1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/random.h>
45 #include "hyperv_vmbus.h"
46
47 static struct acpi_device *hv_acpi_dev;
48
49 static struct tasklet_struct msg_dpc;
50 static struct completion probe_event;
51 static int irq;
52
53
hyperv_report_panic(struct pt_regs * regs)54 static void hyperv_report_panic(struct pt_regs *regs)
55 {
56 static bool panic_reported;
57
58 /*
59 * We prefer to report panic on 'die' chain as we have proper
60 * registers to report, but if we miss it (e.g. on BUG()) we need
61 * to report it on 'panic'.
62 */
63 if (panic_reported)
64 return;
65 panic_reported = true;
66
67 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
68 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
69 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
70 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
71 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
72
73 /*
74 * Let Hyper-V know there is crash data available
75 */
76 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
77 }
78
hyperv_panic_event(struct notifier_block * nb,unsigned long val,void * args)79 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
80 void *args)
81 {
82 struct pt_regs *regs;
83
84 regs = current_pt_regs();
85
86 hyperv_report_panic(regs);
87 return NOTIFY_DONE;
88 }
89
hyperv_die_event(struct notifier_block * nb,unsigned long val,void * args)90 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
91 void *args)
92 {
93 struct die_args *die = (struct die_args *)args;
94 struct pt_regs *regs = die->regs;
95
96 hyperv_report_panic(regs);
97 return NOTIFY_DONE;
98 }
99
100 static struct notifier_block hyperv_die_block = {
101 .notifier_call = hyperv_die_event,
102 };
103 static struct notifier_block hyperv_panic_block = {
104 .notifier_call = hyperv_panic_event,
105 };
106
107 struct resource *hyperv_mmio;
108 DEFINE_SEMAPHORE(hyperv_mmio_lock);
109
vmbus_exists(void)110 static int vmbus_exists(void)
111 {
112 if (hv_acpi_dev == NULL)
113 return -ENODEV;
114
115 return 0;
116 }
117
118 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
print_alias_name(struct hv_device * hv_dev,char * alias_name)119 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
120 {
121 int i;
122 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
123 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
124 }
125
channel_monitor_group(struct vmbus_channel * channel)126 static u8 channel_monitor_group(struct vmbus_channel *channel)
127 {
128 return (u8)channel->offermsg.monitorid / 32;
129 }
130
channel_monitor_offset(struct vmbus_channel * channel)131 static u8 channel_monitor_offset(struct vmbus_channel *channel)
132 {
133 return (u8)channel->offermsg.monitorid % 32;
134 }
135
channel_pending(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)136 static u32 channel_pending(struct vmbus_channel *channel,
137 struct hv_monitor_page *monitor_page)
138 {
139 u8 monitor_group = channel_monitor_group(channel);
140 return monitor_page->trigger_group[monitor_group].pending;
141 }
142
channel_latency(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)143 static u32 channel_latency(struct vmbus_channel *channel,
144 struct hv_monitor_page *monitor_page)
145 {
146 u8 monitor_group = channel_monitor_group(channel);
147 u8 monitor_offset = channel_monitor_offset(channel);
148 return monitor_page->latency[monitor_group][monitor_offset];
149 }
150
channel_conn_id(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)151 static u32 channel_conn_id(struct vmbus_channel *channel,
152 struct hv_monitor_page *monitor_page)
153 {
154 u8 monitor_group = channel_monitor_group(channel);
155 u8 monitor_offset = channel_monitor_offset(channel);
156 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
157 }
158
id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)159 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
160 char *buf)
161 {
162 struct hv_device *hv_dev = device_to_hv_device(dev);
163
164 if (!hv_dev->channel)
165 return -ENODEV;
166 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
167 }
168 static DEVICE_ATTR_RO(id);
169
state_show(struct device * dev,struct device_attribute * dev_attr,char * buf)170 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
171 char *buf)
172 {
173 struct hv_device *hv_dev = device_to_hv_device(dev);
174
175 if (!hv_dev->channel)
176 return -ENODEV;
177 return sprintf(buf, "%d\n", hv_dev->channel->state);
178 }
179 static DEVICE_ATTR_RO(state);
180
monitor_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)181 static ssize_t monitor_id_show(struct device *dev,
182 struct device_attribute *dev_attr, char *buf)
183 {
184 struct hv_device *hv_dev = device_to_hv_device(dev);
185
186 if (!hv_dev->channel)
187 return -ENODEV;
188 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
189 }
190 static DEVICE_ATTR_RO(monitor_id);
191
class_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)192 static ssize_t class_id_show(struct device *dev,
193 struct device_attribute *dev_attr, char *buf)
194 {
195 struct hv_device *hv_dev = device_to_hv_device(dev);
196
197 if (!hv_dev->channel)
198 return -ENODEV;
199 return sprintf(buf, "{%pUl}\n",
200 hv_dev->channel->offermsg.offer.if_type.b);
201 }
202 static DEVICE_ATTR_RO(class_id);
203
device_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)204 static ssize_t device_id_show(struct device *dev,
205 struct device_attribute *dev_attr, char *buf)
206 {
207 struct hv_device *hv_dev = device_to_hv_device(dev);
208
209 if (!hv_dev->channel)
210 return -ENODEV;
211 return sprintf(buf, "{%pUl}\n",
212 hv_dev->channel->offermsg.offer.if_instance.b);
213 }
214 static DEVICE_ATTR_RO(device_id);
215
modalias_show(struct device * dev,struct device_attribute * dev_attr,char * buf)216 static ssize_t modalias_show(struct device *dev,
217 struct device_attribute *dev_attr, char *buf)
218 {
219 struct hv_device *hv_dev = device_to_hv_device(dev);
220 char alias_name[VMBUS_ALIAS_LEN + 1];
221
222 print_alias_name(hv_dev, alias_name);
223 return sprintf(buf, "vmbus:%s\n", alias_name);
224 }
225 static DEVICE_ATTR_RO(modalias);
226
server_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)227 static ssize_t server_monitor_pending_show(struct device *dev,
228 struct device_attribute *dev_attr,
229 char *buf)
230 {
231 struct hv_device *hv_dev = device_to_hv_device(dev);
232
233 if (!hv_dev->channel)
234 return -ENODEV;
235 return sprintf(buf, "%d\n",
236 channel_pending(hv_dev->channel,
237 vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240
client_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)241 static ssize_t client_monitor_pending_show(struct device *dev,
242 struct device_attribute *dev_attr,
243 char *buf)
244 {
245 struct hv_device *hv_dev = device_to_hv_device(dev);
246
247 if (!hv_dev->channel)
248 return -ENODEV;
249 return sprintf(buf, "%d\n",
250 channel_pending(hv_dev->channel,
251 vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254
server_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)255 static ssize_t server_monitor_latency_show(struct device *dev,
256 struct device_attribute *dev_attr,
257 char *buf)
258 {
259 struct hv_device *hv_dev = device_to_hv_device(dev);
260
261 if (!hv_dev->channel)
262 return -ENODEV;
263 return sprintf(buf, "%d\n",
264 channel_latency(hv_dev->channel,
265 vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268
client_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)269 static ssize_t client_monitor_latency_show(struct device *dev,
270 struct device_attribute *dev_attr,
271 char *buf)
272 {
273 struct hv_device *hv_dev = device_to_hv_device(dev);
274
275 if (!hv_dev->channel)
276 return -ENODEV;
277 return sprintf(buf, "%d\n",
278 channel_latency(hv_dev->channel,
279 vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282
server_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 struct device_attribute *dev_attr,
285 char *buf)
286 {
287 struct hv_device *hv_dev = device_to_hv_device(dev);
288
289 if (!hv_dev->channel)
290 return -ENODEV;
291 return sprintf(buf, "%d\n",
292 channel_conn_id(hv_dev->channel,
293 vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296
client_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 struct device_attribute *dev_attr,
299 char *buf)
300 {
301 struct hv_device *hv_dev = device_to_hv_device(dev);
302
303 if (!hv_dev->channel)
304 return -ENODEV;
305 return sprintf(buf, "%d\n",
306 channel_conn_id(hv_dev->channel,
307 vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310
out_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)311 static ssize_t out_intr_mask_show(struct device *dev,
312 struct device_attribute *dev_attr, char *buf)
313 {
314 struct hv_device *hv_dev = device_to_hv_device(dev);
315 struct hv_ring_buffer_debug_info outbound;
316
317 if (!hv_dev->channel)
318 return -ENODEV;
319 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
320 return -EINVAL;
321 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
322 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
323 }
324 static DEVICE_ATTR_RO(out_intr_mask);
325
out_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)326 static ssize_t out_read_index_show(struct device *dev,
327 struct device_attribute *dev_attr, char *buf)
328 {
329 struct hv_device *hv_dev = device_to_hv_device(dev);
330 struct hv_ring_buffer_debug_info outbound;
331
332 if (!hv_dev->channel)
333 return -ENODEV;
334 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
335 return -EINVAL;
336 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
337 return sprintf(buf, "%d\n", outbound.current_read_index);
338 }
339 static DEVICE_ATTR_RO(out_read_index);
340
out_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)341 static ssize_t out_write_index_show(struct device *dev,
342 struct device_attribute *dev_attr,
343 char *buf)
344 {
345 struct hv_device *hv_dev = device_to_hv_device(dev);
346 struct hv_ring_buffer_debug_info outbound;
347
348 if (!hv_dev->channel)
349 return -ENODEV;
350 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
351 return -EINVAL;
352 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
353 return sprintf(buf, "%d\n", outbound.current_write_index);
354 }
355 static DEVICE_ATTR_RO(out_write_index);
356
out_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)357 static ssize_t out_read_bytes_avail_show(struct device *dev,
358 struct device_attribute *dev_attr,
359 char *buf)
360 {
361 struct hv_device *hv_dev = device_to_hv_device(dev);
362 struct hv_ring_buffer_debug_info outbound;
363
364 if (!hv_dev->channel)
365 return -ENODEV;
366 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
367 return -EINVAL;
368 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
369 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
370 }
371 static DEVICE_ATTR_RO(out_read_bytes_avail);
372
out_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)373 static ssize_t out_write_bytes_avail_show(struct device *dev,
374 struct device_attribute *dev_attr,
375 char *buf)
376 {
377 struct hv_device *hv_dev = device_to_hv_device(dev);
378 struct hv_ring_buffer_debug_info outbound;
379
380 if (!hv_dev->channel)
381 return -ENODEV;
382 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
383 return -EINVAL;
384 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
385 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
386 }
387 static DEVICE_ATTR_RO(out_write_bytes_avail);
388
in_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)389 static ssize_t in_intr_mask_show(struct device *dev,
390 struct device_attribute *dev_attr, char *buf)
391 {
392 struct hv_device *hv_dev = device_to_hv_device(dev);
393 struct hv_ring_buffer_debug_info inbound;
394
395 if (!hv_dev->channel)
396 return -ENODEV;
397 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
398 return -EINVAL;
399 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
400 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
401 }
402 static DEVICE_ATTR_RO(in_intr_mask);
403
in_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)404 static ssize_t in_read_index_show(struct device *dev,
405 struct device_attribute *dev_attr, char *buf)
406 {
407 struct hv_device *hv_dev = device_to_hv_device(dev);
408 struct hv_ring_buffer_debug_info inbound;
409
410 if (!hv_dev->channel)
411 return -ENODEV;
412 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
413 return -EINVAL;
414 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
415 return sprintf(buf, "%d\n", inbound.current_read_index);
416 }
417 static DEVICE_ATTR_RO(in_read_index);
418
in_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)419 static ssize_t in_write_index_show(struct device *dev,
420 struct device_attribute *dev_attr, char *buf)
421 {
422 struct hv_device *hv_dev = device_to_hv_device(dev);
423 struct hv_ring_buffer_debug_info inbound;
424
425 if (!hv_dev->channel)
426 return -ENODEV;
427 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
428 return -EINVAL;
429 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
430 return sprintf(buf, "%d\n", inbound.current_write_index);
431 }
432 static DEVICE_ATTR_RO(in_write_index);
433
in_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)434 static ssize_t in_read_bytes_avail_show(struct device *dev,
435 struct device_attribute *dev_attr,
436 char *buf)
437 {
438 struct hv_device *hv_dev = device_to_hv_device(dev);
439 struct hv_ring_buffer_debug_info inbound;
440
441 if (!hv_dev->channel)
442 return -ENODEV;
443 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
444 return -EINVAL;
445 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
446 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
447 }
448 static DEVICE_ATTR_RO(in_read_bytes_avail);
449
in_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)450 static ssize_t in_write_bytes_avail_show(struct device *dev,
451 struct device_attribute *dev_attr,
452 char *buf)
453 {
454 struct hv_device *hv_dev = device_to_hv_device(dev);
455 struct hv_ring_buffer_debug_info inbound;
456
457 if (!hv_dev->channel)
458 return -ENODEV;
459 if (hv_dev->channel->state != CHANNEL_OPENED_STATE)
460 return -EINVAL;
461 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
462 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
463 }
464 static DEVICE_ATTR_RO(in_write_bytes_avail);
465
channel_vp_mapping_show(struct device * dev,struct device_attribute * dev_attr,char * buf)466 static ssize_t channel_vp_mapping_show(struct device *dev,
467 struct device_attribute *dev_attr,
468 char *buf)
469 {
470 struct hv_device *hv_dev = device_to_hv_device(dev);
471 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
472 unsigned long flags;
473 int buf_size = PAGE_SIZE, n_written, tot_written;
474 struct list_head *cur;
475
476 if (!channel)
477 return -ENODEV;
478
479 tot_written = snprintf(buf, buf_size, "%u:%u\n",
480 channel->offermsg.child_relid, channel->target_cpu);
481
482 spin_lock_irqsave(&channel->lock, flags);
483
484 list_for_each(cur, &channel->sc_list) {
485 if (tot_written >= buf_size - 1)
486 break;
487
488 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
489 n_written = scnprintf(buf + tot_written,
490 buf_size - tot_written,
491 "%u:%u\n",
492 cur_sc->offermsg.child_relid,
493 cur_sc->target_cpu);
494 tot_written += n_written;
495 }
496
497 spin_unlock_irqrestore(&channel->lock, flags);
498
499 return tot_written;
500 }
501 static DEVICE_ATTR_RO(channel_vp_mapping);
502
503 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
504 static struct attribute *vmbus_attrs[] = {
505 &dev_attr_id.attr,
506 &dev_attr_state.attr,
507 &dev_attr_monitor_id.attr,
508 &dev_attr_class_id.attr,
509 &dev_attr_device_id.attr,
510 &dev_attr_modalias.attr,
511 &dev_attr_server_monitor_pending.attr,
512 &dev_attr_client_monitor_pending.attr,
513 &dev_attr_server_monitor_latency.attr,
514 &dev_attr_client_monitor_latency.attr,
515 &dev_attr_server_monitor_conn_id.attr,
516 &dev_attr_client_monitor_conn_id.attr,
517 &dev_attr_out_intr_mask.attr,
518 &dev_attr_out_read_index.attr,
519 &dev_attr_out_write_index.attr,
520 &dev_attr_out_read_bytes_avail.attr,
521 &dev_attr_out_write_bytes_avail.attr,
522 &dev_attr_in_intr_mask.attr,
523 &dev_attr_in_read_index.attr,
524 &dev_attr_in_write_index.attr,
525 &dev_attr_in_read_bytes_avail.attr,
526 &dev_attr_in_write_bytes_avail.attr,
527 &dev_attr_channel_vp_mapping.attr,
528 NULL,
529 };
530 ATTRIBUTE_GROUPS(vmbus);
531
532 /*
533 * vmbus_uevent - add uevent for our device
534 *
535 * This routine is invoked when a device is added or removed on the vmbus to
536 * generate a uevent to udev in the userspace. The udev will then look at its
537 * rule and the uevent generated here to load the appropriate driver
538 *
539 * The alias string will be of the form vmbus:guid where guid is the string
540 * representation of the device guid (each byte of the guid will be
541 * represented with two hex characters.
542 */
vmbus_uevent(struct device * device,struct kobj_uevent_env * env)543 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
544 {
545 struct hv_device *dev = device_to_hv_device(device);
546 int ret;
547 char alias_name[VMBUS_ALIAS_LEN + 1];
548
549 print_alias_name(dev, alias_name);
550 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
551 return ret;
552 }
553
554 static const uuid_le null_guid;
555
is_null_guid(const __u8 * guid)556 static inline bool is_null_guid(const __u8 *guid)
557 {
558 if (memcmp(guid, &null_guid, sizeof(uuid_le)))
559 return false;
560 return true;
561 }
562
563 /*
564 * Return a matching hv_vmbus_device_id pointer.
565 * If there is no match, return NULL.
566 */
hv_vmbus_get_id(const struct hv_vmbus_device_id * id,const __u8 * guid)567 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
568 const struct hv_vmbus_device_id *id,
569 const __u8 *guid)
570 {
571 for (; !is_null_guid(id->guid); id++)
572 if (!memcmp(&id->guid, guid, sizeof(uuid_le)))
573 return id;
574
575 return NULL;
576 }
577
578
579
580 /*
581 * vmbus_match - Attempt to match the specified device to the specified driver
582 */
vmbus_match(struct device * device,struct device_driver * driver)583 static int vmbus_match(struct device *device, struct device_driver *driver)
584 {
585 struct hv_driver *drv = drv_to_hv_drv(driver);
586 struct hv_device *hv_dev = device_to_hv_device(device);
587
588 if (hv_vmbus_get_id(drv->id_table, hv_dev->dev_type.b))
589 return 1;
590
591 return 0;
592 }
593
594 /*
595 * vmbus_probe - Add the new vmbus's child device
596 */
vmbus_probe(struct device * child_device)597 static int vmbus_probe(struct device *child_device)
598 {
599 int ret = 0;
600 struct hv_driver *drv =
601 drv_to_hv_drv(child_device->driver);
602 struct hv_device *dev = device_to_hv_device(child_device);
603 const struct hv_vmbus_device_id *dev_id;
604
605 dev_id = hv_vmbus_get_id(drv->id_table, dev->dev_type.b);
606 if (drv->probe) {
607 ret = drv->probe(dev, dev_id);
608 if (ret != 0)
609 pr_err("probe failed for device %s (%d)\n",
610 dev_name(child_device), ret);
611
612 } else {
613 pr_err("probe not set for driver %s\n",
614 dev_name(child_device));
615 ret = -ENODEV;
616 }
617 return ret;
618 }
619
620 /*
621 * vmbus_remove - Remove a vmbus device
622 */
vmbus_remove(struct device * child_device)623 static int vmbus_remove(struct device *child_device)
624 {
625 struct hv_driver *drv;
626 struct hv_device *dev = device_to_hv_device(child_device);
627
628 if (child_device->driver) {
629 drv = drv_to_hv_drv(child_device->driver);
630 if (drv->remove)
631 drv->remove(dev);
632 }
633
634 return 0;
635 }
636
637
638 /*
639 * vmbus_shutdown - Shutdown a vmbus device
640 */
vmbus_shutdown(struct device * child_device)641 static void vmbus_shutdown(struct device *child_device)
642 {
643 struct hv_driver *drv;
644 struct hv_device *dev = device_to_hv_device(child_device);
645
646
647 /* The device may not be attached yet */
648 if (!child_device->driver)
649 return;
650
651 drv = drv_to_hv_drv(child_device->driver);
652
653 if (drv->shutdown)
654 drv->shutdown(dev);
655
656 return;
657 }
658
659
660 /*
661 * vmbus_device_release - Final callback release of the vmbus child device
662 */
vmbus_device_release(struct device * device)663 static void vmbus_device_release(struct device *device)
664 {
665 struct hv_device *hv_dev = device_to_hv_device(device);
666 struct vmbus_channel *channel = hv_dev->channel;
667
668 hv_process_channel_removal(channel,
669 channel->offermsg.child_relid);
670 kfree(hv_dev);
671
672 }
673
674 /* The one and only one */
675 static struct bus_type hv_bus = {
676 .name = "vmbus",
677 .match = vmbus_match,
678 .shutdown = vmbus_shutdown,
679 .remove = vmbus_remove,
680 .probe = vmbus_probe,
681 .uevent = vmbus_uevent,
682 .dev_groups = vmbus_groups,
683 };
684
685 struct onmessage_work_context {
686 struct work_struct work;
687 struct hv_message msg;
688 };
689
vmbus_onmessage_work(struct work_struct * work)690 static void vmbus_onmessage_work(struct work_struct *work)
691 {
692 struct onmessage_work_context *ctx;
693
694 /* Do not process messages if we're in DISCONNECTED state */
695 if (vmbus_connection.conn_state == DISCONNECTED)
696 return;
697
698 ctx = container_of(work, struct onmessage_work_context,
699 work);
700 vmbus_onmessage(&ctx->msg);
701 kfree(ctx);
702 }
703
hv_process_timer_expiration(struct hv_message * msg,int cpu)704 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
705 {
706 struct clock_event_device *dev = hv_context.clk_evt[cpu];
707
708 if (dev->event_handler)
709 dev->event_handler(dev);
710
711 msg->header.message_type = HVMSG_NONE;
712
713 /*
714 * Make sure the write to MessageType (ie set to
715 * HVMSG_NONE) happens before we read the
716 * MessagePending and EOMing. Otherwise, the EOMing
717 * will not deliver any more messages since there is
718 * no empty slot
719 */
720 mb();
721
722 if (msg->header.message_flags.msg_pending) {
723 /*
724 * This will cause message queue rescan to
725 * possibly deliver another msg from the
726 * hypervisor
727 */
728 wrmsrl(HV_X64_MSR_EOM, 0);
729 }
730 }
731
vmbus_on_msg_dpc(unsigned long data)732 static void vmbus_on_msg_dpc(unsigned long data)
733 {
734 int cpu = smp_processor_id();
735 void *page_addr = hv_context.synic_message_page[cpu];
736 struct hv_message *msg = (struct hv_message *)page_addr +
737 VMBUS_MESSAGE_SINT;
738 struct vmbus_channel_message_header *hdr;
739 struct vmbus_channel_message_table_entry *entry;
740 struct onmessage_work_context *ctx;
741
742 while (1) {
743 if (msg->header.message_type == HVMSG_NONE)
744 /* no msg */
745 break;
746
747 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
748
749 if (hdr->msgtype >= CHANNELMSG_COUNT) {
750 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
751 goto msg_handled;
752 }
753
754 entry = &channel_message_table[hdr->msgtype];
755 if (entry->handler_type == VMHT_BLOCKING) {
756 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
757 if (ctx == NULL)
758 continue;
759
760 INIT_WORK(&ctx->work, vmbus_onmessage_work);
761 memcpy(&ctx->msg, msg, sizeof(*msg));
762
763 queue_work(vmbus_connection.work_queue, &ctx->work);
764 } else
765 entry->message_handler(hdr);
766
767 msg_handled:
768 msg->header.message_type = HVMSG_NONE;
769
770 /*
771 * Make sure the write to MessageType (ie set to
772 * HVMSG_NONE) happens before we read the
773 * MessagePending and EOMing. Otherwise, the EOMing
774 * will not deliver any more messages since there is
775 * no empty slot
776 */
777 mb();
778
779 if (msg->header.message_flags.msg_pending) {
780 /*
781 * This will cause message queue rescan to
782 * possibly deliver another msg from the
783 * hypervisor
784 */
785 wrmsrl(HV_X64_MSR_EOM, 0);
786 }
787 }
788 }
789
vmbus_isr(void)790 static void vmbus_isr(void)
791 {
792 int cpu = smp_processor_id();
793 void *page_addr;
794 struct hv_message *msg;
795 union hv_synic_event_flags *event;
796 bool handled = false;
797
798 page_addr = hv_context.synic_event_page[cpu];
799 if (page_addr == NULL)
800 return;
801
802 event = (union hv_synic_event_flags *)page_addr +
803 VMBUS_MESSAGE_SINT;
804 /*
805 * Check for events before checking for messages. This is the order
806 * in which events and messages are checked in Windows guests on
807 * Hyper-V, and the Windows team suggested we do the same.
808 */
809
810 if ((vmbus_proto_version == VERSION_WS2008) ||
811 (vmbus_proto_version == VERSION_WIN7)) {
812
813 /* Since we are a child, we only need to check bit 0 */
814 if (sync_test_and_clear_bit(0,
815 (unsigned long *) &event->flags32[0])) {
816 handled = true;
817 }
818 } else {
819 /*
820 * Our host is win8 or above. The signaling mechanism
821 * has changed and we can directly look at the event page.
822 * If bit n is set then we have an interrup on the channel
823 * whose id is n.
824 */
825 handled = true;
826 }
827
828 if (handled)
829 tasklet_schedule(hv_context.event_dpc[cpu]);
830
831
832 page_addr = hv_context.synic_message_page[cpu];
833 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
834
835 /* Check if there are actual msgs to be processed */
836 if (msg->header.message_type != HVMSG_NONE) {
837 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
838 hv_process_timer_expiration(msg, cpu);
839 else
840 tasklet_schedule(&msg_dpc);
841 }
842
843 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
844 }
845
846
847 /*
848 * vmbus_bus_init -Main vmbus driver initialization routine.
849 *
850 * Here, we
851 * - initialize the vmbus driver context
852 * - invoke the vmbus hv main init routine
853 * - get the irq resource
854 * - retrieve the channel offers
855 */
vmbus_bus_init(int irq)856 static int vmbus_bus_init(int irq)
857 {
858 int ret;
859
860 /* Hypervisor initialization...setup hypercall page..etc */
861 ret = hv_init();
862 if (ret != 0) {
863 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
864 return ret;
865 }
866
867 tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
868
869 ret = bus_register(&hv_bus);
870 if (ret)
871 goto err_cleanup;
872
873 hv_setup_vmbus_irq(vmbus_isr);
874
875 ret = hv_synic_alloc();
876 if (ret)
877 goto err_alloc;
878 /*
879 * Initialize the per-cpu interrupt state and
880 * connect to the host.
881 */
882 on_each_cpu(hv_synic_init, NULL, 1);
883 ret = vmbus_connect();
884 if (ret)
885 goto err_connect;
886
887 if (vmbus_proto_version > VERSION_WIN7)
888 cpu_hotplug_disable();
889
890 /*
891 * Only register if the crash MSRs are available
892 */
893 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
894 register_die_notifier(&hyperv_die_block);
895 atomic_notifier_chain_register(&panic_notifier_list,
896 &hyperv_panic_block);
897 }
898
899 vmbus_request_offers();
900
901 return 0;
902
903 err_connect:
904 on_each_cpu(hv_synic_cleanup, NULL, 1);
905 err_alloc:
906 hv_synic_free();
907 hv_remove_vmbus_irq();
908
909 bus_unregister(&hv_bus);
910
911 err_cleanup:
912 hv_cleanup(false);
913
914 return ret;
915 }
916
917 /**
918 * __vmbus_child_driver_register() - Register a vmbus's driver
919 * @hv_driver: Pointer to driver structure you want to register
920 * @owner: owner module of the drv
921 * @mod_name: module name string
922 *
923 * Registers the given driver with Linux through the 'driver_register()' call
924 * and sets up the hyper-v vmbus handling for this driver.
925 * It will return the state of the 'driver_register()' call.
926 *
927 */
__vmbus_driver_register(struct hv_driver * hv_driver,struct module * owner,const char * mod_name)928 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
929 {
930 int ret;
931
932 pr_info("registering driver %s\n", hv_driver->name);
933
934 ret = vmbus_exists();
935 if (ret < 0)
936 return ret;
937
938 hv_driver->driver.name = hv_driver->name;
939 hv_driver->driver.owner = owner;
940 hv_driver->driver.mod_name = mod_name;
941 hv_driver->driver.bus = &hv_bus;
942
943 ret = driver_register(&hv_driver->driver);
944
945 return ret;
946 }
947 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
948
949 /**
950 * vmbus_driver_unregister() - Unregister a vmbus's driver
951 * @hv_driver: Pointer to driver structure you want to
952 * un-register
953 *
954 * Un-register the given driver that was previous registered with a call to
955 * vmbus_driver_register()
956 */
vmbus_driver_unregister(struct hv_driver * hv_driver)957 void vmbus_driver_unregister(struct hv_driver *hv_driver)
958 {
959 pr_info("unregistering driver %s\n", hv_driver->name);
960
961 if (!vmbus_exists())
962 driver_unregister(&hv_driver->driver);
963 }
964 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
965
966 /*
967 * vmbus_device_create - Creates and registers a new child device
968 * on the vmbus.
969 */
vmbus_device_create(const uuid_le * type,const uuid_le * instance,struct vmbus_channel * channel)970 struct hv_device *vmbus_device_create(const uuid_le *type,
971 const uuid_le *instance,
972 struct vmbus_channel *channel)
973 {
974 struct hv_device *child_device_obj;
975
976 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
977 if (!child_device_obj) {
978 pr_err("Unable to allocate device object for child device\n");
979 return NULL;
980 }
981
982 child_device_obj->channel = channel;
983 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
984 memcpy(&child_device_obj->dev_instance, instance,
985 sizeof(uuid_le));
986
987
988 return child_device_obj;
989 }
990
991 /*
992 * vmbus_device_register - Register the child device
993 */
vmbus_device_register(struct hv_device * child_device_obj)994 int vmbus_device_register(struct hv_device *child_device_obj)
995 {
996 int ret = 0;
997
998 dev_set_name(&child_device_obj->device, "vmbus_%d",
999 child_device_obj->channel->id);
1000
1001 child_device_obj->device.bus = &hv_bus;
1002 child_device_obj->device.parent = &hv_acpi_dev->dev;
1003 child_device_obj->device.release = vmbus_device_release;
1004
1005 /*
1006 * Register with the LDM. This will kick off the driver/device
1007 * binding...which will eventually call vmbus_match() and vmbus_probe()
1008 */
1009 ret = device_register(&child_device_obj->device);
1010
1011 if (ret)
1012 pr_err("Unable to register child device\n");
1013 else
1014 pr_debug("child device %s registered\n",
1015 dev_name(&child_device_obj->device));
1016
1017 return ret;
1018 }
1019
1020 /*
1021 * vmbus_device_unregister - Remove the specified child device
1022 * from the vmbus.
1023 */
vmbus_device_unregister(struct hv_device * device_obj)1024 void vmbus_device_unregister(struct hv_device *device_obj)
1025 {
1026 pr_debug("child device %s unregistered\n",
1027 dev_name(&device_obj->device));
1028
1029 /*
1030 * Kick off the process of unregistering the device.
1031 * This will call vmbus_remove() and eventually vmbus_device_release()
1032 */
1033 device_unregister(&device_obj->device);
1034 }
1035
1036
1037 /*
1038 * VMBUS is an acpi enumerated device. Get the information we
1039 * need from DSDT.
1040 */
1041 #define VTPM_BASE_ADDRESS 0xfed40000
vmbus_walk_resources(struct acpi_resource * res,void * ctx)1042 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1043 {
1044 resource_size_t start = 0;
1045 resource_size_t end = 0;
1046 struct resource *new_res;
1047 struct resource **old_res = &hyperv_mmio;
1048 struct resource **prev_res = NULL;
1049
1050 switch (res->type) {
1051 case ACPI_RESOURCE_TYPE_IRQ:
1052 irq = res->data.irq.interrupts[0];
1053 return AE_OK;
1054
1055 /*
1056 * "Address" descriptors are for bus windows. Ignore
1057 * "memory" descriptors, which are for registers on
1058 * devices.
1059 */
1060 case ACPI_RESOURCE_TYPE_ADDRESS32:
1061 start = res->data.address32.address.minimum;
1062 end = res->data.address32.address.maximum;
1063 break;
1064
1065 case ACPI_RESOURCE_TYPE_ADDRESS64:
1066 start = res->data.address64.address.minimum;
1067 end = res->data.address64.address.maximum;
1068 break;
1069
1070 default:
1071 /* Unused resource type */
1072 return AE_OK;
1073
1074 }
1075 /*
1076 * Ignore ranges that are below 1MB, as they're not
1077 * necessary or useful here.
1078 */
1079 if (end < 0x100000)
1080 return AE_OK;
1081
1082 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1083 if (!new_res)
1084 return AE_NO_MEMORY;
1085
1086 /* If this range overlaps the virtual TPM, truncate it. */
1087 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1088 end = VTPM_BASE_ADDRESS;
1089
1090 new_res->name = "hyperv mmio";
1091 new_res->flags = IORESOURCE_MEM;
1092 new_res->start = start;
1093 new_res->end = end;
1094
1095 do {
1096 if (!*old_res) {
1097 *old_res = new_res;
1098 break;
1099 }
1100
1101 if ((*old_res)->end < new_res->start) {
1102 new_res->sibling = *old_res;
1103 if (prev_res)
1104 (*prev_res)->sibling = new_res;
1105 *old_res = new_res;
1106 break;
1107 }
1108
1109 prev_res = old_res;
1110 old_res = &(*old_res)->sibling;
1111
1112 } while (1);
1113
1114 return AE_OK;
1115 }
1116
vmbus_acpi_remove(struct acpi_device * device)1117 static int vmbus_acpi_remove(struct acpi_device *device)
1118 {
1119 struct resource *cur_res;
1120 struct resource *next_res;
1121
1122 if (hyperv_mmio) {
1123 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1124 next_res = cur_res->sibling;
1125 kfree(cur_res);
1126 }
1127 }
1128
1129 return 0;
1130 }
1131
1132 /**
1133 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1134 * @new: If successful, supplied a pointer to the
1135 * allocated MMIO space.
1136 * @device_obj: Identifies the caller
1137 * @min: Minimum guest physical address of the
1138 * allocation
1139 * @max: Maximum guest physical address
1140 * @size: Size of the range to be allocated
1141 * @align: Alignment of the range to be allocated
1142 * @fb_overlap_ok: Whether this allocation can be allowed
1143 * to overlap the video frame buffer.
1144 *
1145 * This function walks the resources granted to VMBus by the
1146 * _CRS object in the ACPI namespace underneath the parent
1147 * "bridge" whether that's a root PCI bus in the Generation 1
1148 * case or a Module Device in the Generation 2 case. It then
1149 * attempts to allocate from the global MMIO pool in a way that
1150 * matches the constraints supplied in these parameters and by
1151 * that _CRS.
1152 *
1153 * Return: 0 on success, -errno on failure
1154 */
vmbus_allocate_mmio(struct resource ** new,struct hv_device * device_obj,resource_size_t min,resource_size_t max,resource_size_t size,resource_size_t align,bool fb_overlap_ok)1155 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1156 resource_size_t min, resource_size_t max,
1157 resource_size_t size, resource_size_t align,
1158 bool fb_overlap_ok)
1159 {
1160 struct resource *iter;
1161 resource_size_t range_min, range_max, start, local_min, local_max;
1162 const char *dev_n = dev_name(&device_obj->device);
1163 u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1164 int i, retval;
1165
1166 retval = -ENXIO;
1167 down(&hyperv_mmio_lock);
1168
1169 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1170 if ((iter->start >= max) || (iter->end <= min))
1171 continue;
1172
1173 range_min = iter->start;
1174 range_max = iter->end;
1175
1176 /* If this range overlaps the frame buffer, split it into
1177 two tries. */
1178 for (i = 0; i < 2; i++) {
1179 local_min = range_min;
1180 local_max = range_max;
1181 if (fb_overlap_ok || (range_min >= fb_end) ||
1182 (range_max <= screen_info.lfb_base)) {
1183 i++;
1184 } else {
1185 if ((range_min <= screen_info.lfb_base) &&
1186 (range_max >= screen_info.lfb_base)) {
1187 /*
1188 * The frame buffer is in this window,
1189 * so trim this into the part that
1190 * preceeds the frame buffer.
1191 */
1192 local_max = screen_info.lfb_base - 1;
1193 range_min = fb_end;
1194 } else {
1195 range_min = fb_end;
1196 continue;
1197 }
1198 }
1199
1200 start = (local_min + align - 1) & ~(align - 1);
1201 for (; start + size - 1 <= local_max; start += align) {
1202 *new = request_mem_region_exclusive(start, size,
1203 dev_n);
1204 if (*new) {
1205 retval = 0;
1206 goto exit;
1207 }
1208 }
1209 }
1210 }
1211
1212 exit:
1213 up(&hyperv_mmio_lock);
1214 return retval;
1215 }
1216 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1217
vmbus_acpi_add(struct acpi_device * device)1218 static int vmbus_acpi_add(struct acpi_device *device)
1219 {
1220 acpi_status result;
1221 int ret_val = -ENODEV;
1222 struct acpi_device *ancestor;
1223
1224 hv_acpi_dev = device;
1225
1226 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1227 vmbus_walk_resources, NULL);
1228
1229 if (ACPI_FAILURE(result))
1230 goto acpi_walk_err;
1231 /*
1232 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1233 * firmware) is the VMOD that has the mmio ranges. Get that.
1234 */
1235 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1236 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1237 vmbus_walk_resources, NULL);
1238
1239 if (ACPI_FAILURE(result))
1240 continue;
1241 if (hyperv_mmio)
1242 break;
1243 }
1244 ret_val = 0;
1245
1246 acpi_walk_err:
1247 complete(&probe_event);
1248 if (ret_val)
1249 vmbus_acpi_remove(device);
1250 return ret_val;
1251 }
1252
1253 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1254 {"VMBUS", 0},
1255 {"VMBus", 0},
1256 {"", 0},
1257 };
1258 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1259
1260 static struct acpi_driver vmbus_acpi_driver = {
1261 .name = "vmbus",
1262 .ids = vmbus_acpi_device_ids,
1263 .ops = {
1264 .add = vmbus_acpi_add,
1265 .remove = vmbus_acpi_remove,
1266 },
1267 };
1268
hv_kexec_handler(void)1269 static void hv_kexec_handler(void)
1270 {
1271 int cpu;
1272
1273 hv_synic_clockevents_cleanup();
1274 vmbus_initiate_unload();
1275 for_each_online_cpu(cpu)
1276 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1277 hv_cleanup(false);
1278 };
1279
hv_crash_handler(struct pt_regs * regs)1280 static void hv_crash_handler(struct pt_regs *regs)
1281 {
1282 vmbus_initiate_unload();
1283 /*
1284 * In crash handler we can't schedule synic cleanup for all CPUs,
1285 * doing the cleanup for current CPU only. This should be sufficient
1286 * for kdump.
1287 */
1288 hv_synic_cleanup(NULL);
1289 hv_cleanup(true);
1290 };
1291
hv_acpi_init(void)1292 static int __init hv_acpi_init(void)
1293 {
1294 int ret, t;
1295
1296 if (x86_hyper != &x86_hyper_ms_hyperv)
1297 return -ENODEV;
1298
1299 init_completion(&probe_event);
1300
1301 /*
1302 * Get irq resources first.
1303 */
1304 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1305
1306 if (ret)
1307 return ret;
1308
1309 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1310 if (t == 0) {
1311 ret = -ETIMEDOUT;
1312 goto cleanup;
1313 }
1314
1315 if (irq <= 0) {
1316 ret = -ENODEV;
1317 goto cleanup;
1318 }
1319
1320 ret = vmbus_bus_init(irq);
1321 if (ret)
1322 goto cleanup;
1323
1324 hv_setup_kexec_handler(hv_kexec_handler);
1325 hv_setup_crash_handler(hv_crash_handler);
1326
1327 return 0;
1328
1329 cleanup:
1330 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1331 hv_acpi_dev = NULL;
1332 return ret;
1333 }
1334
vmbus_exit(void)1335 static void __exit vmbus_exit(void)
1336 {
1337 int cpu;
1338
1339 hv_remove_kexec_handler();
1340 hv_remove_crash_handler();
1341 vmbus_connection.conn_state = DISCONNECTED;
1342 hv_synic_clockevents_cleanup();
1343 vmbus_disconnect();
1344 hv_remove_vmbus_irq();
1345 tasklet_kill(&msg_dpc);
1346 vmbus_free_channels();
1347 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1348 unregister_die_notifier(&hyperv_die_block);
1349 atomic_notifier_chain_unregister(&panic_notifier_list,
1350 &hyperv_panic_block);
1351 }
1352 bus_unregister(&hv_bus);
1353 hv_cleanup(false);
1354 for_each_online_cpu(cpu) {
1355 tasklet_kill(hv_context.event_dpc[cpu]);
1356 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1357 }
1358 hv_synic_free();
1359 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1360 if (vmbus_proto_version > VERSION_WIN7)
1361 cpu_hotplug_enable();
1362 }
1363
1364
1365 MODULE_LICENSE("GPL");
1366
1367 subsys_initcall(hv_acpi_init);
1368 module_exit(vmbus_exit);
1369