• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
40 
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
44 
45 #include "tcb.h"
46 #include "cxgb3_offload.h"
47 #include "iwch.h"
48 #include "iwch_provider.h"
49 #include "iwch_cm.h"
50 
51 static char *states[] = {
52 	"idle",
53 	"listen",
54 	"connecting",
55 	"mpa_wait_req",
56 	"mpa_req_sent",
57 	"mpa_req_rcvd",
58 	"mpa_rep_sent",
59 	"fpdu_mode",
60 	"aborting",
61 	"closing",
62 	"moribund",
63 	"dead",
64 	NULL,
65 };
66 
67 int peer2peer = 0;
68 module_param(peer2peer, int, 0644);
69 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
70 
71 static int ep_timeout_secs = 60;
72 module_param(ep_timeout_secs, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
74 				   "in seconds (default=60)");
75 
76 static int mpa_rev = 1;
77 module_param(mpa_rev, int, 0644);
78 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
79 		 "1 is spec compliant. (default=1)");
80 
81 static int markers_enabled = 0;
82 module_param(markers_enabled, int, 0644);
83 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
84 
85 static int crc_enabled = 1;
86 module_param(crc_enabled, int, 0644);
87 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
88 
89 static int rcv_win = 256 * 1024;
90 module_param(rcv_win, int, 0644);
91 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
92 
93 static int snd_win = 32 * 1024;
94 module_param(snd_win, int, 0644);
95 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
96 
97 static unsigned int nocong = 0;
98 module_param(nocong, uint, 0644);
99 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
100 
101 static unsigned int cong_flavor = 1;
102 module_param(cong_flavor, uint, 0644);
103 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
104 
105 static struct workqueue_struct *workq;
106 
107 static struct sk_buff_head rxq;
108 
109 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
110 static void ep_timeout(unsigned long arg);
111 static void connect_reply_upcall(struct iwch_ep *ep, int status);
112 
start_ep_timer(struct iwch_ep * ep)113 static void start_ep_timer(struct iwch_ep *ep)
114 {
115 	PDBG("%s ep %p\n", __func__, ep);
116 	if (timer_pending(&ep->timer)) {
117 		PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
118 		del_timer_sync(&ep->timer);
119 	} else
120 		get_ep(&ep->com);
121 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
122 	ep->timer.data = (unsigned long)ep;
123 	ep->timer.function = ep_timeout;
124 	add_timer(&ep->timer);
125 }
126 
stop_ep_timer(struct iwch_ep * ep)127 static void stop_ep_timer(struct iwch_ep *ep)
128 {
129 	PDBG("%s ep %p\n", __func__, ep);
130 	if (!timer_pending(&ep->timer)) {
131 		WARN(1, "%s timer stopped when its not running!  ep %p state %u\n",
132 			__func__, ep, ep->com.state);
133 		return;
134 	}
135 	del_timer_sync(&ep->timer);
136 	put_ep(&ep->com);
137 }
138 
iwch_l2t_send(struct t3cdev * tdev,struct sk_buff * skb,struct l2t_entry * l2e)139 static int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
140 {
141 	int	error = 0;
142 	struct cxio_rdev *rdev;
143 
144 	rdev = (struct cxio_rdev *)tdev->ulp;
145 	if (cxio_fatal_error(rdev)) {
146 		kfree_skb(skb);
147 		return -EIO;
148 	}
149 	error = l2t_send(tdev, skb, l2e);
150 	if (error < 0)
151 		kfree_skb(skb);
152 	return error < 0 ? error : 0;
153 }
154 
iwch_cxgb3_ofld_send(struct t3cdev * tdev,struct sk_buff * skb)155 int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
156 {
157 	int	error = 0;
158 	struct cxio_rdev *rdev;
159 
160 	rdev = (struct cxio_rdev *)tdev->ulp;
161 	if (cxio_fatal_error(rdev)) {
162 		kfree_skb(skb);
163 		return -EIO;
164 	}
165 	error = cxgb3_ofld_send(tdev, skb);
166 	if (error < 0)
167 		kfree_skb(skb);
168 	return error < 0 ? error : 0;
169 }
170 
release_tid(struct t3cdev * tdev,u32 hwtid,struct sk_buff * skb)171 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
172 {
173 	struct cpl_tid_release *req;
174 
175 	skb = get_skb(skb, sizeof *req, GFP_KERNEL);
176 	if (!skb)
177 		return;
178 	req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
179 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
180 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
181 	skb->priority = CPL_PRIORITY_SETUP;
182 	iwch_cxgb3_ofld_send(tdev, skb);
183 	return;
184 }
185 
iwch_quiesce_tid(struct iwch_ep * ep)186 int iwch_quiesce_tid(struct iwch_ep *ep)
187 {
188 	struct cpl_set_tcb_field *req;
189 	struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
190 
191 	if (!skb)
192 		return -ENOMEM;
193 	req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
194 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
195 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
196 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
197 	req->reply = 0;
198 	req->cpu_idx = 0;
199 	req->word = htons(W_TCB_RX_QUIESCE);
200 	req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
201 	req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
202 
203 	skb->priority = CPL_PRIORITY_DATA;
204 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
205 }
206 
iwch_resume_tid(struct iwch_ep * ep)207 int iwch_resume_tid(struct iwch_ep *ep)
208 {
209 	struct cpl_set_tcb_field *req;
210 	struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
211 
212 	if (!skb)
213 		return -ENOMEM;
214 	req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
215 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
216 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
217 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
218 	req->reply = 0;
219 	req->cpu_idx = 0;
220 	req->word = htons(W_TCB_RX_QUIESCE);
221 	req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
222 	req->val = 0;
223 
224 	skb->priority = CPL_PRIORITY_DATA;
225 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
226 }
227 
set_emss(struct iwch_ep * ep,u16 opt)228 static void set_emss(struct iwch_ep *ep, u16 opt)
229 {
230 	PDBG("%s ep %p opt %u\n", __func__, ep, opt);
231 	ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
232 	if (G_TCPOPT_TSTAMP(opt))
233 		ep->emss -= 12;
234 	if (ep->emss < 128)
235 		ep->emss = 128;
236 	PDBG("emss=%d\n", ep->emss);
237 }
238 
state_read(struct iwch_ep_common * epc)239 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
240 {
241 	unsigned long flags;
242 	enum iwch_ep_state state;
243 
244 	spin_lock_irqsave(&epc->lock, flags);
245 	state = epc->state;
246 	spin_unlock_irqrestore(&epc->lock, flags);
247 	return state;
248 }
249 
__state_set(struct iwch_ep_common * epc,enum iwch_ep_state new)250 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
251 {
252 	epc->state = new;
253 }
254 
state_set(struct iwch_ep_common * epc,enum iwch_ep_state new)255 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
256 {
257 	unsigned long flags;
258 
259 	spin_lock_irqsave(&epc->lock, flags);
260 	PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
261 	__state_set(epc, new);
262 	spin_unlock_irqrestore(&epc->lock, flags);
263 	return;
264 }
265 
alloc_ep(int size,gfp_t gfp)266 static void *alloc_ep(int size, gfp_t gfp)
267 {
268 	struct iwch_ep_common *epc;
269 
270 	epc = kzalloc(size, gfp);
271 	if (epc) {
272 		kref_init(&epc->kref);
273 		spin_lock_init(&epc->lock);
274 		init_waitqueue_head(&epc->waitq);
275 	}
276 	PDBG("%s alloc ep %p\n", __func__, epc);
277 	return epc;
278 }
279 
__free_ep(struct kref * kref)280 void __free_ep(struct kref *kref)
281 {
282 	struct iwch_ep *ep;
283 	ep = container_of(container_of(kref, struct iwch_ep_common, kref),
284 			  struct iwch_ep, com);
285 	PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
286 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
287 		cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
288 		dst_release(ep->dst);
289 		l2t_release(ep->com.tdev, ep->l2t);
290 	}
291 	kfree(ep);
292 }
293 
release_ep_resources(struct iwch_ep * ep)294 static void release_ep_resources(struct iwch_ep *ep)
295 {
296 	PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
297 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
298 	put_ep(&ep->com);
299 }
300 
status2errno(int status)301 static int status2errno(int status)
302 {
303 	switch (status) {
304 	case CPL_ERR_NONE:
305 		return 0;
306 	case CPL_ERR_CONN_RESET:
307 		return -ECONNRESET;
308 	case CPL_ERR_ARP_MISS:
309 		return -EHOSTUNREACH;
310 	case CPL_ERR_CONN_TIMEDOUT:
311 		return -ETIMEDOUT;
312 	case CPL_ERR_TCAM_FULL:
313 		return -ENOMEM;
314 	case CPL_ERR_CONN_EXIST:
315 		return -EADDRINUSE;
316 	default:
317 		return -EIO;
318 	}
319 }
320 
321 /*
322  * Try and reuse skbs already allocated...
323  */
get_skb(struct sk_buff * skb,int len,gfp_t gfp)324 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
325 {
326 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
327 		skb_trim(skb, 0);
328 		skb_get(skb);
329 	} else {
330 		skb = alloc_skb(len, gfp);
331 	}
332 	return skb;
333 }
334 
find_route(struct t3cdev * dev,__be32 local_ip,__be32 peer_ip,__be16 local_port,__be16 peer_port,u8 tos)335 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
336 				 __be32 peer_ip, __be16 local_port,
337 				 __be16 peer_port, u8 tos)
338 {
339 	struct rtable *rt;
340 	struct flowi4 fl4;
341 
342 	rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
343 				   peer_port, local_port, IPPROTO_TCP,
344 				   tos, 0);
345 	if (IS_ERR(rt))
346 		return NULL;
347 	return rt;
348 }
349 
find_best_mtu(const struct t3c_data * d,unsigned short mtu)350 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
351 {
352 	int i = 0;
353 
354 	while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
355 		++i;
356 	return i;
357 }
358 
arp_failure_discard(struct t3cdev * dev,struct sk_buff * skb)359 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
360 {
361 	PDBG("%s t3cdev %p\n", __func__, dev);
362 	kfree_skb(skb);
363 }
364 
365 /*
366  * Handle an ARP failure for an active open.
367  */
act_open_req_arp_failure(struct t3cdev * dev,struct sk_buff * skb)368 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
369 {
370 	printk(KERN_ERR MOD "ARP failure duing connect\n");
371 	kfree_skb(skb);
372 }
373 
374 /*
375  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
376  * and send it along.
377  */
abort_arp_failure(struct t3cdev * dev,struct sk_buff * skb)378 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
379 {
380 	struct cpl_abort_req *req = cplhdr(skb);
381 
382 	PDBG("%s t3cdev %p\n", __func__, dev);
383 	req->cmd = CPL_ABORT_NO_RST;
384 	iwch_cxgb3_ofld_send(dev, skb);
385 }
386 
send_halfclose(struct iwch_ep * ep,gfp_t gfp)387 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
388 {
389 	struct cpl_close_con_req *req;
390 	struct sk_buff *skb;
391 
392 	PDBG("%s ep %p\n", __func__, ep);
393 	skb = get_skb(NULL, sizeof(*req), gfp);
394 	if (!skb) {
395 		printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
396 		return -ENOMEM;
397 	}
398 	skb->priority = CPL_PRIORITY_DATA;
399 	set_arp_failure_handler(skb, arp_failure_discard);
400 	req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
401 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
402 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
403 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
404 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
405 }
406 
send_abort(struct iwch_ep * ep,struct sk_buff * skb,gfp_t gfp)407 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
408 {
409 	struct cpl_abort_req *req;
410 
411 	PDBG("%s ep %p\n", __func__, ep);
412 	skb = get_skb(skb, sizeof(*req), gfp);
413 	if (!skb) {
414 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
415 		       __func__);
416 		return -ENOMEM;
417 	}
418 	skb->priority = CPL_PRIORITY_DATA;
419 	set_arp_failure_handler(skb, abort_arp_failure);
420 	req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
421 	memset(req, 0, sizeof(*req));
422 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
423 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
424 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
425 	req->cmd = CPL_ABORT_SEND_RST;
426 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
427 }
428 
send_connect(struct iwch_ep * ep)429 static int send_connect(struct iwch_ep *ep)
430 {
431 	struct cpl_act_open_req *req;
432 	struct sk_buff *skb;
433 	u32 opt0h, opt0l, opt2;
434 	unsigned int mtu_idx;
435 	int wscale;
436 
437 	PDBG("%s ep %p\n", __func__, ep);
438 
439 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
440 	if (!skb) {
441 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
442 		       __func__);
443 		return -ENOMEM;
444 	}
445 	mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
446 	wscale = compute_wscale(rcv_win);
447 	opt0h = V_NAGLE(0) |
448 	    V_NO_CONG(nocong) |
449 	    V_KEEP_ALIVE(1) |
450 	    F_TCAM_BYPASS |
451 	    V_WND_SCALE(wscale) |
452 	    V_MSS_IDX(mtu_idx) |
453 	    V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
454 	opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
455 	opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
456 	       V_CONG_CONTROL_FLAVOR(cong_flavor);
457 	skb->priority = CPL_PRIORITY_SETUP;
458 	set_arp_failure_handler(skb, act_open_req_arp_failure);
459 
460 	req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
461 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
462 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
463 	req->local_port = ep->com.local_addr.sin_port;
464 	req->peer_port = ep->com.remote_addr.sin_port;
465 	req->local_ip = ep->com.local_addr.sin_addr.s_addr;
466 	req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
467 	req->opt0h = htonl(opt0h);
468 	req->opt0l = htonl(opt0l);
469 	req->params = 0;
470 	req->opt2 = htonl(opt2);
471 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
472 }
473 
send_mpa_req(struct iwch_ep * ep,struct sk_buff * skb)474 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
475 {
476 	int mpalen;
477 	struct tx_data_wr *req;
478 	struct mpa_message *mpa;
479 	int len;
480 
481 	PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
482 
483 	BUG_ON(skb_cloned(skb));
484 
485 	mpalen = sizeof(*mpa) + ep->plen;
486 	if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
487 		kfree_skb(skb);
488 		skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
489 		if (!skb) {
490 			connect_reply_upcall(ep, -ENOMEM);
491 			return;
492 		}
493 	}
494 	skb_trim(skb, 0);
495 	skb_reserve(skb, sizeof(*req));
496 	skb_put(skb, mpalen);
497 	skb->priority = CPL_PRIORITY_DATA;
498 	mpa = (struct mpa_message *) skb->data;
499 	memset(mpa, 0, sizeof(*mpa));
500 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
501 	mpa->flags = (crc_enabled ? MPA_CRC : 0) |
502 		     (markers_enabled ? MPA_MARKERS : 0);
503 	mpa->private_data_size = htons(ep->plen);
504 	mpa->revision = mpa_rev;
505 
506 	if (ep->plen)
507 		memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
508 
509 	/*
510 	 * Reference the mpa skb.  This ensures the data area
511 	 * will remain in memory until the hw acks the tx.
512 	 * Function tx_ack() will deref it.
513 	 */
514 	skb_get(skb);
515 	set_arp_failure_handler(skb, arp_failure_discard);
516 	skb_reset_transport_header(skb);
517 	len = skb->len;
518 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
519 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
520 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
521 	req->len = htonl(len);
522 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
523 			   V_TX_SNDBUF(snd_win>>15));
524 	req->flags = htonl(F_TX_INIT);
525 	req->sndseq = htonl(ep->snd_seq);
526 	BUG_ON(ep->mpa_skb);
527 	ep->mpa_skb = skb;
528 	iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
529 	start_ep_timer(ep);
530 	state_set(&ep->com, MPA_REQ_SENT);
531 	return;
532 }
533 
send_mpa_reject(struct iwch_ep * ep,const void * pdata,u8 plen)534 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
535 {
536 	int mpalen;
537 	struct tx_data_wr *req;
538 	struct mpa_message *mpa;
539 	struct sk_buff *skb;
540 
541 	PDBG("%s ep %p plen %d\n", __func__, ep, plen);
542 
543 	mpalen = sizeof(*mpa) + plen;
544 
545 	skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
546 	if (!skb) {
547 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
548 		return -ENOMEM;
549 	}
550 	skb_reserve(skb, sizeof(*req));
551 	mpa = (struct mpa_message *) skb_put(skb, mpalen);
552 	memset(mpa, 0, sizeof(*mpa));
553 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
554 	mpa->flags = MPA_REJECT;
555 	mpa->revision = mpa_rev;
556 	mpa->private_data_size = htons(plen);
557 	if (plen)
558 		memcpy(mpa->private_data, pdata, plen);
559 
560 	/*
561 	 * Reference the mpa skb again.  This ensures the data area
562 	 * will remain in memory until the hw acks the tx.
563 	 * Function tx_ack() will deref it.
564 	 */
565 	skb_get(skb);
566 	skb->priority = CPL_PRIORITY_DATA;
567 	set_arp_failure_handler(skb, arp_failure_discard);
568 	skb_reset_transport_header(skb);
569 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
570 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
571 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
572 	req->len = htonl(mpalen);
573 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
574 			   V_TX_SNDBUF(snd_win>>15));
575 	req->flags = htonl(F_TX_INIT);
576 	req->sndseq = htonl(ep->snd_seq);
577 	BUG_ON(ep->mpa_skb);
578 	ep->mpa_skb = skb;
579 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
580 }
581 
send_mpa_reply(struct iwch_ep * ep,const void * pdata,u8 plen)582 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
583 {
584 	int mpalen;
585 	struct tx_data_wr *req;
586 	struct mpa_message *mpa;
587 	int len;
588 	struct sk_buff *skb;
589 
590 	PDBG("%s ep %p plen %d\n", __func__, ep, plen);
591 
592 	mpalen = sizeof(*mpa) + plen;
593 
594 	skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
595 	if (!skb) {
596 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
597 		return -ENOMEM;
598 	}
599 	skb->priority = CPL_PRIORITY_DATA;
600 	skb_reserve(skb, sizeof(*req));
601 	mpa = (struct mpa_message *) skb_put(skb, mpalen);
602 	memset(mpa, 0, sizeof(*mpa));
603 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
604 	mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
605 		     (markers_enabled ? MPA_MARKERS : 0);
606 	mpa->revision = mpa_rev;
607 	mpa->private_data_size = htons(plen);
608 	if (plen)
609 		memcpy(mpa->private_data, pdata, plen);
610 
611 	/*
612 	 * Reference the mpa skb.  This ensures the data area
613 	 * will remain in memory until the hw acks the tx.
614 	 * Function tx_ack() will deref it.
615 	 */
616 	skb_get(skb);
617 	set_arp_failure_handler(skb, arp_failure_discard);
618 	skb_reset_transport_header(skb);
619 	len = skb->len;
620 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
621 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
622 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
623 	req->len = htonl(len);
624 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
625 			   V_TX_SNDBUF(snd_win>>15));
626 	req->flags = htonl(F_TX_INIT);
627 	req->sndseq = htonl(ep->snd_seq);
628 	ep->mpa_skb = skb;
629 	state_set(&ep->com, MPA_REP_SENT);
630 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
631 }
632 
act_establish(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)633 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
634 {
635 	struct iwch_ep *ep = ctx;
636 	struct cpl_act_establish *req = cplhdr(skb);
637 	unsigned int tid = GET_TID(req);
638 
639 	PDBG("%s ep %p tid %d\n", __func__, ep, tid);
640 
641 	dst_confirm(ep->dst);
642 
643 	/* setup the hwtid for this connection */
644 	ep->hwtid = tid;
645 	cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
646 
647 	ep->snd_seq = ntohl(req->snd_isn);
648 	ep->rcv_seq = ntohl(req->rcv_isn);
649 
650 	set_emss(ep, ntohs(req->tcp_opt));
651 
652 	/* dealloc the atid */
653 	cxgb3_free_atid(ep->com.tdev, ep->atid);
654 
655 	/* start MPA negotiation */
656 	send_mpa_req(ep, skb);
657 
658 	return 0;
659 }
660 
abort_connection(struct iwch_ep * ep,struct sk_buff * skb,gfp_t gfp)661 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
662 {
663 	PDBG("%s ep %p\n", __FILE__, ep);
664 	state_set(&ep->com, ABORTING);
665 	send_abort(ep, skb, gfp);
666 }
667 
close_complete_upcall(struct iwch_ep * ep)668 static void close_complete_upcall(struct iwch_ep *ep)
669 {
670 	struct iw_cm_event event;
671 
672 	PDBG("%s ep %p\n", __func__, ep);
673 	memset(&event, 0, sizeof(event));
674 	event.event = IW_CM_EVENT_CLOSE;
675 	if (ep->com.cm_id) {
676 		PDBG("close complete delivered ep %p cm_id %p tid %d\n",
677 		     ep, ep->com.cm_id, ep->hwtid);
678 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
679 		ep->com.cm_id->rem_ref(ep->com.cm_id);
680 		ep->com.cm_id = NULL;
681 		ep->com.qp = NULL;
682 	}
683 }
684 
peer_close_upcall(struct iwch_ep * ep)685 static void peer_close_upcall(struct iwch_ep *ep)
686 {
687 	struct iw_cm_event event;
688 
689 	PDBG("%s ep %p\n", __func__, ep);
690 	memset(&event, 0, sizeof(event));
691 	event.event = IW_CM_EVENT_DISCONNECT;
692 	if (ep->com.cm_id) {
693 		PDBG("peer close delivered ep %p cm_id %p tid %d\n",
694 		     ep, ep->com.cm_id, ep->hwtid);
695 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
696 	}
697 }
698 
peer_abort_upcall(struct iwch_ep * ep)699 static void peer_abort_upcall(struct iwch_ep *ep)
700 {
701 	struct iw_cm_event event;
702 
703 	PDBG("%s ep %p\n", __func__, ep);
704 	memset(&event, 0, sizeof(event));
705 	event.event = IW_CM_EVENT_CLOSE;
706 	event.status = -ECONNRESET;
707 	if (ep->com.cm_id) {
708 		PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
709 		     ep->com.cm_id, ep->hwtid);
710 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
711 		ep->com.cm_id->rem_ref(ep->com.cm_id);
712 		ep->com.cm_id = NULL;
713 		ep->com.qp = NULL;
714 	}
715 }
716 
connect_reply_upcall(struct iwch_ep * ep,int status)717 static void connect_reply_upcall(struct iwch_ep *ep, int status)
718 {
719 	struct iw_cm_event event;
720 
721 	PDBG("%s ep %p status %d\n", __func__, ep, status);
722 	memset(&event, 0, sizeof(event));
723 	event.event = IW_CM_EVENT_CONNECT_REPLY;
724 	event.status = status;
725 	memcpy(&event.local_addr, &ep->com.local_addr,
726 	       sizeof(ep->com.local_addr));
727 	memcpy(&event.remote_addr, &ep->com.remote_addr,
728 	       sizeof(ep->com.remote_addr));
729 
730 	if ((status == 0) || (status == -ECONNREFUSED)) {
731 		event.private_data_len = ep->plen;
732 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
733 	}
734 	if (ep->com.cm_id) {
735 		PDBG("%s ep %p tid %d status %d\n", __func__, ep,
736 		     ep->hwtid, status);
737 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
738 	}
739 	if (status < 0) {
740 		ep->com.cm_id->rem_ref(ep->com.cm_id);
741 		ep->com.cm_id = NULL;
742 		ep->com.qp = NULL;
743 	}
744 }
745 
connect_request_upcall(struct iwch_ep * ep)746 static void connect_request_upcall(struct iwch_ep *ep)
747 {
748 	struct iw_cm_event event;
749 
750 	PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
751 	memset(&event, 0, sizeof(event));
752 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
753 	memcpy(&event.local_addr, &ep->com.local_addr,
754 	       sizeof(ep->com.local_addr));
755 	memcpy(&event.remote_addr, &ep->com.remote_addr,
756 	       sizeof(ep->com.local_addr));
757 	event.private_data_len = ep->plen;
758 	event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
759 	event.provider_data = ep;
760 	/*
761 	 * Until ird/ord negotiation via MPAv2 support is added, send max
762 	 * supported values
763 	 */
764 	event.ird = event.ord = 8;
765 	if (state_read(&ep->parent_ep->com) != DEAD) {
766 		get_ep(&ep->com);
767 		ep->parent_ep->com.cm_id->event_handler(
768 						ep->parent_ep->com.cm_id,
769 						&event);
770 	}
771 	put_ep(&ep->parent_ep->com);
772 	ep->parent_ep = NULL;
773 }
774 
established_upcall(struct iwch_ep * ep)775 static void established_upcall(struct iwch_ep *ep)
776 {
777 	struct iw_cm_event event;
778 
779 	PDBG("%s ep %p\n", __func__, ep);
780 	memset(&event, 0, sizeof(event));
781 	event.event = IW_CM_EVENT_ESTABLISHED;
782 	/*
783 	 * Until ird/ord negotiation via MPAv2 support is added, send max
784 	 * supported values
785 	 */
786 	event.ird = event.ord = 8;
787 	if (ep->com.cm_id) {
788 		PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
789 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
790 	}
791 }
792 
update_rx_credits(struct iwch_ep * ep,u32 credits)793 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
794 {
795 	struct cpl_rx_data_ack *req;
796 	struct sk_buff *skb;
797 
798 	PDBG("%s ep %p credits %u\n", __func__, ep, credits);
799 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
800 	if (!skb) {
801 		printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
802 		return 0;
803 	}
804 
805 	req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
806 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
807 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
808 	req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
809 	skb->priority = CPL_PRIORITY_ACK;
810 	iwch_cxgb3_ofld_send(ep->com.tdev, skb);
811 	return credits;
812 }
813 
process_mpa_reply(struct iwch_ep * ep,struct sk_buff * skb)814 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
815 {
816 	struct mpa_message *mpa;
817 	u16 plen;
818 	struct iwch_qp_attributes attrs;
819 	enum iwch_qp_attr_mask mask;
820 	int err;
821 
822 	PDBG("%s ep %p\n", __func__, ep);
823 
824 	/*
825 	 * Stop mpa timer.  If it expired, then the state has
826 	 * changed and we bail since ep_timeout already aborted
827 	 * the connection.
828 	 */
829 	stop_ep_timer(ep);
830 	if (state_read(&ep->com) != MPA_REQ_SENT)
831 		return;
832 
833 	/*
834 	 * If we get more than the supported amount of private data
835 	 * then we must fail this connection.
836 	 */
837 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
838 		err = -EINVAL;
839 		goto err;
840 	}
841 
842 	/*
843 	 * copy the new data into our accumulation buffer.
844 	 */
845 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
846 				  skb->len);
847 	ep->mpa_pkt_len += skb->len;
848 
849 	/*
850 	 * if we don't even have the mpa message, then bail.
851 	 */
852 	if (ep->mpa_pkt_len < sizeof(*mpa))
853 		return;
854 	mpa = (struct mpa_message *) ep->mpa_pkt;
855 
856 	/* Validate MPA header. */
857 	if (mpa->revision != mpa_rev) {
858 		err = -EPROTO;
859 		goto err;
860 	}
861 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
862 		err = -EPROTO;
863 		goto err;
864 	}
865 
866 	plen = ntohs(mpa->private_data_size);
867 
868 	/*
869 	 * Fail if there's too much private data.
870 	 */
871 	if (plen > MPA_MAX_PRIVATE_DATA) {
872 		err = -EPROTO;
873 		goto err;
874 	}
875 
876 	/*
877 	 * If plen does not account for pkt size
878 	 */
879 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
880 		err = -EPROTO;
881 		goto err;
882 	}
883 
884 	ep->plen = (u8) plen;
885 
886 	/*
887 	 * If we don't have all the pdata yet, then bail.
888 	 * We'll continue process when more data arrives.
889 	 */
890 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
891 		return;
892 
893 	if (mpa->flags & MPA_REJECT) {
894 		err = -ECONNREFUSED;
895 		goto err;
896 	}
897 
898 	/*
899 	 * If we get here we have accumulated the entire mpa
900 	 * start reply message including private data. And
901 	 * the MPA header is valid.
902 	 */
903 	state_set(&ep->com, FPDU_MODE);
904 	ep->mpa_attr.initiator = 1;
905 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
906 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
907 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
908 	ep->mpa_attr.version = mpa_rev;
909 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
910 	     "xmit_marker_enabled=%d, version=%d\n", __func__,
911 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
912 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
913 
914 	attrs.mpa_attr = ep->mpa_attr;
915 	attrs.max_ird = ep->ird;
916 	attrs.max_ord = ep->ord;
917 	attrs.llp_stream_handle = ep;
918 	attrs.next_state = IWCH_QP_STATE_RTS;
919 
920 	mask = IWCH_QP_ATTR_NEXT_STATE |
921 	    IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
922 	    IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
923 
924 	/* bind QP and TID with INIT_WR */
925 	err = iwch_modify_qp(ep->com.qp->rhp,
926 			     ep->com.qp, mask, &attrs, 1);
927 	if (err)
928 		goto err;
929 
930 	if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
931 		iwch_post_zb_read(ep);
932 	}
933 
934 	goto out;
935 err:
936 	abort_connection(ep, skb, GFP_KERNEL);
937 out:
938 	connect_reply_upcall(ep, err);
939 	return;
940 }
941 
process_mpa_request(struct iwch_ep * ep,struct sk_buff * skb)942 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
943 {
944 	struct mpa_message *mpa;
945 	u16 plen;
946 
947 	PDBG("%s ep %p\n", __func__, ep);
948 
949 	/*
950 	 * Stop mpa timer.  If it expired, then the state has
951 	 * changed and we bail since ep_timeout already aborted
952 	 * the connection.
953 	 */
954 	stop_ep_timer(ep);
955 	if (state_read(&ep->com) != MPA_REQ_WAIT)
956 		return;
957 
958 	/*
959 	 * If we get more than the supported amount of private data
960 	 * then we must fail this connection.
961 	 */
962 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
963 		abort_connection(ep, skb, GFP_KERNEL);
964 		return;
965 	}
966 
967 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
968 
969 	/*
970 	 * Copy the new data into our accumulation buffer.
971 	 */
972 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
973 				  skb->len);
974 	ep->mpa_pkt_len += skb->len;
975 
976 	/*
977 	 * If we don't even have the mpa message, then bail.
978 	 * We'll continue process when more data arrives.
979 	 */
980 	if (ep->mpa_pkt_len < sizeof(*mpa))
981 		return;
982 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
983 	mpa = (struct mpa_message *) ep->mpa_pkt;
984 
985 	/*
986 	 * Validate MPA Header.
987 	 */
988 	if (mpa->revision != mpa_rev) {
989 		abort_connection(ep, skb, GFP_KERNEL);
990 		return;
991 	}
992 
993 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
994 		abort_connection(ep, skb, GFP_KERNEL);
995 		return;
996 	}
997 
998 	plen = ntohs(mpa->private_data_size);
999 
1000 	/*
1001 	 * Fail if there's too much private data.
1002 	 */
1003 	if (plen > MPA_MAX_PRIVATE_DATA) {
1004 		abort_connection(ep, skb, GFP_KERNEL);
1005 		return;
1006 	}
1007 
1008 	/*
1009 	 * If plen does not account for pkt size
1010 	 */
1011 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1012 		abort_connection(ep, skb, GFP_KERNEL);
1013 		return;
1014 	}
1015 	ep->plen = (u8) plen;
1016 
1017 	/*
1018 	 * If we don't have all the pdata yet, then bail.
1019 	 */
1020 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1021 		return;
1022 
1023 	/*
1024 	 * If we get here we have accumulated the entire mpa
1025 	 * start reply message including private data.
1026 	 */
1027 	ep->mpa_attr.initiator = 0;
1028 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1029 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1030 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1031 	ep->mpa_attr.version = mpa_rev;
1032 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1033 	     "xmit_marker_enabled=%d, version=%d\n", __func__,
1034 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1035 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1036 
1037 	state_set(&ep->com, MPA_REQ_RCVD);
1038 
1039 	/* drive upcall */
1040 	connect_request_upcall(ep);
1041 	return;
1042 }
1043 
rx_data(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1044 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1045 {
1046 	struct iwch_ep *ep = ctx;
1047 	struct cpl_rx_data *hdr = cplhdr(skb);
1048 	unsigned int dlen = ntohs(hdr->len);
1049 
1050 	PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
1051 
1052 	skb_pull(skb, sizeof(*hdr));
1053 	skb_trim(skb, dlen);
1054 
1055 	ep->rcv_seq += dlen;
1056 	BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1057 
1058 	switch (state_read(&ep->com)) {
1059 	case MPA_REQ_SENT:
1060 		process_mpa_reply(ep, skb);
1061 		break;
1062 	case MPA_REQ_WAIT:
1063 		process_mpa_request(ep, skb);
1064 		break;
1065 	case MPA_REP_SENT:
1066 		break;
1067 	default:
1068 		printk(KERN_ERR MOD "%s Unexpected streaming data."
1069 		       " ep %p state %d tid %d\n",
1070 		       __func__, ep, state_read(&ep->com), ep->hwtid);
1071 
1072 		/*
1073 		 * The ep will timeout and inform the ULP of the failure.
1074 		 * See ep_timeout().
1075 		 */
1076 		break;
1077 	}
1078 
1079 	/* update RX credits */
1080 	update_rx_credits(ep, dlen);
1081 
1082 	return CPL_RET_BUF_DONE;
1083 }
1084 
1085 /*
1086  * Upcall from the adapter indicating data has been transmitted.
1087  * For us its just the single MPA request or reply.  We can now free
1088  * the skb holding the mpa message.
1089  */
tx_ack(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1090 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1091 {
1092 	struct iwch_ep *ep = ctx;
1093 	struct cpl_wr_ack *hdr = cplhdr(skb);
1094 	unsigned int credits = ntohs(hdr->credits);
1095 	unsigned long flags;
1096 	int post_zb = 0;
1097 
1098 	PDBG("%s ep %p credits %u\n", __func__, ep, credits);
1099 
1100 	if (credits == 0) {
1101 		PDBG("%s 0 credit ack  ep %p state %u\n",
1102 		     __func__, ep, state_read(&ep->com));
1103 		return CPL_RET_BUF_DONE;
1104 	}
1105 
1106 	spin_lock_irqsave(&ep->com.lock, flags);
1107 	BUG_ON(credits != 1);
1108 	dst_confirm(ep->dst);
1109 	if (!ep->mpa_skb) {
1110 		PDBG("%s rdma_init wr_ack ep %p state %u\n",
1111 			__func__, ep, ep->com.state);
1112 		if (ep->mpa_attr.initiator) {
1113 			PDBG("%s initiator ep %p state %u\n",
1114 				__func__, ep, ep->com.state);
1115 			if (peer2peer && ep->com.state == FPDU_MODE)
1116 				post_zb = 1;
1117 		} else {
1118 			PDBG("%s responder ep %p state %u\n",
1119 				__func__, ep, ep->com.state);
1120 			if (ep->com.state == MPA_REQ_RCVD) {
1121 				ep->com.rpl_done = 1;
1122 				wake_up(&ep->com.waitq);
1123 			}
1124 		}
1125 	} else {
1126 		PDBG("%s lsm ack ep %p state %u freeing skb\n",
1127 			__func__, ep, ep->com.state);
1128 		kfree_skb(ep->mpa_skb);
1129 		ep->mpa_skb = NULL;
1130 	}
1131 	spin_unlock_irqrestore(&ep->com.lock, flags);
1132 	if (post_zb)
1133 		iwch_post_zb_read(ep);
1134 	return CPL_RET_BUF_DONE;
1135 }
1136 
abort_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1137 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1138 {
1139 	struct iwch_ep *ep = ctx;
1140 	unsigned long flags;
1141 	int release = 0;
1142 
1143 	PDBG("%s ep %p\n", __func__, ep);
1144 	BUG_ON(!ep);
1145 
1146 	/*
1147 	 * We get 2 abort replies from the HW.  The first one must
1148 	 * be ignored except for scribbling that we need one more.
1149 	 */
1150 	if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) {
1151 		return CPL_RET_BUF_DONE;
1152 	}
1153 
1154 	spin_lock_irqsave(&ep->com.lock, flags);
1155 	switch (ep->com.state) {
1156 	case ABORTING:
1157 		close_complete_upcall(ep);
1158 		__state_set(&ep->com, DEAD);
1159 		release = 1;
1160 		break;
1161 	default:
1162 		printk(KERN_ERR "%s ep %p state %d\n",
1163 		     __func__, ep, ep->com.state);
1164 		break;
1165 	}
1166 	spin_unlock_irqrestore(&ep->com.lock, flags);
1167 
1168 	if (release)
1169 		release_ep_resources(ep);
1170 	return CPL_RET_BUF_DONE;
1171 }
1172 
1173 /*
1174  * Return whether a failed active open has allocated a TID
1175  */
act_open_has_tid(int status)1176 static inline int act_open_has_tid(int status)
1177 {
1178 	return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1179 	       status != CPL_ERR_ARP_MISS;
1180 }
1181 
act_open_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1182 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1183 {
1184 	struct iwch_ep *ep = ctx;
1185 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
1186 
1187 	PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
1188 	     status2errno(rpl->status));
1189 	connect_reply_upcall(ep, status2errno(rpl->status));
1190 	state_set(&ep->com, DEAD);
1191 	if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
1192 		release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1193 	cxgb3_free_atid(ep->com.tdev, ep->atid);
1194 	dst_release(ep->dst);
1195 	l2t_release(ep->com.tdev, ep->l2t);
1196 	put_ep(&ep->com);
1197 	return CPL_RET_BUF_DONE;
1198 }
1199 
listen_start(struct iwch_listen_ep * ep)1200 static int listen_start(struct iwch_listen_ep *ep)
1201 {
1202 	struct sk_buff *skb;
1203 	struct cpl_pass_open_req *req;
1204 
1205 	PDBG("%s ep %p\n", __func__, ep);
1206 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1207 	if (!skb) {
1208 		printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1209 		return -ENOMEM;
1210 	}
1211 
1212 	req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1213 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1214 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1215 	req->local_port = ep->com.local_addr.sin_port;
1216 	req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1217 	req->peer_port = 0;
1218 	req->peer_ip = 0;
1219 	req->peer_netmask = 0;
1220 	req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1221 	req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1222 	req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1223 
1224 	skb->priority = 1;
1225 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1226 }
1227 
pass_open_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1228 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1229 {
1230 	struct iwch_listen_ep *ep = ctx;
1231 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1232 
1233 	PDBG("%s ep %p status %d error %d\n", __func__, ep,
1234 	     rpl->status, status2errno(rpl->status));
1235 	ep->com.rpl_err = status2errno(rpl->status);
1236 	ep->com.rpl_done = 1;
1237 	wake_up(&ep->com.waitq);
1238 
1239 	return CPL_RET_BUF_DONE;
1240 }
1241 
listen_stop(struct iwch_listen_ep * ep)1242 static int listen_stop(struct iwch_listen_ep *ep)
1243 {
1244 	struct sk_buff *skb;
1245 	struct cpl_close_listserv_req *req;
1246 
1247 	PDBG("%s ep %p\n", __func__, ep);
1248 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1249 	if (!skb) {
1250 		printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1251 		return -ENOMEM;
1252 	}
1253 	req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1254 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1255 	req->cpu_idx = 0;
1256 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1257 	skb->priority = 1;
1258 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1259 }
1260 
close_listsrv_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1261 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1262 			     void *ctx)
1263 {
1264 	struct iwch_listen_ep *ep = ctx;
1265 	struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1266 
1267 	PDBG("%s ep %p\n", __func__, ep);
1268 	ep->com.rpl_err = status2errno(rpl->status);
1269 	ep->com.rpl_done = 1;
1270 	wake_up(&ep->com.waitq);
1271 	return CPL_RET_BUF_DONE;
1272 }
1273 
accept_cr(struct iwch_ep * ep,__be32 peer_ip,struct sk_buff * skb)1274 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1275 {
1276 	struct cpl_pass_accept_rpl *rpl;
1277 	unsigned int mtu_idx;
1278 	u32 opt0h, opt0l, opt2;
1279 	int wscale;
1280 
1281 	PDBG("%s ep %p\n", __func__, ep);
1282 	BUG_ON(skb_cloned(skb));
1283 	skb_trim(skb, sizeof(*rpl));
1284 	skb_get(skb);
1285 	mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1286 	wscale = compute_wscale(rcv_win);
1287 	opt0h = V_NAGLE(0) |
1288 	    V_NO_CONG(nocong) |
1289 	    V_KEEP_ALIVE(1) |
1290 	    F_TCAM_BYPASS |
1291 	    V_WND_SCALE(wscale) |
1292 	    V_MSS_IDX(mtu_idx) |
1293 	    V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1294 	opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1295 	opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1296 	       V_CONG_CONTROL_FLAVOR(cong_flavor);
1297 
1298 	rpl = cplhdr(skb);
1299 	rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1300 	OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1301 	rpl->peer_ip = peer_ip;
1302 	rpl->opt0h = htonl(opt0h);
1303 	rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1304 	rpl->opt2 = htonl(opt2);
1305 	rpl->rsvd = rpl->opt2;	/* workaround for HW bug */
1306 	skb->priority = CPL_PRIORITY_SETUP;
1307 	iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
1308 
1309 	return;
1310 }
1311 
reject_cr(struct t3cdev * tdev,u32 hwtid,__be32 peer_ip,struct sk_buff * skb)1312 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1313 		      struct sk_buff *skb)
1314 {
1315 	PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
1316 	     peer_ip);
1317 	BUG_ON(skb_cloned(skb));
1318 	skb_trim(skb, sizeof(struct cpl_tid_release));
1319 	skb_get(skb);
1320 
1321 	if (tdev->type != T3A)
1322 		release_tid(tdev, hwtid, skb);
1323 	else {
1324 		struct cpl_pass_accept_rpl *rpl;
1325 
1326 		rpl = cplhdr(skb);
1327 		skb->priority = CPL_PRIORITY_SETUP;
1328 		rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1329 		OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1330 						      hwtid));
1331 		rpl->peer_ip = peer_ip;
1332 		rpl->opt0h = htonl(F_TCAM_BYPASS);
1333 		rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1334 		rpl->opt2 = 0;
1335 		rpl->rsvd = rpl->opt2;
1336 		iwch_cxgb3_ofld_send(tdev, skb);
1337 	}
1338 }
1339 
pass_accept_req(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1340 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1341 {
1342 	struct iwch_ep *child_ep, *parent_ep = ctx;
1343 	struct cpl_pass_accept_req *req = cplhdr(skb);
1344 	unsigned int hwtid = GET_TID(req);
1345 	struct dst_entry *dst;
1346 	struct l2t_entry *l2t;
1347 	struct rtable *rt;
1348 	struct iff_mac tim;
1349 
1350 	PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1351 
1352 	if (state_read(&parent_ep->com) != LISTEN) {
1353 		printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1354 		       __func__);
1355 		goto reject;
1356 	}
1357 
1358 	/*
1359 	 * Find the netdev for this connection request.
1360 	 */
1361 	tim.mac_addr = req->dst_mac;
1362 	tim.vlan_tag = ntohs(req->vlan_tag);
1363 	if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1364 		printk(KERN_ERR "%s bad dst mac %pM\n",
1365 			__func__, req->dst_mac);
1366 		goto reject;
1367 	}
1368 
1369 	/* Find output route */
1370 	rt = find_route(tdev,
1371 			req->local_ip,
1372 			req->peer_ip,
1373 			req->local_port,
1374 			req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1375 	if (!rt) {
1376 		printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1377 		       __func__);
1378 		goto reject;
1379 	}
1380 	dst = &rt->dst;
1381 	l2t = t3_l2t_get(tdev, dst, NULL, &req->peer_ip);
1382 	if (!l2t) {
1383 		printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1384 		       __func__);
1385 		dst_release(dst);
1386 		goto reject;
1387 	}
1388 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1389 	if (!child_ep) {
1390 		printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1391 		       __func__);
1392 		l2t_release(tdev, l2t);
1393 		dst_release(dst);
1394 		goto reject;
1395 	}
1396 	state_set(&child_ep->com, CONNECTING);
1397 	child_ep->com.tdev = tdev;
1398 	child_ep->com.cm_id = NULL;
1399 	child_ep->com.local_addr.sin_family = PF_INET;
1400 	child_ep->com.local_addr.sin_port = req->local_port;
1401 	child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1402 	child_ep->com.remote_addr.sin_family = PF_INET;
1403 	child_ep->com.remote_addr.sin_port = req->peer_port;
1404 	child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1405 	get_ep(&parent_ep->com);
1406 	child_ep->parent_ep = parent_ep;
1407 	child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1408 	child_ep->l2t = l2t;
1409 	child_ep->dst = dst;
1410 	child_ep->hwtid = hwtid;
1411 	init_timer(&child_ep->timer);
1412 	cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1413 	accept_cr(child_ep, req->peer_ip, skb);
1414 	goto out;
1415 reject:
1416 	reject_cr(tdev, hwtid, req->peer_ip, skb);
1417 out:
1418 	return CPL_RET_BUF_DONE;
1419 }
1420 
pass_establish(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1421 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1422 {
1423 	struct iwch_ep *ep = ctx;
1424 	struct cpl_pass_establish *req = cplhdr(skb);
1425 
1426 	PDBG("%s ep %p\n", __func__, ep);
1427 	ep->snd_seq = ntohl(req->snd_isn);
1428 	ep->rcv_seq = ntohl(req->rcv_isn);
1429 
1430 	set_emss(ep, ntohs(req->tcp_opt));
1431 
1432 	dst_confirm(ep->dst);
1433 	state_set(&ep->com, MPA_REQ_WAIT);
1434 	start_ep_timer(ep);
1435 
1436 	return CPL_RET_BUF_DONE;
1437 }
1438 
peer_close(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1439 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1440 {
1441 	struct iwch_ep *ep = ctx;
1442 	struct iwch_qp_attributes attrs;
1443 	unsigned long flags;
1444 	int disconnect = 1;
1445 	int release = 0;
1446 
1447 	PDBG("%s ep %p\n", __func__, ep);
1448 	dst_confirm(ep->dst);
1449 
1450 	spin_lock_irqsave(&ep->com.lock, flags);
1451 	switch (ep->com.state) {
1452 	case MPA_REQ_WAIT:
1453 		__state_set(&ep->com, CLOSING);
1454 		break;
1455 	case MPA_REQ_SENT:
1456 		__state_set(&ep->com, CLOSING);
1457 		connect_reply_upcall(ep, -ECONNRESET);
1458 		break;
1459 	case MPA_REQ_RCVD:
1460 
1461 		/*
1462 		 * We're gonna mark this puppy DEAD, but keep
1463 		 * the reference on it until the ULP accepts or
1464 		 * rejects the CR. Also wake up anyone waiting
1465 		 * in rdma connection migration (see iwch_accept_cr()).
1466 		 */
1467 		__state_set(&ep->com, CLOSING);
1468 		ep->com.rpl_done = 1;
1469 		ep->com.rpl_err = -ECONNRESET;
1470 		PDBG("waking up ep %p\n", ep);
1471 		wake_up(&ep->com.waitq);
1472 		break;
1473 	case MPA_REP_SENT:
1474 		__state_set(&ep->com, CLOSING);
1475 		ep->com.rpl_done = 1;
1476 		ep->com.rpl_err = -ECONNRESET;
1477 		PDBG("waking up ep %p\n", ep);
1478 		wake_up(&ep->com.waitq);
1479 		break;
1480 	case FPDU_MODE:
1481 		start_ep_timer(ep);
1482 		__state_set(&ep->com, CLOSING);
1483 		attrs.next_state = IWCH_QP_STATE_CLOSING;
1484 		iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1485 			       IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1486 		peer_close_upcall(ep);
1487 		break;
1488 	case ABORTING:
1489 		disconnect = 0;
1490 		break;
1491 	case CLOSING:
1492 		__state_set(&ep->com, MORIBUND);
1493 		disconnect = 0;
1494 		break;
1495 	case MORIBUND:
1496 		stop_ep_timer(ep);
1497 		if (ep->com.cm_id && ep->com.qp) {
1498 			attrs.next_state = IWCH_QP_STATE_IDLE;
1499 			iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1500 				       IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1501 		}
1502 		close_complete_upcall(ep);
1503 		__state_set(&ep->com, DEAD);
1504 		release = 1;
1505 		disconnect = 0;
1506 		break;
1507 	case DEAD:
1508 		disconnect = 0;
1509 		break;
1510 	default:
1511 		BUG_ON(1);
1512 	}
1513 	spin_unlock_irqrestore(&ep->com.lock, flags);
1514 	if (disconnect)
1515 		iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1516 	if (release)
1517 		release_ep_resources(ep);
1518 	return CPL_RET_BUF_DONE;
1519 }
1520 
1521 /*
1522  * Returns whether an ABORT_REQ_RSS message is a negative advice.
1523  */
is_neg_adv_abort(unsigned int status)1524 static int is_neg_adv_abort(unsigned int status)
1525 {
1526 	return status == CPL_ERR_RTX_NEG_ADVICE ||
1527 	       status == CPL_ERR_PERSIST_NEG_ADVICE;
1528 }
1529 
peer_abort(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1530 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1531 {
1532 	struct cpl_abort_req_rss *req = cplhdr(skb);
1533 	struct iwch_ep *ep = ctx;
1534 	struct cpl_abort_rpl *rpl;
1535 	struct sk_buff *rpl_skb;
1536 	struct iwch_qp_attributes attrs;
1537 	int ret;
1538 	int release = 0;
1539 	unsigned long flags;
1540 
1541 	if (is_neg_adv_abort(req->status)) {
1542 		PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
1543 		     ep->hwtid);
1544 		t3_l2t_send_event(ep->com.tdev, ep->l2t);
1545 		return CPL_RET_BUF_DONE;
1546 	}
1547 
1548 	/*
1549 	 * We get 2 peer aborts from the HW.  The first one must
1550 	 * be ignored except for scribbling that we need one more.
1551 	 */
1552 	if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) {
1553 		return CPL_RET_BUF_DONE;
1554 	}
1555 
1556 	spin_lock_irqsave(&ep->com.lock, flags);
1557 	PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
1558 	switch (ep->com.state) {
1559 	case CONNECTING:
1560 		break;
1561 	case MPA_REQ_WAIT:
1562 		stop_ep_timer(ep);
1563 		break;
1564 	case MPA_REQ_SENT:
1565 		stop_ep_timer(ep);
1566 		connect_reply_upcall(ep, -ECONNRESET);
1567 		break;
1568 	case MPA_REP_SENT:
1569 		ep->com.rpl_done = 1;
1570 		ep->com.rpl_err = -ECONNRESET;
1571 		PDBG("waking up ep %p\n", ep);
1572 		wake_up(&ep->com.waitq);
1573 		break;
1574 	case MPA_REQ_RCVD:
1575 
1576 		/*
1577 		 * We're gonna mark this puppy DEAD, but keep
1578 		 * the reference on it until the ULP accepts or
1579 		 * rejects the CR. Also wake up anyone waiting
1580 		 * in rdma connection migration (see iwch_accept_cr()).
1581 		 */
1582 		ep->com.rpl_done = 1;
1583 		ep->com.rpl_err = -ECONNRESET;
1584 		PDBG("waking up ep %p\n", ep);
1585 		wake_up(&ep->com.waitq);
1586 		break;
1587 	case MORIBUND:
1588 	case CLOSING:
1589 		stop_ep_timer(ep);
1590 		/*FALLTHROUGH*/
1591 	case FPDU_MODE:
1592 		if (ep->com.cm_id && ep->com.qp) {
1593 			attrs.next_state = IWCH_QP_STATE_ERROR;
1594 			ret = iwch_modify_qp(ep->com.qp->rhp,
1595 				     ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1596 				     &attrs, 1);
1597 			if (ret)
1598 				printk(KERN_ERR MOD
1599 				       "%s - qp <- error failed!\n",
1600 				       __func__);
1601 		}
1602 		peer_abort_upcall(ep);
1603 		break;
1604 	case ABORTING:
1605 		break;
1606 	case DEAD:
1607 		PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1608 		spin_unlock_irqrestore(&ep->com.lock, flags);
1609 		return CPL_RET_BUF_DONE;
1610 	default:
1611 		BUG_ON(1);
1612 		break;
1613 	}
1614 	dst_confirm(ep->dst);
1615 	if (ep->com.state != ABORTING) {
1616 		__state_set(&ep->com, DEAD);
1617 		release = 1;
1618 	}
1619 	spin_unlock_irqrestore(&ep->com.lock, flags);
1620 
1621 	rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1622 	if (!rpl_skb) {
1623 		printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1624 		       __func__);
1625 		release = 1;
1626 		goto out;
1627 	}
1628 	rpl_skb->priority = CPL_PRIORITY_DATA;
1629 	rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1630 	rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1631 	rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1632 	OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1633 	rpl->cmd = CPL_ABORT_NO_RST;
1634 	iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
1635 out:
1636 	if (release)
1637 		release_ep_resources(ep);
1638 	return CPL_RET_BUF_DONE;
1639 }
1640 
close_con_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1641 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1642 {
1643 	struct iwch_ep *ep = ctx;
1644 	struct iwch_qp_attributes attrs;
1645 	unsigned long flags;
1646 	int release = 0;
1647 
1648 	PDBG("%s ep %p\n", __func__, ep);
1649 	BUG_ON(!ep);
1650 
1651 	/* The cm_id may be null if we failed to connect */
1652 	spin_lock_irqsave(&ep->com.lock, flags);
1653 	switch (ep->com.state) {
1654 	case CLOSING:
1655 		__state_set(&ep->com, MORIBUND);
1656 		break;
1657 	case MORIBUND:
1658 		stop_ep_timer(ep);
1659 		if ((ep->com.cm_id) && (ep->com.qp)) {
1660 			attrs.next_state = IWCH_QP_STATE_IDLE;
1661 			iwch_modify_qp(ep->com.qp->rhp,
1662 					     ep->com.qp,
1663 					     IWCH_QP_ATTR_NEXT_STATE,
1664 					     &attrs, 1);
1665 		}
1666 		close_complete_upcall(ep);
1667 		__state_set(&ep->com, DEAD);
1668 		release = 1;
1669 		break;
1670 	case ABORTING:
1671 	case DEAD:
1672 		break;
1673 	default:
1674 		BUG_ON(1);
1675 		break;
1676 	}
1677 	spin_unlock_irqrestore(&ep->com.lock, flags);
1678 	if (release)
1679 		release_ep_resources(ep);
1680 	return CPL_RET_BUF_DONE;
1681 }
1682 
1683 /*
1684  * T3A does 3 things when a TERM is received:
1685  * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1686  * 2) generate an async event on the QP with the TERMINATE opcode
1687  * 3) post a TERMINATE opcode cqe into the associated CQ.
1688  *
1689  * For (1), we save the message in the qp for later consumer consumption.
1690  * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1691  * For (3), we toss the CQE in cxio_poll_cq().
1692  *
1693  * terminate() handles case (1)...
1694  */
terminate(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1695 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1696 {
1697 	struct iwch_ep *ep = ctx;
1698 
1699 	if (state_read(&ep->com) != FPDU_MODE)
1700 		return CPL_RET_BUF_DONE;
1701 
1702 	PDBG("%s ep %p\n", __func__, ep);
1703 	skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1704 	PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
1705 	skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1706 				  skb->len);
1707 	ep->com.qp->attr.terminate_msg_len = skb->len;
1708 	ep->com.qp->attr.is_terminate_local = 0;
1709 	return CPL_RET_BUF_DONE;
1710 }
1711 
ec_status(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1712 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1713 {
1714 	struct cpl_rdma_ec_status *rep = cplhdr(skb);
1715 	struct iwch_ep *ep = ctx;
1716 
1717 	PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
1718 	     rep->status);
1719 	if (rep->status) {
1720 		struct iwch_qp_attributes attrs;
1721 
1722 		printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1723 		       __func__, ep->hwtid);
1724 		stop_ep_timer(ep);
1725 		attrs.next_state = IWCH_QP_STATE_ERROR;
1726 		iwch_modify_qp(ep->com.qp->rhp,
1727 			       ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1728 			       &attrs, 1);
1729 		abort_connection(ep, NULL, GFP_KERNEL);
1730 	}
1731 	return CPL_RET_BUF_DONE;
1732 }
1733 
ep_timeout(unsigned long arg)1734 static void ep_timeout(unsigned long arg)
1735 {
1736 	struct iwch_ep *ep = (struct iwch_ep *)arg;
1737 	struct iwch_qp_attributes attrs;
1738 	unsigned long flags;
1739 	int abort = 1;
1740 
1741 	spin_lock_irqsave(&ep->com.lock, flags);
1742 	PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
1743 	     ep->com.state);
1744 	switch (ep->com.state) {
1745 	case MPA_REQ_SENT:
1746 		__state_set(&ep->com, ABORTING);
1747 		connect_reply_upcall(ep, -ETIMEDOUT);
1748 		break;
1749 	case MPA_REQ_WAIT:
1750 		__state_set(&ep->com, ABORTING);
1751 		break;
1752 	case CLOSING:
1753 	case MORIBUND:
1754 		if (ep->com.cm_id && ep->com.qp) {
1755 			attrs.next_state = IWCH_QP_STATE_ERROR;
1756 			iwch_modify_qp(ep->com.qp->rhp,
1757 				     ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1758 				     &attrs, 1);
1759 		}
1760 		__state_set(&ep->com, ABORTING);
1761 		break;
1762 	default:
1763 		WARN(1, "%s unexpected state ep %p state %u\n",
1764 			__func__, ep, ep->com.state);
1765 		abort = 0;
1766 	}
1767 	spin_unlock_irqrestore(&ep->com.lock, flags);
1768 	if (abort)
1769 		abort_connection(ep, NULL, GFP_ATOMIC);
1770 	put_ep(&ep->com);
1771 }
1772 
iwch_reject_cr(struct iw_cm_id * cm_id,const void * pdata,u8 pdata_len)1773 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1774 {
1775 	int err;
1776 	struct iwch_ep *ep = to_ep(cm_id);
1777 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1778 
1779 	if (state_read(&ep->com) == DEAD) {
1780 		put_ep(&ep->com);
1781 		return -ECONNRESET;
1782 	}
1783 	BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1784 	if (mpa_rev == 0)
1785 		abort_connection(ep, NULL, GFP_KERNEL);
1786 	else {
1787 		err = send_mpa_reject(ep, pdata, pdata_len);
1788 		err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1789 	}
1790 	put_ep(&ep->com);
1791 	return 0;
1792 }
1793 
iwch_accept_cr(struct iw_cm_id * cm_id,struct iw_cm_conn_param * conn_param)1794 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1795 {
1796 	int err;
1797 	struct iwch_qp_attributes attrs;
1798 	enum iwch_qp_attr_mask mask;
1799 	struct iwch_ep *ep = to_ep(cm_id);
1800 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1801 	struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1802 
1803 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1804 	if (state_read(&ep->com) == DEAD) {
1805 		err = -ECONNRESET;
1806 		goto err;
1807 	}
1808 
1809 	BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1810 	BUG_ON(!qp);
1811 
1812 	if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1813 	    (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1814 		abort_connection(ep, NULL, GFP_KERNEL);
1815 		err = -EINVAL;
1816 		goto err;
1817 	}
1818 
1819 	cm_id->add_ref(cm_id);
1820 	ep->com.cm_id = cm_id;
1821 	ep->com.qp = qp;
1822 
1823 	ep->ird = conn_param->ird;
1824 	ep->ord = conn_param->ord;
1825 
1826 	if (peer2peer && ep->ird == 0)
1827 		ep->ird = 1;
1828 
1829 	PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
1830 
1831 	/* bind QP to EP and move to RTS */
1832 	attrs.mpa_attr = ep->mpa_attr;
1833 	attrs.max_ird = ep->ird;
1834 	attrs.max_ord = ep->ord;
1835 	attrs.llp_stream_handle = ep;
1836 	attrs.next_state = IWCH_QP_STATE_RTS;
1837 
1838 	/* bind QP and TID with INIT_WR */
1839 	mask = IWCH_QP_ATTR_NEXT_STATE |
1840 			     IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1841 			     IWCH_QP_ATTR_MPA_ATTR |
1842 			     IWCH_QP_ATTR_MAX_IRD |
1843 			     IWCH_QP_ATTR_MAX_ORD;
1844 
1845 	err = iwch_modify_qp(ep->com.qp->rhp,
1846 			     ep->com.qp, mask, &attrs, 1);
1847 	if (err)
1848 		goto err1;
1849 
1850 	/* if needed, wait for wr_ack */
1851 	if (iwch_rqes_posted(qp)) {
1852 		wait_event(ep->com.waitq, ep->com.rpl_done);
1853 		err = ep->com.rpl_err;
1854 		if (err)
1855 			goto err1;
1856 	}
1857 
1858 	err = send_mpa_reply(ep, conn_param->private_data,
1859 			     conn_param->private_data_len);
1860 	if (err)
1861 		goto err1;
1862 
1863 
1864 	state_set(&ep->com, FPDU_MODE);
1865 	established_upcall(ep);
1866 	put_ep(&ep->com);
1867 	return 0;
1868 err1:
1869 	ep->com.cm_id = NULL;
1870 	ep->com.qp = NULL;
1871 	cm_id->rem_ref(cm_id);
1872 err:
1873 	put_ep(&ep->com);
1874 	return err;
1875 }
1876 
is_loopback_dst(struct iw_cm_id * cm_id)1877 static int is_loopback_dst(struct iw_cm_id *cm_id)
1878 {
1879 	struct net_device *dev;
1880 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->remote_addr;
1881 
1882 	dev = ip_dev_find(&init_net, raddr->sin_addr.s_addr);
1883 	if (!dev)
1884 		return 0;
1885 	dev_put(dev);
1886 	return 1;
1887 }
1888 
iwch_connect(struct iw_cm_id * cm_id,struct iw_cm_conn_param * conn_param)1889 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1890 {
1891 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1892 	struct iwch_ep *ep;
1893 	struct rtable *rt;
1894 	int err = 0;
1895 	struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->local_addr;
1896 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->remote_addr;
1897 
1898 	if (cm_id->remote_addr.ss_family != PF_INET) {
1899 		err = -ENOSYS;
1900 		goto out;
1901 	}
1902 
1903 	if (is_loopback_dst(cm_id)) {
1904 		err = -ENOSYS;
1905 		goto out;
1906 	}
1907 
1908 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1909 	if (!ep) {
1910 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1911 		err = -ENOMEM;
1912 		goto out;
1913 	}
1914 	init_timer(&ep->timer);
1915 	ep->plen = conn_param->private_data_len;
1916 	if (ep->plen)
1917 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1918 		       conn_param->private_data, ep->plen);
1919 	ep->ird = conn_param->ird;
1920 	ep->ord = conn_param->ord;
1921 
1922 	if (peer2peer && ep->ord == 0)
1923 		ep->ord = 1;
1924 
1925 	ep->com.tdev = h->rdev.t3cdev_p;
1926 
1927 	cm_id->add_ref(cm_id);
1928 	ep->com.cm_id = cm_id;
1929 	ep->com.qp = get_qhp(h, conn_param->qpn);
1930 	BUG_ON(!ep->com.qp);
1931 	PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
1932 	     ep->com.qp, cm_id);
1933 
1934 	/*
1935 	 * Allocate an active TID to initiate a TCP connection.
1936 	 */
1937 	ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1938 	if (ep->atid == -1) {
1939 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1940 		err = -ENOMEM;
1941 		goto fail2;
1942 	}
1943 
1944 	/* find a route */
1945 	rt = find_route(h->rdev.t3cdev_p, laddr->sin_addr.s_addr,
1946 			raddr->sin_addr.s_addr, laddr->sin_port,
1947 			raddr->sin_port, IPTOS_LOWDELAY);
1948 	if (!rt) {
1949 		printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1950 		err = -EHOSTUNREACH;
1951 		goto fail3;
1952 	}
1953 	ep->dst = &rt->dst;
1954 	ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst, NULL,
1955 			     &raddr->sin_addr.s_addr);
1956 	if (!ep->l2t) {
1957 		printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1958 		err = -ENOMEM;
1959 		goto fail4;
1960 	}
1961 
1962 	state_set(&ep->com, CONNECTING);
1963 	ep->tos = IPTOS_LOWDELAY;
1964 	memcpy(&ep->com.local_addr, &cm_id->local_addr,
1965 	       sizeof(ep->com.local_addr));
1966 	memcpy(&ep->com.remote_addr, &cm_id->remote_addr,
1967 	       sizeof(ep->com.remote_addr));
1968 
1969 	/* send connect request to rnic */
1970 	err = send_connect(ep);
1971 	if (!err)
1972 		goto out;
1973 
1974 	l2t_release(h->rdev.t3cdev_p, ep->l2t);
1975 fail4:
1976 	dst_release(ep->dst);
1977 fail3:
1978 	cxgb3_free_atid(ep->com.tdev, ep->atid);
1979 fail2:
1980 	cm_id->rem_ref(cm_id);
1981 	put_ep(&ep->com);
1982 out:
1983 	return err;
1984 }
1985 
iwch_create_listen(struct iw_cm_id * cm_id,int backlog)1986 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1987 {
1988 	int err = 0;
1989 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1990 	struct iwch_listen_ep *ep;
1991 
1992 
1993 	might_sleep();
1994 
1995 	if (cm_id->local_addr.ss_family != PF_INET) {
1996 		err = -ENOSYS;
1997 		goto fail1;
1998 	}
1999 
2000 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
2001 	if (!ep) {
2002 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
2003 		err = -ENOMEM;
2004 		goto fail1;
2005 	}
2006 	PDBG("%s ep %p\n", __func__, ep);
2007 	ep->com.tdev = h->rdev.t3cdev_p;
2008 	cm_id->add_ref(cm_id);
2009 	ep->com.cm_id = cm_id;
2010 	ep->backlog = backlog;
2011 	memcpy(&ep->com.local_addr, &cm_id->local_addr,
2012 	       sizeof(ep->com.local_addr));
2013 
2014 	/*
2015 	 * Allocate a server TID.
2016 	 */
2017 	ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
2018 	if (ep->stid == -1) {
2019 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
2020 		err = -ENOMEM;
2021 		goto fail2;
2022 	}
2023 
2024 	state_set(&ep->com, LISTEN);
2025 	err = listen_start(ep);
2026 	if (err)
2027 		goto fail3;
2028 
2029 	/* wait for pass_open_rpl */
2030 	wait_event(ep->com.waitq, ep->com.rpl_done);
2031 	err = ep->com.rpl_err;
2032 	if (!err) {
2033 		cm_id->provider_data = ep;
2034 		goto out;
2035 	}
2036 fail3:
2037 	cxgb3_free_stid(ep->com.tdev, ep->stid);
2038 fail2:
2039 	cm_id->rem_ref(cm_id);
2040 	put_ep(&ep->com);
2041 fail1:
2042 out:
2043 	return err;
2044 }
2045 
iwch_destroy_listen(struct iw_cm_id * cm_id)2046 int iwch_destroy_listen(struct iw_cm_id *cm_id)
2047 {
2048 	int err;
2049 	struct iwch_listen_ep *ep = to_listen_ep(cm_id);
2050 
2051 	PDBG("%s ep %p\n", __func__, ep);
2052 
2053 	might_sleep();
2054 	state_set(&ep->com, DEAD);
2055 	ep->com.rpl_done = 0;
2056 	ep->com.rpl_err = 0;
2057 	err = listen_stop(ep);
2058 	if (err)
2059 		goto done;
2060 	wait_event(ep->com.waitq, ep->com.rpl_done);
2061 	cxgb3_free_stid(ep->com.tdev, ep->stid);
2062 done:
2063 	err = ep->com.rpl_err;
2064 	cm_id->rem_ref(cm_id);
2065 	put_ep(&ep->com);
2066 	return err;
2067 }
2068 
iwch_ep_disconnect(struct iwch_ep * ep,int abrupt,gfp_t gfp)2069 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
2070 {
2071 	int ret=0;
2072 	unsigned long flags;
2073 	int close = 0;
2074 	int fatal = 0;
2075 	struct t3cdev *tdev;
2076 	struct cxio_rdev *rdev;
2077 
2078 	spin_lock_irqsave(&ep->com.lock, flags);
2079 
2080 	PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2081 	     states[ep->com.state], abrupt);
2082 
2083 	tdev = (struct t3cdev *)ep->com.tdev;
2084 	rdev = (struct cxio_rdev *)tdev->ulp;
2085 	if (cxio_fatal_error(rdev)) {
2086 		fatal = 1;
2087 		close_complete_upcall(ep);
2088 		ep->com.state = DEAD;
2089 	}
2090 	switch (ep->com.state) {
2091 	case MPA_REQ_WAIT:
2092 	case MPA_REQ_SENT:
2093 	case MPA_REQ_RCVD:
2094 	case MPA_REP_SENT:
2095 	case FPDU_MODE:
2096 		close = 1;
2097 		if (abrupt)
2098 			ep->com.state = ABORTING;
2099 		else {
2100 			ep->com.state = CLOSING;
2101 			start_ep_timer(ep);
2102 		}
2103 		set_bit(CLOSE_SENT, &ep->com.flags);
2104 		break;
2105 	case CLOSING:
2106 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2107 			close = 1;
2108 			if (abrupt) {
2109 				stop_ep_timer(ep);
2110 				ep->com.state = ABORTING;
2111 			} else
2112 				ep->com.state = MORIBUND;
2113 		}
2114 		break;
2115 	case MORIBUND:
2116 	case ABORTING:
2117 	case DEAD:
2118 		PDBG("%s ignoring disconnect ep %p state %u\n",
2119 		     __func__, ep, ep->com.state);
2120 		break;
2121 	default:
2122 		BUG();
2123 		break;
2124 	}
2125 
2126 	spin_unlock_irqrestore(&ep->com.lock, flags);
2127 	if (close) {
2128 		if (abrupt)
2129 			ret = send_abort(ep, NULL, gfp);
2130 		else
2131 			ret = send_halfclose(ep, gfp);
2132 		if (ret)
2133 			fatal = 1;
2134 	}
2135 	if (fatal)
2136 		release_ep_resources(ep);
2137 	return ret;
2138 }
2139 
iwch_ep_redirect(void * ctx,struct dst_entry * old,struct dst_entry * new,struct l2t_entry * l2t)2140 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
2141 		     struct l2t_entry *l2t)
2142 {
2143 	struct iwch_ep *ep = ctx;
2144 
2145 	if (ep->dst != old)
2146 		return 0;
2147 
2148 	PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
2149 	     l2t);
2150 	dst_hold(new);
2151 	l2t_release(ep->com.tdev, ep->l2t);
2152 	ep->l2t = l2t;
2153 	dst_release(old);
2154 	ep->dst = new;
2155 	return 1;
2156 }
2157 
2158 /*
2159  * All the CM events are handled on a work queue to have a safe context.
2160  * These are the real handlers that are called from the work queue.
2161  */
2162 static const cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS] = {
2163 	[CPL_ACT_ESTABLISH]	= act_establish,
2164 	[CPL_ACT_OPEN_RPL]	= act_open_rpl,
2165 	[CPL_RX_DATA]		= rx_data,
2166 	[CPL_TX_DMA_ACK]	= tx_ack,
2167 	[CPL_ABORT_RPL_RSS]	= abort_rpl,
2168 	[CPL_ABORT_RPL]		= abort_rpl,
2169 	[CPL_PASS_OPEN_RPL]	= pass_open_rpl,
2170 	[CPL_CLOSE_LISTSRV_RPL]	= close_listsrv_rpl,
2171 	[CPL_PASS_ACCEPT_REQ]	= pass_accept_req,
2172 	[CPL_PASS_ESTABLISH]	= pass_establish,
2173 	[CPL_PEER_CLOSE]	= peer_close,
2174 	[CPL_ABORT_REQ_RSS]	= peer_abort,
2175 	[CPL_CLOSE_CON_RPL]	= close_con_rpl,
2176 	[CPL_RDMA_TERMINATE]	= terminate,
2177 	[CPL_RDMA_EC_STATUS]	= ec_status,
2178 };
2179 
process_work(struct work_struct * work)2180 static void process_work(struct work_struct *work)
2181 {
2182 	struct sk_buff *skb = NULL;
2183 	void *ep;
2184 	struct t3cdev *tdev;
2185 	int ret;
2186 
2187 	while ((skb = skb_dequeue(&rxq))) {
2188 		ep = *((void **) (skb->cb));
2189 		tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
2190 		ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
2191 		if (ret & CPL_RET_BUF_DONE)
2192 			kfree_skb(skb);
2193 
2194 		/*
2195 		 * ep was referenced in sched(), and is freed here.
2196 		 */
2197 		put_ep((struct iwch_ep_common *)ep);
2198 	}
2199 }
2200 
2201 static DECLARE_WORK(skb_work, process_work);
2202 
sched(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)2203 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2204 {
2205 	struct iwch_ep_common *epc = ctx;
2206 
2207 	get_ep(epc);
2208 
2209 	/*
2210 	 * Save ctx and tdev in the skb->cb area.
2211 	 */
2212 	*((void **) skb->cb) = ctx;
2213 	*((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2214 
2215 	/*
2216 	 * Queue the skb and schedule the worker thread.
2217 	 */
2218 	skb_queue_tail(&rxq, skb);
2219 	queue_work(workq, &skb_work);
2220 	return 0;
2221 }
2222 
set_tcb_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)2223 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2224 {
2225 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2226 
2227 	if (rpl->status != CPL_ERR_NONE) {
2228 		printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2229 		       "for tid %u\n", rpl->status, GET_TID(rpl));
2230 	}
2231 	return CPL_RET_BUF_DONE;
2232 }
2233 
2234 /*
2235  * All upcalls from the T3 Core go to sched() to schedule the
2236  * processing on a work queue.
2237  */
2238 cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS] = {
2239 	[CPL_ACT_ESTABLISH]	= sched,
2240 	[CPL_ACT_OPEN_RPL]	= sched,
2241 	[CPL_RX_DATA]		= sched,
2242 	[CPL_TX_DMA_ACK]	= sched,
2243 	[CPL_ABORT_RPL_RSS]	= sched,
2244 	[CPL_ABORT_RPL]		= sched,
2245 	[CPL_PASS_OPEN_RPL]	= sched,
2246 	[CPL_CLOSE_LISTSRV_RPL]	= sched,
2247 	[CPL_PASS_ACCEPT_REQ]	= sched,
2248 	[CPL_PASS_ESTABLISH]	= sched,
2249 	[CPL_PEER_CLOSE]	= sched,
2250 	[CPL_CLOSE_CON_RPL]	= sched,
2251 	[CPL_ABORT_REQ_RSS]	= sched,
2252 	[CPL_RDMA_TERMINATE]	= sched,
2253 	[CPL_RDMA_EC_STATUS]	= sched,
2254 	[CPL_SET_TCB_RPL]	= set_tcb_rpl,
2255 };
2256 
iwch_cm_init(void)2257 int __init iwch_cm_init(void)
2258 {
2259 	skb_queue_head_init(&rxq);
2260 
2261 	workq = create_singlethread_workqueue("iw_cxgb3");
2262 	if (!workq)
2263 		return -ENOMEM;
2264 
2265 	return 0;
2266 }
2267 
iwch_cm_term(void)2268 void __exit iwch_cm_term(void)
2269 {
2270 	flush_workqueue(workq);
2271 	destroy_workqueue(workq);
2272 }
2273