1 /*
2 * Xilinx XADC driver
3 *
4 * Copyright 2013-2014 Analog Devices Inc.
5 * Author: Lars-Peter Clauen <lars@metafoo.de>
6 *
7 * Licensed under the GPL-2.
8 *
9 * Documentation for the parts can be found at:
10 * - XADC hardmacro: Xilinx UG480
11 * - ZYNQ XADC interface: Xilinx UG585
12 * - AXI XADC interface: Xilinx PG019
13 */
14
15 #include <linux/clk.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34
35 #include "xilinx-xadc.h"
36
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG 0x00
41 #define XADC_ZYNQ_REG_INTSTS 0x04
42 #define XADC_ZYNQ_REG_INTMSK 0x08
43 #define XADC_ZYNQ_REG_STATUS 0x0c
44 #define XADC_ZYNQ_REG_CFIFO 0x10
45 #define XADC_ZYNQ_REG_DFIFO 0x14
46 #define XADC_ZYNQ_REG_CTL 0x18
47
48 #define XADC_ZYNQ_CFG_ENABLE BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
53 #define XADC_ZYNQ_CFG_WEDGE BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x) (x)
62
63 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK 0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET 0
67
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
72 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
76 #define XADC_ZYNQ_STATUS_OT BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
78
79 #define XADC_ZYNQ_CTL_RESET BIT(4)
80
81 #define XADC_ZYNQ_CMD_NOP 0x00
82 #define XADC_ZYNQ_CMD_READ 0x01
83 #define XADC_ZYNQ_CMD_WRITE 0x02
84
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET 0x00
89 #define XADC_AXI_REG_STATUS 0x04
90 #define XADC_AXI_REG_ALARM_STATUS 0x08
91 #define XADC_AXI_REG_CONVST 0x0c
92 #define XADC_AXI_REG_XADC_RESET 0x10
93 #define XADC_AXI_REG_GIER 0x5c
94 #define XADC_AXI_REG_IPISR 0x60
95 #define XADC_AXI_REG_IPIER 0x68
96 #define XADC_AXI_ADC_REG_OFFSET 0x200
97
98 #define XADC_AXI_RESET_MAGIC 0xa
99 #define XADC_AXI_GIER_ENABLE BIT(31)
100
101 #define XADC_AXI_INT_EOS BIT(4)
102 #define XADC_AXI_INT_ALARM_MASK 0x3c0f
103
104 #define XADC_FLAGS_BUFFERED BIT(0)
105
xadc_write_reg(struct xadc * xadc,unsigned int reg,uint32_t val)106 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
107 uint32_t val)
108 {
109 writel(val, xadc->base + reg);
110 }
111
xadc_read_reg(struct xadc * xadc,unsigned int reg,uint32_t * val)112 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
113 uint32_t *val)
114 {
115 *val = readl(xadc->base + reg);
116 }
117
118 /*
119 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
120 * XADC. Reads and writes to the XADC register are performed by submitting a
121 * request to the command FIFO (CFIFO), once the request has been completed the
122 * result can be read from the data FIFO (DFIFO). The method currently used in
123 * this driver is to submit the request for a read/write operation, then go to
124 * sleep and wait for an interrupt that signals that a response is available in
125 * the data FIFO.
126 */
127
xadc_zynq_write_fifo(struct xadc * xadc,uint32_t * cmd,unsigned int n)128 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
129 unsigned int n)
130 {
131 unsigned int i;
132
133 for (i = 0; i < n; i++)
134 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
135 }
136
xadc_zynq_drain_fifo(struct xadc * xadc)137 static void xadc_zynq_drain_fifo(struct xadc *xadc)
138 {
139 uint32_t status, tmp;
140
141 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
142
143 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
144 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
145 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
146 }
147 }
148
xadc_zynq_update_intmsk(struct xadc * xadc,unsigned int mask,unsigned int val)149 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
150 unsigned int val)
151 {
152 xadc->zynq_intmask &= ~mask;
153 xadc->zynq_intmask |= val;
154
155 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
156 xadc->zynq_intmask | xadc->zynq_masked_alarm);
157 }
158
xadc_zynq_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)159 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
160 uint16_t val)
161 {
162 uint32_t cmd[1];
163 uint32_t tmp;
164 int ret;
165
166 spin_lock_irq(&xadc->lock);
167 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
168 XADC_ZYNQ_INT_DFIFO_GTH);
169
170 reinit_completion(&xadc->completion);
171
172 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
173 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
174 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
175 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
176 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
177 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
178
179 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
180 spin_unlock_irq(&xadc->lock);
181
182 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
183 if (ret == 0)
184 ret = -EIO;
185 else
186 ret = 0;
187
188 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
189
190 return ret;
191 }
192
xadc_zynq_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)193 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
194 uint16_t *val)
195 {
196 uint32_t cmd[2];
197 uint32_t resp, tmp;
198 int ret;
199
200 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
201 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
202
203 spin_lock_irq(&xadc->lock);
204 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
205 XADC_ZYNQ_INT_DFIFO_GTH);
206 xadc_zynq_drain_fifo(xadc);
207 reinit_completion(&xadc->completion);
208
209 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
210 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
211 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
212 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
213 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
214
215 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
216 spin_unlock_irq(&xadc->lock);
217 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
218 if (ret == 0)
219 ret = -EIO;
220 if (ret < 0)
221 return ret;
222
223 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
224 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
225
226 *val = resp & 0xffff;
227
228 return 0;
229 }
230
xadc_zynq_transform_alarm(unsigned int alarm)231 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
232 {
233 return ((alarm & 0x80) >> 4) |
234 ((alarm & 0x78) << 1) |
235 (alarm & 0x07);
236 }
237
238 /*
239 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
240 * threshold condition go way from within the interrupt handler, this means as
241 * soon as a threshold condition is present we would enter the interrupt handler
242 * again and again. To work around this we mask all active thresholds interrupts
243 * in the interrupt handler and start a timer. In this timer we poll the
244 * interrupt status and only if the interrupt is inactive we unmask it again.
245 */
xadc_zynq_unmask_worker(struct work_struct * work)246 static void xadc_zynq_unmask_worker(struct work_struct *work)
247 {
248 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
249 unsigned int misc_sts, unmask;
250
251 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
252
253 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
254
255 spin_lock_irq(&xadc->lock);
256
257 /* Clear those bits which are not active anymore */
258 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
259 xadc->zynq_masked_alarm &= misc_sts;
260
261 /* Also clear those which are masked out anyway */
262 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
263
264 /* Clear the interrupts before we unmask them */
265 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
266
267 xadc_zynq_update_intmsk(xadc, 0, 0);
268
269 spin_unlock_irq(&xadc->lock);
270
271 /* if still pending some alarm re-trigger the timer */
272 if (xadc->zynq_masked_alarm) {
273 schedule_delayed_work(&xadc->zynq_unmask_work,
274 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
275 }
276
277 }
278
xadc_zynq_interrupt_handler(int irq,void * devid)279 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
280 {
281 struct iio_dev *indio_dev = devid;
282 struct xadc *xadc = iio_priv(indio_dev);
283 uint32_t status;
284
285 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
286
287 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
288
289 if (!status)
290 return IRQ_NONE;
291
292 spin_lock(&xadc->lock);
293
294 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
295
296 if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
297 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
298 XADC_ZYNQ_INT_DFIFO_GTH);
299 complete(&xadc->completion);
300 }
301
302 status &= XADC_ZYNQ_INT_ALARM_MASK;
303 if (status) {
304 xadc->zynq_masked_alarm |= status;
305 /*
306 * mask the current event interrupt,
307 * unmask it when the interrupt is no more active.
308 */
309 xadc_zynq_update_intmsk(xadc, 0, 0);
310
311 xadc_handle_events(indio_dev,
312 xadc_zynq_transform_alarm(status));
313
314 /* unmask the required interrupts in timer. */
315 schedule_delayed_work(&xadc->zynq_unmask_work,
316 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
317 }
318 spin_unlock(&xadc->lock);
319
320 return IRQ_HANDLED;
321 }
322
323 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
324 #define XADC_ZYNQ_IGAP_DEFAULT 20
325
xadc_zynq_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)326 static int xadc_zynq_setup(struct platform_device *pdev,
327 struct iio_dev *indio_dev, int irq)
328 {
329 struct xadc *xadc = iio_priv(indio_dev);
330 unsigned long pcap_rate;
331 unsigned int tck_div;
332 unsigned int div;
333 unsigned int igap;
334 unsigned int tck_rate;
335
336 /* TODO: Figure out how to make igap and tck_rate configurable */
337 igap = XADC_ZYNQ_IGAP_DEFAULT;
338 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
339
340 xadc->zynq_intmask = ~0;
341
342 pcap_rate = clk_get_rate(xadc->clk);
343
344 if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
345 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
346 if (tck_rate > pcap_rate / 2) {
347 div = 2;
348 } else {
349 div = pcap_rate / tck_rate;
350 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
351 div++;
352 }
353
354 if (div <= 3)
355 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
356 else if (div <= 7)
357 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
358 else if (div <= 15)
359 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
360 else
361 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
362
363 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
364 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
365 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
366 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
367 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
368 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
369 tck_div | XADC_ZYNQ_CFG_IGAP(igap));
370
371 return 0;
372 }
373
xadc_zynq_get_dclk_rate(struct xadc * xadc)374 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
375 {
376 unsigned int div;
377 uint32_t val;
378
379 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
380
381 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
382 case XADC_ZYNQ_CFG_TCKRATE_DIV4:
383 div = 4;
384 break;
385 case XADC_ZYNQ_CFG_TCKRATE_DIV8:
386 div = 8;
387 break;
388 case XADC_ZYNQ_CFG_TCKRATE_DIV16:
389 div = 16;
390 break;
391 default:
392 div = 2;
393 break;
394 }
395
396 return clk_get_rate(xadc->clk) / div;
397 }
398
xadc_zynq_update_alarm(struct xadc * xadc,unsigned int alarm)399 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
400 {
401 unsigned long flags;
402 uint32_t status;
403
404 /* Move OT to bit 7 */
405 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
406
407 spin_lock_irqsave(&xadc->lock, flags);
408
409 /* Clear previous interrupts if any. */
410 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
411 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
412
413 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
414 ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
415
416 spin_unlock_irqrestore(&xadc->lock, flags);
417 }
418
419 static const struct xadc_ops xadc_zynq_ops = {
420 .read = xadc_zynq_read_adc_reg,
421 .write = xadc_zynq_write_adc_reg,
422 .setup = xadc_zynq_setup,
423 .get_dclk_rate = xadc_zynq_get_dclk_rate,
424 .interrupt_handler = xadc_zynq_interrupt_handler,
425 .update_alarm = xadc_zynq_update_alarm,
426 };
427
xadc_axi_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)428 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
429 uint16_t *val)
430 {
431 uint32_t val32;
432
433 xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
434 *val = val32 & 0xffff;
435
436 return 0;
437 }
438
xadc_axi_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)439 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
440 uint16_t val)
441 {
442 xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
443
444 return 0;
445 }
446
xadc_axi_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)447 static int xadc_axi_setup(struct platform_device *pdev,
448 struct iio_dev *indio_dev, int irq)
449 {
450 struct xadc *xadc = iio_priv(indio_dev);
451
452 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
453 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
454
455 return 0;
456 }
457
xadc_axi_interrupt_handler(int irq,void * devid)458 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
459 {
460 struct iio_dev *indio_dev = devid;
461 struct xadc *xadc = iio_priv(indio_dev);
462 uint32_t status, mask;
463 unsigned int events;
464
465 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
466 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
467 status &= mask;
468
469 if (!status)
470 return IRQ_NONE;
471
472 if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
473 iio_trigger_poll(xadc->trigger);
474
475 if (status & XADC_AXI_INT_ALARM_MASK) {
476 /*
477 * The order of the bits in the AXI-XADC status register does
478 * not match the order of the bits in the XADC alarm enable
479 * register. xadc_handle_events() expects the events to be in
480 * the same order as the XADC alarm enable register.
481 */
482 events = (status & 0x000e) >> 1;
483 events |= (status & 0x0001) << 3;
484 events |= (status & 0x3c00) >> 6;
485 xadc_handle_events(indio_dev, events);
486 }
487
488 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
489
490 return IRQ_HANDLED;
491 }
492
xadc_axi_update_alarm(struct xadc * xadc,unsigned int alarm)493 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
494 {
495 uint32_t val;
496 unsigned long flags;
497
498 /*
499 * The order of the bits in the AXI-XADC status register does not match
500 * the order of the bits in the XADC alarm enable register. We get
501 * passed the alarm mask in the same order as in the XADC alarm enable
502 * register.
503 */
504 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
505 ((alarm & 0xf0) << 6);
506
507 spin_lock_irqsave(&xadc->lock, flags);
508 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
509 val &= ~XADC_AXI_INT_ALARM_MASK;
510 val |= alarm;
511 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
512 spin_unlock_irqrestore(&xadc->lock, flags);
513 }
514
xadc_axi_get_dclk(struct xadc * xadc)515 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
516 {
517 return clk_get_rate(xadc->clk);
518 }
519
520 static const struct xadc_ops xadc_axi_ops = {
521 .read = xadc_axi_read_adc_reg,
522 .write = xadc_axi_write_adc_reg,
523 .setup = xadc_axi_setup,
524 .get_dclk_rate = xadc_axi_get_dclk,
525 .update_alarm = xadc_axi_update_alarm,
526 .interrupt_handler = xadc_axi_interrupt_handler,
527 .flags = XADC_FLAGS_BUFFERED,
528 };
529
_xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)530 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
531 uint16_t mask, uint16_t val)
532 {
533 uint16_t tmp;
534 int ret;
535
536 ret = _xadc_read_adc_reg(xadc, reg, &tmp);
537 if (ret)
538 return ret;
539
540 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
541 }
542
xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)543 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
544 uint16_t mask, uint16_t val)
545 {
546 int ret;
547
548 mutex_lock(&xadc->mutex);
549 ret = _xadc_update_adc_reg(xadc, reg, mask, val);
550 mutex_unlock(&xadc->mutex);
551
552 return ret;
553 }
554
xadc_get_dclk_rate(struct xadc * xadc)555 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
556 {
557 return xadc->ops->get_dclk_rate(xadc);
558 }
559
xadc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * mask)560 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
561 const unsigned long *mask)
562 {
563 struct xadc *xadc = iio_priv(indio_dev);
564 unsigned int n;
565
566 n = bitmap_weight(mask, indio_dev->masklength);
567
568 kfree(xadc->data);
569 xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
570 if (!xadc->data)
571 return -ENOMEM;
572
573 return 0;
574 }
575
xadc_scan_index_to_channel(unsigned int scan_index)576 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
577 {
578 switch (scan_index) {
579 case 5:
580 return XADC_REG_VCCPINT;
581 case 6:
582 return XADC_REG_VCCPAUX;
583 case 7:
584 return XADC_REG_VCCO_DDR;
585 case 8:
586 return XADC_REG_TEMP;
587 case 9:
588 return XADC_REG_VCCINT;
589 case 10:
590 return XADC_REG_VCCAUX;
591 case 11:
592 return XADC_REG_VPVN;
593 case 12:
594 return XADC_REG_VREFP;
595 case 13:
596 return XADC_REG_VREFN;
597 case 14:
598 return XADC_REG_VCCBRAM;
599 default:
600 return XADC_REG_VAUX(scan_index - 16);
601 }
602 }
603
xadc_trigger_handler(int irq,void * p)604 static irqreturn_t xadc_trigger_handler(int irq, void *p)
605 {
606 struct iio_poll_func *pf = p;
607 struct iio_dev *indio_dev = pf->indio_dev;
608 struct xadc *xadc = iio_priv(indio_dev);
609 unsigned int chan;
610 int i, j;
611
612 if (!xadc->data)
613 goto out;
614
615 j = 0;
616 for_each_set_bit(i, indio_dev->active_scan_mask,
617 indio_dev->masklength) {
618 chan = xadc_scan_index_to_channel(i);
619 xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
620 j++;
621 }
622
623 iio_push_to_buffers(indio_dev, xadc->data);
624
625 out:
626 iio_trigger_notify_done(indio_dev->trig);
627
628 return IRQ_HANDLED;
629 }
630
xadc_trigger_set_state(struct iio_trigger * trigger,bool state)631 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
632 {
633 struct xadc *xadc = iio_trigger_get_drvdata(trigger);
634 unsigned long flags;
635 unsigned int convst;
636 unsigned int val;
637 int ret = 0;
638
639 mutex_lock(&xadc->mutex);
640
641 if (state) {
642 /* Only one of the two triggers can be active at the a time. */
643 if (xadc->trigger != NULL) {
644 ret = -EBUSY;
645 goto err_out;
646 } else {
647 xadc->trigger = trigger;
648 if (trigger == xadc->convst_trigger)
649 convst = XADC_CONF0_EC;
650 else
651 convst = 0;
652 }
653 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
654 convst);
655 if (ret)
656 goto err_out;
657 } else {
658 xadc->trigger = NULL;
659 }
660
661 spin_lock_irqsave(&xadc->lock, flags);
662 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
663 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
664 if (state)
665 val |= XADC_AXI_INT_EOS;
666 else
667 val &= ~XADC_AXI_INT_EOS;
668 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
669 spin_unlock_irqrestore(&xadc->lock, flags);
670
671 err_out:
672 mutex_unlock(&xadc->mutex);
673
674 return ret;
675 }
676
677 static const struct iio_trigger_ops xadc_trigger_ops = {
678 .owner = THIS_MODULE,
679 .set_trigger_state = &xadc_trigger_set_state,
680 };
681
xadc_alloc_trigger(struct iio_dev * indio_dev,const char * name)682 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
683 const char *name)
684 {
685 struct iio_trigger *trig;
686 int ret;
687
688 trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
689 indio_dev->id, name);
690 if (trig == NULL)
691 return ERR_PTR(-ENOMEM);
692
693 trig->dev.parent = indio_dev->dev.parent;
694 trig->ops = &xadc_trigger_ops;
695 iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
696
697 ret = iio_trigger_register(trig);
698 if (ret)
699 goto error_free_trig;
700
701 return trig;
702
703 error_free_trig:
704 iio_trigger_free(trig);
705 return ERR_PTR(ret);
706 }
707
xadc_power_adc_b(struct xadc * xadc,unsigned int seq_mode)708 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
709 {
710 uint16_t val;
711
712 /* Powerdown the ADC-B when it is not needed. */
713 switch (seq_mode) {
714 case XADC_CONF1_SEQ_SIMULTANEOUS:
715 case XADC_CONF1_SEQ_INDEPENDENT:
716 val = 0;
717 break;
718 default:
719 val = XADC_CONF2_PD_ADC_B;
720 break;
721 }
722
723 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
724 val);
725 }
726
xadc_get_seq_mode(struct xadc * xadc,unsigned long scan_mode)727 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
728 {
729 unsigned int aux_scan_mode = scan_mode >> 16;
730
731 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
732 return XADC_CONF1_SEQ_SIMULTANEOUS;
733
734 if ((aux_scan_mode & 0xff00) == 0 ||
735 (aux_scan_mode & 0x00ff) == 0)
736 return XADC_CONF1_SEQ_CONTINUOUS;
737
738 return XADC_CONF1_SEQ_SIMULTANEOUS;
739 }
740
xadc_postdisable(struct iio_dev * indio_dev)741 static int xadc_postdisable(struct iio_dev *indio_dev)
742 {
743 struct xadc *xadc = iio_priv(indio_dev);
744 unsigned long scan_mask;
745 int ret;
746 int i;
747
748 scan_mask = 1; /* Run calibration as part of the sequence */
749 for (i = 0; i < indio_dev->num_channels; i++)
750 scan_mask |= BIT(indio_dev->channels[i].scan_index);
751
752 /* Enable all channels and calibration */
753 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
754 if (ret)
755 return ret;
756
757 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
758 if (ret)
759 return ret;
760
761 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
762 XADC_CONF1_SEQ_CONTINUOUS);
763 if (ret)
764 return ret;
765
766 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
767 }
768
xadc_preenable(struct iio_dev * indio_dev)769 static int xadc_preenable(struct iio_dev *indio_dev)
770 {
771 struct xadc *xadc = iio_priv(indio_dev);
772 unsigned long scan_mask;
773 int seq_mode;
774 int ret;
775
776 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
777 XADC_CONF1_SEQ_DEFAULT);
778 if (ret)
779 goto err;
780
781 scan_mask = *indio_dev->active_scan_mask;
782 seq_mode = xadc_get_seq_mode(xadc, scan_mask);
783
784 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
785 if (ret)
786 goto err;
787
788 /*
789 * In simultaneous mode the upper and lower aux channels are samples at
790 * the same time. In this mode the upper 8 bits in the sequencer
791 * register are don't care and the lower 8 bits control two channels
792 * each. As such we must set the bit if either the channel in the lower
793 * group or the upper group is enabled.
794 */
795 if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
796 scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
797
798 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
799 if (ret)
800 goto err;
801
802 ret = xadc_power_adc_b(xadc, seq_mode);
803 if (ret)
804 goto err;
805
806 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
807 seq_mode);
808 if (ret)
809 goto err;
810
811 return 0;
812 err:
813 xadc_postdisable(indio_dev);
814 return ret;
815 }
816
817 static struct iio_buffer_setup_ops xadc_buffer_ops = {
818 .preenable = &xadc_preenable,
819 .postenable = &iio_triggered_buffer_postenable,
820 .predisable = &iio_triggered_buffer_predisable,
821 .postdisable = &xadc_postdisable,
822 };
823
xadc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)824 static int xadc_read_raw(struct iio_dev *indio_dev,
825 struct iio_chan_spec const *chan, int *val, int *val2, long info)
826 {
827 struct xadc *xadc = iio_priv(indio_dev);
828 unsigned int div;
829 uint16_t val16;
830 int ret;
831
832 switch (info) {
833 case IIO_CHAN_INFO_RAW:
834 if (iio_buffer_enabled(indio_dev))
835 return -EBUSY;
836 ret = xadc_read_adc_reg(xadc, chan->address, &val16);
837 if (ret < 0)
838 return ret;
839
840 val16 >>= 4;
841 if (chan->scan_type.sign == 'u')
842 *val = val16;
843 else
844 *val = sign_extend32(val16, 11);
845
846 return IIO_VAL_INT;
847 case IIO_CHAN_INFO_SCALE:
848 switch (chan->type) {
849 case IIO_VOLTAGE:
850 /* V = (val * 3.0) / 4096 */
851 switch (chan->address) {
852 case XADC_REG_VCCINT:
853 case XADC_REG_VCCAUX:
854 case XADC_REG_VREFP:
855 case XADC_REG_VREFN:
856 case XADC_REG_VCCBRAM:
857 case XADC_REG_VCCPINT:
858 case XADC_REG_VCCPAUX:
859 case XADC_REG_VCCO_DDR:
860 *val = 3000;
861 break;
862 default:
863 *val = 1000;
864 break;
865 }
866 *val2 = 12;
867 return IIO_VAL_FRACTIONAL_LOG2;
868 case IIO_TEMP:
869 /* Temp in C = (val * 503.975) / 4096 - 273.15 */
870 *val = 503975;
871 *val2 = 12;
872 return IIO_VAL_FRACTIONAL_LOG2;
873 default:
874 return -EINVAL;
875 }
876 case IIO_CHAN_INFO_OFFSET:
877 /* Only the temperature channel has an offset */
878 *val = -((273150 << 12) / 503975);
879 return IIO_VAL_INT;
880 case IIO_CHAN_INFO_SAMP_FREQ:
881 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
882 if (ret)
883 return ret;
884
885 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
886 if (div < 2)
887 div = 2;
888
889 *val = xadc_get_dclk_rate(xadc) / div / 26;
890
891 return IIO_VAL_INT;
892 default:
893 return -EINVAL;
894 }
895 }
896
xadc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)897 static int xadc_write_raw(struct iio_dev *indio_dev,
898 struct iio_chan_spec const *chan, int val, int val2, long info)
899 {
900 struct xadc *xadc = iio_priv(indio_dev);
901 unsigned long clk_rate = xadc_get_dclk_rate(xadc);
902 unsigned int div;
903
904 if (info != IIO_CHAN_INFO_SAMP_FREQ)
905 return -EINVAL;
906
907 if (val <= 0)
908 return -EINVAL;
909
910 /* Max. 150 kSPS */
911 if (val > 150000)
912 val = 150000;
913
914 val *= 26;
915
916 /* Min 1MHz */
917 if (val < 1000000)
918 val = 1000000;
919
920 /*
921 * We want to round down, but only if we do not exceed the 150 kSPS
922 * limit.
923 */
924 div = clk_rate / val;
925 if (clk_rate / div / 26 > 150000)
926 div++;
927 if (div < 2)
928 div = 2;
929 else if (div > 0xff)
930 div = 0xff;
931
932 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
933 div << XADC_CONF2_DIV_OFFSET);
934 }
935
936 static const struct iio_event_spec xadc_temp_events[] = {
937 {
938 .type = IIO_EV_TYPE_THRESH,
939 .dir = IIO_EV_DIR_RISING,
940 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
941 BIT(IIO_EV_INFO_VALUE) |
942 BIT(IIO_EV_INFO_HYSTERESIS),
943 },
944 };
945
946 /* Separate values for upper and lower thresholds, but only a shared enabled */
947 static const struct iio_event_spec xadc_voltage_events[] = {
948 {
949 .type = IIO_EV_TYPE_THRESH,
950 .dir = IIO_EV_DIR_RISING,
951 .mask_separate = BIT(IIO_EV_INFO_VALUE),
952 }, {
953 .type = IIO_EV_TYPE_THRESH,
954 .dir = IIO_EV_DIR_FALLING,
955 .mask_separate = BIT(IIO_EV_INFO_VALUE),
956 }, {
957 .type = IIO_EV_TYPE_THRESH,
958 .dir = IIO_EV_DIR_EITHER,
959 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
960 },
961 };
962
963 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
964 .type = IIO_TEMP, \
965 .indexed = 1, \
966 .channel = (_chan), \
967 .address = (_addr), \
968 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
969 BIT(IIO_CHAN_INFO_SCALE) | \
970 BIT(IIO_CHAN_INFO_OFFSET), \
971 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
972 .event_spec = xadc_temp_events, \
973 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
974 .scan_index = (_scan_index), \
975 .scan_type = { \
976 .sign = 'u', \
977 .realbits = 12, \
978 .storagebits = 16, \
979 .shift = 4, \
980 .endianness = IIO_CPU, \
981 }, \
982 }
983
984 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
985 .type = IIO_VOLTAGE, \
986 .indexed = 1, \
987 .channel = (_chan), \
988 .address = (_addr), \
989 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
990 BIT(IIO_CHAN_INFO_SCALE), \
991 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
992 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
993 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
994 .scan_index = (_scan_index), \
995 .scan_type = { \
996 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
997 .realbits = 12, \
998 .storagebits = 16, \
999 .shift = 4, \
1000 .endianness = IIO_CPU, \
1001 }, \
1002 .extend_name = _ext, \
1003 }
1004
1005 static const struct iio_chan_spec xadc_channels[] = {
1006 XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1007 XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1008 XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1009 XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1010 XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1011 XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1012 XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1013 XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1014 XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1015 XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1016 XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1017 XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1018 XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1019 XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1020 XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1021 XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1022 XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1023 XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1024 XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1025 XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1026 XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1027 XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1028 XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1029 XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1030 XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1031 XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1032 };
1033
1034 static const struct iio_info xadc_info = {
1035 .read_raw = &xadc_read_raw,
1036 .write_raw = &xadc_write_raw,
1037 .read_event_config = &xadc_read_event_config,
1038 .write_event_config = &xadc_write_event_config,
1039 .read_event_value = &xadc_read_event_value,
1040 .write_event_value = &xadc_write_event_value,
1041 .update_scan_mode = &xadc_update_scan_mode,
1042 .driver_module = THIS_MODULE,
1043 };
1044
1045 static const struct of_device_id xadc_of_match_table[] = {
1046 { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1047 { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1048 { },
1049 };
1050 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1051
xadc_parse_dt(struct iio_dev * indio_dev,struct device_node * np,unsigned int * conf)1052 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1053 unsigned int *conf)
1054 {
1055 struct xadc *xadc = iio_priv(indio_dev);
1056 struct iio_chan_spec *channels, *chan;
1057 struct device_node *chan_node, *child;
1058 unsigned int num_channels;
1059 const char *external_mux;
1060 u32 ext_mux_chan;
1061 int reg;
1062 int ret;
1063
1064 *conf = 0;
1065
1066 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1067 if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1068 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1069 else if (strcasecmp(external_mux, "single") == 0)
1070 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1071 else if (strcasecmp(external_mux, "dual") == 0)
1072 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1073 else
1074 return -EINVAL;
1075
1076 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1077 ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1078 &ext_mux_chan);
1079 if (ret < 0)
1080 return ret;
1081
1082 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1083 if (ext_mux_chan == 0)
1084 ext_mux_chan = XADC_REG_VPVN;
1085 else if (ext_mux_chan <= 16)
1086 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1087 else
1088 return -EINVAL;
1089 } else {
1090 if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1091 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1092 else
1093 return -EINVAL;
1094 }
1095
1096 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1097 }
1098
1099 channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1100 if (!channels)
1101 return -ENOMEM;
1102
1103 num_channels = 9;
1104 chan = &channels[9];
1105
1106 chan_node = of_get_child_by_name(np, "xlnx,channels");
1107 if (chan_node) {
1108 for_each_child_of_node(chan_node, child) {
1109 if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1110 of_node_put(child);
1111 break;
1112 }
1113
1114 ret = of_property_read_u32(child, "reg", ®);
1115 if (ret || reg > 16)
1116 continue;
1117
1118 if (of_property_read_bool(child, "xlnx,bipolar"))
1119 chan->scan_type.sign = 's';
1120
1121 if (reg == 0) {
1122 chan->scan_index = 11;
1123 chan->address = XADC_REG_VPVN;
1124 } else {
1125 chan->scan_index = 15 + reg;
1126 chan->address = XADC_REG_VAUX(reg - 1);
1127 }
1128 num_channels++;
1129 chan++;
1130 }
1131 }
1132 of_node_put(chan_node);
1133
1134 indio_dev->num_channels = num_channels;
1135 indio_dev->channels = krealloc(channels, sizeof(*channels) *
1136 num_channels, GFP_KERNEL);
1137 /* If we can't resize the channels array, just use the original */
1138 if (!indio_dev->channels)
1139 indio_dev->channels = channels;
1140
1141 return 0;
1142 }
1143
xadc_probe(struct platform_device * pdev)1144 static int xadc_probe(struct platform_device *pdev)
1145 {
1146 const struct of_device_id *id;
1147 struct iio_dev *indio_dev;
1148 unsigned int bipolar_mask;
1149 struct resource *mem;
1150 unsigned int conf0;
1151 struct xadc *xadc;
1152 int ret;
1153 int irq;
1154 int i;
1155
1156 if (!pdev->dev.of_node)
1157 return -ENODEV;
1158
1159 id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1160 if (!id)
1161 return -EINVAL;
1162
1163 irq = platform_get_irq(pdev, 0);
1164 if (irq <= 0)
1165 return -ENXIO;
1166
1167 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1168 if (!indio_dev)
1169 return -ENOMEM;
1170
1171 xadc = iio_priv(indio_dev);
1172 xadc->ops = id->data;
1173 init_completion(&xadc->completion);
1174 mutex_init(&xadc->mutex);
1175 spin_lock_init(&xadc->lock);
1176 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1177
1178 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1179 xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1180 if (IS_ERR(xadc->base))
1181 return PTR_ERR(xadc->base);
1182
1183 indio_dev->dev.parent = &pdev->dev;
1184 indio_dev->dev.of_node = pdev->dev.of_node;
1185 indio_dev->name = "xadc";
1186 indio_dev->modes = INDIO_DIRECT_MODE;
1187 indio_dev->info = &xadc_info;
1188
1189 ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1190 if (ret)
1191 goto err_device_free;
1192
1193 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1194 ret = iio_triggered_buffer_setup(indio_dev,
1195 &iio_pollfunc_store_time, &xadc_trigger_handler,
1196 &xadc_buffer_ops);
1197 if (ret)
1198 goto err_device_free;
1199
1200 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1201 if (IS_ERR(xadc->convst_trigger)) {
1202 ret = PTR_ERR(xadc->convst_trigger);
1203 goto err_triggered_buffer_cleanup;
1204 }
1205 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1206 "samplerate");
1207 if (IS_ERR(xadc->samplerate_trigger)) {
1208 ret = PTR_ERR(xadc->samplerate_trigger);
1209 goto err_free_convst_trigger;
1210 }
1211 }
1212
1213 xadc->clk = devm_clk_get(&pdev->dev, NULL);
1214 if (IS_ERR(xadc->clk)) {
1215 ret = PTR_ERR(xadc->clk);
1216 goto err_free_samplerate_trigger;
1217 }
1218 clk_prepare_enable(xadc->clk);
1219
1220 ret = xadc->ops->setup(pdev, indio_dev, irq);
1221 if (ret)
1222 goto err_clk_disable_unprepare;
1223
1224 ret = request_irq(irq, xadc->ops->interrupt_handler, 0,
1225 dev_name(&pdev->dev), indio_dev);
1226 if (ret)
1227 goto err_clk_disable_unprepare;
1228
1229 for (i = 0; i < 16; i++)
1230 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1231 &xadc->threshold[i]);
1232
1233 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1234 if (ret)
1235 goto err_free_irq;
1236
1237 bipolar_mask = 0;
1238 for (i = 0; i < indio_dev->num_channels; i++) {
1239 if (indio_dev->channels[i].scan_type.sign == 's')
1240 bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1241 }
1242
1243 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1244 if (ret)
1245 goto err_free_irq;
1246 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1247 bipolar_mask >> 16);
1248 if (ret)
1249 goto err_free_irq;
1250
1251 /* Disable all alarms */
1252 xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1253 XADC_CONF1_ALARM_MASK);
1254
1255 /* Set thresholds to min/max */
1256 for (i = 0; i < 16; i++) {
1257 /*
1258 * Set max voltage threshold and both temperature thresholds to
1259 * 0xffff, min voltage threshold to 0.
1260 */
1261 if (i % 8 < 4 || i == 7)
1262 xadc->threshold[i] = 0xffff;
1263 else
1264 xadc->threshold[i] = 0;
1265 xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1266 xadc->threshold[i]);
1267 }
1268
1269 /* Go to non-buffered mode */
1270 xadc_postdisable(indio_dev);
1271
1272 ret = iio_device_register(indio_dev);
1273 if (ret)
1274 goto err_free_irq;
1275
1276 platform_set_drvdata(pdev, indio_dev);
1277
1278 return 0;
1279
1280 err_free_irq:
1281 free_irq(irq, indio_dev);
1282 err_clk_disable_unprepare:
1283 clk_disable_unprepare(xadc->clk);
1284 err_free_samplerate_trigger:
1285 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1286 iio_trigger_free(xadc->samplerate_trigger);
1287 err_free_convst_trigger:
1288 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1289 iio_trigger_free(xadc->convst_trigger);
1290 err_triggered_buffer_cleanup:
1291 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1292 iio_triggered_buffer_cleanup(indio_dev);
1293 err_device_free:
1294 kfree(indio_dev->channels);
1295
1296 return ret;
1297 }
1298
xadc_remove(struct platform_device * pdev)1299 static int xadc_remove(struct platform_device *pdev)
1300 {
1301 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1302 struct xadc *xadc = iio_priv(indio_dev);
1303 int irq = platform_get_irq(pdev, 0);
1304
1305 iio_device_unregister(indio_dev);
1306 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1307 iio_trigger_free(xadc->samplerate_trigger);
1308 iio_trigger_free(xadc->convst_trigger);
1309 iio_triggered_buffer_cleanup(indio_dev);
1310 }
1311 free_irq(irq, indio_dev);
1312 clk_disable_unprepare(xadc->clk);
1313 cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1314 kfree(xadc->data);
1315 kfree(indio_dev->channels);
1316
1317 return 0;
1318 }
1319
1320 static struct platform_driver xadc_driver = {
1321 .probe = xadc_probe,
1322 .remove = xadc_remove,
1323 .driver = {
1324 .name = "xadc",
1325 .of_match_table = xadc_of_match_table,
1326 },
1327 };
1328 module_platform_driver(xadc_driver);
1329
1330 MODULE_LICENSE("GPL v2");
1331 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1332 MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1333