• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Synopsys DesignWare I2C adapter driver (master only).
3  *
4  * Based on the TI DAVINCI I2C adapter driver.
5  *
6  * Copyright (C) 2006 Texas Instruments.
7  * Copyright (C) 2007 MontaVista Software Inc.
8  * Copyright (C) 2009 Provigent Ltd.
9  *
10  * ----------------------------------------------------------------------------
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  * ----------------------------------------------------------------------------
22  *
23  */
24 #include <linux/export.h>
25 #include <linux/errno.h>
26 #include <linux/err.h>
27 #include <linux/i2c.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include "i2c-designware-core.h"
34 
35 /*
36  * Registers offset
37  */
38 #define DW_IC_CON		0x0
39 #define DW_IC_TAR		0x4
40 #define DW_IC_DATA_CMD		0x10
41 #define DW_IC_SS_SCL_HCNT	0x14
42 #define DW_IC_SS_SCL_LCNT	0x18
43 #define DW_IC_FS_SCL_HCNT	0x1c
44 #define DW_IC_FS_SCL_LCNT	0x20
45 #define DW_IC_INTR_STAT		0x2c
46 #define DW_IC_INTR_MASK		0x30
47 #define DW_IC_RAW_INTR_STAT	0x34
48 #define DW_IC_RX_TL		0x38
49 #define DW_IC_TX_TL		0x3c
50 #define DW_IC_CLR_INTR		0x40
51 #define DW_IC_CLR_RX_UNDER	0x44
52 #define DW_IC_CLR_RX_OVER	0x48
53 #define DW_IC_CLR_TX_OVER	0x4c
54 #define DW_IC_CLR_RD_REQ	0x50
55 #define DW_IC_CLR_TX_ABRT	0x54
56 #define DW_IC_CLR_RX_DONE	0x58
57 #define DW_IC_CLR_ACTIVITY	0x5c
58 #define DW_IC_CLR_STOP_DET	0x60
59 #define DW_IC_CLR_START_DET	0x64
60 #define DW_IC_CLR_GEN_CALL	0x68
61 #define DW_IC_ENABLE		0x6c
62 #define DW_IC_STATUS		0x70
63 #define DW_IC_TXFLR		0x74
64 #define DW_IC_RXFLR		0x78
65 #define DW_IC_SDA_HOLD		0x7c
66 #define DW_IC_TX_ABRT_SOURCE	0x80
67 #define DW_IC_ENABLE_STATUS	0x9c
68 #define DW_IC_COMP_PARAM_1	0xf4
69 #define DW_IC_COMP_VERSION	0xf8
70 #define DW_IC_SDA_HOLD_MIN_VERS	0x3131312A
71 #define DW_IC_COMP_TYPE		0xfc
72 #define DW_IC_COMP_TYPE_VALUE	0x44570140
73 
74 #define DW_IC_INTR_RX_UNDER	0x001
75 #define DW_IC_INTR_RX_OVER	0x002
76 #define DW_IC_INTR_RX_FULL	0x004
77 #define DW_IC_INTR_TX_OVER	0x008
78 #define DW_IC_INTR_TX_EMPTY	0x010
79 #define DW_IC_INTR_RD_REQ	0x020
80 #define DW_IC_INTR_TX_ABRT	0x040
81 #define DW_IC_INTR_RX_DONE	0x080
82 #define DW_IC_INTR_ACTIVITY	0x100
83 #define DW_IC_INTR_STOP_DET	0x200
84 #define DW_IC_INTR_START_DET	0x400
85 #define DW_IC_INTR_GEN_CALL	0x800
86 
87 #define DW_IC_INTR_DEFAULT_MASK		(DW_IC_INTR_RX_FULL | \
88 					 DW_IC_INTR_TX_EMPTY | \
89 					 DW_IC_INTR_TX_ABRT | \
90 					 DW_IC_INTR_STOP_DET)
91 
92 #define DW_IC_STATUS_ACTIVITY	0x1
93 
94 #define DW_IC_ERR_TX_ABRT	0x1
95 
96 #define DW_IC_TAR_10BITADDR_MASTER BIT(12)
97 
98 /*
99  * status codes
100  */
101 #define STATUS_IDLE			0x0
102 #define STATUS_WRITE_IN_PROGRESS	0x1
103 #define STATUS_READ_IN_PROGRESS		0x2
104 
105 #define TIMEOUT			20 /* ms */
106 
107 /*
108  * hardware abort codes from the DW_IC_TX_ABRT_SOURCE register
109  *
110  * only expected abort codes are listed here
111  * refer to the datasheet for the full list
112  */
113 #define ABRT_7B_ADDR_NOACK	0
114 #define ABRT_10ADDR1_NOACK	1
115 #define ABRT_10ADDR2_NOACK	2
116 #define ABRT_TXDATA_NOACK	3
117 #define ABRT_GCALL_NOACK	4
118 #define ABRT_GCALL_READ		5
119 #define ABRT_SBYTE_ACKDET	7
120 #define ABRT_SBYTE_NORSTRT	9
121 #define ABRT_10B_RD_NORSTRT	10
122 #define ABRT_MASTER_DIS		11
123 #define ARB_LOST		12
124 
125 #define DW_IC_TX_ABRT_7B_ADDR_NOACK	(1UL << ABRT_7B_ADDR_NOACK)
126 #define DW_IC_TX_ABRT_10ADDR1_NOACK	(1UL << ABRT_10ADDR1_NOACK)
127 #define DW_IC_TX_ABRT_10ADDR2_NOACK	(1UL << ABRT_10ADDR2_NOACK)
128 #define DW_IC_TX_ABRT_TXDATA_NOACK	(1UL << ABRT_TXDATA_NOACK)
129 #define DW_IC_TX_ABRT_GCALL_NOACK	(1UL << ABRT_GCALL_NOACK)
130 #define DW_IC_TX_ABRT_GCALL_READ	(1UL << ABRT_GCALL_READ)
131 #define DW_IC_TX_ABRT_SBYTE_ACKDET	(1UL << ABRT_SBYTE_ACKDET)
132 #define DW_IC_TX_ABRT_SBYTE_NORSTRT	(1UL << ABRT_SBYTE_NORSTRT)
133 #define DW_IC_TX_ABRT_10B_RD_NORSTRT	(1UL << ABRT_10B_RD_NORSTRT)
134 #define DW_IC_TX_ABRT_MASTER_DIS	(1UL << ABRT_MASTER_DIS)
135 #define DW_IC_TX_ARB_LOST		(1UL << ARB_LOST)
136 
137 #define DW_IC_TX_ABRT_NOACK		(DW_IC_TX_ABRT_7B_ADDR_NOACK | \
138 					 DW_IC_TX_ABRT_10ADDR1_NOACK | \
139 					 DW_IC_TX_ABRT_10ADDR2_NOACK | \
140 					 DW_IC_TX_ABRT_TXDATA_NOACK | \
141 					 DW_IC_TX_ABRT_GCALL_NOACK)
142 
143 static char *abort_sources[] = {
144 	[ABRT_7B_ADDR_NOACK] =
145 		"slave address not acknowledged (7bit mode)",
146 	[ABRT_10ADDR1_NOACK] =
147 		"first address byte not acknowledged (10bit mode)",
148 	[ABRT_10ADDR2_NOACK] =
149 		"second address byte not acknowledged (10bit mode)",
150 	[ABRT_TXDATA_NOACK] =
151 		"data not acknowledged",
152 	[ABRT_GCALL_NOACK] =
153 		"no acknowledgement for a general call",
154 	[ABRT_GCALL_READ] =
155 		"read after general call",
156 	[ABRT_SBYTE_ACKDET] =
157 		"start byte acknowledged",
158 	[ABRT_SBYTE_NORSTRT] =
159 		"trying to send start byte when restart is disabled",
160 	[ABRT_10B_RD_NORSTRT] =
161 		"trying to read when restart is disabled (10bit mode)",
162 	[ABRT_MASTER_DIS] =
163 		"trying to use disabled adapter",
164 	[ARB_LOST] =
165 		"lost arbitration",
166 };
167 
dw_readl(struct dw_i2c_dev * dev,int offset)168 static u32 dw_readl(struct dw_i2c_dev *dev, int offset)
169 {
170 	u32 value;
171 
172 	if (dev->accessor_flags & ACCESS_16BIT)
173 		value = readw_relaxed(dev->base + offset) |
174 			(readw_relaxed(dev->base + offset + 2) << 16);
175 	else
176 		value = readl_relaxed(dev->base + offset);
177 
178 	if (dev->accessor_flags & ACCESS_SWAP)
179 		return swab32(value);
180 	else
181 		return value;
182 }
183 
dw_writel(struct dw_i2c_dev * dev,u32 b,int offset)184 static void dw_writel(struct dw_i2c_dev *dev, u32 b, int offset)
185 {
186 	if (dev->accessor_flags & ACCESS_SWAP)
187 		b = swab32(b);
188 
189 	if (dev->accessor_flags & ACCESS_16BIT) {
190 		writew_relaxed((u16)b, dev->base + offset);
191 		writew_relaxed((u16)(b >> 16), dev->base + offset + 2);
192 	} else {
193 		writel_relaxed(b, dev->base + offset);
194 	}
195 }
196 
197 static u32
i2c_dw_scl_hcnt(u32 ic_clk,u32 tSYMBOL,u32 tf,int cond,int offset)198 i2c_dw_scl_hcnt(u32 ic_clk, u32 tSYMBOL, u32 tf, int cond, int offset)
199 {
200 	/*
201 	 * DesignWare I2C core doesn't seem to have solid strategy to meet
202 	 * the tHD;STA timing spec.  Configuring _HCNT based on tHIGH spec
203 	 * will result in violation of the tHD;STA spec.
204 	 */
205 	if (cond)
206 		/*
207 		 * Conditional expression:
208 		 *
209 		 *   IC_[FS]S_SCL_HCNT + (1+4+3) >= IC_CLK * tHIGH
210 		 *
211 		 * This is based on the DW manuals, and represents an ideal
212 		 * configuration.  The resulting I2C bus speed will be
213 		 * faster than any of the others.
214 		 *
215 		 * If your hardware is free from tHD;STA issue, try this one.
216 		 */
217 		return (ic_clk * tSYMBOL + 500000) / 1000000 - 8 + offset;
218 	else
219 		/*
220 		 * Conditional expression:
221 		 *
222 		 *   IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf)
223 		 *
224 		 * This is just experimental rule; the tHD;STA period turned
225 		 * out to be proportinal to (_HCNT + 3).  With this setting,
226 		 * we could meet both tHIGH and tHD;STA timing specs.
227 		 *
228 		 * If unsure, you'd better to take this alternative.
229 		 *
230 		 * The reason why we need to take into account "tf" here,
231 		 * is the same as described in i2c_dw_scl_lcnt().
232 		 */
233 		return (ic_clk * (tSYMBOL + tf) + 500000) / 1000000
234 			- 3 + offset;
235 }
236 
i2c_dw_scl_lcnt(u32 ic_clk,u32 tLOW,u32 tf,int offset)237 static u32 i2c_dw_scl_lcnt(u32 ic_clk, u32 tLOW, u32 tf, int offset)
238 {
239 	/*
240 	 * Conditional expression:
241 	 *
242 	 *   IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf)
243 	 *
244 	 * DW I2C core starts counting the SCL CNTs for the LOW period
245 	 * of the SCL clock (tLOW) as soon as it pulls the SCL line.
246 	 * In order to meet the tLOW timing spec, we need to take into
247 	 * account the fall time of SCL signal (tf).  Default tf value
248 	 * should be 0.3 us, for safety.
249 	 */
250 	return ((ic_clk * (tLOW + tf) + 500000) / 1000000) - 1 + offset;
251 }
252 
__i2c_dw_enable(struct dw_i2c_dev * dev,bool enable)253 static void __i2c_dw_enable(struct dw_i2c_dev *dev, bool enable)
254 {
255 	int timeout = 100;
256 
257 	do {
258 		dw_writel(dev, enable, DW_IC_ENABLE);
259 		if ((dw_readl(dev, DW_IC_ENABLE_STATUS) & 1) == enable)
260 			return;
261 
262 		/*
263 		 * Wait 10 times the signaling period of the highest I2C
264 		 * transfer supported by the driver (for 400KHz this is
265 		 * 25us) as described in the DesignWare I2C databook.
266 		 */
267 		usleep_range(25, 250);
268 	} while (timeout--);
269 
270 	dev_warn(dev->dev, "timeout in %sabling adapter\n",
271 		 enable ? "en" : "dis");
272 }
273 
274 /**
275  * i2c_dw_init() - initialize the designware i2c master hardware
276  * @dev: device private data
277  *
278  * This functions configures and enables the I2C master.
279  * This function is called during I2C init function, and in case of timeout at
280  * run time.
281  */
i2c_dw_init(struct dw_i2c_dev * dev)282 int i2c_dw_init(struct dw_i2c_dev *dev)
283 {
284 	u32 input_clock_khz;
285 	u32 hcnt, lcnt;
286 	u32 reg;
287 	u32 sda_falling_time, scl_falling_time;
288 	int ret;
289 
290 	if (dev->acquire_lock) {
291 		ret = dev->acquire_lock(dev);
292 		if (ret) {
293 			dev_err(dev->dev, "couldn't acquire bus ownership\n");
294 			return ret;
295 		}
296 	}
297 
298 	input_clock_khz = dev->get_clk_rate_khz(dev);
299 
300 	reg = dw_readl(dev, DW_IC_COMP_TYPE);
301 	if (reg == ___constant_swab32(DW_IC_COMP_TYPE_VALUE)) {
302 		/* Configure register endianess access */
303 		dev->accessor_flags |= ACCESS_SWAP;
304 	} else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) {
305 		/* Configure register access mode 16bit */
306 		dev->accessor_flags |= ACCESS_16BIT;
307 	} else if (reg != DW_IC_COMP_TYPE_VALUE) {
308 		dev_err(dev->dev, "Unknown Synopsys component type: "
309 			"0x%08x\n", reg);
310 		if (dev->release_lock)
311 			dev->release_lock(dev);
312 		return -ENODEV;
313 	}
314 
315 	/* Disable the adapter */
316 	__i2c_dw_enable(dev, false);
317 
318 	/* set standard and fast speed deviders for high/low periods */
319 
320 	sda_falling_time = dev->sda_falling_time ?: 300; /* ns */
321 	scl_falling_time = dev->scl_falling_time ?: 300; /* ns */
322 
323 	/* Set SCL timing parameters for standard-mode */
324 	if (dev->ss_hcnt && dev->ss_lcnt) {
325 		hcnt = dev->ss_hcnt;
326 		lcnt = dev->ss_lcnt;
327 	} else {
328 		hcnt = i2c_dw_scl_hcnt(input_clock_khz,
329 					4000,	/* tHD;STA = tHIGH = 4.0 us */
330 					sda_falling_time,
331 					0,	/* 0: DW default, 1: Ideal */
332 					0);	/* No offset */
333 		lcnt = i2c_dw_scl_lcnt(input_clock_khz,
334 					4700,	/* tLOW = 4.7 us */
335 					scl_falling_time,
336 					0);	/* No offset */
337 	}
338 	dw_writel(dev, hcnt, DW_IC_SS_SCL_HCNT);
339 	dw_writel(dev, lcnt, DW_IC_SS_SCL_LCNT);
340 	dev_dbg(dev->dev, "Standard-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
341 
342 	/* Set SCL timing parameters for fast-mode */
343 	if (dev->fs_hcnt && dev->fs_lcnt) {
344 		hcnt = dev->fs_hcnt;
345 		lcnt = dev->fs_lcnt;
346 	} else {
347 		hcnt = i2c_dw_scl_hcnt(input_clock_khz,
348 					600,	/* tHD;STA = tHIGH = 0.6 us */
349 					sda_falling_time,
350 					0,	/* 0: DW default, 1: Ideal */
351 					0);	/* No offset */
352 		lcnt = i2c_dw_scl_lcnt(input_clock_khz,
353 					1300,	/* tLOW = 1.3 us */
354 					scl_falling_time,
355 					0);	/* No offset */
356 	}
357 	dw_writel(dev, hcnt, DW_IC_FS_SCL_HCNT);
358 	dw_writel(dev, lcnt, DW_IC_FS_SCL_LCNT);
359 	dev_dbg(dev->dev, "Fast-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
360 
361 	/* Configure SDA Hold Time if required */
362 	if (dev->sda_hold_time) {
363 		reg = dw_readl(dev, DW_IC_COMP_VERSION);
364 		if (reg >= DW_IC_SDA_HOLD_MIN_VERS)
365 			dw_writel(dev, dev->sda_hold_time, DW_IC_SDA_HOLD);
366 		else
367 			dev_warn(dev->dev,
368 				"Hardware too old to adjust SDA hold time.");
369 	}
370 
371 	/* Configure Tx/Rx FIFO threshold levels */
372 	dw_writel(dev, dev->tx_fifo_depth / 2, DW_IC_TX_TL);
373 	dw_writel(dev, 0, DW_IC_RX_TL);
374 
375 	/* configure the i2c master */
376 	dw_writel(dev, dev->master_cfg , DW_IC_CON);
377 
378 	if (dev->release_lock)
379 		dev->release_lock(dev);
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(i2c_dw_init);
383 
384 /*
385  * Waiting for bus not busy
386  */
i2c_dw_wait_bus_not_busy(struct dw_i2c_dev * dev)387 static int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev)
388 {
389 	int timeout = TIMEOUT;
390 
391 	while (dw_readl(dev, DW_IC_STATUS) & DW_IC_STATUS_ACTIVITY) {
392 		if (timeout <= 0) {
393 			dev_warn(dev->dev, "timeout waiting for bus ready\n");
394 			return -ETIMEDOUT;
395 		}
396 		timeout--;
397 		usleep_range(1000, 1100);
398 	}
399 
400 	return 0;
401 }
402 
i2c_dw_xfer_init(struct dw_i2c_dev * dev)403 static void i2c_dw_xfer_init(struct dw_i2c_dev *dev)
404 {
405 	struct i2c_msg *msgs = dev->msgs;
406 	u32 ic_con, ic_tar = 0;
407 
408 	/* Disable the adapter */
409 	__i2c_dw_enable(dev, false);
410 
411 	/* if the slave address is ten bit address, enable 10BITADDR */
412 	ic_con = dw_readl(dev, DW_IC_CON);
413 	if (msgs[dev->msg_write_idx].flags & I2C_M_TEN) {
414 		ic_con |= DW_IC_CON_10BITADDR_MASTER;
415 		/*
416 		 * If I2C_DYNAMIC_TAR_UPDATE is set, the 10-bit addressing
417 		 * mode has to be enabled via bit 12 of IC_TAR register.
418 		 * We set it always as I2C_DYNAMIC_TAR_UPDATE can't be
419 		 * detected from registers.
420 		 */
421 		ic_tar = DW_IC_TAR_10BITADDR_MASTER;
422 	} else {
423 		ic_con &= ~DW_IC_CON_10BITADDR_MASTER;
424 	}
425 
426 	dw_writel(dev, ic_con, DW_IC_CON);
427 
428 	/*
429 	 * Set the slave (target) address and enable 10-bit addressing mode
430 	 * if applicable.
431 	 */
432 	dw_writel(dev, msgs[dev->msg_write_idx].addr | ic_tar, DW_IC_TAR);
433 
434 	/* enforce disabled interrupts (due to HW issues) */
435 	i2c_dw_disable_int(dev);
436 
437 	/* Enable the adapter */
438 	__i2c_dw_enable(dev, true);
439 
440 	/* Clear and enable interrupts */
441 	dw_readl(dev, DW_IC_CLR_INTR);
442 	dw_writel(dev, DW_IC_INTR_DEFAULT_MASK, DW_IC_INTR_MASK);
443 }
444 
445 /*
446  * Initiate (and continue) low level master read/write transaction.
447  * This function is only called from i2c_dw_isr, and pumping i2c_msg
448  * messages into the tx buffer.  Even if the size of i2c_msg data is
449  * longer than the size of the tx buffer, it handles everything.
450  */
451 static void
i2c_dw_xfer_msg(struct dw_i2c_dev * dev)452 i2c_dw_xfer_msg(struct dw_i2c_dev *dev)
453 {
454 	struct i2c_msg *msgs = dev->msgs;
455 	u32 intr_mask;
456 	int tx_limit, rx_limit;
457 	u32 addr = msgs[dev->msg_write_idx].addr;
458 	u32 buf_len = dev->tx_buf_len;
459 	u8 *buf = dev->tx_buf;
460 	bool need_restart = false;
461 
462 	intr_mask = DW_IC_INTR_DEFAULT_MASK;
463 
464 	for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) {
465 		/*
466 		 * if target address has changed, we need to
467 		 * reprogram the target address in the i2c
468 		 * adapter when we are done with this transfer
469 		 */
470 		if (msgs[dev->msg_write_idx].addr != addr) {
471 			dev_err(dev->dev,
472 				"%s: invalid target address\n", __func__);
473 			dev->msg_err = -EINVAL;
474 			break;
475 		}
476 
477 		if (msgs[dev->msg_write_idx].len == 0) {
478 			dev_err(dev->dev,
479 				"%s: invalid message length\n", __func__);
480 			dev->msg_err = -EINVAL;
481 			break;
482 		}
483 
484 		if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) {
485 			/* new i2c_msg */
486 			buf = msgs[dev->msg_write_idx].buf;
487 			buf_len = msgs[dev->msg_write_idx].len;
488 
489 			/* If both IC_EMPTYFIFO_HOLD_MASTER_EN and
490 			 * IC_RESTART_EN are set, we must manually
491 			 * set restart bit between messages.
492 			 */
493 			if ((dev->master_cfg & DW_IC_CON_RESTART_EN) &&
494 					(dev->msg_write_idx > 0))
495 				need_restart = true;
496 		}
497 
498 		tx_limit = dev->tx_fifo_depth - dw_readl(dev, DW_IC_TXFLR);
499 		rx_limit = dev->rx_fifo_depth - dw_readl(dev, DW_IC_RXFLR);
500 
501 		while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) {
502 			u32 cmd = 0;
503 
504 			/*
505 			 * If IC_EMPTYFIFO_HOLD_MASTER_EN is set we must
506 			 * manually set the stop bit. However, it cannot be
507 			 * detected from the registers so we set it always
508 			 * when writing/reading the last byte.
509 			 */
510 			if (dev->msg_write_idx == dev->msgs_num - 1 &&
511 			    buf_len == 1)
512 				cmd |= BIT(9);
513 
514 			if (need_restart) {
515 				cmd |= BIT(10);
516 				need_restart = false;
517 			}
518 
519 			if (msgs[dev->msg_write_idx].flags & I2C_M_RD) {
520 
521 				/* avoid rx buffer overrun */
522 				if (rx_limit - dev->rx_outstanding <= 0)
523 					break;
524 
525 				dw_writel(dev, cmd | 0x100, DW_IC_DATA_CMD);
526 				rx_limit--;
527 				dev->rx_outstanding++;
528 			} else
529 				dw_writel(dev, cmd | *buf++, DW_IC_DATA_CMD);
530 			tx_limit--; buf_len--;
531 		}
532 
533 		dev->tx_buf = buf;
534 		dev->tx_buf_len = buf_len;
535 
536 		if (buf_len > 0) {
537 			/* more bytes to be written */
538 			dev->status |= STATUS_WRITE_IN_PROGRESS;
539 			break;
540 		} else
541 			dev->status &= ~STATUS_WRITE_IN_PROGRESS;
542 	}
543 
544 	/*
545 	 * If i2c_msg index search is completed, we don't need TX_EMPTY
546 	 * interrupt any more.
547 	 */
548 	if (dev->msg_write_idx == dev->msgs_num)
549 		intr_mask &= ~DW_IC_INTR_TX_EMPTY;
550 
551 	if (dev->msg_err)
552 		intr_mask = 0;
553 
554 	dw_writel(dev, intr_mask,  DW_IC_INTR_MASK);
555 }
556 
557 static void
i2c_dw_read(struct dw_i2c_dev * dev)558 i2c_dw_read(struct dw_i2c_dev *dev)
559 {
560 	struct i2c_msg *msgs = dev->msgs;
561 	int rx_valid;
562 
563 	for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) {
564 		u32 len;
565 		u8 *buf;
566 
567 		if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD))
568 			continue;
569 
570 		if (!(dev->status & STATUS_READ_IN_PROGRESS)) {
571 			len = msgs[dev->msg_read_idx].len;
572 			buf = msgs[dev->msg_read_idx].buf;
573 		} else {
574 			len = dev->rx_buf_len;
575 			buf = dev->rx_buf;
576 		}
577 
578 		rx_valid = dw_readl(dev, DW_IC_RXFLR);
579 
580 		for (; len > 0 && rx_valid > 0; len--, rx_valid--) {
581 			*buf++ = dw_readl(dev, DW_IC_DATA_CMD);
582 			dev->rx_outstanding--;
583 		}
584 
585 		if (len > 0) {
586 			dev->status |= STATUS_READ_IN_PROGRESS;
587 			dev->rx_buf_len = len;
588 			dev->rx_buf = buf;
589 			return;
590 		} else
591 			dev->status &= ~STATUS_READ_IN_PROGRESS;
592 	}
593 }
594 
i2c_dw_handle_tx_abort(struct dw_i2c_dev * dev)595 static int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev)
596 {
597 	unsigned long abort_source = dev->abort_source;
598 	int i;
599 
600 	if (abort_source & DW_IC_TX_ABRT_NOACK) {
601 		for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
602 			dev_dbg(dev->dev,
603 				"%s: %s\n", __func__, abort_sources[i]);
604 		return -EREMOTEIO;
605 	}
606 
607 	for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
608 		dev_err(dev->dev, "%s: %s\n", __func__, abort_sources[i]);
609 
610 	if (abort_source & DW_IC_TX_ARB_LOST)
611 		return -EAGAIN;
612 	else if (abort_source & DW_IC_TX_ABRT_GCALL_READ)
613 		return -EINVAL; /* wrong msgs[] data */
614 	else
615 		return -EIO;
616 }
617 
618 /*
619  * Prepare controller for a transaction and call i2c_dw_xfer_msg
620  */
621 static int
i2c_dw_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)622 i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
623 {
624 	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
625 	int ret;
626 
627 	dev_dbg(dev->dev, "%s: msgs: %d\n", __func__, num);
628 
629 	mutex_lock(&dev->lock);
630 	pm_runtime_get_sync(dev->dev);
631 
632 	reinit_completion(&dev->cmd_complete);
633 	dev->msgs = msgs;
634 	dev->msgs_num = num;
635 	dev->cmd_err = 0;
636 	dev->msg_write_idx = 0;
637 	dev->msg_read_idx = 0;
638 	dev->msg_err = 0;
639 	dev->status = STATUS_IDLE;
640 	dev->abort_source = 0;
641 	dev->rx_outstanding = 0;
642 
643 	if (dev->acquire_lock) {
644 		ret = dev->acquire_lock(dev);
645 		if (ret) {
646 			dev_err(dev->dev, "couldn't acquire bus ownership\n");
647 			goto done_nolock;
648 		}
649 	}
650 
651 	ret = i2c_dw_wait_bus_not_busy(dev);
652 	if (ret < 0)
653 		goto done;
654 
655 	/* start the transfers */
656 	i2c_dw_xfer_init(dev);
657 
658 	/* wait for tx to complete */
659 	if (!wait_for_completion_timeout(&dev->cmd_complete, HZ)) {
660 		dev_err(dev->dev, "controller timed out\n");
661 		/* i2c_dw_init implicitly disables the adapter */
662 		i2c_dw_init(dev);
663 		ret = -ETIMEDOUT;
664 		goto done;
665 	}
666 
667 	/*
668 	 * We must disable the adapter before unlocking the &dev->lock mutex
669 	 * below. Otherwise the hardware might continue generating interrupts
670 	 * which in turn causes a race condition with the following transfer.
671 	 * Needs some more investigation if the additional interrupts are
672 	 * a hardware bug or this driver doesn't handle them correctly yet.
673 	 */
674 	__i2c_dw_enable(dev, false);
675 
676 	if (dev->msg_err) {
677 		ret = dev->msg_err;
678 		goto done;
679 	}
680 
681 	/* no error */
682 	if (likely(!dev->cmd_err)) {
683 		ret = num;
684 		goto done;
685 	}
686 
687 	/* We have an error */
688 	if (dev->cmd_err == DW_IC_ERR_TX_ABRT) {
689 		ret = i2c_dw_handle_tx_abort(dev);
690 		goto done;
691 	}
692 	ret = -EIO;
693 
694 done:
695 	if (dev->release_lock)
696 		dev->release_lock(dev);
697 
698 done_nolock:
699 	pm_runtime_mark_last_busy(dev->dev);
700 	pm_runtime_put_autosuspend(dev->dev);
701 	mutex_unlock(&dev->lock);
702 
703 	return ret;
704 }
705 
i2c_dw_func(struct i2c_adapter * adap)706 static u32 i2c_dw_func(struct i2c_adapter *adap)
707 {
708 	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
709 	return dev->functionality;
710 }
711 
712 static struct i2c_algorithm i2c_dw_algo = {
713 	.master_xfer	= i2c_dw_xfer,
714 	.functionality	= i2c_dw_func,
715 };
716 
i2c_dw_read_clear_intrbits(struct dw_i2c_dev * dev)717 static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev)
718 {
719 	u32 stat;
720 
721 	/*
722 	 * The IC_INTR_STAT register just indicates "enabled" interrupts.
723 	 * Ths unmasked raw version of interrupt status bits are available
724 	 * in the IC_RAW_INTR_STAT register.
725 	 *
726 	 * That is,
727 	 *   stat = dw_readl(IC_INTR_STAT);
728 	 * equals to,
729 	 *   stat = dw_readl(IC_RAW_INTR_STAT) & dw_readl(IC_INTR_MASK);
730 	 *
731 	 * The raw version might be useful for debugging purposes.
732 	 */
733 	stat = dw_readl(dev, DW_IC_INTR_STAT);
734 
735 	/*
736 	 * Do not use the IC_CLR_INTR register to clear interrupts, or
737 	 * you'll miss some interrupts, triggered during the period from
738 	 * dw_readl(IC_INTR_STAT) to dw_readl(IC_CLR_INTR).
739 	 *
740 	 * Instead, use the separately-prepared IC_CLR_* registers.
741 	 */
742 	if (stat & DW_IC_INTR_RX_UNDER)
743 		dw_readl(dev, DW_IC_CLR_RX_UNDER);
744 	if (stat & DW_IC_INTR_RX_OVER)
745 		dw_readl(dev, DW_IC_CLR_RX_OVER);
746 	if (stat & DW_IC_INTR_TX_OVER)
747 		dw_readl(dev, DW_IC_CLR_TX_OVER);
748 	if (stat & DW_IC_INTR_RD_REQ)
749 		dw_readl(dev, DW_IC_CLR_RD_REQ);
750 	if (stat & DW_IC_INTR_TX_ABRT) {
751 		/*
752 		 * The IC_TX_ABRT_SOURCE register is cleared whenever
753 		 * the IC_CLR_TX_ABRT is read.  Preserve it beforehand.
754 		 */
755 		dev->abort_source = dw_readl(dev, DW_IC_TX_ABRT_SOURCE);
756 		dw_readl(dev, DW_IC_CLR_TX_ABRT);
757 	}
758 	if (stat & DW_IC_INTR_RX_DONE)
759 		dw_readl(dev, DW_IC_CLR_RX_DONE);
760 	if (stat & DW_IC_INTR_ACTIVITY)
761 		dw_readl(dev, DW_IC_CLR_ACTIVITY);
762 	if (stat & DW_IC_INTR_STOP_DET)
763 		dw_readl(dev, DW_IC_CLR_STOP_DET);
764 	if (stat & DW_IC_INTR_START_DET)
765 		dw_readl(dev, DW_IC_CLR_START_DET);
766 	if (stat & DW_IC_INTR_GEN_CALL)
767 		dw_readl(dev, DW_IC_CLR_GEN_CALL);
768 
769 	return stat;
770 }
771 
772 /*
773  * Interrupt service routine. This gets called whenever an I2C interrupt
774  * occurs.
775  */
i2c_dw_isr(int this_irq,void * dev_id)776 static irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
777 {
778 	struct dw_i2c_dev *dev = dev_id;
779 	u32 stat, enabled;
780 
781 	enabled = dw_readl(dev, DW_IC_ENABLE);
782 	stat = dw_readl(dev, DW_IC_RAW_INTR_STAT);
783 	dev_dbg(dev->dev, "%s: enabled=%#x stat=%#x\n", __func__, enabled, stat);
784 	if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
785 		return IRQ_NONE;
786 
787 	stat = i2c_dw_read_clear_intrbits(dev);
788 
789 	if (stat & DW_IC_INTR_TX_ABRT) {
790 		dev->cmd_err |= DW_IC_ERR_TX_ABRT;
791 		dev->status = STATUS_IDLE;
792 
793 		/*
794 		 * Anytime TX_ABRT is set, the contents of the tx/rx
795 		 * buffers are flushed.  Make sure to skip them.
796 		 */
797 		dw_writel(dev, 0, DW_IC_INTR_MASK);
798 		goto tx_aborted;
799 	}
800 
801 	if (stat & DW_IC_INTR_RX_FULL)
802 		i2c_dw_read(dev);
803 
804 	if (stat & DW_IC_INTR_TX_EMPTY)
805 		i2c_dw_xfer_msg(dev);
806 
807 	/*
808 	 * No need to modify or disable the interrupt mask here.
809 	 * i2c_dw_xfer_msg() will take care of it according to
810 	 * the current transmit status.
811 	 */
812 
813 tx_aborted:
814 	if ((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err)
815 		complete(&dev->cmd_complete);
816 	else if (unlikely(dev->accessor_flags & ACCESS_INTR_MASK)) {
817 		/* workaround to trigger pending interrupt */
818 		stat = dw_readl(dev, DW_IC_INTR_MASK);
819 		i2c_dw_disable_int(dev);
820 		dw_writel(dev, stat, DW_IC_INTR_MASK);
821 	}
822 
823 	return IRQ_HANDLED;
824 }
825 
i2c_dw_disable(struct dw_i2c_dev * dev)826 void i2c_dw_disable(struct dw_i2c_dev *dev)
827 {
828 	/* Disable controller */
829 	__i2c_dw_enable(dev, false);
830 
831 	/* Disable all interupts */
832 	dw_writel(dev, 0, DW_IC_INTR_MASK);
833 	dw_readl(dev, DW_IC_CLR_INTR);
834 }
835 EXPORT_SYMBOL_GPL(i2c_dw_disable);
836 
i2c_dw_disable_int(struct dw_i2c_dev * dev)837 void i2c_dw_disable_int(struct dw_i2c_dev *dev)
838 {
839 	dw_writel(dev, 0, DW_IC_INTR_MASK);
840 }
841 EXPORT_SYMBOL_GPL(i2c_dw_disable_int);
842 
i2c_dw_read_comp_param(struct dw_i2c_dev * dev)843 u32 i2c_dw_read_comp_param(struct dw_i2c_dev *dev)
844 {
845 	return dw_readl(dev, DW_IC_COMP_PARAM_1);
846 }
847 EXPORT_SYMBOL_GPL(i2c_dw_read_comp_param);
848 
i2c_dw_probe(struct dw_i2c_dev * dev)849 int i2c_dw_probe(struct dw_i2c_dev *dev)
850 {
851 	struct i2c_adapter *adap = &dev->adapter;
852 	int r;
853 
854 	init_completion(&dev->cmd_complete);
855 	mutex_init(&dev->lock);
856 
857 	r = i2c_dw_init(dev);
858 	if (r)
859 		return r;
860 
861 	snprintf(adap->name, sizeof(adap->name),
862 		 "Synopsys DesignWare I2C adapter");
863 	adap->algo = &i2c_dw_algo;
864 	adap->dev.parent = dev->dev;
865 	i2c_set_adapdata(adap, dev);
866 
867 	i2c_dw_disable_int(dev);
868 	r = devm_request_irq(dev->dev, dev->irq, i2c_dw_isr,
869 			     IRQF_SHARED | IRQF_COND_SUSPEND,
870 			     dev_name(dev->dev), dev);
871 	if (r) {
872 		dev_err(dev->dev, "failure requesting irq %i: %d\n",
873 			dev->irq, r);
874 		return r;
875 	}
876 
877 	r = i2c_add_numbered_adapter(adap);
878 	if (r)
879 		dev_err(dev->dev, "failure adding adapter: %d\n", r);
880 
881 	return r;
882 }
883 EXPORT_SYMBOL_GPL(i2c_dw_probe);
884 
885 MODULE_DESCRIPTION("Synopsys DesignWare I2C bus adapter core");
886 MODULE_LICENSE("GPL");
887