• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
3  *
4  * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * There are three ways that this I2C controller can be driven:
11  *
12  * - Raw control of the SDA and SCK signals.
13  *
14  *   This corresponds to MODE_RAW, which takes control of the signals
15  *   directly for a certain number of clock cycles (the INT_TIMING
16  *   interrupt can be used for timing).
17  *
18  * - Atomic commands. A low level I2C symbol (such as generate
19  *   start/stop/ack/nack bit, generate byte, receive byte, and receive
20  *   ACK) is given to the hardware, with detection of completion by bits
21  *   in the LINESTAT register.
22  *
23  *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
24  *   state machine in the interrupt handler to compose/react to I2C
25  *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
26  *   which emits a simple fixed sequence of atomic mode commands.
27  *
28  *   Due to software control, the use of atomic commands usually results
29  *   in suboptimal use of the bus, with gaps between the I2C symbols while
30  *   the driver decides what to do next.
31  *
32  * - Automatic mode. A bus address, and whether to read/write is
33  *   specified, and the hardware takes care of the I2C state machine,
34  *   using a FIFO to send/receive bytes of data to an I2C slave. The
35  *   driver just has to keep the FIFO drained or filled in response to the
36  *   appropriate FIFO interrupts.
37  *
38  *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39  *   with control of repeated start bits between I2C messages.
40  *
41  *   Use of automatic mode and the FIFO can make much more efficient use
42  *   of the bus compared to individual atomic commands, with potentially
43  *   no wasted time between I2C symbols or I2C messages.
44  *
45  * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46  * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47  * the bus), MODE_ATOMIC must be used since automatic mode is normally
48  * started by the writing of data into the FIFO.
49  *
50  * The other modes are used in specific circumstances where MODE_ATOMIC and
51  * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52  * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53  * it is in a sane state.
54  *
55  * Notice that the driver implements a timer-based timeout mechanism.
56  * The reason for this mechanism is to reduce the number of interrupts
57  * received in automatic mode.
58  *
59  * The driver would get a slave event and transaction done interrupts for
60  * each atomic mode command that gets completed. However, these events are
61  * not needed in automatic mode, becase those atomic mode commands are
62  * managed automatically by the hardware.
63  *
64  * In practice, normal I2C transactions will be complete well before you
65  * get the timer interrupt, as the timer is re-scheduled during FIFO
66  * maintenance and disabled after the transaction is complete.
67  *
68  * In this way normal automatic mode operation isn't impacted by
69  * unnecessary interrupts, but the exceptional abort condition can still be
70  * detected (with a slight delay).
71  */
72 
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
80 #include <linux/io.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/slab.h>
86 #include <linux/timer.h>
87 
88 /* Register offsets */
89 
90 #define SCB_STATUS_REG			0x00
91 #define SCB_OVERRIDE_REG		0x04
92 #define SCB_READ_ADDR_REG		0x08
93 #define SCB_READ_COUNT_REG		0x0c
94 #define SCB_WRITE_ADDR_REG		0x10
95 #define SCB_READ_DATA_REG		0x14
96 #define SCB_WRITE_DATA_REG		0x18
97 #define SCB_FIFO_STATUS_REG		0x1c
98 #define SCB_CONTROL_SOFT_RESET		0x1f
99 #define SCB_CLK_SET_REG			0x3c
100 #define SCB_INT_STATUS_REG		0x40
101 #define SCB_INT_CLEAR_REG		0x44
102 #define SCB_INT_MASK_REG		0x48
103 #define SCB_CONTROL_REG			0x4c
104 #define SCB_TIME_TPL_REG		0x50
105 #define SCB_TIME_TPH_REG		0x54
106 #define SCB_TIME_TP2S_REG		0x58
107 #define SCB_TIME_TBI_REG		0x60
108 #define SCB_TIME_TSL_REG		0x64
109 #define SCB_TIME_TDL_REG		0x68
110 #define SCB_TIME_TSDL_REG		0x6c
111 #define SCB_TIME_TSDH_REG		0x70
112 #define SCB_READ_XADDR_REG		0x74
113 #define SCB_WRITE_XADDR_REG		0x78
114 #define SCB_WRITE_COUNT_REG		0x7c
115 #define SCB_CORE_REV_REG		0x80
116 #define SCB_TIME_TCKH_REG		0x84
117 #define SCB_TIME_TCKL_REG		0x88
118 #define SCB_FIFO_FLUSH_REG		0x8c
119 #define SCB_READ_FIFO_REG		0x94
120 #define SCB_CLEAR_REG			0x98
121 
122 /* SCB_CONTROL_REG bits */
123 
124 #define SCB_CONTROL_CLK_ENABLE		0x1e0
125 #define SCB_CONTROL_TRANSACTION_HALT	0x200
126 
127 #define FIFO_READ_FULL			BIT(0)
128 #define FIFO_READ_EMPTY			BIT(1)
129 #define FIFO_WRITE_FULL			BIT(2)
130 #define FIFO_WRITE_EMPTY		BIT(3)
131 
132 /* SCB_CLK_SET_REG bits */
133 #define SCB_FILT_DISABLE		BIT(31)
134 #define SCB_FILT_BYPASS			BIT(30)
135 #define SCB_FILT_INC_MASK		0x7f
136 #define SCB_FILT_INC_SHIFT		16
137 #define SCB_INC_MASK			0x7f
138 #define SCB_INC_SHIFT			8
139 
140 /* SCB_INT_*_REG bits */
141 
142 #define INT_BUS_INACTIVE		BIT(0)
143 #define INT_UNEXPECTED_START		BIT(1)
144 #define INT_SCLK_LOW_TIMEOUT		BIT(2)
145 #define INT_SDAT_LOW_TIMEOUT		BIT(3)
146 #define INT_WRITE_ACK_ERR		BIT(4)
147 #define INT_ADDR_ACK_ERR		BIT(5)
148 #define INT_FIFO_FULL			BIT(9)
149 #define INT_FIFO_FILLING		BIT(10)
150 #define INT_FIFO_EMPTY			BIT(11)
151 #define INT_FIFO_EMPTYING		BIT(12)
152 #define INT_TRANSACTION_DONE		BIT(15)
153 #define INT_SLAVE_EVENT			BIT(16)
154 #define INT_TIMING			BIT(18)
155 
156 #define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
157 #define INT_FIFO_EMPTY_EMPTYING	(INT_FIFO_EMPTY | INT_FIFO_EMPTYING)
158 
159 /* Level interrupts need clearing after handling instead of before */
160 #define INT_LEVEL			0x01e00
161 
162 /* Don't allow any interrupts while the clock may be off */
163 #define INT_ENABLE_MASK_INACTIVE	0x00000
164 
165 /* Interrupt masks for the different driver modes */
166 
167 #define INT_ENABLE_MASK_RAW		INT_TIMING
168 
169 #define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
170 					 INT_SLAVE_EVENT      | \
171 					 INT_ADDR_ACK_ERR     | \
172 					 INT_WRITE_ACK_ERR)
173 
174 #define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
175 					 INT_ADDR_ACK_ERR     | \
176 					 INT_WRITE_ACK_ERR    | \
177 					 INT_FIFO_FULL        | \
178 					 INT_FIFO_FILLING     | \
179 					 INT_FIFO_EMPTY       | \
180 					 INT_FIFO_EMPTYING)
181 
182 #define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
183 					 INT_ADDR_ACK_ERR     | \
184 					 INT_WRITE_ACK_ERR)
185 
186 /* SCB_STATUS_REG fields */
187 
188 #define LINESTAT_SCLK_LINE_STATUS	BIT(0)
189 #define LINESTAT_SCLK_EN		BIT(1)
190 #define LINESTAT_SDAT_LINE_STATUS	BIT(2)
191 #define LINESTAT_SDAT_EN		BIT(3)
192 #define LINESTAT_DET_START_STATUS	BIT(4)
193 #define LINESTAT_DET_STOP_STATUS	BIT(5)
194 #define LINESTAT_DET_ACK_STATUS		BIT(6)
195 #define LINESTAT_DET_NACK_STATUS	BIT(7)
196 #define LINESTAT_BUS_IDLE		BIT(8)
197 #define LINESTAT_T_DONE_STATUS		BIT(9)
198 #define LINESTAT_SCLK_OUT_STATUS	BIT(10)
199 #define LINESTAT_SDAT_OUT_STATUS	BIT(11)
200 #define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
201 #define LINESTAT_START_BIT_DET		BIT(13)
202 #define LINESTAT_STOP_BIT_DET		BIT(14)
203 #define LINESTAT_ACK_DET		BIT(15)
204 #define LINESTAT_NACK_DET		BIT(16)
205 #define LINESTAT_INPUT_HELD_V		BIT(17)
206 #define LINESTAT_ABORT_DET		BIT(18)
207 #define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208 #define LINESTAT_INPUT_DATA		0xff000000
209 #define LINESTAT_INPUT_DATA_SHIFT	24
210 
211 #define LINESTAT_CLEAR_SHIFT		13
212 #define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
213 
214 /* SCB_OVERRIDE_REG fields */
215 
216 #define OVERRIDE_SCLK_OVR		BIT(0)
217 #define OVERRIDE_SCLKEN_OVR		BIT(1)
218 #define OVERRIDE_SDAT_OVR		BIT(2)
219 #define OVERRIDE_SDATEN_OVR		BIT(3)
220 #define OVERRIDE_MASTER			BIT(9)
221 #define OVERRIDE_LINE_OVR_EN		BIT(10)
222 #define OVERRIDE_DIRECT			BIT(11)
223 #define OVERRIDE_CMD_SHIFT		4
224 #define OVERRIDE_CMD_MASK		0x1f
225 #define OVERRIDE_DATA_SHIFT		24
226 
227 #define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
228 					 OVERRIDE_SCLKEN_OVR)
229 #define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
230 					 OVERRIDE_SCLKEN_OVR | \
231 					 OVERRIDE_SCLK_OVR)
232 #define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
233 					 OVERRIDE_SDATEN_OVR)
234 #define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
235 					 OVERRIDE_SDATEN_OVR | \
236 					 OVERRIDE_SDAT_OVR)
237 
238 /* OVERRIDE_CMD values */
239 
240 #define CMD_PAUSE			0x00
241 #define CMD_GEN_DATA			0x01
242 #define CMD_GEN_START			0x02
243 #define CMD_GEN_STOP			0x03
244 #define CMD_GEN_ACK			0x04
245 #define CMD_GEN_NACK			0x05
246 #define CMD_RET_DATA			0x08
247 #define CMD_RET_ACK			0x09
248 
249 /* Fixed timing values */
250 
251 #define TIMEOUT_TBI			0x0
252 #define TIMEOUT_TSL			0xffff
253 #define TIMEOUT_TDL			0x0
254 
255 /* Transaction timeout */
256 
257 #define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
258 
259 /*
260  * Worst incs are 1 (innacurate) and 16*256 (irregular).
261  * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262  * in the middle of the valid range (0-127).
263  */
264 #define SCB_OPT_INC		64
265 
266 /* Setup the clock enable filtering for 25 ns */
267 #define SCB_FILT_GLITCH		25
268 
269 /*
270  * Bits to return from interrupt handler functions for different modes.
271  * This delays completion until we've finished with the registers, so that the
272  * function waiting for completion can safely disable the clock to save power.
273  */
274 #define ISR_COMPLETE_M		BIT(31)
275 #define ISR_FATAL_M		BIT(30)
276 #define ISR_WAITSTOP		BIT(29)
277 #define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
278 #define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279 #define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
280 
281 enum img_i2c_mode {
282 	MODE_INACTIVE,
283 	MODE_RAW,
284 	MODE_ATOMIC,
285 	MODE_AUTOMATIC,
286 	MODE_SEQUENCE,
287 	MODE_FATAL,
288 	MODE_WAITSTOP,
289 	MODE_SUSPEND,
290 };
291 
292 /* Timing parameters for i2c modes (in ns) */
293 struct img_i2c_timings {
294 	const char *name;
295 	unsigned int max_bitrate;
296 	unsigned int tckh, tckl, tsdh, tsdl;
297 	unsigned int tp2s, tpl, tph;
298 };
299 
300 /* The timings array must be ordered from slower to faster */
301 static struct img_i2c_timings timings[] = {
302 	/* Standard mode */
303 	{
304 		.name = "standard",
305 		.max_bitrate = 100000,
306 		.tckh = 4000,
307 		.tckl = 4700,
308 		.tsdh = 4700,
309 		.tsdl = 8700,
310 		.tp2s = 4700,
311 		.tpl = 4700,
312 		.tph = 4000,
313 	},
314 	/* Fast mode */
315 	{
316 		.name = "fast",
317 		.max_bitrate = 400000,
318 		.tckh = 600,
319 		.tckl = 1300,
320 		.tsdh = 600,
321 		.tsdl = 1200,
322 		.tp2s = 1300,
323 		.tpl = 600,
324 		.tph = 600,
325 	},
326 };
327 
328 /* Reset dance */
329 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
330 				  CMD_GEN_DATA, 0xff,
331 				  CMD_RET_ACK,
332 				  CMD_GEN_START,
333 				  CMD_GEN_STOP,
334 				  0 };
335 /* Just issue a stop (after an abort condition) */
336 static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
337 				  0 };
338 
339 /* We're interested in different interrupts depending on the mode */
340 static unsigned int img_i2c_int_enable_by_mode[] = {
341 	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
342 	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
343 	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
344 	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
345 	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
346 	[MODE_FATAL]     = 0,
347 	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
348 	[MODE_SUSPEND]   = 0,
349 };
350 
351 /* Atomic command names */
352 static const char * const img_i2c_atomic_cmd_names[] = {
353 	[CMD_PAUSE]	= "PAUSE",
354 	[CMD_GEN_DATA]	= "GEN_DATA",
355 	[CMD_GEN_START]	= "GEN_START",
356 	[CMD_GEN_STOP]	= "GEN_STOP",
357 	[CMD_GEN_ACK]	= "GEN_ACK",
358 	[CMD_GEN_NACK]	= "GEN_NACK",
359 	[CMD_RET_DATA]	= "RET_DATA",
360 	[CMD_RET_ACK]	= "RET_ACK",
361 };
362 
363 struct img_i2c {
364 	struct i2c_adapter adap;
365 
366 	void __iomem *base;
367 
368 	/*
369 	 * The scb core clock is used to get the input frequency, and to disable
370 	 * it after every set of transactions to save some power.
371 	 */
372 	struct clk *scb_clk, *sys_clk;
373 	unsigned int bitrate;
374 	bool need_wr_rd_fence;
375 
376 	/* state */
377 	struct completion msg_complete;
378 	spinlock_t lock;	/* lock before doing anything with the state */
379 	struct i2c_msg msg;
380 
381 	/* After the last transaction, wait for a stop bit */
382 	bool last_msg;
383 	int msg_status;
384 
385 	enum img_i2c_mode mode;
386 	u32 int_enable;		/* depends on mode */
387 	u32 line_status;	/* line status over command */
388 
389 	/*
390 	 * To avoid slave event interrupts in automatic mode, use a timer to
391 	 * poll the abort condition if we don't get an interrupt for too long.
392 	 */
393 	struct timer_list check_timer;
394 	bool t_halt;
395 
396 	/* atomic mode state */
397 	bool at_t_done;
398 	bool at_slave_event;
399 	int at_cur_cmd;
400 	u8 at_cur_data;
401 
402 	/* Sequence: either reset or stop. See img_i2c_sequence. */
403 	u8 *seq;
404 
405 	/* raw mode */
406 	unsigned int raw_timeout;
407 };
408 
img_i2c_writel(struct img_i2c * i2c,u32 offset,u32 value)409 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
410 {
411 	writel(value, i2c->base + offset);
412 }
413 
img_i2c_readl(struct img_i2c * i2c,u32 offset)414 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
415 {
416 	return readl(i2c->base + offset);
417 }
418 
419 /*
420  * The code to read from the master read fifo, and write to the master
421  * write fifo, checks a bit in an SCB register before every byte to
422  * ensure that the fifo is not full (write fifo) or empty (read fifo).
423  * Due to clock domain crossing inside the SCB block the updated value
424  * of this bit is only visible after 2 cycles.
425  *
426  * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
427  * revision register), and it's called after reading from or writing to the
428  * fifos to ensure that subsequent reads of the fifo status bits do not read
429  * stale values.
430  */
img_i2c_wr_rd_fence(struct img_i2c * i2c)431 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
432 {
433 	if (i2c->need_wr_rd_fence) {
434 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
435 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
436 	}
437 }
438 
img_i2c_switch_mode(struct img_i2c * i2c,enum img_i2c_mode mode)439 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
440 {
441 	i2c->mode = mode;
442 	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
443 	i2c->line_status = 0;
444 }
445 
img_i2c_raw_op(struct img_i2c * i2c)446 static void img_i2c_raw_op(struct img_i2c *i2c)
447 {
448 	i2c->raw_timeout = 0;
449 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
450 		OVERRIDE_SCLKEN_OVR |
451 		OVERRIDE_SDATEN_OVR |
452 		OVERRIDE_MASTER |
453 		OVERRIDE_LINE_OVR_EN |
454 		OVERRIDE_DIRECT |
455 		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
456 		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
457 }
458 
img_i2c_atomic_op_name(unsigned int cmd)459 static const char *img_i2c_atomic_op_name(unsigned int cmd)
460 {
461 	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
462 		return "UNKNOWN";
463 	return img_i2c_atomic_cmd_names[cmd];
464 }
465 
466 /* Send a single atomic mode command to the hardware */
img_i2c_atomic_op(struct img_i2c * i2c,int cmd,u8 data)467 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
468 {
469 	i2c->at_cur_cmd = cmd;
470 	i2c->at_cur_data = data;
471 
472 	/* work around lack of data setup time when generating data */
473 	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
474 		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
475 
476 		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
477 			/* hold the data line down for a moment */
478 			img_i2c_switch_mode(i2c, MODE_RAW);
479 			img_i2c_raw_op(i2c);
480 			return;
481 		}
482 	}
483 
484 	dev_dbg(i2c->adap.dev.parent,
485 		"atomic cmd=%s (%d) data=%#x\n",
486 		img_i2c_atomic_op_name(cmd), cmd, data);
487 	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
488 	i2c->at_slave_event = false;
489 	i2c->line_status = 0;
490 
491 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
492 		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
493 		OVERRIDE_MASTER |
494 		OVERRIDE_DIRECT |
495 		(data << OVERRIDE_DATA_SHIFT));
496 }
497 
498 /* Start a transaction in atomic mode */
img_i2c_atomic_start(struct img_i2c * i2c)499 static void img_i2c_atomic_start(struct img_i2c *i2c)
500 {
501 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
502 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
503 	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
504 }
505 
img_i2c_soft_reset(struct img_i2c * i2c)506 static void img_i2c_soft_reset(struct img_i2c *i2c)
507 {
508 	i2c->t_halt = false;
509 	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
510 	img_i2c_writel(i2c, SCB_CONTROL_REG,
511 		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
512 }
513 
514 /* enable or release transaction halt for control of repeated starts */
img_i2c_transaction_halt(struct img_i2c * i2c,bool t_halt)515 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
516 {
517 	u32 val;
518 
519 	if (i2c->t_halt == t_halt)
520 		return;
521 	i2c->t_halt = t_halt;
522 	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
523 	if (t_halt)
524 		val |= SCB_CONTROL_TRANSACTION_HALT;
525 	else
526 		val &= ~SCB_CONTROL_TRANSACTION_HALT;
527 	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
528 }
529 
530 /* Drain data from the FIFO into the buffer (automatic mode) */
img_i2c_read_fifo(struct img_i2c * i2c)531 static void img_i2c_read_fifo(struct img_i2c *i2c)
532 {
533 	while (i2c->msg.len) {
534 		u32 fifo_status;
535 		u8 data;
536 
537 		img_i2c_wr_rd_fence(i2c);
538 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
539 		if (fifo_status & FIFO_READ_EMPTY)
540 			break;
541 
542 		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
543 		*i2c->msg.buf = data;
544 
545 		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
546 		i2c->msg.len--;
547 		i2c->msg.buf++;
548 	}
549 }
550 
551 /* Fill the FIFO with data from the buffer (automatic mode) */
img_i2c_write_fifo(struct img_i2c * i2c)552 static void img_i2c_write_fifo(struct img_i2c *i2c)
553 {
554 	while (i2c->msg.len) {
555 		u32 fifo_status;
556 
557 		img_i2c_wr_rd_fence(i2c);
558 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
559 		if (fifo_status & FIFO_WRITE_FULL)
560 			break;
561 
562 		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
563 		i2c->msg.len--;
564 		i2c->msg.buf++;
565 	}
566 
567 	/* Disable fifo emptying interrupt if nothing more to write */
568 	if (!i2c->msg.len)
569 		i2c->int_enable &= ~INT_FIFO_EMPTYING;
570 }
571 
572 /* Start a read transaction in automatic mode */
img_i2c_read(struct img_i2c * i2c)573 static void img_i2c_read(struct img_i2c *i2c)
574 {
575 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
576 	if (!i2c->last_msg)
577 		i2c->int_enable |= INT_SLAVE_EVENT;
578 
579 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
580 	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
581 	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
582 
583 	img_i2c_transaction_halt(i2c, false);
584 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
585 }
586 
587 /* Start a write transaction in automatic mode */
img_i2c_write(struct img_i2c * i2c)588 static void img_i2c_write(struct img_i2c *i2c)
589 {
590 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
591 	if (!i2c->last_msg)
592 		i2c->int_enable |= INT_SLAVE_EVENT;
593 
594 	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
595 	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
596 
597 	img_i2c_transaction_halt(i2c, false);
598 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
599 	img_i2c_write_fifo(i2c);
600 
601 	/* img_i2c_write_fifo() may modify int_enable */
602 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
603 }
604 
605 /*
606  * Indicate that the transaction is complete. This is called from the
607  * ISR to wake up the waiting thread, after which the ISR must not
608  * access any more SCB registers.
609  */
img_i2c_complete_transaction(struct img_i2c * i2c,int status)610 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
611 {
612 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
613 	if (status) {
614 		i2c->msg_status = status;
615 		img_i2c_transaction_halt(i2c, false);
616 	}
617 	complete(&i2c->msg_complete);
618 }
619 
img_i2c_raw_atomic_delay_handler(struct img_i2c * i2c,u32 int_status,u32 line_status)620 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
621 					u32 int_status, u32 line_status)
622 {
623 	/* Stay in raw mode for this, so we don't just loop infinitely */
624 	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
625 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
626 	return 0;
627 }
628 
img_i2c_raw(struct img_i2c * i2c,u32 int_status,u32 line_status)629 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
630 				u32 line_status)
631 {
632 	if (int_status & INT_TIMING) {
633 		if (i2c->raw_timeout == 0)
634 			return img_i2c_raw_atomic_delay_handler(i2c,
635 				int_status, line_status);
636 		--i2c->raw_timeout;
637 	}
638 	return 0;
639 }
640 
img_i2c_sequence(struct img_i2c * i2c,u32 int_status)641 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
642 {
643 	static const unsigned int continue_bits[] = {
644 		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
645 		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
646 		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
647 		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
648 		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
649 	};
650 	int next_cmd = -1;
651 	u8 next_data = 0x00;
652 
653 	if (int_status & INT_SLAVE_EVENT)
654 		i2c->at_slave_event = true;
655 	if (int_status & INT_TRANSACTION_DONE)
656 		i2c->at_t_done = true;
657 
658 	if (!i2c->at_slave_event || !i2c->at_t_done)
659 		return 0;
660 
661 	/* wait if no continue bits are set */
662 	if (i2c->at_cur_cmd >= 0 &&
663 	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
664 		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
665 
666 		if (cont_bits) {
667 			cont_bits |= LINESTAT_ABORT_DET;
668 			if (!(i2c->line_status & cont_bits))
669 				return 0;
670 		}
671 	}
672 
673 	/* follow the sequence of commands in i2c->seq */
674 	next_cmd = *i2c->seq;
675 	/* stop on a nil */
676 	if (!next_cmd) {
677 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
678 		return ISR_COMPLETE(0);
679 	}
680 	/* when generating data, the next byte is the data */
681 	if (next_cmd == CMD_GEN_DATA) {
682 		++i2c->seq;
683 		next_data = *i2c->seq;
684 	}
685 	++i2c->seq;
686 	img_i2c_atomic_op(i2c, next_cmd, next_data);
687 
688 	return 0;
689 }
690 
img_i2c_reset_start(struct img_i2c * i2c)691 static void img_i2c_reset_start(struct img_i2c *i2c)
692 {
693 	/* Initiate the magic dance */
694 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
695 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
696 	i2c->seq = img_i2c_reset_seq;
697 	i2c->at_slave_event = true;
698 	i2c->at_t_done = true;
699 	i2c->at_cur_cmd = -1;
700 
701 	/* img_i2c_reset_seq isn't empty so the following won't fail */
702 	img_i2c_sequence(i2c, 0);
703 }
704 
img_i2c_stop_start(struct img_i2c * i2c)705 static void img_i2c_stop_start(struct img_i2c *i2c)
706 {
707 	/* Initiate a stop bit sequence */
708 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
709 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
710 	i2c->seq = img_i2c_stop_seq;
711 	i2c->at_slave_event = true;
712 	i2c->at_t_done = true;
713 	i2c->at_cur_cmd = -1;
714 
715 	/* img_i2c_stop_seq isn't empty so the following won't fail */
716 	img_i2c_sequence(i2c, 0);
717 }
718 
img_i2c_atomic(struct img_i2c * i2c,u32 int_status,u32 line_status)719 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
720 				   u32 int_status,
721 				   u32 line_status)
722 {
723 	int next_cmd = -1;
724 	u8 next_data = 0x00;
725 
726 	if (int_status & INT_SLAVE_EVENT)
727 		i2c->at_slave_event = true;
728 	if (int_status & INT_TRANSACTION_DONE)
729 		i2c->at_t_done = true;
730 
731 	if (!i2c->at_slave_event || !i2c->at_t_done)
732 		goto next_atomic_cmd;
733 	if (i2c->line_status & LINESTAT_ABORT_DET) {
734 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
735 		next_cmd = CMD_GEN_STOP;
736 		i2c->msg_status = -EIO;
737 		goto next_atomic_cmd;
738 	}
739 
740 	/* i2c->at_cur_cmd may have completed */
741 	switch (i2c->at_cur_cmd) {
742 	case CMD_GEN_START:
743 		next_cmd = CMD_GEN_DATA;
744 		next_data = (i2c->msg.addr << 1);
745 		if (i2c->msg.flags & I2C_M_RD)
746 			next_data |= 0x1;
747 		break;
748 	case CMD_GEN_DATA:
749 		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
750 			next_cmd = CMD_RET_ACK;
751 		break;
752 	case CMD_RET_ACK:
753 		if (i2c->line_status & LINESTAT_ACK_DET) {
754 			if (i2c->msg.len == 0) {
755 				next_cmd = CMD_GEN_STOP;
756 			} else if (i2c->msg.flags & I2C_M_RD) {
757 				next_cmd = CMD_RET_DATA;
758 			} else {
759 				next_cmd = CMD_GEN_DATA;
760 				next_data = *i2c->msg.buf;
761 				--i2c->msg.len;
762 				++i2c->msg.buf;
763 			}
764 		} else if (i2c->line_status & LINESTAT_NACK_DET) {
765 			i2c->msg_status = -EIO;
766 			next_cmd = CMD_GEN_STOP;
767 		}
768 		break;
769 	case CMD_RET_DATA:
770 		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
771 			*i2c->msg.buf = (i2c->line_status &
772 						LINESTAT_INPUT_DATA)
773 					>> LINESTAT_INPUT_DATA_SHIFT;
774 			--i2c->msg.len;
775 			++i2c->msg.buf;
776 			if (i2c->msg.len)
777 				next_cmd = CMD_GEN_ACK;
778 			else
779 				next_cmd = CMD_GEN_NACK;
780 		}
781 		break;
782 	case CMD_GEN_ACK:
783 		if (i2c->line_status & LINESTAT_ACK_DET) {
784 			next_cmd = CMD_RET_DATA;
785 		} else {
786 			i2c->msg_status = -EIO;
787 			next_cmd = CMD_GEN_STOP;
788 		}
789 		break;
790 	case CMD_GEN_NACK:
791 		next_cmd = CMD_GEN_STOP;
792 		break;
793 	case CMD_GEN_STOP:
794 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
795 		return ISR_COMPLETE(0);
796 	default:
797 		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
798 			i2c->at_cur_cmd);
799 		i2c->msg_status = -EIO;
800 		next_cmd = CMD_GEN_STOP;
801 		break;
802 	}
803 
804 next_atomic_cmd:
805 	if (next_cmd != -1) {
806 		/* don't actually stop unless we're the last transaction */
807 		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
808 						!i2c->last_msg)
809 			return ISR_COMPLETE(0);
810 		img_i2c_atomic_op(i2c, next_cmd, next_data);
811 	}
812 	return 0;
813 }
814 
815 /*
816  * Timer function to check if something has gone wrong in automatic mode (so we
817  * don't have to handle so many interrupts just to catch an exception).
818  */
img_i2c_check_timer(unsigned long arg)819 static void img_i2c_check_timer(unsigned long arg)
820 {
821 	struct img_i2c *i2c = (struct img_i2c *)arg;
822 	unsigned long flags;
823 	unsigned int line_status;
824 
825 	spin_lock_irqsave(&i2c->lock, flags);
826 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
827 
828 	/* check for an abort condition */
829 	if (line_status & LINESTAT_ABORT_DET) {
830 		dev_dbg(i2c->adap.dev.parent,
831 			"abort condition detected by check timer\n");
832 		/* enable slave event interrupt mask to trigger irq */
833 		img_i2c_writel(i2c, SCB_INT_MASK_REG,
834 			       i2c->int_enable | INT_SLAVE_EVENT);
835 	}
836 
837 	spin_unlock_irqrestore(&i2c->lock, flags);
838 }
839 
img_i2c_auto(struct img_i2c * i2c,unsigned int int_status,unsigned int line_status)840 static unsigned int img_i2c_auto(struct img_i2c *i2c,
841 				 unsigned int int_status,
842 				 unsigned int line_status)
843 {
844 	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
845 		return ISR_COMPLETE(EIO);
846 
847 	if (line_status & LINESTAT_ABORT_DET) {
848 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
849 		/* empty the read fifo */
850 		if ((i2c->msg.flags & I2C_M_RD) &&
851 		    (int_status & INT_FIFO_FULL_FILLING))
852 			img_i2c_read_fifo(i2c);
853 		/* use atomic mode and try to force a stop bit */
854 		i2c->msg_status = -EIO;
855 		img_i2c_stop_start(i2c);
856 		return 0;
857 	}
858 
859 	/* Enable transaction halt on start bit */
860 	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
861 		img_i2c_transaction_halt(i2c, true);
862 		/* we're no longer interested in the slave event */
863 		i2c->int_enable &= ~INT_SLAVE_EVENT;
864 	}
865 
866 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
867 
868 	if (i2c->msg.flags & I2C_M_RD) {
869 		if (int_status & INT_FIFO_FULL_FILLING) {
870 			img_i2c_read_fifo(i2c);
871 			if (i2c->msg.len == 0)
872 				return ISR_WAITSTOP;
873 		}
874 	} else {
875 		if (int_status & INT_FIFO_EMPTY_EMPTYING) {
876 			/*
877 			 * The write fifo empty indicates that we're in the
878 			 * last byte so it's safe to start a new write
879 			 * transaction without losing any bytes from the
880 			 * previous one.
881 			 * see 2.3.7 Repeated Start Transactions.
882 			 */
883 			if ((int_status & INT_FIFO_EMPTY) &&
884 			    i2c->msg.len == 0)
885 				return ISR_WAITSTOP;
886 			img_i2c_write_fifo(i2c);
887 		}
888 	}
889 
890 	return 0;
891 }
892 
img_i2c_isr(int irq,void * dev_id)893 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
894 {
895 	struct img_i2c *i2c = (struct img_i2c *)dev_id;
896 	u32 int_status, line_status;
897 	/* We handle transaction completion AFTER accessing registers */
898 	unsigned int hret;
899 
900 	/* Read interrupt status register. */
901 	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
902 	/* Clear detected interrupts. */
903 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
904 
905 	/*
906 	 * Read line status and clear it until it actually is clear.  We have
907 	 * to be careful not to lose any line status bits that get latched.
908 	 */
909 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
910 	if (line_status & LINESTAT_LATCHED) {
911 		img_i2c_writel(i2c, SCB_CLEAR_REG,
912 			      (line_status & LINESTAT_LATCHED)
913 				>> LINESTAT_CLEAR_SHIFT);
914 		img_i2c_wr_rd_fence(i2c);
915 	}
916 
917 	spin_lock(&i2c->lock);
918 
919 	/* Keep track of line status bits received */
920 	i2c->line_status &= ~LINESTAT_INPUT_DATA;
921 	i2c->line_status |= line_status;
922 
923 	/*
924 	 * Certain interrupts indicate that sclk low timeout is not
925 	 * a problem. If any of these are set, just continue.
926 	 */
927 	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
928 	    !(int_status & (INT_SLAVE_EVENT |
929 			    INT_FIFO_EMPTY |
930 			    INT_FIFO_FULL))) {
931 		dev_crit(i2c->adap.dev.parent,
932 			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
933 			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
934 			 i2c->msg.addr);
935 		hret = ISR_FATAL(EIO);
936 		goto out;
937 	}
938 
939 	if (i2c->mode == MODE_ATOMIC)
940 		hret = img_i2c_atomic(i2c, int_status, line_status);
941 	else if (i2c->mode == MODE_AUTOMATIC)
942 		hret = img_i2c_auto(i2c, int_status, line_status);
943 	else if (i2c->mode == MODE_SEQUENCE)
944 		hret = img_i2c_sequence(i2c, int_status);
945 	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
946 			 (line_status & LINESTAT_STOP_BIT_DET))
947 		hret = ISR_COMPLETE(0);
948 	else if (i2c->mode == MODE_RAW)
949 		hret = img_i2c_raw(i2c, int_status, line_status);
950 	else
951 		hret = 0;
952 
953 	/* Clear detected level interrupts. */
954 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
955 
956 out:
957 	if (hret & ISR_WAITSTOP) {
958 		/*
959 		 * Only wait for stop on last message.
960 		 * Also we may already have detected the stop bit.
961 		 */
962 		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
963 			hret = ISR_COMPLETE(0);
964 		else
965 			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
966 	}
967 
968 	/* now we've finished using regs, handle transaction completion */
969 	if (hret & ISR_COMPLETE_M) {
970 		int status = -(hret & ISR_STATUS_M);
971 
972 		img_i2c_complete_transaction(i2c, status);
973 		if (hret & ISR_FATAL_M)
974 			img_i2c_switch_mode(i2c, MODE_FATAL);
975 	}
976 
977 	/* Enable interrupts (int_enable may be altered by changing mode) */
978 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
979 
980 	spin_unlock(&i2c->lock);
981 
982 	return IRQ_HANDLED;
983 }
984 
985 /* Force a bus reset sequence and wait for it to complete */
img_i2c_reset_bus(struct img_i2c * i2c)986 static int img_i2c_reset_bus(struct img_i2c *i2c)
987 {
988 	unsigned long flags;
989 	unsigned long time_left;
990 
991 	spin_lock_irqsave(&i2c->lock, flags);
992 	reinit_completion(&i2c->msg_complete);
993 	img_i2c_reset_start(i2c);
994 	spin_unlock_irqrestore(&i2c->lock, flags);
995 
996 	time_left = wait_for_completion_timeout(&i2c->msg_complete,
997 					      IMG_I2C_TIMEOUT);
998 	if (time_left == 0)
999 		return -ETIMEDOUT;
1000 	return 0;
1001 }
1002 
img_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)1003 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1004 			int num)
1005 {
1006 	struct img_i2c *i2c = i2c_get_adapdata(adap);
1007 	bool atomic = false;
1008 	int i, ret;
1009 	unsigned long time_left;
1010 
1011 	if (i2c->mode == MODE_SUSPEND) {
1012 		WARN(1, "refusing to service transaction in suspended state\n");
1013 		return -EIO;
1014 	}
1015 
1016 	if (i2c->mode == MODE_FATAL)
1017 		return -EIO;
1018 
1019 	for (i = 0; i < num; i++) {
1020 		if (likely(msgs[i].len))
1021 			continue;
1022 		/*
1023 		 * 0 byte reads are not possible because the slave could try
1024 		 * and pull the data line low, preventing a stop bit.
1025 		 */
1026 		if (unlikely(msgs[i].flags & I2C_M_RD))
1027 			return -EIO;
1028 		/*
1029 		 * 0 byte writes are possible and used for probing, but we
1030 		 * cannot do them in automatic mode, so use atomic mode
1031 		 * instead.
1032 		 */
1033 		atomic = true;
1034 	}
1035 
1036 	ret = clk_prepare_enable(i2c->scb_clk);
1037 	if (ret)
1038 		return ret;
1039 
1040 	for (i = 0; i < num; i++) {
1041 		struct i2c_msg *msg = &msgs[i];
1042 		unsigned long flags;
1043 
1044 		spin_lock_irqsave(&i2c->lock, flags);
1045 
1046 		/*
1047 		 * Make a copy of the message struct. We mustn't modify the
1048 		 * original or we'll confuse drivers and i2c-dev.
1049 		 */
1050 		i2c->msg = *msg;
1051 		i2c->msg_status = 0;
1052 
1053 		/*
1054 		 * After the last message we must have waited for a stop bit.
1055 		 * Not waiting can cause problems when the clock is disabled
1056 		 * before the stop bit is sent, and the linux I2C interface
1057 		 * requires separate transfers not to joined with repeated
1058 		 * start.
1059 		 */
1060 		i2c->last_msg = (i == num - 1);
1061 		reinit_completion(&i2c->msg_complete);
1062 
1063 		/*
1064 		 * Clear line status and all interrupts before starting a
1065 		 * transfer, as we may have unserviced interrupts from
1066 		 * previous transfers that might be handled in the context
1067 		 * of the new transfer.
1068 		 */
1069 		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1070 		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1071 
1072 		if (atomic)
1073 			img_i2c_atomic_start(i2c);
1074 		else if (msg->flags & I2C_M_RD)
1075 			img_i2c_read(i2c);
1076 		else
1077 			img_i2c_write(i2c);
1078 		spin_unlock_irqrestore(&i2c->lock, flags);
1079 
1080 		time_left = wait_for_completion_timeout(&i2c->msg_complete,
1081 						      IMG_I2C_TIMEOUT);
1082 		del_timer_sync(&i2c->check_timer);
1083 
1084 		if (time_left == 0) {
1085 			dev_err(adap->dev.parent, "i2c transfer timed out\n");
1086 			i2c->msg_status = -ETIMEDOUT;
1087 			break;
1088 		}
1089 
1090 		if (i2c->msg_status)
1091 			break;
1092 	}
1093 
1094 	clk_disable_unprepare(i2c->scb_clk);
1095 
1096 	return i2c->msg_status ? i2c->msg_status : num;
1097 }
1098 
img_i2c_func(struct i2c_adapter * adap)1099 static u32 img_i2c_func(struct i2c_adapter *adap)
1100 {
1101 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1102 }
1103 
1104 static const struct i2c_algorithm img_i2c_algo = {
1105 	.master_xfer = img_i2c_xfer,
1106 	.functionality = img_i2c_func,
1107 };
1108 
img_i2c_init(struct img_i2c * i2c)1109 static int img_i2c_init(struct img_i2c *i2c)
1110 {
1111 	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1112 	unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
1113 	struct img_i2c_timings timing;
1114 	u32 rev;
1115 
1116 	ret = clk_prepare_enable(i2c->scb_clk);
1117 	if (ret)
1118 		return ret;
1119 
1120 	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1121 	if ((rev & 0x00ffffff) < 0x00020200) {
1122 		dev_info(i2c->adap.dev.parent,
1123 			 "Unknown hardware revision (%d.%d.%d.%d)\n",
1124 			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1125 			 (rev >> 8) & 0xff, rev & 0xff);
1126 		clk_disable_unprepare(i2c->scb_clk);
1127 		return -EINVAL;
1128 	}
1129 
1130 	/* Fencing enabled by default. */
1131 	i2c->need_wr_rd_fence = true;
1132 
1133 	/* Determine what mode we're in from the bitrate */
1134 	timing = timings[0];
1135 	for (i = 0; i < ARRAY_SIZE(timings); i++) {
1136 		if (i2c->bitrate <= timings[i].max_bitrate) {
1137 			timing = timings[i];
1138 			break;
1139 		}
1140 	}
1141 	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1142 		dev_warn(i2c->adap.dev.parent,
1143 			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1144 			 i2c->bitrate,
1145 			 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1146 		timing = timings[ARRAY_SIZE(timings) - 1];
1147 		i2c->bitrate = timing.max_bitrate;
1148 	}
1149 
1150 	bitrate_khz = i2c->bitrate / 1000;
1151 	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1152 
1153 	/* Find the prescale that would give us that inc (approx delay = 0) */
1154 	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1155 	prescale = clamp_t(unsigned int, prescale, 1, 8);
1156 	clk_khz /= prescale;
1157 
1158 	/* Setup the clock increment value */
1159 	inc = (256 * 16 * bitrate_khz) / clk_khz;
1160 
1161 	/*
1162 	 * The clock generation logic allows to filter glitches on the bus.
1163 	 * This filter is able to remove bus glitches shorter than 50ns.
1164 	 * If the clock enable rate is greater than 20 MHz, no filtering
1165 	 * is required, so we need to disable it.
1166 	 * If it's between the 20-40 MHz range, there's no need to divide
1167 	 * the clock to get a filter.
1168 	 */
1169 	if (clk_khz < 20000) {
1170 		filt = SCB_FILT_DISABLE;
1171 	} else if (clk_khz < 40000) {
1172 		filt = SCB_FILT_BYPASS;
1173 	} else {
1174 		/* Calculate filter clock */
1175 		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1176 
1177 		/* Scale up if needed */
1178 		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1179 			inc++;
1180 
1181 		if (filt > SCB_FILT_INC_MASK)
1182 			filt = SCB_FILT_INC_MASK;
1183 
1184 		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1185 	}
1186 	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1187 	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1188 
1189 	/* Obtain the clock period of the fx16 clock in ns */
1190 	clk_period = (256 * 1000000) / (clk_khz * inc);
1191 
1192 	/* Calculate the bitrate in terms of internal clock pulses */
1193 	int_bitrate = 1000000 / (bitrate_khz * clk_period);
1194 	if ((1000000 % (bitrate_khz * clk_period)) >=
1195 	    ((bitrate_khz * clk_period) / 2))
1196 		int_bitrate++;
1197 
1198 	/*
1199 	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1200 	 * values from there if they don't meet minimum timing requirements
1201 	 */
1202 	tckh = int_bitrate / 2;
1203 	tckl = int_bitrate - tckh;
1204 
1205 	/* Adjust TCKH and TCKL values */
1206 	data = DIV_ROUND_UP(timing.tckl, clk_period);
1207 
1208 	if (tckl < data) {
1209 		tckl = data;
1210 		tckh = int_bitrate - tckl;
1211 	}
1212 
1213 	if (tckh > 0)
1214 		--tckh;
1215 
1216 	if (tckl > 0)
1217 		--tckl;
1218 
1219 	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1220 	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1221 
1222 	/* Setup TSDH value */
1223 	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1224 
1225 	if (tsdh > 1)
1226 		data = tsdh - 1;
1227 	else
1228 		data = 0x01;
1229 	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1230 
1231 	/* This value is used later */
1232 	tsdh = data;
1233 
1234 	/* Setup TPL value */
1235 	data = timing.tpl / clk_period;
1236 	if (data > 0)
1237 		--data;
1238 	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1239 
1240 	/* Setup TPH value */
1241 	data = timing.tph / clk_period;
1242 	if (data > 0)
1243 		--data;
1244 	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1245 
1246 	/* Setup TSDL value to TPL + TSDH + 2 */
1247 	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1248 
1249 	/* Setup TP2S value */
1250 	data = timing.tp2s / clk_period;
1251 	if (data > 0)
1252 		--data;
1253 	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1254 
1255 	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1256 	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1257 	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1258 
1259 	/* Take module out of soft reset and enable clocks */
1260 	img_i2c_soft_reset(i2c);
1261 
1262 	/* Disable all interrupts */
1263 	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1264 
1265 	/* Clear all interrupts */
1266 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1267 
1268 	/* Clear the scb_line_status events */
1269 	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1270 
1271 	/* Enable interrupts */
1272 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1273 
1274 	/* Perform a synchronous sequence to reset the bus */
1275 	ret = img_i2c_reset_bus(i2c);
1276 
1277 	clk_disable_unprepare(i2c->scb_clk);
1278 
1279 	return ret;
1280 }
1281 
img_i2c_probe(struct platform_device * pdev)1282 static int img_i2c_probe(struct platform_device *pdev)
1283 {
1284 	struct device_node *node = pdev->dev.of_node;
1285 	struct img_i2c *i2c;
1286 	struct resource *res;
1287 	int irq, ret;
1288 	u32 val;
1289 
1290 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1291 	if (!i2c)
1292 		return -ENOMEM;
1293 
1294 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1295 	i2c->base = devm_ioremap_resource(&pdev->dev, res);
1296 	if (IS_ERR(i2c->base))
1297 		return PTR_ERR(i2c->base);
1298 
1299 	irq = platform_get_irq(pdev, 0);
1300 	if (irq < 0) {
1301 		dev_err(&pdev->dev, "can't get irq number\n");
1302 		return irq;
1303 	}
1304 
1305 	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1306 	if (IS_ERR(i2c->sys_clk)) {
1307 		dev_err(&pdev->dev, "can't get system clock\n");
1308 		return PTR_ERR(i2c->sys_clk);
1309 	}
1310 
1311 	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1312 	if (IS_ERR(i2c->scb_clk)) {
1313 		dev_err(&pdev->dev, "can't get core clock\n");
1314 		return PTR_ERR(i2c->scb_clk);
1315 	}
1316 
1317 	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1318 			       pdev->name, i2c);
1319 	if (ret) {
1320 		dev_err(&pdev->dev, "can't request irq %d\n", irq);
1321 		return ret;
1322 	}
1323 
1324 	/* Set up the exception check timer */
1325 	init_timer(&i2c->check_timer);
1326 	i2c->check_timer.function = img_i2c_check_timer;
1327 	i2c->check_timer.data = (unsigned long)i2c;
1328 
1329 	i2c->bitrate = timings[0].max_bitrate;
1330 	if (!of_property_read_u32(node, "clock-frequency", &val))
1331 		i2c->bitrate = val;
1332 
1333 	i2c_set_adapdata(&i2c->adap, i2c);
1334 	i2c->adap.dev.parent = &pdev->dev;
1335 	i2c->adap.dev.of_node = node;
1336 	i2c->adap.owner = THIS_MODULE;
1337 	i2c->adap.algo = &img_i2c_algo;
1338 	i2c->adap.retries = 5;
1339 	i2c->adap.nr = pdev->id;
1340 	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1341 
1342 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
1343 	spin_lock_init(&i2c->lock);
1344 	init_completion(&i2c->msg_complete);
1345 
1346 	platform_set_drvdata(pdev, i2c);
1347 
1348 	ret = clk_prepare_enable(i2c->sys_clk);
1349 	if (ret)
1350 		return ret;
1351 
1352 	ret = img_i2c_init(i2c);
1353 	if (ret)
1354 		goto disable_clk;
1355 
1356 	ret = i2c_add_numbered_adapter(&i2c->adap);
1357 	if (ret < 0) {
1358 		dev_err(&pdev->dev, "failed to add adapter\n");
1359 		goto disable_clk;
1360 	}
1361 
1362 	return 0;
1363 
1364 disable_clk:
1365 	clk_disable_unprepare(i2c->sys_clk);
1366 	return ret;
1367 }
1368 
img_i2c_remove(struct platform_device * dev)1369 static int img_i2c_remove(struct platform_device *dev)
1370 {
1371 	struct img_i2c *i2c = platform_get_drvdata(dev);
1372 
1373 	i2c_del_adapter(&i2c->adap);
1374 	clk_disable_unprepare(i2c->sys_clk);
1375 
1376 	return 0;
1377 }
1378 
1379 #ifdef CONFIG_PM_SLEEP
img_i2c_suspend(struct device * dev)1380 static int img_i2c_suspend(struct device *dev)
1381 {
1382 	struct img_i2c *i2c = dev_get_drvdata(dev);
1383 
1384 	img_i2c_switch_mode(i2c, MODE_SUSPEND);
1385 
1386 	clk_disable_unprepare(i2c->sys_clk);
1387 
1388 	return 0;
1389 }
1390 
img_i2c_resume(struct device * dev)1391 static int img_i2c_resume(struct device *dev)
1392 {
1393 	struct img_i2c *i2c = dev_get_drvdata(dev);
1394 	int ret;
1395 
1396 	ret = clk_prepare_enable(i2c->sys_clk);
1397 	if (ret)
1398 		return ret;
1399 
1400 	img_i2c_init(i2c);
1401 
1402 	return 0;
1403 }
1404 #endif /* CONFIG_PM_SLEEP */
1405 
1406 static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
1407 
1408 static const struct of_device_id img_scb_i2c_match[] = {
1409 	{ .compatible = "img,scb-i2c" },
1410 	{ }
1411 };
1412 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1413 
1414 static struct platform_driver img_scb_i2c_driver = {
1415 	.driver = {
1416 		.name		= "img-i2c-scb",
1417 		.of_match_table	= img_scb_i2c_match,
1418 		.pm		= &img_i2c_pm,
1419 	},
1420 	.probe = img_i2c_probe,
1421 	.remove = img_i2c_remove,
1422 };
1423 module_platform_driver(img_scb_i2c_driver);
1424 
1425 MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1426 MODULE_DESCRIPTION("IMG host I2C driver");
1427 MODULE_LICENSE("GPL v2");
1428