• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Hardware monitoring driver for PMBus devices
3  *
4  * Copyright (c) 2010, 2011 Ericsson AB.
5  * Copyright (c) 2012 Guenter Roeck
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/math64.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/err.h>
27 #include <linux/slab.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/jiffies.h>
32 #include <linux/i2c/pmbus.h>
33 #include <linux/regulator/driver.h>
34 #include <linux/regulator/machine.h>
35 #include "pmbus.h"
36 
37 /*
38  * Number of additional attribute pointers to allocate
39  * with each call to krealloc
40  */
41 #define PMBUS_ATTR_ALLOC_SIZE	32
42 
43 /*
44  * Index into status register array, per status register group
45  */
46 #define PB_STATUS_BASE		0
47 #define PB_STATUS_VOUT_BASE	(PB_STATUS_BASE + PMBUS_PAGES)
48 #define PB_STATUS_IOUT_BASE	(PB_STATUS_VOUT_BASE + PMBUS_PAGES)
49 #define PB_STATUS_FAN_BASE	(PB_STATUS_IOUT_BASE + PMBUS_PAGES)
50 #define PB_STATUS_FAN34_BASE	(PB_STATUS_FAN_BASE + PMBUS_PAGES)
51 #define PB_STATUS_TEMP_BASE	(PB_STATUS_FAN34_BASE + PMBUS_PAGES)
52 #define PB_STATUS_INPUT_BASE	(PB_STATUS_TEMP_BASE + PMBUS_PAGES)
53 #define PB_STATUS_VMON_BASE	(PB_STATUS_INPUT_BASE + 1)
54 
55 #define PB_NUM_STATUS_REG	(PB_STATUS_VMON_BASE + 1)
56 
57 #define PMBUS_NAME_SIZE		24
58 
59 struct pmbus_sensor {
60 	struct pmbus_sensor *next;
61 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
62 	struct device_attribute attribute;
63 	u8 page;		/* page number */
64 	u16 reg;		/* register */
65 	enum pmbus_sensor_classes class;	/* sensor class */
66 	bool update;		/* runtime sensor update needed */
67 	int data;		/* Sensor data.
68 				   Negative if there was a read error */
69 };
70 #define to_pmbus_sensor(_attr) \
71 	container_of(_attr, struct pmbus_sensor, attribute)
72 
73 struct pmbus_boolean {
74 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
75 	struct sensor_device_attribute attribute;
76 	struct pmbus_sensor *s1;
77 	struct pmbus_sensor *s2;
78 };
79 #define to_pmbus_boolean(_attr) \
80 	container_of(_attr, struct pmbus_boolean, attribute)
81 
82 struct pmbus_label {
83 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
84 	struct device_attribute attribute;
85 	char label[PMBUS_NAME_SIZE];	/* label */
86 };
87 #define to_pmbus_label(_attr) \
88 	container_of(_attr, struct pmbus_label, attribute)
89 
90 struct pmbus_data {
91 	struct device *dev;
92 	struct device *hwmon_dev;
93 
94 	u32 flags;		/* from platform data */
95 
96 	int exponent[PMBUS_PAGES];
97 				/* linear mode: exponent for output voltages */
98 
99 	const struct pmbus_driver_info *info;
100 
101 	int max_attributes;
102 	int num_attributes;
103 	struct attribute_group group;
104 	const struct attribute_group *groups[2];
105 
106 	struct pmbus_sensor *sensors;
107 
108 	struct mutex update_lock;
109 	bool valid;
110 	unsigned long last_updated;	/* in jiffies */
111 
112 	/*
113 	 * A single status register covers multiple attributes,
114 	 * so we keep them all together.
115 	 */
116 	u8 status[PB_NUM_STATUS_REG];
117 	u8 status_register;
118 
119 	u8 currpage;
120 };
121 
pmbus_clear_cache(struct i2c_client * client)122 void pmbus_clear_cache(struct i2c_client *client)
123 {
124 	struct pmbus_data *data = i2c_get_clientdata(client);
125 
126 	data->valid = false;
127 }
128 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
129 
pmbus_set_page(struct i2c_client * client,u8 page)130 int pmbus_set_page(struct i2c_client *client, u8 page)
131 {
132 	struct pmbus_data *data = i2c_get_clientdata(client);
133 	int rv = 0;
134 	int newpage;
135 
136 	if (page != data->currpage) {
137 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
138 		newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
139 		if (newpage != page)
140 			rv = -EIO;
141 		else
142 			data->currpage = page;
143 	}
144 	return rv;
145 }
146 EXPORT_SYMBOL_GPL(pmbus_set_page);
147 
pmbus_write_byte(struct i2c_client * client,int page,u8 value)148 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
149 {
150 	int rv;
151 
152 	if (page >= 0) {
153 		rv = pmbus_set_page(client, page);
154 		if (rv < 0)
155 			return rv;
156 	}
157 
158 	return i2c_smbus_write_byte(client, value);
159 }
160 EXPORT_SYMBOL_GPL(pmbus_write_byte);
161 
162 /*
163  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
164  * a device specific mapping function exists and calls it if necessary.
165  */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)166 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
167 {
168 	struct pmbus_data *data = i2c_get_clientdata(client);
169 	const struct pmbus_driver_info *info = data->info;
170 	int status;
171 
172 	if (info->write_byte) {
173 		status = info->write_byte(client, page, value);
174 		if (status != -ENODATA)
175 			return status;
176 	}
177 	return pmbus_write_byte(client, page, value);
178 }
179 
pmbus_write_word_data(struct i2c_client * client,u8 page,u8 reg,u16 word)180 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
181 {
182 	int rv;
183 
184 	rv = pmbus_set_page(client, page);
185 	if (rv < 0)
186 		return rv;
187 
188 	return i2c_smbus_write_word_data(client, reg, word);
189 }
190 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
191 
192 /*
193  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
194  * a device specific mapping function exists and calls it if necessary.
195  */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)196 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
197 				  u16 word)
198 {
199 	struct pmbus_data *data = i2c_get_clientdata(client);
200 	const struct pmbus_driver_info *info = data->info;
201 	int status;
202 
203 	if (info->write_word_data) {
204 		status = info->write_word_data(client, page, reg, word);
205 		if (status != -ENODATA)
206 			return status;
207 	}
208 	if (reg >= PMBUS_VIRT_BASE)
209 		return -ENXIO;
210 	return pmbus_write_word_data(client, page, reg, word);
211 }
212 
pmbus_read_word_data(struct i2c_client * client,u8 page,u8 reg)213 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
214 {
215 	int rv;
216 
217 	rv = pmbus_set_page(client, page);
218 	if (rv < 0)
219 		return rv;
220 
221 	return i2c_smbus_read_word_data(client, reg);
222 }
223 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
224 
225 /*
226  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
227  * a device specific mapping function exists and calls it if necessary.
228  */
_pmbus_read_word_data(struct i2c_client * client,int page,int reg)229 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
230 {
231 	struct pmbus_data *data = i2c_get_clientdata(client);
232 	const struct pmbus_driver_info *info = data->info;
233 	int status;
234 
235 	if (info->read_word_data) {
236 		status = info->read_word_data(client, page, reg);
237 		if (status != -ENODATA)
238 			return status;
239 	}
240 	if (reg >= PMBUS_VIRT_BASE)
241 		return -ENXIO;
242 	return pmbus_read_word_data(client, page, reg);
243 }
244 
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)245 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
246 {
247 	int rv;
248 
249 	if (page >= 0) {
250 		rv = pmbus_set_page(client, page);
251 		if (rv < 0)
252 			return rv;
253 	}
254 
255 	return i2c_smbus_read_byte_data(client, reg);
256 }
257 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
258 
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)259 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
260 {
261 	int rv;
262 
263 	rv = pmbus_set_page(client, page);
264 	if (rv < 0)
265 		return rv;
266 
267 	return i2c_smbus_write_byte_data(client, reg, value);
268 }
269 EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
270 
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)271 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
272 			   u8 mask, u8 value)
273 {
274 	unsigned int tmp;
275 	int rv;
276 
277 	rv = pmbus_read_byte_data(client, page, reg);
278 	if (rv < 0)
279 		return rv;
280 
281 	tmp = (rv & ~mask) | (value & mask);
282 
283 	if (tmp != rv)
284 		rv = pmbus_write_byte_data(client, page, reg, tmp);
285 
286 	return rv;
287 }
288 EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
289 
290 /*
291  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
292  * a device specific mapping function exists and calls it if necessary.
293  */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)294 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
295 {
296 	struct pmbus_data *data = i2c_get_clientdata(client);
297 	const struct pmbus_driver_info *info = data->info;
298 	int status;
299 
300 	if (info->read_byte_data) {
301 		status = info->read_byte_data(client, page, reg);
302 		if (status != -ENODATA)
303 			return status;
304 	}
305 	return pmbus_read_byte_data(client, page, reg);
306 }
307 
pmbus_clear_fault_page(struct i2c_client * client,int page)308 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
309 {
310 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
311 }
312 
pmbus_clear_faults(struct i2c_client * client)313 void pmbus_clear_faults(struct i2c_client *client)
314 {
315 	struct pmbus_data *data = i2c_get_clientdata(client);
316 	int i;
317 
318 	for (i = 0; i < data->info->pages; i++)
319 		pmbus_clear_fault_page(client, i);
320 }
321 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
322 
pmbus_check_status_cml(struct i2c_client * client)323 static int pmbus_check_status_cml(struct i2c_client *client)
324 {
325 	struct pmbus_data *data = i2c_get_clientdata(client);
326 	int status, status2;
327 
328 	status = _pmbus_read_byte_data(client, -1, data->status_register);
329 	if (status < 0 || (status & PB_STATUS_CML)) {
330 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
331 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
332 			return -EIO;
333 	}
334 	return 0;
335 }
336 
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)337 static bool pmbus_check_register(struct i2c_client *client,
338 				 int (*func)(struct i2c_client *client,
339 					     int page, int reg),
340 				 int page, int reg)
341 {
342 	int rv;
343 	struct pmbus_data *data = i2c_get_clientdata(client);
344 
345 	rv = func(client, page, reg);
346 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
347 		rv = pmbus_check_status_cml(client);
348 	pmbus_clear_fault_page(client, -1);
349 	return rv >= 0;
350 }
351 
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)352 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
353 {
354 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
355 }
356 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
357 
pmbus_check_word_register(struct i2c_client * client,int page,int reg)358 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
359 {
360 	return pmbus_check_register(client, _pmbus_read_word_data, page, reg);
361 }
362 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
363 
pmbus_get_driver_info(struct i2c_client * client)364 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
365 {
366 	struct pmbus_data *data = i2c_get_clientdata(client);
367 
368 	return data->info;
369 }
370 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
371 
372 static struct _pmbus_status {
373 	u32 func;
374 	u16 base;
375 	u16 reg;
376 } pmbus_status[] = {
377 	{ PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT },
378 	{ PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT },
379 	{ PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE,
380 	  PMBUS_STATUS_TEMPERATURE },
381 	{ PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 },
382 	{ PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 },
383 };
384 
pmbus_update_device(struct device * dev)385 static struct pmbus_data *pmbus_update_device(struct device *dev)
386 {
387 	struct i2c_client *client = to_i2c_client(dev->parent);
388 	struct pmbus_data *data = i2c_get_clientdata(client);
389 	const struct pmbus_driver_info *info = data->info;
390 	struct pmbus_sensor *sensor;
391 
392 	mutex_lock(&data->update_lock);
393 	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
394 		int i, j;
395 
396 		for (i = 0; i < info->pages; i++) {
397 			data->status[PB_STATUS_BASE + i]
398 			    = _pmbus_read_byte_data(client, i,
399 						    data->status_register);
400 			for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) {
401 				struct _pmbus_status *s = &pmbus_status[j];
402 
403 				if (!(info->func[i] & s->func))
404 					continue;
405 				data->status[s->base + i]
406 					= _pmbus_read_byte_data(client, i,
407 								s->reg);
408 			}
409 		}
410 
411 		if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
412 			data->status[PB_STATUS_INPUT_BASE]
413 			  = _pmbus_read_byte_data(client, 0,
414 						  PMBUS_STATUS_INPUT);
415 
416 		if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
417 			data->status[PB_STATUS_VMON_BASE]
418 			  = _pmbus_read_byte_data(client, 0,
419 						  PMBUS_VIRT_STATUS_VMON);
420 
421 		for (sensor = data->sensors; sensor; sensor = sensor->next) {
422 			if (!data->valid || sensor->update)
423 				sensor->data
424 				    = _pmbus_read_word_data(client,
425 							    sensor->page,
426 							    sensor->reg);
427 		}
428 		pmbus_clear_faults(client);
429 		data->last_updated = jiffies;
430 		data->valid = 1;
431 	}
432 	mutex_unlock(&data->update_lock);
433 	return data;
434 }
435 
436 /*
437  * Convert linear sensor values to milli- or micro-units
438  * depending on sensor type.
439  */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)440 static long pmbus_reg2data_linear(struct pmbus_data *data,
441 				  struct pmbus_sensor *sensor)
442 {
443 	s16 exponent;
444 	s32 mantissa;
445 	long val;
446 
447 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
448 		exponent = data->exponent[sensor->page];
449 		mantissa = (u16) sensor->data;
450 	} else {				/* LINEAR11 */
451 		exponent = ((s16)sensor->data) >> 11;
452 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
453 	}
454 
455 	val = mantissa;
456 
457 	/* scale result to milli-units for all sensors except fans */
458 	if (sensor->class != PSC_FAN)
459 		val = val * 1000L;
460 
461 	/* scale result to micro-units for power sensors */
462 	if (sensor->class == PSC_POWER)
463 		val = val * 1000L;
464 
465 	if (exponent >= 0)
466 		val <<= exponent;
467 	else
468 		val >>= -exponent;
469 
470 	return val;
471 }
472 
473 /*
474  * Convert direct sensor values to milli- or micro-units
475  * depending on sensor type.
476  */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)477 static long pmbus_reg2data_direct(struct pmbus_data *data,
478 				  struct pmbus_sensor *sensor)
479 {
480 	s64 b, val = (s16)sensor->data;
481 	s32 m, R;
482 
483 	m = data->info->m[sensor->class];
484 	b = data->info->b[sensor->class];
485 	R = data->info->R[sensor->class];
486 
487 	if (m == 0)
488 		return 0;
489 
490 	/* X = 1/m * (Y * 10^-R - b) */
491 	R = -R;
492 	/* scale result to milli-units for everything but fans */
493 	if (sensor->class != PSC_FAN) {
494 		R += 3;
495 		b *= 1000;
496 	}
497 
498 	/* scale result to micro-units for power sensors */
499 	if (sensor->class == PSC_POWER) {
500 		R += 3;
501 		b *= 1000;
502 	}
503 
504 	while (R > 0) {
505 		val *= 10;
506 		R--;
507 	}
508 	while (R < 0) {
509 		val = div_s64(val + 5LL, 10L);  /* round closest */
510 		R++;
511 	}
512 
513 	val = div_s64(val - b, m);
514 	return clamp_val(val, LONG_MIN, LONG_MAX);
515 }
516 
517 /*
518  * Convert VID sensor values to milli- or micro-units
519  * depending on sensor type.
520  */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)521 static long pmbus_reg2data_vid(struct pmbus_data *data,
522 			       struct pmbus_sensor *sensor)
523 {
524 	long val = sensor->data;
525 	long rv = 0;
526 
527 	switch (data->info->vrm_version) {
528 	case vr11:
529 		if (val >= 0x02 && val <= 0xb2)
530 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
531 		break;
532 	case vr12:
533 		if (val >= 0x01)
534 			rv = 250 + (val - 1) * 5;
535 		break;
536 	}
537 	return rv;
538 }
539 
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)540 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
541 {
542 	long val;
543 
544 	switch (data->info->format[sensor->class]) {
545 	case direct:
546 		val = pmbus_reg2data_direct(data, sensor);
547 		break;
548 	case vid:
549 		val = pmbus_reg2data_vid(data, sensor);
550 		break;
551 	case linear:
552 	default:
553 		val = pmbus_reg2data_linear(data, sensor);
554 		break;
555 	}
556 	return val;
557 }
558 
559 #define MAX_MANTISSA	(1023 * 1000)
560 #define MIN_MANTISSA	(511 * 1000)
561 
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)562 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
563 				 struct pmbus_sensor *sensor, long val)
564 {
565 	s16 exponent = 0, mantissa;
566 	bool negative = false;
567 
568 	/* simple case */
569 	if (val == 0)
570 		return 0;
571 
572 	if (sensor->class == PSC_VOLTAGE_OUT) {
573 		/* LINEAR16 does not support negative voltages */
574 		if (val < 0)
575 			return 0;
576 
577 		/*
578 		 * For a static exponents, we don't have a choice
579 		 * but to adjust the value to it.
580 		 */
581 		if (data->exponent[sensor->page] < 0)
582 			val <<= -data->exponent[sensor->page];
583 		else
584 			val >>= data->exponent[sensor->page];
585 		val = DIV_ROUND_CLOSEST(val, 1000);
586 		return val & 0xffff;
587 	}
588 
589 	if (val < 0) {
590 		negative = true;
591 		val = -val;
592 	}
593 
594 	/* Power is in uW. Convert to mW before converting. */
595 	if (sensor->class == PSC_POWER)
596 		val = DIV_ROUND_CLOSEST(val, 1000L);
597 
598 	/*
599 	 * For simplicity, convert fan data to milli-units
600 	 * before calculating the exponent.
601 	 */
602 	if (sensor->class == PSC_FAN)
603 		val = val * 1000;
604 
605 	/* Reduce large mantissa until it fits into 10 bit */
606 	while (val >= MAX_MANTISSA && exponent < 15) {
607 		exponent++;
608 		val >>= 1;
609 	}
610 	/* Increase small mantissa to improve precision */
611 	while (val < MIN_MANTISSA && exponent > -15) {
612 		exponent--;
613 		val <<= 1;
614 	}
615 
616 	/* Convert mantissa from milli-units to units */
617 	mantissa = DIV_ROUND_CLOSEST(val, 1000);
618 
619 	/* Ensure that resulting number is within range */
620 	if (mantissa > 0x3ff)
621 		mantissa = 0x3ff;
622 
623 	/* restore sign */
624 	if (negative)
625 		mantissa = -mantissa;
626 
627 	/* Convert to 5 bit exponent, 11 bit mantissa */
628 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
629 }
630 
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)631 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
632 				 struct pmbus_sensor *sensor, long val)
633 {
634 	s64 b, val64 = val;
635 	s32 m, R;
636 
637 	m = data->info->m[sensor->class];
638 	b = data->info->b[sensor->class];
639 	R = data->info->R[sensor->class];
640 
641 	/* Power is in uW. Adjust R and b. */
642 	if (sensor->class == PSC_POWER) {
643 		R -= 3;
644 		b *= 1000;
645 	}
646 
647 	/* Calculate Y = (m * X + b) * 10^R */
648 	if (sensor->class != PSC_FAN) {
649 		R -= 3;		/* Adjust R and b for data in milli-units */
650 		b *= 1000;
651 	}
652 	val64 = val64 * m + b;
653 
654 	while (R > 0) {
655 		val64 *= 10;
656 		R--;
657 	}
658 	while (R < 0) {
659 		val64 = div_s64(val64 + 5LL, 10L);  /* round closest */
660 		R++;
661 	}
662 
663 	return (u16)clamp_val(val64, S16_MIN, S16_MAX);
664 }
665 
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)666 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
667 			      struct pmbus_sensor *sensor, long val)
668 {
669 	val = clamp_val(val, 500, 1600);
670 
671 	return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
672 }
673 
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)674 static u16 pmbus_data2reg(struct pmbus_data *data,
675 			  struct pmbus_sensor *sensor, long val)
676 {
677 	u16 regval;
678 
679 	switch (data->info->format[sensor->class]) {
680 	case direct:
681 		regval = pmbus_data2reg_direct(data, sensor, val);
682 		break;
683 	case vid:
684 		regval = pmbus_data2reg_vid(data, sensor, val);
685 		break;
686 	case linear:
687 	default:
688 		regval = pmbus_data2reg_linear(data, sensor, val);
689 		break;
690 	}
691 	return regval;
692 }
693 
694 /*
695  * Return boolean calculated from converted data.
696  * <index> defines a status register index and mask.
697  * The mask is in the lower 8 bits, the register index is in bits 8..23.
698  *
699  * The associated pmbus_boolean structure contains optional pointers to two
700  * sensor attributes. If specified, those attributes are compared against each
701  * other to determine if a limit has been exceeded.
702  *
703  * If the sensor attribute pointers are NULL, the function returns true if
704  * (status[reg] & mask) is true.
705  *
706  * If sensor attribute pointers are provided, a comparison against a specified
707  * limit has to be performed to determine the boolean result.
708  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
709  * sensor values referenced by sensor attribute pointers s1 and s2).
710  *
711  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
712  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
713  *
714  * If a negative value is stored in any of the referenced registers, this value
715  * reflects an error code which will be returned.
716  */
pmbus_get_boolean(struct pmbus_data * data,struct pmbus_boolean * b,int index)717 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
718 			     int index)
719 {
720 	struct pmbus_sensor *s1 = b->s1;
721 	struct pmbus_sensor *s2 = b->s2;
722 	u16 reg = (index >> 8) & 0xffff;
723 	u8 mask = index & 0xff;
724 	int ret, status;
725 	u8 regval;
726 
727 	status = data->status[reg];
728 	if (status < 0)
729 		return status;
730 
731 	regval = status & mask;
732 	if (!s1 && !s2) {
733 		ret = !!regval;
734 	} else if (!s1 || !s2) {
735 		WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2);
736 		return 0;
737 	} else {
738 		long v1, v2;
739 
740 		if (s1->data < 0)
741 			return s1->data;
742 		if (s2->data < 0)
743 			return s2->data;
744 
745 		v1 = pmbus_reg2data(data, s1);
746 		v2 = pmbus_reg2data(data, s2);
747 		ret = !!(regval && v1 >= v2);
748 	}
749 	return ret;
750 }
751 
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)752 static ssize_t pmbus_show_boolean(struct device *dev,
753 				  struct device_attribute *da, char *buf)
754 {
755 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
756 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
757 	struct pmbus_data *data = pmbus_update_device(dev);
758 	int val;
759 
760 	val = pmbus_get_boolean(data, boolean, attr->index);
761 	if (val < 0)
762 		return val;
763 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
764 }
765 
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)766 static ssize_t pmbus_show_sensor(struct device *dev,
767 				 struct device_attribute *devattr, char *buf)
768 {
769 	struct pmbus_data *data = pmbus_update_device(dev);
770 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
771 
772 	if (sensor->data < 0)
773 		return sensor->data;
774 
775 	return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
776 }
777 
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)778 static ssize_t pmbus_set_sensor(struct device *dev,
779 				struct device_attribute *devattr,
780 				const char *buf, size_t count)
781 {
782 	struct i2c_client *client = to_i2c_client(dev->parent);
783 	struct pmbus_data *data = i2c_get_clientdata(client);
784 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
785 	ssize_t rv = count;
786 	long val = 0;
787 	int ret;
788 	u16 regval;
789 
790 	if (kstrtol(buf, 10, &val) < 0)
791 		return -EINVAL;
792 
793 	mutex_lock(&data->update_lock);
794 	regval = pmbus_data2reg(data, sensor, val);
795 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
796 	if (ret < 0)
797 		rv = ret;
798 	else
799 		sensor->data = regval;
800 	mutex_unlock(&data->update_lock);
801 	return rv;
802 }
803 
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)804 static ssize_t pmbus_show_label(struct device *dev,
805 				struct device_attribute *da, char *buf)
806 {
807 	struct pmbus_label *label = to_pmbus_label(da);
808 
809 	return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
810 }
811 
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)812 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
813 {
814 	if (data->num_attributes >= data->max_attributes - 1) {
815 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
816 		void *new_attrs = krealloc(data->group.attrs,
817 					   new_max_attrs * sizeof(void *),
818 					   GFP_KERNEL);
819 		if (!new_attrs)
820 			return -ENOMEM;
821 		data->group.attrs = new_attrs;
822 		data->max_attributes = new_max_attrs;
823 	}
824 
825 	data->group.attrs[data->num_attributes++] = attr;
826 	data->group.attrs[data->num_attributes] = NULL;
827 	return 0;
828 }
829 
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))830 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
831 				const char *name,
832 				umode_t mode,
833 				ssize_t (*show)(struct device *dev,
834 						struct device_attribute *attr,
835 						char *buf),
836 				ssize_t (*store)(struct device *dev,
837 						 struct device_attribute *attr,
838 						 const char *buf, size_t count))
839 {
840 	sysfs_attr_init(&dev_attr->attr);
841 	dev_attr->attr.name = name;
842 	dev_attr->attr.mode = mode;
843 	dev_attr->show = show;
844 	dev_attr->store = store;
845 }
846 
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)847 static void pmbus_attr_init(struct sensor_device_attribute *a,
848 			    const char *name,
849 			    umode_t mode,
850 			    ssize_t (*show)(struct device *dev,
851 					    struct device_attribute *attr,
852 					    char *buf),
853 			    ssize_t (*store)(struct device *dev,
854 					     struct device_attribute *attr,
855 					     const char *buf, size_t count),
856 			    int idx)
857 {
858 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
859 	a->index = idx;
860 }
861 
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u16 reg,u8 mask)862 static int pmbus_add_boolean(struct pmbus_data *data,
863 			     const char *name, const char *type, int seq,
864 			     struct pmbus_sensor *s1,
865 			     struct pmbus_sensor *s2,
866 			     u16 reg, u8 mask)
867 {
868 	struct pmbus_boolean *boolean;
869 	struct sensor_device_attribute *a;
870 
871 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
872 	if (!boolean)
873 		return -ENOMEM;
874 
875 	a = &boolean->attribute;
876 
877 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
878 		 name, seq, type);
879 	boolean->s1 = s1;
880 	boolean->s2 = s2;
881 	pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
882 			(reg << 8) | mask);
883 
884 	return pmbus_add_attribute(data, &a->dev_attr.attr);
885 }
886 
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int reg,enum pmbus_sensor_classes class,bool update,bool readonly)887 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
888 					     const char *name, const char *type,
889 					     int seq, int page, int reg,
890 					     enum pmbus_sensor_classes class,
891 					     bool update, bool readonly)
892 {
893 	struct pmbus_sensor *sensor;
894 	struct device_attribute *a;
895 
896 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
897 	if (!sensor)
898 		return NULL;
899 	a = &sensor->attribute;
900 
901 	snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
902 		 name, seq, type);
903 	sensor->page = page;
904 	sensor->reg = reg;
905 	sensor->class = class;
906 	sensor->update = update;
907 	pmbus_dev_attr_init(a, sensor->name,
908 			    readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
909 			    pmbus_show_sensor, pmbus_set_sensor);
910 
911 	if (pmbus_add_attribute(data, &a->attr))
912 		return NULL;
913 
914 	sensor->next = data->sensors;
915 	data->sensors = sensor;
916 
917 	return sensor;
918 }
919 
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index)920 static int pmbus_add_label(struct pmbus_data *data,
921 			   const char *name, int seq,
922 			   const char *lstring, int index)
923 {
924 	struct pmbus_label *label;
925 	struct device_attribute *a;
926 
927 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
928 	if (!label)
929 		return -ENOMEM;
930 
931 	a = &label->attribute;
932 
933 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
934 	if (!index)
935 		strncpy(label->label, lstring, sizeof(label->label) - 1);
936 	else
937 		snprintf(label->label, sizeof(label->label), "%s%d", lstring,
938 			 index);
939 
940 	pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
941 	return pmbus_add_attribute(data, &a->attr);
942 }
943 
944 /*
945  * Search for attributes. Allocate sensors, booleans, and labels as needed.
946  */
947 
948 /*
949  * The pmbus_limit_attr structure describes a single limit attribute
950  * and its associated alarm attribute.
951  */
952 struct pmbus_limit_attr {
953 	u16 reg;		/* Limit register */
954 	u16 sbit;		/* Alarm attribute status bit */
955 	bool update;		/* True if register needs updates */
956 	bool low;		/* True if low limit; for limits with compare
957 				   functions only */
958 	const char *attr;	/* Attribute name */
959 	const char *alarm;	/* Alarm attribute name */
960 };
961 
962 /*
963  * The pmbus_sensor_attr structure describes one sensor attribute. This
964  * description includes a reference to the associated limit attributes.
965  */
966 struct pmbus_sensor_attr {
967 	u16 reg;			/* sensor register */
968 	u8 gbit;			/* generic status bit */
969 	u8 nlimit;			/* # of limit registers */
970 	enum pmbus_sensor_classes class;/* sensor class */
971 	const char *label;		/* sensor label */
972 	bool paged;			/* true if paged sensor */
973 	bool update;			/* true if update needed */
974 	bool compare;			/* true if compare function needed */
975 	u32 func;			/* sensor mask */
976 	u32 sfunc;			/* sensor status mask */
977 	int sbase;			/* status base register */
978 	const struct pmbus_limit_attr *limit;/* limit registers */
979 };
980 
981 /*
982  * Add a set of limit attributes and, if supported, the associated
983  * alarm attributes.
984  * returns 0 if no alarm register found, 1 if an alarm register was found,
985  * < 0 on errors.
986  */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)987 static int pmbus_add_limit_attrs(struct i2c_client *client,
988 				 struct pmbus_data *data,
989 				 const struct pmbus_driver_info *info,
990 				 const char *name, int index, int page,
991 				 struct pmbus_sensor *base,
992 				 const struct pmbus_sensor_attr *attr)
993 {
994 	const struct pmbus_limit_attr *l = attr->limit;
995 	int nlimit = attr->nlimit;
996 	int have_alarm = 0;
997 	int i, ret;
998 	struct pmbus_sensor *curr;
999 
1000 	for (i = 0; i < nlimit; i++) {
1001 		if (pmbus_check_word_register(client, page, l->reg)) {
1002 			curr = pmbus_add_sensor(data, name, l->attr, index,
1003 						page, l->reg, attr->class,
1004 						attr->update || l->update,
1005 						false);
1006 			if (!curr)
1007 				return -ENOMEM;
1008 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1009 				ret = pmbus_add_boolean(data, name,
1010 					l->alarm, index,
1011 					attr->compare ?  l->low ? curr : base
1012 						      : NULL,
1013 					attr->compare ? l->low ? base : curr
1014 						      : NULL,
1015 					attr->sbase + page, l->sbit);
1016 				if (ret)
1017 					return ret;
1018 				have_alarm = 1;
1019 			}
1020 		}
1021 		l++;
1022 	}
1023 	return have_alarm;
1024 }
1025 
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,const struct pmbus_sensor_attr * attr,bool paged)1026 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1027 				      struct pmbus_data *data,
1028 				      const struct pmbus_driver_info *info,
1029 				      const char *name,
1030 				      int index, int page,
1031 				      const struct pmbus_sensor_attr *attr,
1032 				      bool paged)
1033 {
1034 	struct pmbus_sensor *base;
1035 	int ret;
1036 
1037 	if (attr->label) {
1038 		ret = pmbus_add_label(data, name, index, attr->label,
1039 				      paged ? page + 1 : 0);
1040 		if (ret)
1041 			return ret;
1042 	}
1043 	base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1044 				attr->class, true, true);
1045 	if (!base)
1046 		return -ENOMEM;
1047 	if (attr->sfunc) {
1048 		ret = pmbus_add_limit_attrs(client, data, info, name,
1049 					    index, page, base, attr);
1050 		if (ret < 0)
1051 			return ret;
1052 		/*
1053 		 * Add generic alarm attribute only if there are no individual
1054 		 * alarm attributes, if there is a global alarm bit, and if
1055 		 * the generic status register for this page is accessible.
1056 		 */
1057 		if (!ret && attr->gbit &&
1058 		    pmbus_check_byte_register(client, page,
1059 					      data->status_register)) {
1060 			ret = pmbus_add_boolean(data, name, "alarm", index,
1061 						NULL, NULL,
1062 						PB_STATUS_BASE + page,
1063 						attr->gbit);
1064 			if (ret)
1065 				return ret;
1066 		}
1067 	}
1068 	return 0;
1069 }
1070 
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1071 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1072 				  const struct pmbus_sensor_attr *attr)
1073 {
1074 	int p;
1075 
1076 	if (attr->paged)
1077 		return true;
1078 
1079 	/*
1080 	 * Some attributes may be present on more than one page despite
1081 	 * not being marked with the paged attribute. If that is the case,
1082 	 * then treat the sensor as being paged and add the page suffix to the
1083 	 * attribute name.
1084 	 * We don't just add the paged attribute to all such attributes, in
1085 	 * order to maintain the un-suffixed labels in the case where the
1086 	 * attribute is only on page 0.
1087 	 */
1088 	for (p = 1; p < info->pages; p++) {
1089 		if (info->func[p] & attr->func)
1090 			return true;
1091 	}
1092 	return false;
1093 }
1094 
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1095 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1096 				  struct pmbus_data *data,
1097 				  const char *name,
1098 				  const struct pmbus_sensor_attr *attrs,
1099 				  int nattrs)
1100 {
1101 	const struct pmbus_driver_info *info = data->info;
1102 	int index, i;
1103 	int ret;
1104 
1105 	index = 1;
1106 	for (i = 0; i < nattrs; i++) {
1107 		int page, pages;
1108 		bool paged = pmbus_sensor_is_paged(info, attrs);
1109 
1110 		pages = paged ? info->pages : 1;
1111 		for (page = 0; page < pages; page++) {
1112 			if (!(info->func[page] & attrs->func))
1113 				continue;
1114 			ret = pmbus_add_sensor_attrs_one(client, data, info,
1115 							 name, index, page,
1116 							 attrs, paged);
1117 			if (ret)
1118 				return ret;
1119 			index++;
1120 		}
1121 		attrs++;
1122 	}
1123 	return 0;
1124 }
1125 
1126 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1127 	{
1128 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1129 		.attr = "min",
1130 		.alarm = "min_alarm",
1131 		.sbit = PB_VOLTAGE_UV_WARNING,
1132 	}, {
1133 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1134 		.attr = "lcrit",
1135 		.alarm = "lcrit_alarm",
1136 		.sbit = PB_VOLTAGE_UV_FAULT,
1137 	}, {
1138 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1139 		.attr = "max",
1140 		.alarm = "max_alarm",
1141 		.sbit = PB_VOLTAGE_OV_WARNING,
1142 	}, {
1143 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1144 		.attr = "crit",
1145 		.alarm = "crit_alarm",
1146 		.sbit = PB_VOLTAGE_OV_FAULT,
1147 	}, {
1148 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1149 		.update = true,
1150 		.attr = "average",
1151 	}, {
1152 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1153 		.update = true,
1154 		.attr = "lowest",
1155 	}, {
1156 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1157 		.update = true,
1158 		.attr = "highest",
1159 	}, {
1160 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1161 		.attr = "reset_history",
1162 	},
1163 };
1164 
1165 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1166 	{
1167 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1168 		.attr = "min",
1169 		.alarm = "min_alarm",
1170 		.sbit = PB_VOLTAGE_UV_WARNING,
1171 	}, {
1172 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1173 		.attr = "lcrit",
1174 		.alarm = "lcrit_alarm",
1175 		.sbit = PB_VOLTAGE_UV_FAULT,
1176 	}, {
1177 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1178 		.attr = "max",
1179 		.alarm = "max_alarm",
1180 		.sbit = PB_VOLTAGE_OV_WARNING,
1181 	}, {
1182 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1183 		.attr = "crit",
1184 		.alarm = "crit_alarm",
1185 		.sbit = PB_VOLTAGE_OV_FAULT,
1186 	}
1187 };
1188 
1189 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1190 	{
1191 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1192 		.attr = "min",
1193 		.alarm = "min_alarm",
1194 		.sbit = PB_VOLTAGE_UV_WARNING,
1195 	}, {
1196 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1197 		.attr = "lcrit",
1198 		.alarm = "lcrit_alarm",
1199 		.sbit = PB_VOLTAGE_UV_FAULT,
1200 	}, {
1201 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1202 		.attr = "max",
1203 		.alarm = "max_alarm",
1204 		.sbit = PB_VOLTAGE_OV_WARNING,
1205 	}, {
1206 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1207 		.attr = "crit",
1208 		.alarm = "crit_alarm",
1209 		.sbit = PB_VOLTAGE_OV_FAULT,
1210 	}, {
1211 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1212 		.update = true,
1213 		.attr = "average",
1214 	}, {
1215 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1216 		.update = true,
1217 		.attr = "lowest",
1218 	}, {
1219 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1220 		.update = true,
1221 		.attr = "highest",
1222 	}, {
1223 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1224 		.attr = "reset_history",
1225 	}
1226 };
1227 
1228 static const struct pmbus_sensor_attr voltage_attributes[] = {
1229 	{
1230 		.reg = PMBUS_READ_VIN,
1231 		.class = PSC_VOLTAGE_IN,
1232 		.label = "vin",
1233 		.func = PMBUS_HAVE_VIN,
1234 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1235 		.sbase = PB_STATUS_INPUT_BASE,
1236 		.gbit = PB_STATUS_VIN_UV,
1237 		.limit = vin_limit_attrs,
1238 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1239 	}, {
1240 		.reg = PMBUS_VIRT_READ_VMON,
1241 		.class = PSC_VOLTAGE_IN,
1242 		.label = "vmon",
1243 		.func = PMBUS_HAVE_VMON,
1244 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1245 		.sbase = PB_STATUS_VMON_BASE,
1246 		.limit = vmon_limit_attrs,
1247 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1248 	}, {
1249 		.reg = PMBUS_READ_VCAP,
1250 		.class = PSC_VOLTAGE_IN,
1251 		.label = "vcap",
1252 		.func = PMBUS_HAVE_VCAP,
1253 	}, {
1254 		.reg = PMBUS_READ_VOUT,
1255 		.class = PSC_VOLTAGE_OUT,
1256 		.label = "vout",
1257 		.paged = true,
1258 		.func = PMBUS_HAVE_VOUT,
1259 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1260 		.sbase = PB_STATUS_VOUT_BASE,
1261 		.gbit = PB_STATUS_VOUT_OV,
1262 		.limit = vout_limit_attrs,
1263 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1264 	}
1265 };
1266 
1267 /* Current attributes */
1268 
1269 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1270 	{
1271 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1272 		.attr = "max",
1273 		.alarm = "max_alarm",
1274 		.sbit = PB_IIN_OC_WARNING,
1275 	}, {
1276 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1277 		.attr = "crit",
1278 		.alarm = "crit_alarm",
1279 		.sbit = PB_IIN_OC_FAULT,
1280 	}, {
1281 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1282 		.update = true,
1283 		.attr = "average",
1284 	}, {
1285 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1286 		.update = true,
1287 		.attr = "lowest",
1288 	}, {
1289 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1290 		.update = true,
1291 		.attr = "highest",
1292 	}, {
1293 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1294 		.attr = "reset_history",
1295 	}
1296 };
1297 
1298 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1299 	{
1300 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1301 		.attr = "max",
1302 		.alarm = "max_alarm",
1303 		.sbit = PB_IOUT_OC_WARNING,
1304 	}, {
1305 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1306 		.attr = "lcrit",
1307 		.alarm = "lcrit_alarm",
1308 		.sbit = PB_IOUT_UC_FAULT,
1309 	}, {
1310 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1311 		.attr = "crit",
1312 		.alarm = "crit_alarm",
1313 		.sbit = PB_IOUT_OC_FAULT,
1314 	}, {
1315 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1316 		.update = true,
1317 		.attr = "average",
1318 	}, {
1319 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1320 		.update = true,
1321 		.attr = "lowest",
1322 	}, {
1323 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1324 		.update = true,
1325 		.attr = "highest",
1326 	}, {
1327 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1328 		.attr = "reset_history",
1329 	}
1330 };
1331 
1332 static const struct pmbus_sensor_attr current_attributes[] = {
1333 	{
1334 		.reg = PMBUS_READ_IIN,
1335 		.class = PSC_CURRENT_IN,
1336 		.label = "iin",
1337 		.func = PMBUS_HAVE_IIN,
1338 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1339 		.sbase = PB_STATUS_INPUT_BASE,
1340 		.limit = iin_limit_attrs,
1341 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1342 	}, {
1343 		.reg = PMBUS_READ_IOUT,
1344 		.class = PSC_CURRENT_OUT,
1345 		.label = "iout",
1346 		.paged = true,
1347 		.func = PMBUS_HAVE_IOUT,
1348 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1349 		.sbase = PB_STATUS_IOUT_BASE,
1350 		.gbit = PB_STATUS_IOUT_OC,
1351 		.limit = iout_limit_attrs,
1352 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1353 	}
1354 };
1355 
1356 /* Power attributes */
1357 
1358 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1359 	{
1360 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1361 		.attr = "max",
1362 		.alarm = "alarm",
1363 		.sbit = PB_PIN_OP_WARNING,
1364 	}, {
1365 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1366 		.update = true,
1367 		.attr = "average",
1368 	}, {
1369 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1370 		.update = true,
1371 		.attr = "input_lowest",
1372 	}, {
1373 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1374 		.update = true,
1375 		.attr = "input_highest",
1376 	}, {
1377 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1378 		.attr = "reset_history",
1379 	}
1380 };
1381 
1382 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1383 	{
1384 		.reg = PMBUS_POUT_MAX,
1385 		.attr = "cap",
1386 		.alarm = "cap_alarm",
1387 		.sbit = PB_POWER_LIMITING,
1388 	}, {
1389 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1390 		.attr = "max",
1391 		.alarm = "max_alarm",
1392 		.sbit = PB_POUT_OP_WARNING,
1393 	}, {
1394 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1395 		.attr = "crit",
1396 		.alarm = "crit_alarm",
1397 		.sbit = PB_POUT_OP_FAULT,
1398 	}, {
1399 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1400 		.update = true,
1401 		.attr = "average",
1402 	}, {
1403 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1404 		.update = true,
1405 		.attr = "input_lowest",
1406 	}, {
1407 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1408 		.update = true,
1409 		.attr = "input_highest",
1410 	}, {
1411 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1412 		.attr = "reset_history",
1413 	}
1414 };
1415 
1416 static const struct pmbus_sensor_attr power_attributes[] = {
1417 	{
1418 		.reg = PMBUS_READ_PIN,
1419 		.class = PSC_POWER,
1420 		.label = "pin",
1421 		.func = PMBUS_HAVE_PIN,
1422 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1423 		.sbase = PB_STATUS_INPUT_BASE,
1424 		.limit = pin_limit_attrs,
1425 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1426 	}, {
1427 		.reg = PMBUS_READ_POUT,
1428 		.class = PSC_POWER,
1429 		.label = "pout",
1430 		.paged = true,
1431 		.func = PMBUS_HAVE_POUT,
1432 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1433 		.sbase = PB_STATUS_IOUT_BASE,
1434 		.limit = pout_limit_attrs,
1435 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1436 	}
1437 };
1438 
1439 /* Temperature atributes */
1440 
1441 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1442 	{
1443 		.reg = PMBUS_UT_WARN_LIMIT,
1444 		.low = true,
1445 		.attr = "min",
1446 		.alarm = "min_alarm",
1447 		.sbit = PB_TEMP_UT_WARNING,
1448 	}, {
1449 		.reg = PMBUS_UT_FAULT_LIMIT,
1450 		.low = true,
1451 		.attr = "lcrit",
1452 		.alarm = "lcrit_alarm",
1453 		.sbit = PB_TEMP_UT_FAULT,
1454 	}, {
1455 		.reg = PMBUS_OT_WARN_LIMIT,
1456 		.attr = "max",
1457 		.alarm = "max_alarm",
1458 		.sbit = PB_TEMP_OT_WARNING,
1459 	}, {
1460 		.reg = PMBUS_OT_FAULT_LIMIT,
1461 		.attr = "crit",
1462 		.alarm = "crit_alarm",
1463 		.sbit = PB_TEMP_OT_FAULT,
1464 	}, {
1465 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1466 		.attr = "lowest",
1467 	}, {
1468 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1469 		.attr = "average",
1470 	}, {
1471 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1472 		.attr = "highest",
1473 	}, {
1474 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1475 		.attr = "reset_history",
1476 	}
1477 };
1478 
1479 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1480 	{
1481 		.reg = PMBUS_UT_WARN_LIMIT,
1482 		.low = true,
1483 		.attr = "min",
1484 		.alarm = "min_alarm",
1485 		.sbit = PB_TEMP_UT_WARNING,
1486 	}, {
1487 		.reg = PMBUS_UT_FAULT_LIMIT,
1488 		.low = true,
1489 		.attr = "lcrit",
1490 		.alarm = "lcrit_alarm",
1491 		.sbit = PB_TEMP_UT_FAULT,
1492 	}, {
1493 		.reg = PMBUS_OT_WARN_LIMIT,
1494 		.attr = "max",
1495 		.alarm = "max_alarm",
1496 		.sbit = PB_TEMP_OT_WARNING,
1497 	}, {
1498 		.reg = PMBUS_OT_FAULT_LIMIT,
1499 		.attr = "crit",
1500 		.alarm = "crit_alarm",
1501 		.sbit = PB_TEMP_OT_FAULT,
1502 	}, {
1503 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
1504 		.attr = "lowest",
1505 	}, {
1506 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
1507 		.attr = "average",
1508 	}, {
1509 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
1510 		.attr = "highest",
1511 	}, {
1512 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1513 		.attr = "reset_history",
1514 	}
1515 };
1516 
1517 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1518 	{
1519 		.reg = PMBUS_UT_WARN_LIMIT,
1520 		.low = true,
1521 		.attr = "min",
1522 		.alarm = "min_alarm",
1523 		.sbit = PB_TEMP_UT_WARNING,
1524 	}, {
1525 		.reg = PMBUS_UT_FAULT_LIMIT,
1526 		.low = true,
1527 		.attr = "lcrit",
1528 		.alarm = "lcrit_alarm",
1529 		.sbit = PB_TEMP_UT_FAULT,
1530 	}, {
1531 		.reg = PMBUS_OT_WARN_LIMIT,
1532 		.attr = "max",
1533 		.alarm = "max_alarm",
1534 		.sbit = PB_TEMP_OT_WARNING,
1535 	}, {
1536 		.reg = PMBUS_OT_FAULT_LIMIT,
1537 		.attr = "crit",
1538 		.alarm = "crit_alarm",
1539 		.sbit = PB_TEMP_OT_FAULT,
1540 	}
1541 };
1542 
1543 static const struct pmbus_sensor_attr temp_attributes[] = {
1544 	{
1545 		.reg = PMBUS_READ_TEMPERATURE_1,
1546 		.class = PSC_TEMPERATURE,
1547 		.paged = true,
1548 		.update = true,
1549 		.compare = true,
1550 		.func = PMBUS_HAVE_TEMP,
1551 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1552 		.sbase = PB_STATUS_TEMP_BASE,
1553 		.gbit = PB_STATUS_TEMPERATURE,
1554 		.limit = temp_limit_attrs,
1555 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1556 	}, {
1557 		.reg = PMBUS_READ_TEMPERATURE_2,
1558 		.class = PSC_TEMPERATURE,
1559 		.paged = true,
1560 		.update = true,
1561 		.compare = true,
1562 		.func = PMBUS_HAVE_TEMP2,
1563 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1564 		.sbase = PB_STATUS_TEMP_BASE,
1565 		.gbit = PB_STATUS_TEMPERATURE,
1566 		.limit = temp_limit_attrs2,
1567 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
1568 	}, {
1569 		.reg = PMBUS_READ_TEMPERATURE_3,
1570 		.class = PSC_TEMPERATURE,
1571 		.paged = true,
1572 		.update = true,
1573 		.compare = true,
1574 		.func = PMBUS_HAVE_TEMP3,
1575 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1576 		.sbase = PB_STATUS_TEMP_BASE,
1577 		.gbit = PB_STATUS_TEMPERATURE,
1578 		.limit = temp_limit_attrs3,
1579 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
1580 	}
1581 };
1582 
1583 static const int pmbus_fan_registers[] = {
1584 	PMBUS_READ_FAN_SPEED_1,
1585 	PMBUS_READ_FAN_SPEED_2,
1586 	PMBUS_READ_FAN_SPEED_3,
1587 	PMBUS_READ_FAN_SPEED_4
1588 };
1589 
1590 static const int pmbus_fan_config_registers[] = {
1591 	PMBUS_FAN_CONFIG_12,
1592 	PMBUS_FAN_CONFIG_12,
1593 	PMBUS_FAN_CONFIG_34,
1594 	PMBUS_FAN_CONFIG_34
1595 };
1596 
1597 static const int pmbus_fan_status_registers[] = {
1598 	PMBUS_STATUS_FAN_12,
1599 	PMBUS_STATUS_FAN_12,
1600 	PMBUS_STATUS_FAN_34,
1601 	PMBUS_STATUS_FAN_34
1602 };
1603 
1604 static const u32 pmbus_fan_flags[] = {
1605 	PMBUS_HAVE_FAN12,
1606 	PMBUS_HAVE_FAN12,
1607 	PMBUS_HAVE_FAN34,
1608 	PMBUS_HAVE_FAN34
1609 };
1610 
1611 static const u32 pmbus_fan_status_flags[] = {
1612 	PMBUS_HAVE_STATUS_FAN12,
1613 	PMBUS_HAVE_STATUS_FAN12,
1614 	PMBUS_HAVE_STATUS_FAN34,
1615 	PMBUS_HAVE_STATUS_FAN34
1616 };
1617 
1618 /* Fans */
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)1619 static int pmbus_add_fan_attributes(struct i2c_client *client,
1620 				    struct pmbus_data *data)
1621 {
1622 	const struct pmbus_driver_info *info = data->info;
1623 	int index = 1;
1624 	int page;
1625 	int ret;
1626 
1627 	for (page = 0; page < info->pages; page++) {
1628 		int f;
1629 
1630 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1631 			int regval;
1632 
1633 			if (!(info->func[page] & pmbus_fan_flags[f]))
1634 				break;
1635 
1636 			if (!pmbus_check_word_register(client, page,
1637 						       pmbus_fan_registers[f]))
1638 				break;
1639 
1640 			/*
1641 			 * Skip fan if not installed.
1642 			 * Each fan configuration register covers multiple fans,
1643 			 * so we have to do some magic.
1644 			 */
1645 			regval = _pmbus_read_byte_data(client, page,
1646 				pmbus_fan_config_registers[f]);
1647 			if (regval < 0 ||
1648 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1649 				continue;
1650 
1651 			if (pmbus_add_sensor(data, "fan", "input", index,
1652 					     page, pmbus_fan_registers[f],
1653 					     PSC_FAN, true, true) == NULL)
1654 				return -ENOMEM;
1655 
1656 			/*
1657 			 * Each fan status register covers multiple fans,
1658 			 * so we have to do some magic.
1659 			 */
1660 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1661 			    pmbus_check_byte_register(client,
1662 					page, pmbus_fan_status_registers[f])) {
1663 				int base;
1664 
1665 				if (f > 1)	/* fan 3, 4 */
1666 					base = PB_STATUS_FAN34_BASE + page;
1667 				else
1668 					base = PB_STATUS_FAN_BASE + page;
1669 				ret = pmbus_add_boolean(data, "fan",
1670 					"alarm", index, NULL, NULL, base,
1671 					PB_FAN_FAN1_WARNING >> (f & 1));
1672 				if (ret)
1673 					return ret;
1674 				ret = pmbus_add_boolean(data, "fan",
1675 					"fault", index, NULL, NULL, base,
1676 					PB_FAN_FAN1_FAULT >> (f & 1));
1677 				if (ret)
1678 					return ret;
1679 			}
1680 			index++;
1681 		}
1682 	}
1683 	return 0;
1684 }
1685 
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)1686 static int pmbus_find_attributes(struct i2c_client *client,
1687 				 struct pmbus_data *data)
1688 {
1689 	int ret;
1690 
1691 	/* Voltage sensors */
1692 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1693 				     ARRAY_SIZE(voltage_attributes));
1694 	if (ret)
1695 		return ret;
1696 
1697 	/* Current sensors */
1698 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1699 				     ARRAY_SIZE(current_attributes));
1700 	if (ret)
1701 		return ret;
1702 
1703 	/* Power sensors */
1704 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1705 				     ARRAY_SIZE(power_attributes));
1706 	if (ret)
1707 		return ret;
1708 
1709 	/* Temperature sensors */
1710 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1711 				     ARRAY_SIZE(temp_attributes));
1712 	if (ret)
1713 		return ret;
1714 
1715 	/* Fans */
1716 	ret = pmbus_add_fan_attributes(client, data);
1717 	return ret;
1718 }
1719 
1720 /*
1721  * Identify chip parameters.
1722  * This function is called for all chips.
1723  */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)1724 static int pmbus_identify_common(struct i2c_client *client,
1725 				 struct pmbus_data *data, int page)
1726 {
1727 	int vout_mode = -1;
1728 
1729 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
1730 		vout_mode = _pmbus_read_byte_data(client, page,
1731 						  PMBUS_VOUT_MODE);
1732 	if (vout_mode >= 0 && vout_mode != 0xff) {
1733 		/*
1734 		 * Not all chips support the VOUT_MODE command,
1735 		 * so a failure to read it is not an error.
1736 		 */
1737 		switch (vout_mode >> 5) {
1738 		case 0:	/* linear mode      */
1739 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1740 				return -ENODEV;
1741 
1742 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
1743 			break;
1744 		case 1: /* VID mode         */
1745 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1746 				return -ENODEV;
1747 			break;
1748 		case 2:	/* direct mode      */
1749 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1750 				return -ENODEV;
1751 			break;
1752 		default:
1753 			return -ENODEV;
1754 		}
1755 	}
1756 
1757 	pmbus_clear_fault_page(client, page);
1758 	return 0;
1759 }
1760 
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)1761 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
1762 			     struct pmbus_driver_info *info)
1763 {
1764 	struct device *dev = &client->dev;
1765 	int page, ret;
1766 
1767 	/*
1768 	 * Some PMBus chips don't support PMBUS_STATUS_BYTE, so try
1769 	 * to use PMBUS_STATUS_WORD instead if that is the case.
1770 	 * Bail out if both registers are not supported.
1771 	 */
1772 	data->status_register = PMBUS_STATUS_BYTE;
1773 	ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
1774 	if (ret < 0 || ret == 0xff) {
1775 		data->status_register = PMBUS_STATUS_WORD;
1776 		ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
1777 		if (ret < 0 || ret == 0xffff) {
1778 			dev_err(dev, "PMBus status register not found\n");
1779 			return -ENODEV;
1780 		}
1781 	}
1782 
1783 	/* Enable PEC if the controller supports it */
1784 	ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
1785 	if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK))
1786 		client->flags |= I2C_CLIENT_PEC;
1787 
1788 	if (data->info->pages)
1789 		pmbus_clear_faults(client);
1790 	else
1791 		pmbus_clear_fault_page(client, -1);
1792 
1793 	if (info->identify) {
1794 		ret = (*info->identify)(client, info);
1795 		if (ret < 0) {
1796 			dev_err(dev, "Chip identification failed\n");
1797 			return ret;
1798 		}
1799 	}
1800 
1801 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1802 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
1803 		return -ENODEV;
1804 	}
1805 
1806 	for (page = 0; page < info->pages; page++) {
1807 		ret = pmbus_identify_common(client, data, page);
1808 		if (ret < 0) {
1809 			dev_err(dev, "Failed to identify chip capabilities\n");
1810 			return ret;
1811 		}
1812 	}
1813 	return 0;
1814 }
1815 
1816 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)1817 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
1818 {
1819 	struct device *dev = rdev_get_dev(rdev);
1820 	struct i2c_client *client = to_i2c_client(dev->parent);
1821 	u8 page = rdev_get_id(rdev);
1822 	int ret;
1823 
1824 	ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
1825 	if (ret < 0)
1826 		return ret;
1827 
1828 	return !!(ret & PB_OPERATION_CONTROL_ON);
1829 }
1830 
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)1831 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
1832 {
1833 	struct device *dev = rdev_get_dev(rdev);
1834 	struct i2c_client *client = to_i2c_client(dev->parent);
1835 	u8 page = rdev_get_id(rdev);
1836 
1837 	return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
1838 				      PB_OPERATION_CONTROL_ON,
1839 				      enable ? PB_OPERATION_CONTROL_ON : 0);
1840 }
1841 
pmbus_regulator_enable(struct regulator_dev * rdev)1842 static int pmbus_regulator_enable(struct regulator_dev *rdev)
1843 {
1844 	return _pmbus_regulator_on_off(rdev, 1);
1845 }
1846 
pmbus_regulator_disable(struct regulator_dev * rdev)1847 static int pmbus_regulator_disable(struct regulator_dev *rdev)
1848 {
1849 	return _pmbus_regulator_on_off(rdev, 0);
1850 }
1851 
1852 const struct regulator_ops pmbus_regulator_ops = {
1853 	.enable = pmbus_regulator_enable,
1854 	.disable = pmbus_regulator_disable,
1855 	.is_enabled = pmbus_regulator_is_enabled,
1856 };
1857 EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
1858 
pmbus_regulator_register(struct pmbus_data * data)1859 static int pmbus_regulator_register(struct pmbus_data *data)
1860 {
1861 	struct device *dev = data->dev;
1862 	const struct pmbus_driver_info *info = data->info;
1863 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1864 	struct regulator_dev *rdev;
1865 	int i;
1866 
1867 	for (i = 0; i < info->num_regulators; i++) {
1868 		struct regulator_config config = { };
1869 
1870 		config.dev = dev;
1871 		config.driver_data = data;
1872 
1873 		if (pdata && pdata->reg_init_data)
1874 			config.init_data = &pdata->reg_init_data[i];
1875 
1876 		rdev = devm_regulator_register(dev, &info->reg_desc[i],
1877 					       &config);
1878 		if (IS_ERR(rdev)) {
1879 			dev_err(dev, "Failed to register %s regulator\n",
1880 				info->reg_desc[i].name);
1881 			return PTR_ERR(rdev);
1882 		}
1883 	}
1884 
1885 	return 0;
1886 }
1887 #else
pmbus_regulator_register(struct pmbus_data * data)1888 static int pmbus_regulator_register(struct pmbus_data *data)
1889 {
1890 	return 0;
1891 }
1892 #endif
1893 
pmbus_do_probe(struct i2c_client * client,const struct i2c_device_id * id,struct pmbus_driver_info * info)1894 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1895 		   struct pmbus_driver_info *info)
1896 {
1897 	struct device *dev = &client->dev;
1898 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1899 	struct pmbus_data *data;
1900 	int ret;
1901 
1902 	if (!info)
1903 		return -ENODEV;
1904 
1905 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1906 				     | I2C_FUNC_SMBUS_BYTE_DATA
1907 				     | I2C_FUNC_SMBUS_WORD_DATA))
1908 		return -ENODEV;
1909 
1910 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1911 	if (!data)
1912 		return -ENOMEM;
1913 
1914 	i2c_set_clientdata(client, data);
1915 	mutex_init(&data->update_lock);
1916 	data->dev = dev;
1917 
1918 	if (pdata)
1919 		data->flags = pdata->flags;
1920 	data->info = info;
1921 
1922 	ret = pmbus_init_common(client, data, info);
1923 	if (ret < 0)
1924 		return ret;
1925 
1926 	ret = pmbus_find_attributes(client, data);
1927 	if (ret)
1928 		goto out_kfree;
1929 
1930 	/*
1931 	 * If there are no attributes, something is wrong.
1932 	 * Bail out instead of trying to register nothing.
1933 	 */
1934 	if (!data->num_attributes) {
1935 		dev_err(dev, "No attributes found\n");
1936 		ret = -ENODEV;
1937 		goto out_kfree;
1938 	}
1939 
1940 	data->groups[0] = &data->group;
1941 	data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
1942 							    data, data->groups);
1943 	if (IS_ERR(data->hwmon_dev)) {
1944 		ret = PTR_ERR(data->hwmon_dev);
1945 		dev_err(dev, "Failed to register hwmon device\n");
1946 		goto out_kfree;
1947 	}
1948 
1949 	ret = pmbus_regulator_register(data);
1950 	if (ret)
1951 		goto out_unregister;
1952 
1953 	return 0;
1954 
1955 out_unregister:
1956 	hwmon_device_unregister(data->hwmon_dev);
1957 out_kfree:
1958 	kfree(data->group.attrs);
1959 	return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(pmbus_do_probe);
1962 
pmbus_do_remove(struct i2c_client * client)1963 int pmbus_do_remove(struct i2c_client *client)
1964 {
1965 	struct pmbus_data *data = i2c_get_clientdata(client);
1966 	hwmon_device_unregister(data->hwmon_dev);
1967 	kfree(data->group.attrs);
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(pmbus_do_remove);
1971 
1972 MODULE_AUTHOR("Guenter Roeck");
1973 MODULE_DESCRIPTION("PMBus core driver");
1974 MODULE_LICENSE("GPL");
1975