRA replacement
1196 		 *  policy is not supported."
1197 		 */
1198 		I915_WRITE(CACHE_MODE_0,
1199 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1200 	}
1201 
1202 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1203 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1204 
1205 	if (HAS_L3_DPF(dev))
1206 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1207 
1208 	return init_workarounds_ring(ring);
1209 }
1210 
render_ring_cleanup(struct intel_engine_cs * ring)1211 static void render_ring_cleanup(struct intel_engine_cs *ring)
1212 {
1213 	struct drm_device *dev = ring->dev;
1214 	struct drm_i915_private *dev_priv = dev->dev_private;
1215 
1216 	if (dev_priv->semaphore_obj) {
1217 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1218 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1219 		dev_priv->semaphore_obj = NULL;
1220 	}
1221 
1222 	intel_fini_pipe_control(ring);
1223 }
1224 
gen8_rcs_signal(struct drm_i915_gem_request * signaller_req,unsigned int num_dwords)1225 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1226 			   unsigned int num_dwords)
1227 {
1228 #define MBOX_UPDATE_DWORDS 8
1229 	struct intel_engine_cs *signaller = signaller_req->ring;
1230 	struct drm_device *dev = signaller->dev;
1231 	struct drm_i915_private *dev_priv = dev->dev_private;
1232 	struct intel_engine_cs *waiter;
1233 	int i, ret, num_rings;
1234 
1235 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1236 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1237 #undef MBOX_UPDATE_DWORDS
1238 
1239 	ret = intel_ring_begin(signaller_req, num_dwords);
1240 	if (ret)
1241 		return ret;
1242 
1243 	for_each_ring(waiter, dev_priv, i) {
1244 		u32 seqno;
1245 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1246 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1247 			continue;
1248 
1249 		seqno = i915_gem_request_get_seqno(signaller_req);
1250 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1251 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1252 					   PIPE_CONTROL_QW_WRITE |
1253 					   PIPE_CONTROL_FLUSH_ENABLE);
1254 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1255 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1256 		intel_ring_emit(signaller, seqno);
1257 		intel_ring_emit(signaller, 0);
1258 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1259 					   MI_SEMAPHORE_TARGET(waiter->id));
1260 		intel_ring_emit(signaller, 0);
1261 	}
1262 
1263 	return 0;
1264 }
1265 
gen8_xcs_signal(struct drm_i915_gem_request * signaller_req,unsigned int num_dwords)1266 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1267 			   unsigned int num_dwords)
1268 {
1269 #define MBOX_UPDATE_DWORDS 6
1270 	struct intel_engine_cs *signaller = signaller_req->ring;
1271 	struct drm_device *dev = signaller->dev;
1272 	struct drm_i915_private *dev_priv = dev->dev_private;
1273 	struct intel_engine_cs *waiter;
1274 	int i, ret, num_rings;
1275 
1276 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1277 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1278 #undef MBOX_UPDATE_DWORDS
1279 
1280 	ret = intel_ring_begin(signaller_req, num_dwords);
1281 	if (ret)
1282 		return ret;
1283 
1284 	for_each_ring(waiter, dev_priv, i) {
1285 		u32 seqno;
1286 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1287 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1288 			continue;
1289 
1290 		seqno = i915_gem_request_get_seqno(signaller_req);
1291 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1292 					   MI_FLUSH_DW_OP_STOREDW);
1293 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1294 					   MI_FLUSH_DW_USE_GTT);
1295 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1296 		intel_ring_emit(signaller, seqno);
1297 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298 					   MI_SEMAPHORE_TARGET(waiter->id));
1299 		intel_ring_emit(signaller, 0);
1300 	}
1301 
1302 	return 0;
1303 }
1304 
gen6_signal(struct drm_i915_gem_request * signaller_req,unsigned int num_dwords)1305 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1306 		       unsigned int num_dwords)
1307 {
1308 	struct intel_engine_cs *signaller = signaller_req->ring;
1309 	struct drm_device *dev = signaller->dev;
1310 	struct drm_i915_private *dev_priv = dev->dev_private;
1311 	struct intel_engine_cs *useless;
1312 	int i, ret, num_rings;
1313 
1314 #define MBOX_UPDATE_DWORDS 3
1315 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1317 #undef MBOX_UPDATE_DWORDS
1318 
1319 	ret = intel_ring_begin(signaller_req, num_dwords);
1320 	if (ret)
1321 		return ret;
1322 
1323 	for_each_ring(useless, dev_priv, i) {
1324 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1325 		if (mbox_reg != GEN6_NOSYNC) {
1326 			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1327 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1328 			intel_ring_emit(signaller, mbox_reg);
1329 			intel_ring_emit(signaller, seqno);
1330 		}
1331 	}
1332 
1333 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1334 	if (num_rings % 2 == 0)
1335 		intel_ring_emit(signaller, MI_NOOP);
1336 
1337 	return 0;
1338 }
1339 
1340 /**
1341  * gen6_add_request - Update the semaphore mailbox registers
1342  *
1343  * @request - request to write to the ring
1344  *
1345  * Update the mailbox registers in the *other* rings with the current seqno.
1346  * This acts like a signal in the canonical semaphore.
1347  */
1348 static int
gen6_add_request(struct drm_i915_gem_request * req)1349 gen6_add_request(struct drm_i915_gem_request *req)
1350 {
1351 	struct intel_engine_cs *ring = req->ring;
1352 	int ret;
1353 
1354 	if (ring->semaphore.signal)
1355 		ret = ring->semaphore.signal(req, 4);
1356 	else
1357 		ret = intel_ring_begin(req, 4);
1358 
1359 	if (ret)
1360 		return ret;
1361 
1362 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1363 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1364 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1365 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1366 	__intel_ring_advance(ring);
1367 
1368 	return 0;
1369 }
1370 
i915_gem_has_seqno_wrapped(struct drm_device * dev,u32 seqno)1371 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1372 					      u32 seqno)
1373 {
1374 	struct drm_i915_private *dev_priv = dev->dev_private;
1375 	return dev_priv->last_seqno < seqno;
1376 }
1377 
1378 /**
1379  * intel_ring_sync - sync the waiter to the signaller on seqno
1380  *
1381  * @waiter - ring that is waiting
1382  * @signaller - ring which has, or will signal
1383  * @seqno - seqno which the waiter will block on
1384  */
1385 
1386 static int
gen8_ring_sync(struct drm_i915_gem_request * waiter_req,struct intel_engine_cs * signaller,u32 seqno)1387 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1388 	       struct intel_engine_cs *signaller,
1389 	       u32 seqno)
1390 {
1391 	struct intel_engine_cs *waiter = waiter_req->ring;
1392 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1393 	int ret;
1394 
1395 	ret = intel_ring_begin(waiter_req, 4);
1396 	if (ret)
1397 		return ret;
1398 
1399 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1400 				MI_SEMAPHORE_GLOBAL_GTT |
1401 				MI_SEMAPHORE_POLL |
1402 				MI_SEMAPHORE_SAD_GTE_SDD);
1403 	intel_ring_emit(waiter, seqno);
1404 	intel_ring_emit(waiter,
1405 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1406 	intel_ring_emit(waiter,
1407 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1408 	intel_ring_advance(waiter);
1409 	return 0;
1410 }
1411 
1412 static int
gen6_ring_sync(struct drm_i915_gem_request * waiter_req,struct intel_engine_cs * signaller,u32 seqno)1413 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1414 	       struct intel_engine_cs *signaller,
1415 	       u32 seqno)
1416 {
1417 	struct intel_engine_cs *waiter = waiter_req->ring;
1418 	u32 dw1 = MI_SEMAPHORE_MBOX |
1419 		  MI_SEMAPHORE_COMPARE |
1420 		  MI_SEMAPHORE_REGISTER;
1421 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1422 	int ret;
1423 
1424 	/* Throughout all of the GEM code, seqno passed implies our current
1425 	 * seqno is >= the last seqno executed. However for hardware the
1426 	 * comparison is strictly greater than.
1427 	 */
1428 	seqno -= 1;
1429 
1430 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1431 
1432 	ret = intel_ring_begin(waiter_req, 4);
1433 	if (ret)
1434 		return ret;
1435 
1436 	/* If seqno wrap happened, omit the wait with no-ops */
1437 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1438 		intel_ring_emit(waiter, dw1 | wait_mbox);
1439 		intel_ring_emit(waiter, seqno);
1440 		intel_ring_emit(waiter, 0);
1441 		intel_ring_emit(waiter, MI_NOOP);
1442 	} else {
1443 		intel_ring_emit(waiter, MI_NOOP);
1444 		intel_ring_emit(waiter, MI_NOOP);
1445 		intel_ring_emit(waiter, MI_NOOP);
1446 		intel_ring_emit(waiter, MI_NOOP);
1447 	}
1448 	intel_ring_advance(waiter);
1449 
1450 	return 0;
1451 }
1452 
1453 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1454 do {									\
1455 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1456 		 PIPE_CONTROL_DEPTH_STALL);				\
1457 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1458 	intel_ring_emit(ring__, 0);							\
1459 	intel_ring_emit(ring__, 0);							\
1460 } while (0)
1461 
1462 static int
pc_render_add_request(struct drm_i915_gem_request * req)1463 pc_render_add_request(struct drm_i915_gem_request *req)
1464 {
1465 	struct intel_engine_cs *ring = req->ring;
1466 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1467 	int ret;
1468 
1469 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1470 	 * incoherent with writes to memory, i.e. completely fubar,
1471 	 * so we need to use PIPE_NOTIFY instead.
1472 	 *
1473 	 * However, we also need to workaround the qword write
1474 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1475 	 * memory before requesting an interrupt.
1476 	 */
1477 	ret = intel_ring_begin(req, 32);
1478 	if (ret)
1479 		return ret;
1480 
1481 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1482 			PIPE_CONTROL_WRITE_FLUSH |
1483 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1484 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1485 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1486 	intel_ring_emit(ring, 0);
1487 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1488 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1489 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1490 	scratch_addr += 2 * CACHELINE_BYTES;
1491 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1492 	scratch_addr += 2 * CACHELINE_BYTES;
1493 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1494 	scratch_addr += 2 * CACHELINE_BYTES;
1495 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1496 	scratch_addr += 2 * CACHELINE_BYTES;
1497 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1498 
1499 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1500 			PIPE_CONTROL_WRITE_FLUSH |
1501 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1502 			PIPE_CONTROL_NOTIFY);
1503 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1504 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1505 	intel_ring_emit(ring, 0);
1506 	__intel_ring_advance(ring);
1507 
1508 	return 0;
1509 }
1510 
1511 static u32
gen6_ring_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1512 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1513 {
1514 	/* Workaround to force correct ordering between irq and seqno writes on
1515 	 * ivb (and maybe also on snb) by reading from a CS register (like
1516 	 * ACTHD) before reading the status page. */
1517 	if (!lazy_coherency) {
1518 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1519 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1520 	}
1521 
1522 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1523 }
1524 
1525 static u32
ring_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1526 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1527 {
1528 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1529 }
1530 
1531 static void
ring_set_seqno(struct intel_engine_cs * ring,u32 seqno)1532 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1533 {
1534 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1535 }
1536 
1537 static u32
pc_render_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1538 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1539 {
1540 	return ring->scratch.cpu_page[0];
1541 }
1542 
1543 static void
pc_render_set_seqno(struct intel_engine_cs * ring,u32 seqno)1544 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1545 {
1546 	ring->scratch.cpu_page[0] = seqno;
1547 }
1548 
1549 static bool
gen5_ring_get_irq(struct intel_engine_cs * ring)1550 gen5_ring_get_irq(struct intel_engine_cs *ring)
1551 {
1552 	struct drm_device *dev = ring->dev;
1553 	struct drm_i915_private *dev_priv = dev->dev_private;
1554 	unsigned long flags;
1555 
1556 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1557 		return false;
1558 
1559 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1560 	if (ring->irq_refcount++ == 0)
1561 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1562 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1563 
1564 	return true;
1565 }
1566 
1567 static void
gen5_ring_put_irq(struct intel_engine_cs * ring)1568 gen5_ring_put_irq(struct intel_engine_cs *ring)
1569 {
1570 	struct drm_device *dev = ring->dev;
1571 	struct drm_i915_private *dev_priv = dev->dev_private;
1572 	unsigned long flags;
1573 
1574 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1575 	if (--ring->irq_refcount == 0)
1576 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1577 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1578 }
1579 
1580 static bool
i9xx_ring_get_irq(struct intel_engine_cs * ring)1581 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1582 {
1583 	struct drm_device *dev = ring->dev;
1584 	struct drm_i915_private *dev_priv = dev->dev_private;
1585 	unsigned long flags;
1586 
1587 	if (!intel_irqs_enabled(dev_priv))
1588 		return false;
1589 
1590 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1591 	if (ring->irq_refcount++ == 0) {
1592 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1593 		I915_WRITE(IMR, dev_priv->irq_mask);
1594 		POSTING_READ(IMR);
1595 	}
1596 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1597 
1598 	return true;
1599 }
1600 
1601 static void
i9xx_ring_put_irq(struct intel_engine_cs * ring)1602 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1603 {
1604 	struct drm_device *dev = ring->dev;
1605 	struct drm_i915_private *dev_priv = dev->dev_private;
1606 	unsigned long flags;
1607 
1608 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1609 	if (--ring->irq_refcount == 0) {
1610 		dev_priv->irq_mask |= ring->irq_enable_mask;
1611 		I915_WRITE(IMR, dev_priv->irq_mask);
1612 		POSTING_READ(IMR);
1613 	}
1614 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1615 }
1616 
1617 static bool
i8xx_ring_get_irq(struct intel_engine_cs * ring)1618 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1619 {
1620 	struct drm_device *dev = ring->dev;
1621 	struct drm_i915_private *dev_priv = dev->dev_private;
1622 	unsigned long flags;
1623 
1624 	if (!intel_irqs_enabled(dev_priv))
1625 		return false;
1626 
1627 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1628 	if (ring->irq_refcount++ == 0) {
1629 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1630 		I915_WRITE16(IMR, dev_priv->irq_mask);
1631 		POSTING_READ16(IMR);
1632 	}
1633 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1634 
1635 	return true;
1636 }
1637 
1638 static void
i8xx_ring_put_irq(struct intel_engine_cs * ring)1639 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1640 {
1641 	struct drm_device *dev = ring->dev;
1642 	struct drm_i915_private *dev_priv = dev->dev_private;
1643 	unsigned long flags;
1644 
1645 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646 	if (--ring->irq_refcount == 0) {
1647 		dev_priv->irq_mask |= ring->irq_enable_mask;
1648 		I915_WRITE16(IMR, dev_priv->irq_mask);
1649 		POSTING_READ16(IMR);
1650 	}
1651 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1652 }
1653 
1654 static int
bsd_ring_flush(struct drm_i915_gem_request * req,u32 invalidate_domains,u32 flush_domains)1655 bsd_ring_flush(struct drm_i915_gem_request *req,
1656 	       u32     invalidate_domains,
1657 	       u32     flush_domains)
1658 {
1659 	struct intel_engine_cs *ring = req->ring;
1660 	int ret;
1661 
1662 	ret = intel_ring_begin(req, 2);
1663 	if (ret)
1664 		return ret;
1665 
1666 	intel_ring_emit(ring, MI_FLUSH);
1667 	intel_ring_emit(ring, MI_NOOP);
1668 	intel_ring_advance(ring);
1669 	return 0;
1670 }
1671 
1672 static int
i9xx_add_request(struct drm_i915_gem_request * req)1673 i9xx_add_request(struct drm_i915_gem_request *req)
1674 {
1675 	struct intel_engine_cs *ring = req->ring;
1676 	int ret;
1677 
1678 	ret = intel_ring_begin(req, 4);
1679 	if (ret)
1680 		return ret;
1681 
1682 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1683 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1684 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1685 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1686 	__intel_ring_advance(ring);
1687 
1688 	return 0;
1689 }
1690 
1691 static bool
gen6_ring_get_irq(struct intel_engine_cs * ring)1692 gen6_ring_get_irq(struct intel_engine_cs *ring)
1693 {
1694 	struct drm_device *dev = ring->dev;
1695 	struct drm_i915_private *dev_priv = dev->dev_private;
1696 	unsigned long flags;
1697 
1698 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1699 		return false;
1700 
1701 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1702 	if (ring->irq_refcount++ == 0) {
1703 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1704 			I915_WRITE_IMR(ring,
1705 				       ~(ring->irq_enable_mask |
1706 					 GT_PARITY_ERROR(dev)));
1707 		else
1708 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1709 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1710 	}
1711 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1712 
1713 	return true;
1714 }
1715 
1716 static void
gen6_ring_put_irq(struct intel_engine_cs * ring)1717 gen6_ring_put_irq(struct intel_engine_cs *ring)
1718 {
1719 	struct drm_device *dev = ring->dev;
1720 	struct drm_i915_private *dev_priv = dev->dev_private;
1721 	unsigned long flags;
1722 
1723 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724 	if (--ring->irq_refcount == 0) {
1725 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1726 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1727 		else
1728 			I915_WRITE_IMR(ring, ~0);
1729 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1730 	}
1731 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1732 }
1733 
1734 static bool
hsw_vebox_get_irq(struct intel_engine_cs * ring)1735 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1736 {
1737 	struct drm_device *dev = ring->dev;
1738 	struct drm_i915_private *dev_priv = dev->dev_private;
1739 	unsigned long flags;
1740 
1741 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1742 		return false;
1743 
1744 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1745 	if (ring->irq_refcount++ == 0) {
1746 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1747 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1748 	}
1749 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1750 
1751 	return true;
1752 }
1753 
1754 static void
hsw_vebox_put_irq(struct intel_engine_cs * ring)1755 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1756 {
1757 	struct drm_device *dev = ring->dev;
1758 	struct drm_i915_private *dev_priv = dev->dev_private;
1759 	unsigned long flags;
1760 
1761 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1762 	if (--ring->irq_refcount == 0) {
1763 		I915_WRITE_IMR(ring, ~0);
1764 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1765 	}
1766 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1767 }
1768 
1769 static bool
gen8_ring_get_irq(struct intel_engine_cs * ring)1770 gen8_ring_get_irq(struct intel_engine_cs *ring)
1771 {
1772 	struct drm_device *dev = ring->dev;
1773 	struct drm_i915_private *dev_priv = dev->dev_private;
1774 	unsigned long flags;
1775 
1776 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1777 		return false;
1778 
1779 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1780 	if (ring->irq_refcount++ == 0) {
1781 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1782 			I915_WRITE_IMR(ring,
1783 				       ~(ring->irq_enable_mask |
1784 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1785 		} else {
1786 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1787 		}
1788 		POSTING_READ(RING_IMR(ring->mmio_base));
1789 	}
1790 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791 
1792 	return true;
1793 }
1794 
1795 static void
gen8_ring_put_irq(struct intel_engine_cs * ring)1796 gen8_ring_put_irq(struct intel_engine_cs *ring)
1797 {
1798 	struct drm_device *dev = ring->dev;
1799 	struct drm_i915_private *dev_priv = dev->dev_private;
1800 	unsigned long flags;
1801 
1802 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803 	if (--ring->irq_refcount == 0) {
1804 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1805 			I915_WRITE_IMR(ring,
1806 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1807 		} else {
1808 			I915_WRITE_IMR(ring, ~0);
1809 		}
1810 		POSTING_READ(RING_IMR(ring->mmio_base));
1811 	}
1812 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1813 }
1814 
1815 static int
i965_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 length,unsigned dispatch_flags)1816 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1817 			 u64 offset, u32 length,
1818 			 unsigned dispatch_flags)
1819 {
1820 	struct intel_engine_cs *ring = req->ring;
1821 	int ret;
1822 
1823 	ret = intel_ring_begin(req, 2);
1824 	if (ret)
1825 		return ret;
1826 
1827 	intel_ring_emit(ring,
1828 			MI_BATCH_BUFFER_START |
1829 			MI_BATCH_GTT |
1830 			(dispatch_flags & I915_DISPATCH_SECURE ?
1831 			 0 : MI_BATCH_NON_SECURE_I965));
1832 	intel_ring_emit(ring, offset);
1833 	intel_ring_advance(ring);
1834 
1835 	return 0;
1836 }
1837 
1838 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1839 #define I830_BATCH_LIMIT (256*1024)
1840 #define I830_TLB_ENTRIES (2)
1841 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1842 static int
i830_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)1843 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1844 			 u64 offset, u32 len,
1845 			 unsigned dispatch_flags)
1846 {
1847 	struct intel_engine_cs *ring = req->ring;
1848 	u32 cs_offset = ring->scratch.gtt_offset;
1849 	int ret;
1850 
1851 	ret = intel_ring_begin(req, 6);
1852 	if (ret)
1853 		return ret;
1854 
1855 	/* Evict the invalid PTE TLBs */
1856 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1857 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1858 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1859 	intel_ring_emit(ring, cs_offset);
1860 	intel_ring_emit(ring, 0xdeadbeef);
1861 	intel_ring_emit(ring, MI_NOOP);
1862 	intel_ring_advance(ring);
1863 
1864 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1865 		if (len > I830_BATCH_LIMIT)
1866 			return -ENOSPC;
1867 
1868 		ret = intel_ring_begin(req, 6 + 2);
1869 		if (ret)
1870 			return ret;
1871 
1872 		/* Blit the batch (which has now all relocs applied) to the
1873 		 * stable batch scratch bo area (so that the CS never
1874 		 * stumbles over its tlb invalidation bug) ...
1875 		 */
1876 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1877 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1878 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1879 		intel_ring_emit(ring, cs_offset);
1880 		intel_ring_emit(ring, 4096);
1881 		intel_ring_emit(ring, offset);
1882 
1883 		intel_ring_emit(ring, MI_FLUSH);
1884 		intel_ring_emit(ring, MI_NOOP);
1885 		intel_ring_advance(ring);
1886 
1887 		/* ... and execute it. */
1888 		offset = cs_offset;
1889 	}
1890 
1891 	ret = intel_ring_begin(req, 4);
1892 	if (ret)
1893 		return ret;
1894 
1895 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1896 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1897 					0 : MI_BATCH_NON_SECURE));
1898 	intel_ring_emit(ring, offset + len - 8);
1899 	intel_ring_emit(ring, MI_NOOP);
1900 	intel_ring_advance(ring);
1901 
1902 	return 0;
1903 }
1904 
1905 static int
i915_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)1906 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1907 			 u64 offset, u32 len,
1908 			 unsigned dispatch_flags)
1909 {
1910 	struct intel_engine_cs *ring = req->ring;
1911 	int ret;
1912 
1913 	ret = intel_ring_begin(req, 2);
1914 	if (ret)
1915 		return ret;
1916 
1917 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1918 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1919 					0 : MI_BATCH_NON_SECURE));
1920 	intel_ring_advance(ring);
1921 
1922 	return 0;
1923 }
1924 
cleanup_phys_status_page(struct intel_engine_cs * ring)1925 static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1926 {
1927 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1928 
1929 	if (!dev_priv->status_page_dmah)
1930 		return;
1931 
1932 	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1933 	ring->status_page.page_addr = NULL;
1934 }
1935 
cleanup_status_page(struct intel_engine_cs * ring)1936 static void cleanup_status_page(struct intel_engine_cs *ring)
1937 {
1938 	struct drm_i915_gem_object *obj;
1939 
1940 	obj = ring->status_page.obj;
1941 	if (obj == NULL)
1942 		return;
1943 
1944 	kunmap(sg_page(obj->pages->sgl));
1945 	i915_gem_object_ggtt_unpin(obj);
1946 	drm_gem_object_unreference(&obj->base);
1947 	ring->status_page.obj = NULL;
1948 }
1949 
init_status_page(struct intel_engine_cs * ring)1950 static int init_status_page(struct intel_engine_cs *ring)
1951 {
1952 	struct drm_i915_gem_object *obj = ring->status_page.obj;
1953 
1954 	if (obj == NULL) {
1955 		unsigned flags;
1956 		int ret;
1957 
1958 		obj = i915_gem_alloc_object(ring->dev, 4096);
1959 		if (obj == NULL) {
1960 			DRM_ERROR("Failed to allocate status page\n");
1961 			return -ENOMEM;
1962 		}
1963 
1964 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1965 		if (ret)
1966 			goto err_unref;
1967 
1968 		flags = 0;
1969 		if (!HAS_LLC(ring->dev))
1970 			/* On g33, we cannot place HWS above 256MiB, so
1971 			 * restrict its pinning to the low mappable arena.
1972 			 * Though this restriction is not documented for
1973 			 * gen4, gen5, or byt, they also behave similarly
1974 			 * and hang if the HWS is placed at the top of the
1975 			 * GTT. To generalise, it appears that all !llc
1976 			 * platforms have issues with us placing the HWS
1977 			 * above the mappable region (even though we never
1978 			 * actualy map it).
1979 			 */
1980 			flags |= PIN_MAPPABLE;
1981 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1982 		if (ret) {
1983 err_unref:
1984 			drm_gem_object_unreference(&obj->base);
1985 			return ret;
1986 		}
1987 
1988 		ring->status_page.obj = obj;
1989 	}
1990 
1991 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1992 	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1993 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1994 
1995 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1996 			ring->name, ring->status_page.gfx_addr);
1997 
1998 	return 0;
1999 }
2000 
init_phys_status_page(struct intel_engine_cs * ring)2001 static int init_phys_status_page(struct intel_engine_cs *ring)
2002 {
2003 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2004 
2005 	if (!dev_priv->status_page_dmah) {
2006 		dev_priv->status_page_dmah =
2007 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2008 		if (!dev_priv->status_page_dmah)
2009 			return -ENOMEM;
2010 	}
2011 
2012 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2013 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2014 
2015 	return 0;
2016 }
2017 
intel_unpin_ringbuffer_obj(struct intel_ringbuffer * ringbuf)2018 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2019 {
2020 	iounmap(ringbuf->virtual_start);
2021 	ringbuf->virtual_start = NULL;
2022 	i915_gem_object_ggtt_unpin(ringbuf->obj);
2023 }
2024 
intel_pin_and_map_ringbuffer_obj(struct drm_device * dev,struct intel_ringbuffer * ringbuf)2025 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2026 				     struct intel_ringbuffer *ringbuf)
2027 {
2028 	struct drm_i915_private *dev_priv = to_i915(dev);
2029 	struct drm_i915_gem_object *obj = ringbuf->obj;
2030 	int ret;
2031 
2032 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2033 	if (ret)
2034 		return ret;
2035 
2036 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
2037 	if (ret) {
2038 		i915_gem_object_ggtt_unpin(obj);
2039 		return ret;
2040 	}
2041 
2042 	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2043 			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2044 	if (ringbuf->virtual_start == NULL) {
2045 		i915_gem_object_ggtt_unpin(obj);
2046 		return -EINVAL;
2047 	}
2048 
2049 	return 0;
2050 }
2051 
intel_destroy_ringbuffer_obj(struct intel_ringbuffer * ringbuf)2052 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2053 {
2054 	drm_gem_object_unreference(&ringbuf->obj->base);
2055 	ringbuf->obj = NULL;
2056 }
2057 
intel_alloc_ringbuffer_obj(struct drm_device * dev,struct intel_ringbuffer * ringbuf)2058 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2059 				      struct intel_ringbuffer *ringbuf)
2060 {
2061 	struct drm_i915_private *dev_priv = to_i915(dev);
2062 	struct i915_address_space *vm = &dev_priv->gtt.base;
2063 	struct drm_i915_gem_object *obj;
2064 
2065 	obj = NULL;
2066 	if (!HAS_LLC(dev))
2067 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2068 	if (obj == NULL)
2069 		obj = i915_gem_alloc_object(dev, ringbuf->size);
2070 	if (obj == NULL)
2071 		return -ENOMEM;
2072 
2073 	/*
2074 	 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
2075 	 * if supported by the platform's GGTT.
2076 	 */
2077 	if (vm->has_read_only)
2078 		obj->gt_ro = 1;
2079 
2080 	ringbuf->obj = obj;
2081 
2082 	return 0;
2083 }
2084 
2085 struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs * engine,int size)2086 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2087 {
2088 	struct intel_ringbuffer *ring;
2089 	int ret;
2090 
2091 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2092 	if (ring == NULL)
2093 		return ERR_PTR(-ENOMEM);
2094 
2095 	ring->ring = engine;
2096 
2097 	ring->size = size;
2098 	/* Workaround an erratum on the i830 which causes a hang if
2099 	 * the TAIL pointer points to within the last 2 cachelines
2100 	 * of the buffer.
2101 	 */
2102 	ring->effective_size = size;
2103 	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2104 		ring->effective_size -= 2 * CACHELINE_BYTES;
2105 
2106 	ring->last_retired_head = -1;
2107 	intel_ring_update_space(ring);
2108 
2109 	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2110 	if (ret) {
2111 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2112 			  engine->name, ret);
2113 		kfree(ring);
2114 		return ERR_PTR(ret);
2115 	}
2116 
2117 	return ring;
2118 }
2119 
2120 void
intel_ringbuffer_free(struct intel_ringbuffer * ring)2121 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2122 {
2123 	intel_destroy_ringbuffer_obj(ring);
2124 	kfree(ring);
2125 }
2126 
intel_init_ring_buffer(struct drm_device * dev,struct intel_engine_cs * ring)2127 static int intel_init_ring_buffer(struct drm_device *dev,
2128 				  struct intel_engine_cs *ring)
2129 {
2130 	struct intel_ringbuffer *ringbuf;
2131 	int ret;
2132 
2133 	WARN_ON(ring->buffer);
2134 
2135 	ring->dev = dev;
2136 	INIT_LIST_HEAD(&ring->active_list);
2137 	INIT_LIST_HEAD(&ring->request_list);
2138 	INIT_LIST_HEAD(&ring->execlist_queue);
2139 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2140 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2141 
2142 	init_waitqueue_head(&ring->irq_queue);
2143 
2144 	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2145 	if (IS_ERR(ringbuf))
2146 		return PTR_ERR(ringbuf);
2147 	ring->buffer = ringbuf;
2148 
2149 	if (I915_NEED_GFX_HWS(dev)) {
2150 		ret = init_status_page(ring);
2151 		if (ret)
2152 			goto error;
2153 	} else {
2154 		WARN_ON(ring->id != RCS);
2155 		ret = init_phys_status_page(ring);
2156 		if (ret)
2157 			goto error;
2158 	}
2159 
2160 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2161 	if (ret) {
2162 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2163 				ring->name, ret);
2164 		intel_destroy_ringbuffer_obj(ringbuf);
2165 		goto error;
2166 	}
2167 
2168 	ret = i915_cmd_parser_init_ring(ring);
2169 	if (ret)
2170 		goto error;
2171 
2172 	return 0;
2173 
2174 error:
2175 	intel_ringbuffer_free(ringbuf);
2176 	ring->buffer = NULL;
2177 	return ret;
2178 }
2179 
intel_cleanup_ring_buffer(struct intel_engine_cs * ring)2180 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2181 {
2182 	struct drm_i915_private *dev_priv;
2183 
2184 	if (!intel_ring_initialized(ring))
2185 		return;
2186 
2187 	dev_priv = to_i915(ring->dev);
2188 
2189 	intel_stop_ring_buffer(ring);
2190 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2191 
2192 	intel_unpin_ringbuffer_obj(ring->buffer);
2193 	intel_ringbuffer_free(ring->buffer);
2194 	ring->buffer = NULL;
2195 
2196 	if (ring->cleanup)
2197 		ring->cleanup(ring);
2198 
2199 	if (I915_NEED_GFX_HWS(ring->dev)) {
2200 		cleanup_status_page(ring);
2201 	} else {
2202 		WARN_ON(ring->id != RCS);
2203 		cleanup_phys_status_page(ring);
2204 	}
2205 
2206 	i915_cmd_parser_fini_ring(ring);
2207 	i915_gem_batch_pool_fini(&ring->batch_pool);
2208 }
2209 
ring_wait_for_space(struct intel_engine_cs * ring,int n)2210 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2211 {
2212 	struct intel_ringbuffer *ringbuf = ring->buffer;
2213 	struct drm_i915_gem_request *request;
2214 	unsigned space;
2215 	int ret;
2216 
2217 	if (intel_ring_space(ringbuf) >= n)
2218 		return 0;
2219 
2220 	/* The whole point of reserving space is to not wait! */
2221 	WARN_ON(ringbuf->reserved_in_use);
2222 
2223 	list_for_each_entry(request, &ring->request_list, list) {
2224 		space = __intel_ring_space(request->postfix, ringbuf->tail,
2225 					   ringbuf->size);
2226 		if (space >= n)
2227 			break;
2228 	}
2229 
2230 	if (WARN_ON(&request->list == &ring->request_list))
2231 		return -ENOSPC;
2232 
2233 	ret = i915_wait_request(request);
2234 	if (ret)
2235 		return ret;
2236 
2237 	ringbuf->space = space;
2238 	return 0;
2239 }
2240 
__wrap_ring_buffer(struct intel_ringbuffer * ringbuf)2241 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2242 {
2243 	uint32_t __iomem *virt;
2244 	int rem = ringbuf->size - ringbuf->tail;
2245 
2246 	virt = ringbuf->virtual_start + ringbuf->tail;
2247 	rem /= 4;
2248 	while (rem--)
2249 		iowrite32(MI_NOOP, virt++);
2250 
2251 	ringbuf->tail = 0;
2252 	intel_ring_update_space(ringbuf);
2253 }
2254 
intel_ring_idle(struct intel_engine_cs * ring)2255 int intel_ring_idle(struct intel_engine_cs *ring)
2256 {
2257 	struct drm_i915_gem_request *req;
2258 
2259 	/* Wait upon the last request to be completed */
2260 	if (list_empty(&ring->request_list))
2261 		return 0;
2262 
2263 	req = list_entry(ring->request_list.prev,
2264 			struct drm_i915_gem_request,
2265 			list);
2266 
2267 	/* Make sure we do not trigger any retires */
2268 	return __i915_wait_request(req,
2269 				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2270 				   to_i915(ring->dev)->mm.interruptible,
2271 				   NULL, NULL);
2272 }
2273 
intel_ring_alloc_request_extras(struct drm_i915_gem_request * request)2274 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2275 {
2276 	request->ringbuf = request->ring->buffer;
2277 	return 0;
2278 }
2279 
intel_ring_reserve_space(struct drm_i915_gem_request * request)2280 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2281 {
2282 	/*
2283 	 * The first call merely notes the reserve request and is common for
2284 	 * all back ends. The subsequent localised _begin() call actually
2285 	 * ensures that the reservation is available. Without the begin, if
2286 	 * the request creator immediately submitted the request without
2287 	 * adding any commands to it then there might not actually be
2288 	 * sufficient room for the submission commands.
2289 	 */
2290 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2291 
2292 	return intel_ring_begin(request, 0);
2293 }
2294 
intel_ring_reserved_space_reserve(struct intel_ringbuffer * ringbuf,int size)2295 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2296 {
2297 	WARN_ON(ringbuf->reserved_size);
2298 	WARN_ON(ringbuf->reserved_in_use);
2299 
2300 	ringbuf->reserved_size = size;
2301 }
2302 
intel_ring_reserved_space_cancel(struct intel_ringbuffer * ringbuf)2303 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2304 {
2305 	WARN_ON(ringbuf->reserved_in_use);
2306 
2307 	ringbuf->reserved_size   = 0;
2308 	ringbuf->reserved_in_use = false;
2309 }
2310 
intel_ring_reserved_space_use(struct intel_ringbuffer * ringbuf)2311 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2312 {
2313 	WARN_ON(ringbuf->reserved_in_use);
2314 
2315 	ringbuf->reserved_in_use = true;
2316 	ringbuf->reserved_tail   = ringbuf->tail;
2317 }
2318 
intel_ring_reserved_space_end(struct intel_ringbuffer * ringbuf)2319 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2320 {
2321 	WARN_ON(!ringbuf->reserved_in_use);
2322 	if (ringbuf->tail > ringbuf->reserved_tail) {
2323 		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2324 		     "request reserved size too small: %d vs %d!\n",
2325 		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2326 	} else {
2327 		/*
2328 		 * The ring was wrapped while the reserved space was in use.
2329 		 * That means that some unknown amount of the ring tail was
2330 		 * no-op filled and skipped. Thus simply adding the ring size
2331 		 * to the tail and doing the above space check will not work.
2332 		 * Rather than attempt to track how much tail was skipped,
2333 		 * it is much simpler to say that also skipping the sanity
2334 		 * check every once in a while is not a big issue.
2335 		 */
2336 	}
2337 
2338 	ringbuf->reserved_size   = 0;
2339 	ringbuf->reserved_in_use = false;
2340 }
2341 
__intel_ring_prepare(struct intel_engine_cs * ring,int bytes)2342 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2343 {
2344 	struct intel_ringbuffer *ringbuf = ring->buffer;
2345 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2346 	int remain_actual = ringbuf->size - ringbuf->tail;
2347 	int ret, total_bytes, wait_bytes = 0;
2348 	bool need_wrap = false;
2349 
2350 	if (ringbuf->reserved_in_use)
2351 		total_bytes = bytes;
2352 	else
2353 		total_bytes = bytes + ringbuf->reserved_size;
2354 
2355 	if (unlikely(bytes > remain_usable)) {
2356 		/*
2357 		 * Not enough space for the basic request. So need to flush
2358 		 * out the remainder and then wait for base + reserved.
2359 		 */
2360 		wait_bytes = remain_actual + total_bytes;
2361 		need_wrap = true;
2362 	} else {
2363 		if (unlikely(total_bytes > remain_usable)) {
2364 			/*
2365 			 * The base request will fit but the reserved space
2366 			 * falls off the end. So don't need an immediate wrap
2367 			 * and only need to effectively wait for the reserved
2368 			 * size space from the start of ringbuffer.
2369 			 */
2370 			wait_bytes = remain_actual + ringbuf->reserved_size;
2371 		} else if (total_bytes > ringbuf->space) {
2372 			/* No wrapping required, just waiting. */
2373 			wait_bytes = total_bytes;
2374 		}
2375 	}
2376 
2377 	if (wait_bytes) {
2378 		ret = ring_wait_for_space(ring, wait_bytes);
2379 		if (unlikely(ret))
2380 			return ret;
2381 
2382 		if (need_wrap)
2383 			__wrap_ring_buffer(ringbuf);
2384 	}
2385 
2386 	return 0;
2387 }
2388 
intel_ring_begin(struct drm_i915_gem_request * req,int num_dwords)2389 int intel_ring_begin(struct drm_i915_gem_request *req,
2390 		     int num_dwords)
2391 {
2392 	struct intel_engine_cs *ring;
2393 	struct drm_i915_private *dev_priv;
2394 	int ret;
2395 
2396 	WARN_ON(req == NULL);
2397 	ring = req->ring;
2398 	dev_priv = ring->dev->dev_private;
2399 
2400 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2401 				   dev_priv->mm.interruptible);
2402 	if (ret)
2403 		return ret;
2404 
2405 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2406 	if (ret)
2407 		return ret;
2408 
2409 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2410 	return 0;
2411 }
2412 
2413 /* Align the ring tail to a cacheline boundary */
intel_ring_cacheline_align(struct drm_i915_gem_request * req)2414 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2415 {
2416 	struct intel_engine_cs *ring = req->ring;
2417 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2418 	int ret;
2419 
2420 	if (num_dwords == 0)
2421 		return 0;
2422 
2423 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2424 	ret = intel_ring_begin(req, num_dwords);
2425 	if (ret)
2426 		return ret;
2427 
2428 	while (num_dwords--)
2429 		intel_ring_emit(ring, MI_NOOP);
2430 
2431 	intel_ring_advance(ring);
2432 
2433 	return 0;
2434 }
2435 
intel_ring_init_seqno(struct intel_engine_cs * ring,u32 seqno)2436 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2437 {
2438 	struct drm_device *dev = ring->dev;
2439 	struct drm_i915_private *dev_priv = dev->dev_private;
2440 
2441 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2442 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2443 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2444 		if (HAS_VEBOX(dev))
2445 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2446 	}
2447 
2448 	ring->set_seqno(ring, seqno);
2449 	ring->hangcheck.seqno = seqno;
2450 }
2451 
gen6_bsd_ring_write_tail(struct intel_engine_cs * ring,u32 value)2452 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2453 				     u32 value)
2454 {
2455 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2456 
2457        /* Every tail move must follow the sequence below */
2458 
2459 	/* Disable notification that the ring is IDLE. The GT
2460 	 * will then assume that it is busy and bring it out of rc6.
2461 	 */
2462 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2463 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2464 
2465 	/* Clear the context id. Here be magic! */
2466 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2467 
2468 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2469 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2470 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2471 		     50))
2472 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2473 
2474 	/* Now that the ring is fully powered up, update the tail */
2475 	I915_WRITE_TAIL(ring, value);
2476 	POSTING_READ(RING_TAIL(ring->mmio_base));
2477 
2478 	/* Let the ring send IDLE messages to the GT again,
2479 	 * and so let it sleep to conserve power when idle.
2480 	 */
2481 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2482 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2483 }
2484 
gen6_bsd_ring_flush(struct drm_i915_gem_request * req,u32 invalidate,u32 flush)2485 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2486 			       u32 invalidate, u32 flush)
2487 {
2488 	struct intel_engine_cs *ring = req->ring;
2489 	uint32_t cmd;
2490 	int ret;
2491 
2492 	ret = intel_ring_begin(req, 4);
2493 	if (ret)
2494 		return ret;
2495 
2496 	cmd = MI_FLUSH_DW;
2497 	if (INTEL_INFO(ring->dev)->gen >= 8)
2498 		cmd += 1;
2499 
2500 	/* We always require a command barrier so that subsequent
2501 	 * commands, such as breadcrumb interrupts, are strictly ordered
2502 	 * wrt the contents of the write cache being flushed to memory
2503 	 * (and thus being coherent from the CPU).
2504 	 */
2505 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2506 
2507 	/*
2508 	 * Bspec vol 1c.5 - video engine command streamer:
2509 	 * "If ENABLED, all TLBs will be invalidated once the flush
2510 	 * operation is complete. This bit is only valid when the
2511 	 * Post-Sync Operation field is a value of 1h or 3h."
2512 	 */
2513 	if (invalidate & I915_GEM_GPU_DOMAINS)
2514 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2515 
2516 	intel_ring_emit(ring, cmd);
2517 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2518 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2519 		intel_ring_emit(ring, 0); /* upper addr */
2520 		intel_ring_emit(ring, 0); /* value */
2521 	} else  {
2522 		intel_ring_emit(ring, 0);
2523 		intel_ring_emit(ring, MI_NOOP);
2524 	}
2525 	intel_ring_advance(ring);
2526 	return 0;
2527 }
2528 
2529 static int
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)2530 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2531 			      u64 offset, u32 len,
2532 			      unsigned dispatch_flags)
2533 {
2534 	struct intel_engine_cs *ring = req->ring;
2535 	bool ppgtt = USES_PPGTT(ring->dev) &&
2536 			!(dispatch_flags & I915_DISPATCH_SECURE);
2537 	int ret;
2538 
2539 	ret = intel_ring_begin(req, 4);
2540 	if (ret)
2541 		return ret;
2542 
2543 	/* FIXME(BDW): Address space and security selectors. */
2544 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2545 			(dispatch_flags & I915_DISPATCH_RS ?
2546 			 MI_BATCH_RESOURCE_STREAMER : 0));
2547 	intel_ring_emit(ring, lower_32_bits(offset));
2548 	intel_ring_emit(ring, upper_32_bits(offset));
2549 	intel_ring_emit(ring, MI_NOOP);
2550 	intel_ring_advance(ring);
2551 
2552 	return 0;
2553 }
2554 
2555 static int
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)2556 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2557 			     u64 offset, u32 len,
2558 			     unsigned dispatch_flags)
2559 {
2560 	struct intel_engine_cs *ring = req->ring;
2561 	int ret;
2562 
2563 	ret = intel_ring_begin(req, 2);
2564 	if (ret)
2565 		return ret;
2566 
2567 	intel_ring_emit(ring,
2568 			MI_BATCH_BUFFER_START |
2569 			(dispatch_flags & I915_DISPATCH_SECURE ?
2570 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2571 			(dispatch_flags & I915_DISPATCH_RS ?
2572 			 MI_BATCH_RESOURCE_STREAMER : 0));
2573 	/* bit0-7 is the length on GEN6+ */
2574 	intel_ring_emit(ring, offset);
2575 	intel_ring_advance(ring);
2576 
2577 	return 0;
2578 }
2579 
2580 static int
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request * req,u64 offset,u32 len,unsigned dispatch_flags)2581 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2582 			      u64 offset, u32 len,
2583 			      unsigned dispatch_flags)
2584 {
2585 	struct intel_engine_cs *ring = req->ring;
2586 	int ret;
2587 
2588 	ret = intel_ring_begin(req, 2);
2589 	if (ret)
2590 		return ret;
2591 
2592 	intel_ring_emit(ring,
2593 			MI_BATCH_BUFFER_START |
2594 			(dispatch_flags & I915_DISPATCH_SECURE ?
2595 			 0 : MI_BATCH_NON_SECURE_I965));
2596 	/* bit0-7 is the length on GEN6+ */
2597 	intel_ring_emit(ring, offset);
2598 	intel_ring_advance(ring);
2599 
2600 	return 0;
2601 }
2602 
2603 /* Blitter support (SandyBridge+) */
2604 
gen6_ring_flush(struct drm_i915_gem_request * req,u32 invalidate,u32 flush)2605 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2606 			   u32 invalidate, u32 flush)
2607 {
2608 	struct intel_engine_cs *ring = req->ring;
2609 	struct drm_device *dev = ring->dev;
2610 	uint32_t cmd;
2611 	int ret;
2612 
2613 	ret = intel_ring_begin(req, 4);
2614 	if (ret)
2615 		return ret;
2616 
2617 	cmd = MI_FLUSH_DW;
2618 	if (INTEL_INFO(dev)->gen >= 8)
2619 		cmd += 1;
2620 
2621 	/* We always require a command barrier so that subsequent
2622 	 * commands, such as breadcrumb interrupts, are strictly ordered
2623 	 * wrt the contents of the write cache being flushed to memory
2624 	 * (and thus being coherent from the CPU).
2625 	 */
2626 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2627 
2628 	/*
2629 	 * Bspec vol 1c.3 - blitter engine command streamer:
2630 	 * "If ENABLED, all TLBs will be invalidated once the flush
2631 	 * operation is complete. This bit is only valid when the
2632 	 * Post-Sync Operation field is a value of 1h or 3h."
2633 	 */
2634 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2635 		cmd |= MI_INVALIDATE_TLB;
2636 	intel_ring_emit(ring, cmd);
2637 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2638 	if (INTEL_INFO(dev)->gen >= 8) {
2639 		intel_ring_emit(ring, 0); /* upper addr */
2640 		intel_ring_emit(ring, 0); /* value */
2641 	} else  {
2642 		intel_ring_emit(ring, 0);
2643 		intel_ring_emit(ring, MI_NOOP);
2644 	}
2645 	intel_ring_advance(ring);
2646 
2647 	return 0;
2648 }
2649 
intel_init_render_ring_buffer(struct drm_device * dev)2650 int intel_init_render_ring_buffer(struct drm_device *dev)
2651 {
2652 	struct drm_i915_private *dev_priv = dev->dev_private;
2653 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2654 	struct drm_i915_gem_object *obj;
2655 	int ret;
2656 
2657 	ring->name = "render ring";
2658 	ring->id = RCS;
2659 	ring->mmio_base = RENDER_RING_BASE;
2660 
2661 	if (INTEL_INFO(dev)->gen >= 8) {
2662 		if (i915_semaphore_is_enabled(dev)) {
2663 			obj = i915_gem_alloc_object(dev, 4096);
2664 			if (obj == NULL) {
2665 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2666 				i915.semaphores = 0;
2667 			} else {
2668 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2669 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2670 				if (ret != 0) {
2671 					drm_gem_object_unreference(&obj->base);
2672 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2673 					i915.semaphores = 0;
2674 				} else
2675 					dev_priv->semaphore_obj = obj;
2676 			}
2677 		}
2678 
2679 		ring->init_context = intel_rcs_ctx_init;
2680 		ring->add_request = gen6_add_request;
2681 		ring->flush = gen8_render_ring_flush;
2682 		ring->irq_get = gen8_ring_get_irq;
2683 		ring->irq_put = gen8_ring_put_irq;
2684 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2685 		ring->get_seqno = gen6_ring_get_seqno;
2686 		ring->set_seqno = ring_set_seqno;
2687 		if (i915_semaphore_is_enabled(dev)) {
2688 			WARN_ON(!dev_priv->semaphore_obj);
2689 			ring->semaphore.sync_to = gen8_ring_sync;
2690 			ring->semaphore.signal = gen8_rcs_signal;
2691 			GEN8_RING_SEMAPHORE_INIT;
2692 		}
2693 	} else if (INTEL_INFO(dev)->gen >= 6) {
2694 		ring->init_context = intel_rcs_ctx_init;
2695 		ring->add_request = gen6_add_request;
2696 		ring->flush = gen7_render_ring_flush;
2697 		if (INTEL_INFO(dev)->gen == 6)
2698 			ring->flush = gen6_render_ring_flush;
2699 		ring->irq_get = gen6_ring_get_irq;
2700 		ring->irq_put = gen6_ring_put_irq;
2701 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2702 		ring->get_seqno = gen6_ring_get_seqno;
2703 		ring->set_seqno = ring_set_seqno;
2704 		if (i915_semaphore_is_enabled(dev)) {
2705 			ring->semaphore.sync_to = gen6_ring_sync;
2706 			ring->semaphore.signal = gen6_signal;
2707 			/*
2708 			 * The current semaphore is only applied on pre-gen8
2709 			 * platform.  And there is no VCS2 ring on the pre-gen8
2710 			 * platform. So the semaphore between RCS and VCS2 is
2711 			 * initialized as INVALID.  Gen8 will initialize the
2712 			 * sema between VCS2 and RCS later.
2713 			 */
2714 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2715 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2716 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2717 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2718 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2719 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2720 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2721 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2722 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2723 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2724 		}
2725 	} else if (IS_GEN5(dev)) {
2726 		ring->add_request = pc_render_add_request;
2727 		ring->flush = gen4_render_ring_flush;
2728 		ring->get_seqno = pc_render_get_seqno;
2729 		ring->set_seqno = pc_render_set_seqno;
2730 		ring->irq_get = gen5_ring_get_irq;
2731 		ring->irq_put = gen5_ring_put_irq;
2732 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2733 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2734 	} else {
2735 		ring->add_request = i9xx_add_request;
2736 		if (INTEL_INFO(dev)->gen < 4)
2737 			ring->flush = gen2_render_ring_flush;
2738 		else
2739 			ring->flush = gen4_render_ring_flush;
2740 		ring->get_seqno = ring_get_seqno;
2741 		ring->set_seqno = ring_set_seqno;
2742 		if (IS_GEN2(dev)) {
2743 			ring->irq_get = i8xx_ring_get_irq;
2744 			ring->irq_put = i8xx_ring_put_irq;
2745 		} else {
2746 			ring->irq_get = i9xx_ring_get_irq;
2747 			ring->irq_put = i9xx_ring_put_irq;
2748 		}
2749 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2750 	}
2751 	ring->write_tail = ring_write_tail;
2752 
2753 	if (IS_HASWELL(dev))
2754 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2755 	else if (IS_GEN8(dev))
2756 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2757 	else if (INTEL_INFO(dev)->gen >= 6)
2758 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2759 	else if (INTEL_INFO(dev)->gen >= 4)
2760 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2761 	else if (IS_I830(dev) || IS_845G(dev))
2762 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2763 	else
2764 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2765 	ring->init_hw = init_render_ring;
2766 	ring->cleanup = render_ring_cleanup;
2767 
2768 	/* Workaround batchbuffer to combat CS tlb bug. */
2769 	if (HAS_BROKEN_CS_TLB(dev)) {
2770 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2771 		if (obj == NULL) {
2772 			DRM_ERROR("Failed to allocate batch bo\n");
2773 			return -ENOMEM;
2774 		}
2775 
2776 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2777 		if (ret != 0) {
2778 			drm_gem_object_unreference(&obj->base);
2779 			DRM_ERROR("Failed to ping batch bo\n");
2780 			return ret;
2781 		}
2782 
2783 		ring->scratch.obj = obj;
2784 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2785 	}
2786 
2787 	ret = intel_init_ring_buffer(dev, ring);
2788 	if (ret)
2789 		return ret;
2790 
2791 	if (INTEL_INFO(dev)->gen >= 5) {
2792 		ret = intel_init_pipe_control(ring);
2793 		if (ret)
2794 			return ret;
2795 	}
2796 
2797 	return 0;
2798 }
2799 
intel_init_bsd_ring_buffer(struct drm_device * dev)2800 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2801 {
2802 	struct drm_i915_private *dev_priv = dev->dev_private;
2803 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2804 
2805 	ring->name = "bsd ring";
2806 	ring->id = VCS;
2807 
2808 	ring->write_tail = ring_write_tail;
2809 	if (INTEL_INFO(dev)->gen >= 6) {
2810 		ring->mmio_base = GEN6_BSD_RING_BASE;
2811 		/* gen6 bsd needs a special wa for tail updates */
2812 		if (IS_GEN6(dev))
2813 			ring->write_tail = gen6_bsd_ring_write_tail;
2814 		ring->flush = gen6_bsd_ring_flush;
2815 		ring->add_request = gen6_add_request;
2816 		ring->get_seqno = gen6_ring_get_seqno;
2817 		ring->set_seqno = ring_set_seqno;
2818 		if (INTEL_INFO(dev)->gen >= 8) {
2819 			ring->irq_enable_mask =
2820 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2821 			ring->irq_get = gen8_ring_get_irq;
2822 			ring->irq_put = gen8_ring_put_irq;
2823 			ring->dispatch_execbuffer =
2824 				gen8_ring_dispatch_execbuffer;
2825 			if (i915_semaphore_is_enabled(dev)) {
2826 				ring->semaphore.sync_to = gen8_ring_sync;
2827 				ring->semaphore.signal = gen8_xcs_signal;
2828 				GEN8_RING_SEMAPHORE_INIT;
2829 			}
2830 		} else {
2831 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2832 			ring->irq_get = gen6_ring_get_irq;
2833 			ring->irq_put = gen6_ring_put_irq;
2834 			ring->dispatch_execbuffer =
2835 				gen6_ring_dispatch_execbuffer;
2836 			if (i915_semaphore_is_enabled(dev)) {
2837 				ring->semaphore.sync_to = gen6_ring_sync;
2838 				ring->semaphore.signal = gen6_signal;
2839 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2840 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2841 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2842 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2843 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2844 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2845 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2846 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2847 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2848 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2849 			}
2850 		}
2851 	} else {
2852 		ring->mmio_base = BSD_RING_BASE;
2853 		ring->flush = bsd_ring_flush;
2854 		ring->add_request = i9xx_add_request;
2855 		ring->get_seqno = ring_get_seqno;
2856 		ring->set_seqno = ring_set_seqno;
2857 		if (IS_GEN5(dev)) {
2858 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2859 			ring->irq_get = gen5_ring_get_irq;
2860 			ring->irq_put = gen5_ring_put_irq;
2861 		} else {
2862 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2863 			ring->irq_get = i9xx_ring_get_irq;
2864 			ring->irq_put = i9xx_ring_put_irq;
2865 		}
2866 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2867 	}
2868 	ring->init_hw = init_ring_common;
2869 
2870 	return intel_init_ring_buffer(dev, ring);
2871 }
2872 
2873 /**
2874  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2875  */
intel_init_bsd2_ring_buffer(struct drm_device * dev)2876 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2877 {
2878 	struct drm_i915_private *dev_priv = dev->dev_private;
2879 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2880 
2881 	ring->name = "bsd2 ring";
2882 	ring->id = VCS2;
2883 
2884 	ring->write_tail = ring_write_tail;
2885 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2886 	ring->flush = gen6_bsd_ring_flush;
2887 	ring->add_request = gen6_add_request;
2888 	ring->get_seqno = gen6_ring_get_seqno;
2889 	ring->set_seqno = ring_set_seqno;
2890 	ring->irq_enable_mask =
2891 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2892 	ring->irq_get = gen8_ring_get_irq;
2893 	ring->irq_put = gen8_ring_put_irq;
2894 	ring->dispatch_execbuffer =
2895 			gen8_ring_dispatch_execbuffer;
2896 	if (i915_semaphore_is_enabled(dev)) {
2897 		ring->semaphore.sync_to = gen8_ring_sync;
2898 		ring->semaphore.signal = gen8_xcs_signal;
2899 		GEN8_RING_SEMAPHORE_INIT;
2900 	}
2901 	ring->init_hw = init_ring_common;
2902 
2903 	return intel_init_ring_buffer(dev, ring);
2904 }
2905 
intel_init_blt_ring_buffer(struct drm_device * dev)2906 int intel_init_blt_ring_buffer(struct drm_device *dev)
2907 {
2908 	struct drm_i915_private *dev_priv = dev->dev_private;
2909 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2910 
2911 	ring->name = "blitter ring";
2912 	ring->id = BCS;
2913 
2914 	ring->mmio_base = BLT_RING_BASE;
2915 	ring->write_tail = ring_write_tail;
2916 	ring->flush = gen6_ring_flush;
2917 	ring->add_request = gen6_add_request;
2918 	ring->get_seqno = gen6_ring_get_seqno;
2919 	ring->set_seqno = ring_set_seqno;
2920 	if (INTEL_INFO(dev)->gen >= 8) {
2921 		ring->irq_enable_mask =
2922 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2923 		ring->irq_get = gen8_ring_get_irq;
2924 		ring->irq_put = gen8_ring_put_irq;
2925 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2926 		if (i915_semaphore_is_enabled(dev)) {
2927 			ring->semaphore.sync_to = gen8_ring_sync;
2928 			ring->semaphore.signal = gen8_xcs_signal;
2929 			GEN8_RING_SEMAPHORE_INIT;
2930 		}
2931 	} else {
2932 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2933 		ring->irq_get = gen6_ring_get_irq;
2934 		ring->irq_put = gen6_ring_put_irq;
2935 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2936 		if (i915_semaphore_is_enabled(dev)) {
2937 			ring->semaphore.signal = gen6_signal;
2938 			ring->semaphore.sync_to = gen6_ring_sync;
2939 			/*
2940 			 * The current semaphore is only applied on pre-gen8
2941 			 * platform.  And there is no VCS2 ring on the pre-gen8
2942 			 * platform. So the semaphore between BCS and VCS2 is
2943 			 * initialized as INVALID.  Gen8 will initialize the
2944 			 * sema between BCS and VCS2 later.
2945 			 */
2946 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2947 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2948 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2949 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2950 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2951 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2952 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2953 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2954 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2955 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2956 		}
2957 	}
2958 	ring->init_hw = init_ring_common;
2959 
2960 	return intel_init_ring_buffer(dev, ring);
2961 }
2962 
intel_init_vebox_ring_buffer(struct drm_device * dev)2963 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2964 {
2965 	struct drm_i915_private *dev_priv = dev->dev_private;
2966 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2967 
2968 	ring->name = "video enhancement ring";
2969 	ring->id = VECS;
2970 
2971 	ring->mmio_base = VEBOX_RING_BASE;
2972 	ring->write_tail = ring_write_tail;
2973 	ring->flush = gen6_ring_flush;
2974 	ring->add_request = gen6_add_request;
2975 	ring->get_seqno = gen6_ring_get_seqno;
2976 	ring->set_seqno = ring_set_seqno;
2977 
2978 	if (INTEL_INFO(dev)->gen >= 8) {
2979 		ring->irq_enable_mask =
2980 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2981 		ring->irq_get = gen8_ring_get_irq;
2982 		ring->irq_put = gen8_ring_put_irq;
2983 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2984 		if (i915_semaphore_is_enabled(dev)) {
2985 			ring->semaphore.sync_to = gen8_ring_sync;
2986 			ring->semaphore.signal = gen8_xcs_signal;
2987 			GEN8_RING_SEMAPHORE_INIT;
2988 		}
2989 	} else {
2990 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2991 		ring->irq_get = hsw_vebox_get_irq;
2992 		ring->irq_put = hsw_vebox_put_irq;
2993 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2994 		if (i915_semaphore_is_enabled(dev)) {
2995 			ring->semaphore.sync_to = gen6_ring_sync;
2996 			ring->semaphore.signal = gen6_signal;
2997 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2998 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2999 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3000 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3001 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3002 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3003 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3004 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3005 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3006 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3007 		}
3008 	}
3009 	ring->init_hw = init_ring_common;
3010 
3011 	return intel_init_ring_buffer(dev, ring);
3012 }
3013 
3014 int
intel_ring_flush_all_caches(struct drm_i915_gem_request * req)3015 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3016 {
3017 	struct intel_engine_cs *ring = req->ring;
3018 	int ret;
3019 
3020 	if (!ring->gpu_caches_dirty)
3021 		return 0;
3022 
3023 	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3024 	if (ret)
3025 		return ret;
3026 
3027 	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3028 
3029 	ring->gpu_caches_dirty = false;
3030 	return 0;
3031 }
3032 
3033 int
intel_ring_invalidate_all_caches(struct drm_i915_gem_request * req)3034 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3035 {
3036 	struct intel_engine_cs *ring = req->ring;
3037 	uint32_t flush_domains;
3038 	int ret;
3039 
3040 	flush_domains = 0;
3041 	if (ring->gpu_caches_dirty)
3042 		flush_domains = I915_GEM_GPU_DOMAINS;
3043 
3044 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3045 	if (ret)
3046 		return ret;
3047 
3048 	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3049 
3050 	ring->gpu_caches_dirty = false;
3051 	return 0;
3052 }
3053 
3054 void
intel_stop_ring_buffer(struct intel_engine_cs * ring)3055 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3056 {
3057 	int ret;
3058 
3059 	if (!intel_ring_initialized(ring))
3060 		return;
3061 
3062 	ret = intel_ring_idle(ring);
3063 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3064 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3065 			  ring->name, ret);
3066 
3067 	stop_ring(ring);
3068 }
3069