1 /*
2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
3 *
4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * There are three ways that this I2C controller can be driven:
11 *
12 * - Raw control of the SDA and SCK signals.
13 *
14 * This corresponds to MODE_RAW, which takes control of the signals
15 * directly for a certain number of clock cycles (the INT_TIMING
16 * interrupt can be used for timing).
17 *
18 * - Atomic commands. A low level I2C symbol (such as generate
19 * start/stop/ack/nack bit, generate byte, receive byte, and receive
20 * ACK) is given to the hardware, with detection of completion by bits
21 * in the LINESTAT register.
22 *
23 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
24 * state machine in the interrupt handler to compose/react to I2C
25 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
26 * which emits a simple fixed sequence of atomic mode commands.
27 *
28 * Due to software control, the use of atomic commands usually results
29 * in suboptimal use of the bus, with gaps between the I2C symbols while
30 * the driver decides what to do next.
31 *
32 * - Automatic mode. A bus address, and whether to read/write is
33 * specified, and the hardware takes care of the I2C state machine,
34 * using a FIFO to send/receive bytes of data to an I2C slave. The
35 * driver just has to keep the FIFO drained or filled in response to the
36 * appropriate FIFO interrupts.
37 *
38 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39 * with control of repeated start bits between I2C messages.
40 *
41 * Use of automatic mode and the FIFO can make much more efficient use
42 * of the bus compared to individual atomic commands, with potentially
43 * no wasted time between I2C symbols or I2C messages.
44 *
45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
48 * started by the writing of data into the FIFO.
49 *
50 * The other modes are used in specific circumstances where MODE_ATOMIC and
51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53 * it is in a sane state.
54 *
55 * Notice that the driver implements a timer-based timeout mechanism.
56 * The reason for this mechanism is to reduce the number of interrupts
57 * received in automatic mode.
58 *
59 * The driver would get a slave event and transaction done interrupts for
60 * each atomic mode command that gets completed. However, these events are
61 * not needed in automatic mode, becase those atomic mode commands are
62 * managed automatically by the hardware.
63 *
64 * In practice, normal I2C transactions will be complete well before you
65 * get the timer interrupt, as the timer is re-scheduled during FIFO
66 * maintenance and disabled after the transaction is complete.
67 *
68 * In this way normal automatic mode operation isn't impacted by
69 * unnecessary interrupts, but the exceptional abort condition can still be
70 * detected (with a slight delay).
71 */
72
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
80 #include <linux/io.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/slab.h>
86 #include <linux/timer.h>
87
88 /* Register offsets */
89
90 #define SCB_STATUS_REG 0x00
91 #define SCB_OVERRIDE_REG 0x04
92 #define SCB_READ_ADDR_REG 0x08
93 #define SCB_READ_COUNT_REG 0x0c
94 #define SCB_WRITE_ADDR_REG 0x10
95 #define SCB_READ_DATA_REG 0x14
96 #define SCB_WRITE_DATA_REG 0x18
97 #define SCB_FIFO_STATUS_REG 0x1c
98 #define SCB_CONTROL_SOFT_RESET 0x1f
99 #define SCB_CLK_SET_REG 0x3c
100 #define SCB_INT_STATUS_REG 0x40
101 #define SCB_INT_CLEAR_REG 0x44
102 #define SCB_INT_MASK_REG 0x48
103 #define SCB_CONTROL_REG 0x4c
104 #define SCB_TIME_TPL_REG 0x50
105 #define SCB_TIME_TPH_REG 0x54
106 #define SCB_TIME_TP2S_REG 0x58
107 #define SCB_TIME_TBI_REG 0x60
108 #define SCB_TIME_TSL_REG 0x64
109 #define SCB_TIME_TDL_REG 0x68
110 #define SCB_TIME_TSDL_REG 0x6c
111 #define SCB_TIME_TSDH_REG 0x70
112 #define SCB_READ_XADDR_REG 0x74
113 #define SCB_WRITE_XADDR_REG 0x78
114 #define SCB_WRITE_COUNT_REG 0x7c
115 #define SCB_CORE_REV_REG 0x80
116 #define SCB_TIME_TCKH_REG 0x84
117 #define SCB_TIME_TCKL_REG 0x88
118 #define SCB_FIFO_FLUSH_REG 0x8c
119 #define SCB_READ_FIFO_REG 0x94
120 #define SCB_CLEAR_REG 0x98
121
122 /* SCB_CONTROL_REG bits */
123
124 #define SCB_CONTROL_CLK_ENABLE 0x1e0
125 #define SCB_CONTROL_TRANSACTION_HALT 0x200
126
127 #define FIFO_READ_FULL BIT(0)
128 #define FIFO_READ_EMPTY BIT(1)
129 #define FIFO_WRITE_FULL BIT(2)
130 #define FIFO_WRITE_EMPTY BIT(3)
131
132 /* SCB_CLK_SET_REG bits */
133 #define SCB_FILT_DISABLE BIT(31)
134 #define SCB_FILT_BYPASS BIT(30)
135 #define SCB_FILT_INC_MASK 0x7f
136 #define SCB_FILT_INC_SHIFT 16
137 #define SCB_INC_MASK 0x7f
138 #define SCB_INC_SHIFT 8
139
140 /* SCB_INT_*_REG bits */
141
142 #define INT_BUS_INACTIVE BIT(0)
143 #define INT_UNEXPECTED_START BIT(1)
144 #define INT_SCLK_LOW_TIMEOUT BIT(2)
145 #define INT_SDAT_LOW_TIMEOUT BIT(3)
146 #define INT_WRITE_ACK_ERR BIT(4)
147 #define INT_ADDR_ACK_ERR BIT(5)
148 #define INT_FIFO_FULL BIT(9)
149 #define INT_FIFO_FILLING BIT(10)
150 #define INT_FIFO_EMPTY BIT(11)
151 #define INT_FIFO_EMPTYING BIT(12)
152 #define INT_TRANSACTION_DONE BIT(15)
153 #define INT_SLAVE_EVENT BIT(16)
154 #define INT_TIMING BIT(18)
155
156 #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
157 #define INT_FIFO_EMPTY_EMPTYING (INT_FIFO_EMPTY | INT_FIFO_EMPTYING)
158
159 /* Level interrupts need clearing after handling instead of before */
160 #define INT_LEVEL 0x01e00
161
162 /* Don't allow any interrupts while the clock may be off */
163 #define INT_ENABLE_MASK_INACTIVE 0x00000
164
165 /* Interrupt masks for the different driver modes */
166
167 #define INT_ENABLE_MASK_RAW INT_TIMING
168
169 #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
170 INT_SLAVE_EVENT | \
171 INT_ADDR_ACK_ERR | \
172 INT_WRITE_ACK_ERR)
173
174 #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
175 INT_ADDR_ACK_ERR | \
176 INT_WRITE_ACK_ERR | \
177 INT_FIFO_FULL | \
178 INT_FIFO_FILLING | \
179 INT_FIFO_EMPTY | \
180 INT_FIFO_EMPTYING)
181
182 #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
183 INT_ADDR_ACK_ERR | \
184 INT_WRITE_ACK_ERR)
185
186 /* SCB_STATUS_REG fields */
187
188 #define LINESTAT_SCLK_LINE_STATUS BIT(0)
189 #define LINESTAT_SCLK_EN BIT(1)
190 #define LINESTAT_SDAT_LINE_STATUS BIT(2)
191 #define LINESTAT_SDAT_EN BIT(3)
192 #define LINESTAT_DET_START_STATUS BIT(4)
193 #define LINESTAT_DET_STOP_STATUS BIT(5)
194 #define LINESTAT_DET_ACK_STATUS BIT(6)
195 #define LINESTAT_DET_NACK_STATUS BIT(7)
196 #define LINESTAT_BUS_IDLE BIT(8)
197 #define LINESTAT_T_DONE_STATUS BIT(9)
198 #define LINESTAT_SCLK_OUT_STATUS BIT(10)
199 #define LINESTAT_SDAT_OUT_STATUS BIT(11)
200 #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
201 #define LINESTAT_START_BIT_DET BIT(13)
202 #define LINESTAT_STOP_BIT_DET BIT(14)
203 #define LINESTAT_ACK_DET BIT(15)
204 #define LINESTAT_NACK_DET BIT(16)
205 #define LINESTAT_INPUT_HELD_V BIT(17)
206 #define LINESTAT_ABORT_DET BIT(18)
207 #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208 #define LINESTAT_INPUT_DATA 0xff000000
209 #define LINESTAT_INPUT_DATA_SHIFT 24
210
211 #define LINESTAT_CLEAR_SHIFT 13
212 #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
213
214 /* SCB_OVERRIDE_REG fields */
215
216 #define OVERRIDE_SCLK_OVR BIT(0)
217 #define OVERRIDE_SCLKEN_OVR BIT(1)
218 #define OVERRIDE_SDAT_OVR BIT(2)
219 #define OVERRIDE_SDATEN_OVR BIT(3)
220 #define OVERRIDE_MASTER BIT(9)
221 #define OVERRIDE_LINE_OVR_EN BIT(10)
222 #define OVERRIDE_DIRECT BIT(11)
223 #define OVERRIDE_CMD_SHIFT 4
224 #define OVERRIDE_CMD_MASK 0x1f
225 #define OVERRIDE_DATA_SHIFT 24
226
227 #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
228 OVERRIDE_SCLKEN_OVR)
229 #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
230 OVERRIDE_SCLKEN_OVR | \
231 OVERRIDE_SCLK_OVR)
232 #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
233 OVERRIDE_SDATEN_OVR)
234 #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
235 OVERRIDE_SDATEN_OVR | \
236 OVERRIDE_SDAT_OVR)
237
238 /* OVERRIDE_CMD values */
239
240 #define CMD_PAUSE 0x00
241 #define CMD_GEN_DATA 0x01
242 #define CMD_GEN_START 0x02
243 #define CMD_GEN_STOP 0x03
244 #define CMD_GEN_ACK 0x04
245 #define CMD_GEN_NACK 0x05
246 #define CMD_RET_DATA 0x08
247 #define CMD_RET_ACK 0x09
248
249 /* Fixed timing values */
250
251 #define TIMEOUT_TBI 0x0
252 #define TIMEOUT_TSL 0xffff
253 #define TIMEOUT_TDL 0x0
254
255 /* Transaction timeout */
256
257 #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
258
259 /*
260 * Worst incs are 1 (innacurate) and 16*256 (irregular).
261 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262 * in the middle of the valid range (0-127).
263 */
264 #define SCB_OPT_INC 64
265
266 /* Setup the clock enable filtering for 25 ns */
267 #define SCB_FILT_GLITCH 25
268
269 /*
270 * Bits to return from interrupt handler functions for different modes.
271 * This delays completion until we've finished with the registers, so that the
272 * function waiting for completion can safely disable the clock to save power.
273 */
274 #define ISR_COMPLETE_M BIT(31)
275 #define ISR_FATAL_M BIT(30)
276 #define ISR_WAITSTOP BIT(29)
277 #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
278 #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279 #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
280
281 enum img_i2c_mode {
282 MODE_INACTIVE,
283 MODE_RAW,
284 MODE_ATOMIC,
285 MODE_AUTOMATIC,
286 MODE_SEQUENCE,
287 MODE_FATAL,
288 MODE_WAITSTOP,
289 MODE_SUSPEND,
290 };
291
292 /* Timing parameters for i2c modes (in ns) */
293 struct img_i2c_timings {
294 const char *name;
295 unsigned int max_bitrate;
296 unsigned int tckh, tckl, tsdh, tsdl;
297 unsigned int tp2s, tpl, tph;
298 };
299
300 /* The timings array must be ordered from slower to faster */
301 static struct img_i2c_timings timings[] = {
302 /* Standard mode */
303 {
304 .name = "standard",
305 .max_bitrate = 100000,
306 .tckh = 4000,
307 .tckl = 4700,
308 .tsdh = 4700,
309 .tsdl = 8700,
310 .tp2s = 4700,
311 .tpl = 4700,
312 .tph = 4000,
313 },
314 /* Fast mode */
315 {
316 .name = "fast",
317 .max_bitrate = 400000,
318 .tckh = 600,
319 .tckl = 1300,
320 .tsdh = 600,
321 .tsdl = 1200,
322 .tp2s = 1300,
323 .tpl = 600,
324 .tph = 600,
325 },
326 };
327
328 /* Reset dance */
329 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
330 CMD_GEN_DATA, 0xff,
331 CMD_RET_ACK,
332 CMD_GEN_START,
333 CMD_GEN_STOP,
334 0 };
335 /* Just issue a stop (after an abort condition) */
336 static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP,
337 0 };
338
339 /* We're interested in different interrupts depending on the mode */
340 static unsigned int img_i2c_int_enable_by_mode[] = {
341 [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE,
342 [MODE_RAW] = INT_ENABLE_MASK_RAW,
343 [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC,
344 [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
345 [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC,
346 [MODE_FATAL] = 0,
347 [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP,
348 [MODE_SUSPEND] = 0,
349 };
350
351 /* Atomic command names */
352 static const char * const img_i2c_atomic_cmd_names[] = {
353 [CMD_PAUSE] = "PAUSE",
354 [CMD_GEN_DATA] = "GEN_DATA",
355 [CMD_GEN_START] = "GEN_START",
356 [CMD_GEN_STOP] = "GEN_STOP",
357 [CMD_GEN_ACK] = "GEN_ACK",
358 [CMD_GEN_NACK] = "GEN_NACK",
359 [CMD_RET_DATA] = "RET_DATA",
360 [CMD_RET_ACK] = "RET_ACK",
361 };
362
363 struct img_i2c {
364 struct i2c_adapter adap;
365
366 void __iomem *base;
367
368 /*
369 * The scb core clock is used to get the input frequency, and to disable
370 * it after every set of transactions to save some power.
371 */
372 struct clk *scb_clk, *sys_clk;
373 unsigned int bitrate;
374 bool need_wr_rd_fence;
375
376 /* state */
377 struct completion msg_complete;
378 spinlock_t lock; /* lock before doing anything with the state */
379 struct i2c_msg msg;
380
381 /* After the last transaction, wait for a stop bit */
382 bool last_msg;
383 int msg_status;
384
385 enum img_i2c_mode mode;
386 u32 int_enable; /* depends on mode */
387 u32 line_status; /* line status over command */
388
389 /*
390 * To avoid slave event interrupts in automatic mode, use a timer to
391 * poll the abort condition if we don't get an interrupt for too long.
392 */
393 struct timer_list check_timer;
394 bool t_halt;
395
396 /* atomic mode state */
397 bool at_t_done;
398 bool at_slave_event;
399 int at_cur_cmd;
400 u8 at_cur_data;
401
402 /* Sequence: either reset or stop. See img_i2c_sequence. */
403 u8 *seq;
404
405 /* raw mode */
406 unsigned int raw_timeout;
407 };
408
img_i2c_writel(struct img_i2c * i2c,u32 offset,u32 value)409 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
410 {
411 writel(value, i2c->base + offset);
412 }
413
img_i2c_readl(struct img_i2c * i2c,u32 offset)414 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
415 {
416 return readl(i2c->base + offset);
417 }
418
419 /*
420 * The code to read from the master read fifo, and write to the master
421 * write fifo, checks a bit in an SCB register before every byte to
422 * ensure that the fifo is not full (write fifo) or empty (read fifo).
423 * Due to clock domain crossing inside the SCB block the updated value
424 * of this bit is only visible after 2 cycles.
425 *
426 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
427 * revision register), and it's called after reading from or writing to the
428 * fifos to ensure that subsequent reads of the fifo status bits do not read
429 * stale values.
430 */
img_i2c_wr_rd_fence(struct img_i2c * i2c)431 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
432 {
433 if (i2c->need_wr_rd_fence) {
434 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
435 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
436 }
437 }
438
img_i2c_switch_mode(struct img_i2c * i2c,enum img_i2c_mode mode)439 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
440 {
441 i2c->mode = mode;
442 i2c->int_enable = img_i2c_int_enable_by_mode[mode];
443 i2c->line_status = 0;
444 }
445
img_i2c_raw_op(struct img_i2c * i2c)446 static void img_i2c_raw_op(struct img_i2c *i2c)
447 {
448 i2c->raw_timeout = 0;
449 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
450 OVERRIDE_SCLKEN_OVR |
451 OVERRIDE_SDATEN_OVR |
452 OVERRIDE_MASTER |
453 OVERRIDE_LINE_OVR_EN |
454 OVERRIDE_DIRECT |
455 ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
456 (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
457 }
458
img_i2c_atomic_op_name(unsigned int cmd)459 static const char *img_i2c_atomic_op_name(unsigned int cmd)
460 {
461 if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
462 return "UNKNOWN";
463 return img_i2c_atomic_cmd_names[cmd];
464 }
465
466 /* Send a single atomic mode command to the hardware */
img_i2c_atomic_op(struct img_i2c * i2c,int cmd,u8 data)467 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
468 {
469 i2c->at_cur_cmd = cmd;
470 i2c->at_cur_data = data;
471
472 /* work around lack of data setup time when generating data */
473 if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
474 u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
475
476 if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
477 /* hold the data line down for a moment */
478 img_i2c_switch_mode(i2c, MODE_RAW);
479 img_i2c_raw_op(i2c);
480 return;
481 }
482 }
483
484 dev_dbg(i2c->adap.dev.parent,
485 "atomic cmd=%s (%d) data=%#x\n",
486 img_i2c_atomic_op_name(cmd), cmd, data);
487 i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
488 i2c->at_slave_event = false;
489 i2c->line_status = 0;
490
491 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
492 ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
493 OVERRIDE_MASTER |
494 OVERRIDE_DIRECT |
495 (data << OVERRIDE_DATA_SHIFT));
496 }
497
498 /* Start a transaction in atomic mode */
img_i2c_atomic_start(struct img_i2c * i2c)499 static void img_i2c_atomic_start(struct img_i2c *i2c)
500 {
501 img_i2c_switch_mode(i2c, MODE_ATOMIC);
502 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
503 img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
504 }
505
img_i2c_soft_reset(struct img_i2c * i2c)506 static void img_i2c_soft_reset(struct img_i2c *i2c)
507 {
508 i2c->t_halt = false;
509 img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
510 img_i2c_writel(i2c, SCB_CONTROL_REG,
511 SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
512 }
513
514 /* enable or release transaction halt for control of repeated starts */
img_i2c_transaction_halt(struct img_i2c * i2c,bool t_halt)515 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
516 {
517 u32 val;
518
519 if (i2c->t_halt == t_halt)
520 return;
521 i2c->t_halt = t_halt;
522 val = img_i2c_readl(i2c, SCB_CONTROL_REG);
523 if (t_halt)
524 val |= SCB_CONTROL_TRANSACTION_HALT;
525 else
526 val &= ~SCB_CONTROL_TRANSACTION_HALT;
527 img_i2c_writel(i2c, SCB_CONTROL_REG, val);
528 }
529
530 /* Drain data from the FIFO into the buffer (automatic mode) */
img_i2c_read_fifo(struct img_i2c * i2c)531 static void img_i2c_read_fifo(struct img_i2c *i2c)
532 {
533 while (i2c->msg.len) {
534 u32 fifo_status;
535 u8 data;
536
537 img_i2c_wr_rd_fence(i2c);
538 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
539 if (fifo_status & FIFO_READ_EMPTY)
540 break;
541
542 data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
543 *i2c->msg.buf = data;
544
545 img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
546 i2c->msg.len--;
547 i2c->msg.buf++;
548 }
549 }
550
551 /* Fill the FIFO with data from the buffer (automatic mode) */
img_i2c_write_fifo(struct img_i2c * i2c)552 static void img_i2c_write_fifo(struct img_i2c *i2c)
553 {
554 while (i2c->msg.len) {
555 u32 fifo_status;
556
557 img_i2c_wr_rd_fence(i2c);
558 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
559 if (fifo_status & FIFO_WRITE_FULL)
560 break;
561
562 img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
563 i2c->msg.len--;
564 i2c->msg.buf++;
565 }
566
567 /* Disable fifo emptying interrupt if nothing more to write */
568 if (!i2c->msg.len)
569 i2c->int_enable &= ~INT_FIFO_EMPTYING;
570 }
571
572 /* Start a read transaction in automatic mode */
img_i2c_read(struct img_i2c * i2c)573 static void img_i2c_read(struct img_i2c *i2c)
574 {
575 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
576 if (!i2c->last_msg)
577 i2c->int_enable |= INT_SLAVE_EVENT;
578
579 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
580 img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
581 img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
582
583 img_i2c_transaction_halt(i2c, false);
584 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
585 }
586
587 /* Start a write transaction in automatic mode */
img_i2c_write(struct img_i2c * i2c)588 static void img_i2c_write(struct img_i2c *i2c)
589 {
590 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
591 if (!i2c->last_msg)
592 i2c->int_enable |= INT_SLAVE_EVENT;
593
594 img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
595 img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
596
597 img_i2c_transaction_halt(i2c, false);
598 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
599 img_i2c_write_fifo(i2c);
600
601 /* img_i2c_write_fifo() may modify int_enable */
602 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
603 }
604
605 /*
606 * Indicate that the transaction is complete. This is called from the
607 * ISR to wake up the waiting thread, after which the ISR must not
608 * access any more SCB registers.
609 */
img_i2c_complete_transaction(struct img_i2c * i2c,int status)610 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
611 {
612 img_i2c_switch_mode(i2c, MODE_INACTIVE);
613 if (status) {
614 i2c->msg_status = status;
615 img_i2c_transaction_halt(i2c, false);
616 }
617 complete(&i2c->msg_complete);
618 }
619
img_i2c_raw_atomic_delay_handler(struct img_i2c * i2c,u32 int_status,u32 line_status)620 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
621 u32 int_status, u32 line_status)
622 {
623 /* Stay in raw mode for this, so we don't just loop infinitely */
624 img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
625 img_i2c_switch_mode(i2c, MODE_ATOMIC);
626 return 0;
627 }
628
img_i2c_raw(struct img_i2c * i2c,u32 int_status,u32 line_status)629 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
630 u32 line_status)
631 {
632 if (int_status & INT_TIMING) {
633 if (i2c->raw_timeout == 0)
634 return img_i2c_raw_atomic_delay_handler(i2c,
635 int_status, line_status);
636 --i2c->raw_timeout;
637 }
638 return 0;
639 }
640
img_i2c_sequence(struct img_i2c * i2c,u32 int_status)641 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
642 {
643 static const unsigned int continue_bits[] = {
644 [CMD_GEN_START] = LINESTAT_START_BIT_DET,
645 [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V,
646 [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
647 [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V,
648 [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET,
649 };
650 int next_cmd = -1;
651 u8 next_data = 0x00;
652
653 if (int_status & INT_SLAVE_EVENT)
654 i2c->at_slave_event = true;
655 if (int_status & INT_TRANSACTION_DONE)
656 i2c->at_t_done = true;
657
658 if (!i2c->at_slave_event || !i2c->at_t_done)
659 return 0;
660
661 /* wait if no continue bits are set */
662 if (i2c->at_cur_cmd >= 0 &&
663 i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
664 unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
665
666 if (cont_bits) {
667 cont_bits |= LINESTAT_ABORT_DET;
668 if (!(i2c->line_status & cont_bits))
669 return 0;
670 }
671 }
672
673 /* follow the sequence of commands in i2c->seq */
674 next_cmd = *i2c->seq;
675 /* stop on a nil */
676 if (!next_cmd) {
677 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
678 return ISR_COMPLETE(0);
679 }
680 /* when generating data, the next byte is the data */
681 if (next_cmd == CMD_GEN_DATA) {
682 ++i2c->seq;
683 next_data = *i2c->seq;
684 }
685 ++i2c->seq;
686 img_i2c_atomic_op(i2c, next_cmd, next_data);
687
688 return 0;
689 }
690
img_i2c_reset_start(struct img_i2c * i2c)691 static void img_i2c_reset_start(struct img_i2c *i2c)
692 {
693 /* Initiate the magic dance */
694 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
695 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
696 i2c->seq = img_i2c_reset_seq;
697 i2c->at_slave_event = true;
698 i2c->at_t_done = true;
699 i2c->at_cur_cmd = -1;
700
701 /* img_i2c_reset_seq isn't empty so the following won't fail */
702 img_i2c_sequence(i2c, 0);
703 }
704
img_i2c_stop_start(struct img_i2c * i2c)705 static void img_i2c_stop_start(struct img_i2c *i2c)
706 {
707 /* Initiate a stop bit sequence */
708 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
709 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
710 i2c->seq = img_i2c_stop_seq;
711 i2c->at_slave_event = true;
712 i2c->at_t_done = true;
713 i2c->at_cur_cmd = -1;
714
715 /* img_i2c_stop_seq isn't empty so the following won't fail */
716 img_i2c_sequence(i2c, 0);
717 }
718
img_i2c_atomic(struct img_i2c * i2c,u32 int_status,u32 line_status)719 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
720 u32 int_status,
721 u32 line_status)
722 {
723 int next_cmd = -1;
724 u8 next_data = 0x00;
725
726 if (int_status & INT_SLAVE_EVENT)
727 i2c->at_slave_event = true;
728 if (int_status & INT_TRANSACTION_DONE)
729 i2c->at_t_done = true;
730
731 if (!i2c->at_slave_event || !i2c->at_t_done)
732 goto next_atomic_cmd;
733 if (i2c->line_status & LINESTAT_ABORT_DET) {
734 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
735 next_cmd = CMD_GEN_STOP;
736 i2c->msg_status = -EIO;
737 goto next_atomic_cmd;
738 }
739
740 /* i2c->at_cur_cmd may have completed */
741 switch (i2c->at_cur_cmd) {
742 case CMD_GEN_START:
743 next_cmd = CMD_GEN_DATA;
744 next_data = (i2c->msg.addr << 1);
745 if (i2c->msg.flags & I2C_M_RD)
746 next_data |= 0x1;
747 break;
748 case CMD_GEN_DATA:
749 if (i2c->line_status & LINESTAT_INPUT_HELD_V)
750 next_cmd = CMD_RET_ACK;
751 break;
752 case CMD_RET_ACK:
753 if (i2c->line_status & LINESTAT_ACK_DET) {
754 if (i2c->msg.len == 0) {
755 next_cmd = CMD_GEN_STOP;
756 } else if (i2c->msg.flags & I2C_M_RD) {
757 next_cmd = CMD_RET_DATA;
758 } else {
759 next_cmd = CMD_GEN_DATA;
760 next_data = *i2c->msg.buf;
761 --i2c->msg.len;
762 ++i2c->msg.buf;
763 }
764 } else if (i2c->line_status & LINESTAT_NACK_DET) {
765 i2c->msg_status = -EIO;
766 next_cmd = CMD_GEN_STOP;
767 }
768 break;
769 case CMD_RET_DATA:
770 if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
771 *i2c->msg.buf = (i2c->line_status &
772 LINESTAT_INPUT_DATA)
773 >> LINESTAT_INPUT_DATA_SHIFT;
774 --i2c->msg.len;
775 ++i2c->msg.buf;
776 if (i2c->msg.len)
777 next_cmd = CMD_GEN_ACK;
778 else
779 next_cmd = CMD_GEN_NACK;
780 }
781 break;
782 case CMD_GEN_ACK:
783 if (i2c->line_status & LINESTAT_ACK_DET) {
784 next_cmd = CMD_RET_DATA;
785 } else {
786 i2c->msg_status = -EIO;
787 next_cmd = CMD_GEN_STOP;
788 }
789 break;
790 case CMD_GEN_NACK:
791 next_cmd = CMD_GEN_STOP;
792 break;
793 case CMD_GEN_STOP:
794 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
795 return ISR_COMPLETE(0);
796 default:
797 dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
798 i2c->at_cur_cmd);
799 i2c->msg_status = -EIO;
800 next_cmd = CMD_GEN_STOP;
801 break;
802 }
803
804 next_atomic_cmd:
805 if (next_cmd != -1) {
806 /* don't actually stop unless we're the last transaction */
807 if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
808 !i2c->last_msg)
809 return ISR_COMPLETE(0);
810 img_i2c_atomic_op(i2c, next_cmd, next_data);
811 }
812 return 0;
813 }
814
815 /*
816 * Timer function to check if something has gone wrong in automatic mode (so we
817 * don't have to handle so many interrupts just to catch an exception).
818 */
img_i2c_check_timer(unsigned long arg)819 static void img_i2c_check_timer(unsigned long arg)
820 {
821 struct img_i2c *i2c = (struct img_i2c *)arg;
822 unsigned long flags;
823 unsigned int line_status;
824
825 spin_lock_irqsave(&i2c->lock, flags);
826 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
827
828 /* check for an abort condition */
829 if (line_status & LINESTAT_ABORT_DET) {
830 dev_dbg(i2c->adap.dev.parent,
831 "abort condition detected by check timer\n");
832 /* enable slave event interrupt mask to trigger irq */
833 img_i2c_writel(i2c, SCB_INT_MASK_REG,
834 i2c->int_enable | INT_SLAVE_EVENT);
835 }
836
837 spin_unlock_irqrestore(&i2c->lock, flags);
838 }
839
img_i2c_auto(struct img_i2c * i2c,unsigned int int_status,unsigned int line_status)840 static unsigned int img_i2c_auto(struct img_i2c *i2c,
841 unsigned int int_status,
842 unsigned int line_status)
843 {
844 if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
845 return ISR_COMPLETE(EIO);
846
847 if (line_status & LINESTAT_ABORT_DET) {
848 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
849 /* empty the read fifo */
850 if ((i2c->msg.flags & I2C_M_RD) &&
851 (int_status & INT_FIFO_FULL_FILLING))
852 img_i2c_read_fifo(i2c);
853 /* use atomic mode and try to force a stop bit */
854 i2c->msg_status = -EIO;
855 img_i2c_stop_start(i2c);
856 return 0;
857 }
858
859 /* Enable transaction halt on start bit */
860 if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
861 img_i2c_transaction_halt(i2c, true);
862 /* we're no longer interested in the slave event */
863 i2c->int_enable &= ~INT_SLAVE_EVENT;
864 }
865
866 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
867
868 if (i2c->msg.flags & I2C_M_RD) {
869 if (int_status & INT_FIFO_FULL_FILLING) {
870 img_i2c_read_fifo(i2c);
871 if (i2c->msg.len == 0)
872 return ISR_WAITSTOP;
873 }
874 } else {
875 if (int_status & INT_FIFO_EMPTY_EMPTYING) {
876 /*
877 * The write fifo empty indicates that we're in the
878 * last byte so it's safe to start a new write
879 * transaction without losing any bytes from the
880 * previous one.
881 * see 2.3.7 Repeated Start Transactions.
882 */
883 if ((int_status & INT_FIFO_EMPTY) &&
884 i2c->msg.len == 0)
885 return ISR_WAITSTOP;
886 img_i2c_write_fifo(i2c);
887 }
888 }
889
890 return 0;
891 }
892
img_i2c_isr(int irq,void * dev_id)893 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
894 {
895 struct img_i2c *i2c = (struct img_i2c *)dev_id;
896 u32 int_status, line_status;
897 /* We handle transaction completion AFTER accessing registers */
898 unsigned int hret;
899
900 /* Read interrupt status register. */
901 int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
902 /* Clear detected interrupts. */
903 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
904
905 /*
906 * Read line status and clear it until it actually is clear. We have
907 * to be careful not to lose any line status bits that get latched.
908 */
909 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
910 if (line_status & LINESTAT_LATCHED) {
911 img_i2c_writel(i2c, SCB_CLEAR_REG,
912 (line_status & LINESTAT_LATCHED)
913 >> LINESTAT_CLEAR_SHIFT);
914 img_i2c_wr_rd_fence(i2c);
915 }
916
917 spin_lock(&i2c->lock);
918
919 /* Keep track of line status bits received */
920 i2c->line_status &= ~LINESTAT_INPUT_DATA;
921 i2c->line_status |= line_status;
922
923 /*
924 * Certain interrupts indicate that sclk low timeout is not
925 * a problem. If any of these are set, just continue.
926 */
927 if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
928 !(int_status & (INT_SLAVE_EVENT |
929 INT_FIFO_EMPTY |
930 INT_FIFO_FULL))) {
931 dev_crit(i2c->adap.dev.parent,
932 "fatal: clock low timeout occurred %s addr 0x%02x\n",
933 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
934 i2c->msg.addr);
935 hret = ISR_FATAL(EIO);
936 goto out;
937 }
938
939 if (i2c->mode == MODE_ATOMIC)
940 hret = img_i2c_atomic(i2c, int_status, line_status);
941 else if (i2c->mode == MODE_AUTOMATIC)
942 hret = img_i2c_auto(i2c, int_status, line_status);
943 else if (i2c->mode == MODE_SEQUENCE)
944 hret = img_i2c_sequence(i2c, int_status);
945 else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
946 (line_status & LINESTAT_STOP_BIT_DET))
947 hret = ISR_COMPLETE(0);
948 else if (i2c->mode == MODE_RAW)
949 hret = img_i2c_raw(i2c, int_status, line_status);
950 else
951 hret = 0;
952
953 /* Clear detected level interrupts. */
954 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
955
956 out:
957 if (hret & ISR_WAITSTOP) {
958 /*
959 * Only wait for stop on last message.
960 * Also we may already have detected the stop bit.
961 */
962 if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
963 hret = ISR_COMPLETE(0);
964 else
965 img_i2c_switch_mode(i2c, MODE_WAITSTOP);
966 }
967
968 /* now we've finished using regs, handle transaction completion */
969 if (hret & ISR_COMPLETE_M) {
970 int status = -(hret & ISR_STATUS_M);
971
972 img_i2c_complete_transaction(i2c, status);
973 if (hret & ISR_FATAL_M)
974 img_i2c_switch_mode(i2c, MODE_FATAL);
975 }
976
977 /* Enable interrupts (int_enable may be altered by changing mode) */
978 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
979
980 spin_unlock(&i2c->lock);
981
982 return IRQ_HANDLED;
983 }
984
985 /* Force a bus reset sequence and wait for it to complete */
img_i2c_reset_bus(struct img_i2c * i2c)986 static int img_i2c_reset_bus(struct img_i2c *i2c)
987 {
988 unsigned long flags;
989 unsigned long time_left;
990
991 spin_lock_irqsave(&i2c->lock, flags);
992 reinit_completion(&i2c->msg_complete);
993 img_i2c_reset_start(i2c);
994 spin_unlock_irqrestore(&i2c->lock, flags);
995
996 time_left = wait_for_completion_timeout(&i2c->msg_complete,
997 IMG_I2C_TIMEOUT);
998 if (time_left == 0)
999 return -ETIMEDOUT;
1000 return 0;
1001 }
1002
img_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)1003 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1004 int num)
1005 {
1006 struct img_i2c *i2c = i2c_get_adapdata(adap);
1007 bool atomic = false;
1008 int i, ret;
1009 unsigned long time_left;
1010
1011 if (i2c->mode == MODE_SUSPEND) {
1012 WARN(1, "refusing to service transaction in suspended state\n");
1013 return -EIO;
1014 }
1015
1016 if (i2c->mode == MODE_FATAL)
1017 return -EIO;
1018
1019 for (i = 0; i < num; i++) {
1020 if (likely(msgs[i].len))
1021 continue;
1022 /*
1023 * 0 byte reads are not possible because the slave could try
1024 * and pull the data line low, preventing a stop bit.
1025 */
1026 if (unlikely(msgs[i].flags & I2C_M_RD))
1027 return -EIO;
1028 /*
1029 * 0 byte writes are possible and used for probing, but we
1030 * cannot do them in automatic mode, so use atomic mode
1031 * instead.
1032 */
1033 atomic = true;
1034 }
1035
1036 ret = clk_prepare_enable(i2c->scb_clk);
1037 if (ret)
1038 return ret;
1039
1040 for (i = 0; i < num; i++) {
1041 struct i2c_msg *msg = &msgs[i];
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&i2c->lock, flags);
1045
1046 /*
1047 * Make a copy of the message struct. We mustn't modify the
1048 * original or we'll confuse drivers and i2c-dev.
1049 */
1050 i2c->msg = *msg;
1051 i2c->msg_status = 0;
1052
1053 /*
1054 * After the last message we must have waited for a stop bit.
1055 * Not waiting can cause problems when the clock is disabled
1056 * before the stop bit is sent, and the linux I2C interface
1057 * requires separate transfers not to joined with repeated
1058 * start.
1059 */
1060 i2c->last_msg = (i == num - 1);
1061 reinit_completion(&i2c->msg_complete);
1062
1063 /*
1064 * Clear line status and all interrupts before starting a
1065 * transfer, as we may have unserviced interrupts from
1066 * previous transfers that might be handled in the context
1067 * of the new transfer.
1068 */
1069 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1070 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1071
1072 if (atomic)
1073 img_i2c_atomic_start(i2c);
1074 else if (msg->flags & I2C_M_RD)
1075 img_i2c_read(i2c);
1076 else
1077 img_i2c_write(i2c);
1078 spin_unlock_irqrestore(&i2c->lock, flags);
1079
1080 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1081 IMG_I2C_TIMEOUT);
1082 del_timer_sync(&i2c->check_timer);
1083
1084 if (time_left == 0) {
1085 dev_err(adap->dev.parent, "i2c transfer timed out\n");
1086 i2c->msg_status = -ETIMEDOUT;
1087 break;
1088 }
1089
1090 if (i2c->msg_status)
1091 break;
1092 }
1093
1094 clk_disable_unprepare(i2c->scb_clk);
1095
1096 return i2c->msg_status ? i2c->msg_status : num;
1097 }
1098
img_i2c_func(struct i2c_adapter * adap)1099 static u32 img_i2c_func(struct i2c_adapter *adap)
1100 {
1101 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1102 }
1103
1104 static const struct i2c_algorithm img_i2c_algo = {
1105 .master_xfer = img_i2c_xfer,
1106 .functionality = img_i2c_func,
1107 };
1108
img_i2c_init(struct img_i2c * i2c)1109 static int img_i2c_init(struct img_i2c *i2c)
1110 {
1111 unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1112 unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
1113 struct img_i2c_timings timing;
1114 u32 rev;
1115
1116 ret = clk_prepare_enable(i2c->scb_clk);
1117 if (ret)
1118 return ret;
1119
1120 rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1121 if ((rev & 0x00ffffff) < 0x00020200) {
1122 dev_info(i2c->adap.dev.parent,
1123 "Unknown hardware revision (%d.%d.%d.%d)\n",
1124 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1125 (rev >> 8) & 0xff, rev & 0xff);
1126 clk_disable_unprepare(i2c->scb_clk);
1127 return -EINVAL;
1128 }
1129
1130 /* Fencing enabled by default. */
1131 i2c->need_wr_rd_fence = true;
1132
1133 /* Determine what mode we're in from the bitrate */
1134 timing = timings[0];
1135 for (i = 0; i < ARRAY_SIZE(timings); i++) {
1136 if (i2c->bitrate <= timings[i].max_bitrate) {
1137 timing = timings[i];
1138 break;
1139 }
1140 }
1141 if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1142 dev_warn(i2c->adap.dev.parent,
1143 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1144 i2c->bitrate,
1145 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1146 timing = timings[ARRAY_SIZE(timings) - 1];
1147 i2c->bitrate = timing.max_bitrate;
1148 }
1149
1150 bitrate_khz = i2c->bitrate / 1000;
1151 clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1152
1153 /* Find the prescale that would give us that inc (approx delay = 0) */
1154 prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1155 prescale = clamp_t(unsigned int, prescale, 1, 8);
1156 clk_khz /= prescale;
1157
1158 /* Setup the clock increment value */
1159 inc = (256 * 16 * bitrate_khz) / clk_khz;
1160
1161 /*
1162 * The clock generation logic allows to filter glitches on the bus.
1163 * This filter is able to remove bus glitches shorter than 50ns.
1164 * If the clock enable rate is greater than 20 MHz, no filtering
1165 * is required, so we need to disable it.
1166 * If it's between the 20-40 MHz range, there's no need to divide
1167 * the clock to get a filter.
1168 */
1169 if (clk_khz < 20000) {
1170 filt = SCB_FILT_DISABLE;
1171 } else if (clk_khz < 40000) {
1172 filt = SCB_FILT_BYPASS;
1173 } else {
1174 /* Calculate filter clock */
1175 filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1176
1177 /* Scale up if needed */
1178 if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1179 inc++;
1180
1181 if (filt > SCB_FILT_INC_MASK)
1182 filt = SCB_FILT_INC_MASK;
1183
1184 filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1185 }
1186 data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1187 img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1188
1189 /* Obtain the clock period of the fx16 clock in ns */
1190 clk_period = (256 * 1000000) / (clk_khz * inc);
1191
1192 /* Calculate the bitrate in terms of internal clock pulses */
1193 int_bitrate = 1000000 / (bitrate_khz * clk_period);
1194 if ((1000000 % (bitrate_khz * clk_period)) >=
1195 ((bitrate_khz * clk_period) / 2))
1196 int_bitrate++;
1197
1198 /*
1199 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1200 * values from there if they don't meet minimum timing requirements
1201 */
1202 tckh = int_bitrate / 2;
1203 tckl = int_bitrate - tckh;
1204
1205 /* Adjust TCKH and TCKL values */
1206 data = DIV_ROUND_UP(timing.tckl, clk_period);
1207
1208 if (tckl < data) {
1209 tckl = data;
1210 tckh = int_bitrate - tckl;
1211 }
1212
1213 if (tckh > 0)
1214 --tckh;
1215
1216 if (tckl > 0)
1217 --tckl;
1218
1219 img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1220 img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1221
1222 /* Setup TSDH value */
1223 tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1224
1225 if (tsdh > 1)
1226 data = tsdh - 1;
1227 else
1228 data = 0x01;
1229 img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1230
1231 /* This value is used later */
1232 tsdh = data;
1233
1234 /* Setup TPL value */
1235 data = timing.tpl / clk_period;
1236 if (data > 0)
1237 --data;
1238 img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1239
1240 /* Setup TPH value */
1241 data = timing.tph / clk_period;
1242 if (data > 0)
1243 --data;
1244 img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1245
1246 /* Setup TSDL value to TPL + TSDH + 2 */
1247 img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1248
1249 /* Setup TP2S value */
1250 data = timing.tp2s / clk_period;
1251 if (data > 0)
1252 --data;
1253 img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1254
1255 img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1256 img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1257 img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1258
1259 /* Take module out of soft reset and enable clocks */
1260 img_i2c_soft_reset(i2c);
1261
1262 /* Disable all interrupts */
1263 img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1264
1265 /* Clear all interrupts */
1266 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1267
1268 /* Clear the scb_line_status events */
1269 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1270
1271 /* Enable interrupts */
1272 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1273
1274 /* Perform a synchronous sequence to reset the bus */
1275 ret = img_i2c_reset_bus(i2c);
1276
1277 clk_disable_unprepare(i2c->scb_clk);
1278
1279 return ret;
1280 }
1281
img_i2c_probe(struct platform_device * pdev)1282 static int img_i2c_probe(struct platform_device *pdev)
1283 {
1284 struct device_node *node = pdev->dev.of_node;
1285 struct img_i2c *i2c;
1286 struct resource *res;
1287 int irq, ret;
1288 u32 val;
1289
1290 i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1291 if (!i2c)
1292 return -ENOMEM;
1293
1294 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1295 i2c->base = devm_ioremap_resource(&pdev->dev, res);
1296 if (IS_ERR(i2c->base))
1297 return PTR_ERR(i2c->base);
1298
1299 irq = platform_get_irq(pdev, 0);
1300 if (irq < 0) {
1301 dev_err(&pdev->dev, "can't get irq number\n");
1302 return irq;
1303 }
1304
1305 i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1306 if (IS_ERR(i2c->sys_clk)) {
1307 dev_err(&pdev->dev, "can't get system clock\n");
1308 return PTR_ERR(i2c->sys_clk);
1309 }
1310
1311 i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1312 if (IS_ERR(i2c->scb_clk)) {
1313 dev_err(&pdev->dev, "can't get core clock\n");
1314 return PTR_ERR(i2c->scb_clk);
1315 }
1316
1317 ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1318 pdev->name, i2c);
1319 if (ret) {
1320 dev_err(&pdev->dev, "can't request irq %d\n", irq);
1321 return ret;
1322 }
1323
1324 /* Set up the exception check timer */
1325 init_timer(&i2c->check_timer);
1326 i2c->check_timer.function = img_i2c_check_timer;
1327 i2c->check_timer.data = (unsigned long)i2c;
1328
1329 i2c->bitrate = timings[0].max_bitrate;
1330 if (!of_property_read_u32(node, "clock-frequency", &val))
1331 i2c->bitrate = val;
1332
1333 i2c_set_adapdata(&i2c->adap, i2c);
1334 i2c->adap.dev.parent = &pdev->dev;
1335 i2c->adap.dev.of_node = node;
1336 i2c->adap.owner = THIS_MODULE;
1337 i2c->adap.algo = &img_i2c_algo;
1338 i2c->adap.retries = 5;
1339 i2c->adap.nr = pdev->id;
1340 snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1341
1342 img_i2c_switch_mode(i2c, MODE_INACTIVE);
1343 spin_lock_init(&i2c->lock);
1344 init_completion(&i2c->msg_complete);
1345
1346 platform_set_drvdata(pdev, i2c);
1347
1348 ret = clk_prepare_enable(i2c->sys_clk);
1349 if (ret)
1350 return ret;
1351
1352 ret = img_i2c_init(i2c);
1353 if (ret)
1354 goto disable_clk;
1355
1356 ret = i2c_add_numbered_adapter(&i2c->adap);
1357 if (ret < 0) {
1358 dev_err(&pdev->dev, "failed to add adapter\n");
1359 goto disable_clk;
1360 }
1361
1362 return 0;
1363
1364 disable_clk:
1365 clk_disable_unprepare(i2c->sys_clk);
1366 return ret;
1367 }
1368
img_i2c_remove(struct platform_device * dev)1369 static int img_i2c_remove(struct platform_device *dev)
1370 {
1371 struct img_i2c *i2c = platform_get_drvdata(dev);
1372
1373 i2c_del_adapter(&i2c->adap);
1374 clk_disable_unprepare(i2c->sys_clk);
1375
1376 return 0;
1377 }
1378
1379 #ifdef CONFIG_PM_SLEEP
img_i2c_suspend(struct device * dev)1380 static int img_i2c_suspend(struct device *dev)
1381 {
1382 struct img_i2c *i2c = dev_get_drvdata(dev);
1383
1384 img_i2c_switch_mode(i2c, MODE_SUSPEND);
1385
1386 clk_disable_unprepare(i2c->sys_clk);
1387
1388 return 0;
1389 }
1390
img_i2c_resume(struct device * dev)1391 static int img_i2c_resume(struct device *dev)
1392 {
1393 struct img_i2c *i2c = dev_get_drvdata(dev);
1394 int ret;
1395
1396 ret = clk_prepare_enable(i2c->sys_clk);
1397 if (ret)
1398 return ret;
1399
1400 img_i2c_init(i2c);
1401
1402 return 0;
1403 }
1404 #endif /* CONFIG_PM_SLEEP */
1405
1406 static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
1407
1408 static const struct of_device_id img_scb_i2c_match[] = {
1409 { .compatible = "img,scb-i2c" },
1410 { }
1411 };
1412 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1413
1414 static struct platform_driver img_scb_i2c_driver = {
1415 .driver = {
1416 .name = "img-i2c-scb",
1417 .of_match_table = img_scb_i2c_match,
1418 .pm = &img_i2c_pm,
1419 },
1420 .probe = img_i2c_probe,
1421 .remove = img_i2c_remove,
1422 };
1423 module_platform_driver(img_scb_i2c_driver);
1424
1425 MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1426 MODULE_DESCRIPTION("IMG host I2C driver");
1427 MODULE_LICENSE("GPL v2");
1428