• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
49 
50 /* Name of this kernel module. */
51 #define DRV_NAME		"ib_srpt"
52 #define DRV_VERSION		"2.0.0"
53 #define DRV_RELDATE		"2011-02-14"
54 
55 #define SRPT_ID_STRING	"Linux SRP target"
56 
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59 
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 /*
66  * Global Variables
67  */
68 
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 		 "Maximum size of SRP request messages in bytes.");
77 
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 		 "Shared receive queue (SRQ) size.");
82 
srpt_get_u64_x(char * buffer,struct kernel_param * kp)83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
84 {
85 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 }
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 		  0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 		 " instead of using the node_guid of the first HCA.");
92 
93 static struct ib_client srpt_client;
94 static void srpt_release_channel(struct srpt_rdma_ch *ch);
95 static int srpt_queue_status(struct se_cmd *cmd);
96 
97 /**
98  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
99  */
100 static inline
opposite_dma_dir(enum dma_data_direction dir)101 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
102 {
103 	switch (dir) {
104 	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
105 	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
106 	default:		return dir;
107 	}
108 }
109 
110 /**
111  * srpt_sdev_name() - Return the name associated with the HCA.
112  *
113  * Examples are ib0, ib1, ...
114  */
srpt_sdev_name(struct srpt_device * sdev)115 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
116 {
117 	return sdev->device->name;
118 }
119 
srpt_get_ch_state(struct srpt_rdma_ch * ch)120 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
121 {
122 	unsigned long flags;
123 	enum rdma_ch_state state;
124 
125 	spin_lock_irqsave(&ch->spinlock, flags);
126 	state = ch->state;
127 	spin_unlock_irqrestore(&ch->spinlock, flags);
128 	return state;
129 }
130 
131 static enum rdma_ch_state
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new_state)132 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
133 {
134 	unsigned long flags;
135 	enum rdma_ch_state prev;
136 
137 	spin_lock_irqsave(&ch->spinlock, flags);
138 	prev = ch->state;
139 	ch->state = new_state;
140 	spin_unlock_irqrestore(&ch->spinlock, flags);
141 	return prev;
142 }
143 
144 /**
145  * srpt_test_and_set_ch_state() - Test and set the channel state.
146  *
147  * Returns true if and only if the channel state has been set to the new state.
148  */
149 static bool
srpt_test_and_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state old,enum rdma_ch_state new)150 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
151 			   enum rdma_ch_state new)
152 {
153 	unsigned long flags;
154 	enum rdma_ch_state prev;
155 
156 	spin_lock_irqsave(&ch->spinlock, flags);
157 	prev = ch->state;
158 	if (prev == old)
159 		ch->state = new;
160 	spin_unlock_irqrestore(&ch->spinlock, flags);
161 	return prev == old;
162 }
163 
164 /**
165  * srpt_event_handler() - Asynchronous IB event callback function.
166  *
167  * Callback function called by the InfiniBand core when an asynchronous IB
168  * event occurs. This callback may occur in interrupt context. See also
169  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
170  * Architecture Specification.
171  */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)172 static void srpt_event_handler(struct ib_event_handler *handler,
173 			       struct ib_event *event)
174 {
175 	struct srpt_device *sdev;
176 	struct srpt_port *sport;
177 
178 	sdev = ib_get_client_data(event->device, &srpt_client);
179 	if (!sdev || sdev->device != event->device)
180 		return;
181 
182 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
183 		 srpt_sdev_name(sdev));
184 
185 	switch (event->event) {
186 	case IB_EVENT_PORT_ERR:
187 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
188 			sport = &sdev->port[event->element.port_num - 1];
189 			sport->lid = 0;
190 			sport->sm_lid = 0;
191 		}
192 		break;
193 	case IB_EVENT_PORT_ACTIVE:
194 	case IB_EVENT_LID_CHANGE:
195 	case IB_EVENT_PKEY_CHANGE:
196 	case IB_EVENT_SM_CHANGE:
197 	case IB_EVENT_CLIENT_REREGISTER:
198 	case IB_EVENT_GID_CHANGE:
199 		/* Refresh port data asynchronously. */
200 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
201 			sport = &sdev->port[event->element.port_num - 1];
202 			if (!sport->lid && !sport->sm_lid)
203 				schedule_work(&sport->work);
204 		}
205 		break;
206 	default:
207 		pr_err("received unrecognized IB event %d\n",
208 		       event->event);
209 		break;
210 	}
211 }
212 
213 /**
214  * srpt_srq_event() - SRQ event callback function.
215  */
srpt_srq_event(struct ib_event * event,void * ctx)216 static void srpt_srq_event(struct ib_event *event, void *ctx)
217 {
218 	pr_info("SRQ event %d\n", event->event);
219 }
220 
221 /**
222  * srpt_qp_event() - QP event callback function.
223  */
srpt_qp_event(struct ib_event * event,struct srpt_rdma_ch * ch)224 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
225 {
226 	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
227 		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
228 
229 	switch (event->event) {
230 	case IB_EVENT_COMM_EST:
231 		ib_cm_notify(ch->cm_id, event->event);
232 		break;
233 	case IB_EVENT_QP_LAST_WQE_REACHED:
234 		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
235 					       CH_RELEASING))
236 			srpt_release_channel(ch);
237 		else
238 			pr_debug("%s: state %d - ignored LAST_WQE.\n",
239 				 ch->sess_name, srpt_get_ch_state(ch));
240 		break;
241 	default:
242 		pr_err("received unrecognized IB QP event %d\n", event->event);
243 		break;
244 	}
245 }
246 
247 /**
248  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
249  *
250  * @slot: one-based slot number.
251  * @value: four-bit value.
252  *
253  * Copies the lowest four bits of value in element slot of the array of four
254  * bit elements called c_list (controller list). The index slot is one-based.
255  */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)256 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
257 {
258 	u16 id;
259 	u8 tmp;
260 
261 	id = (slot - 1) / 2;
262 	if (slot & 0x1) {
263 		tmp = c_list[id] & 0xf;
264 		c_list[id] = (value << 4) | tmp;
265 	} else {
266 		tmp = c_list[id] & 0xf0;
267 		c_list[id] = (value & 0xf) | tmp;
268 	}
269 }
270 
271 /**
272  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
273  *
274  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
275  * Specification.
276  */
srpt_get_class_port_info(struct ib_dm_mad * mad)277 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
278 {
279 	struct ib_class_port_info *cif;
280 
281 	cif = (struct ib_class_port_info *)mad->data;
282 	memset(cif, 0, sizeof *cif);
283 	cif->base_version = 1;
284 	cif->class_version = 1;
285 	cif->resp_time_value = 20;
286 
287 	mad->mad_hdr.status = 0;
288 }
289 
290 /**
291  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
292  *
293  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294  * Specification. See also section B.7, table B.6 in the SRP r16a document.
295  */
srpt_get_iou(struct ib_dm_mad * mad)296 static void srpt_get_iou(struct ib_dm_mad *mad)
297 {
298 	struct ib_dm_iou_info *ioui;
299 	u8 slot;
300 	int i;
301 
302 	ioui = (struct ib_dm_iou_info *)mad->data;
303 	ioui->change_id = cpu_to_be16(1);
304 	ioui->max_controllers = 16;
305 
306 	/* set present for slot 1 and empty for the rest */
307 	srpt_set_ioc(ioui->controller_list, 1, 1);
308 	for (i = 1, slot = 2; i < 16; i++, slot++)
309 		srpt_set_ioc(ioui->controller_list, slot, 0);
310 
311 	mad->mad_hdr.status = 0;
312 }
313 
314 /**
315  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
316  *
317  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
318  * Architecture Specification. See also section B.7, table B.7 in the SRP
319  * r16a document.
320  */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)321 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
322 			 struct ib_dm_mad *mad)
323 {
324 	struct srpt_device *sdev = sport->sdev;
325 	struct ib_dm_ioc_profile *iocp;
326 
327 	iocp = (struct ib_dm_ioc_profile *)mad->data;
328 
329 	if (!slot || slot > 16) {
330 		mad->mad_hdr.status
331 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332 		return;
333 	}
334 
335 	if (slot > 2) {
336 		mad->mad_hdr.status
337 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338 		return;
339 	}
340 
341 	memset(iocp, 0, sizeof *iocp);
342 	strcpy(iocp->id_string, SRPT_ID_STRING);
343 	iocp->guid = cpu_to_be64(srpt_service_guid);
344 	iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
345 	iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
346 	iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
347 	iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 	iocp->subsys_device_id = 0x0;
349 	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
350 	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
351 	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
352 	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353 	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
354 	iocp->rdma_read_depth = 4;
355 	iocp->send_size = cpu_to_be32(srp_max_req_size);
356 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
357 					  1U << 24));
358 	iocp->num_svc_entries = 1;
359 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
360 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
361 
362 	mad->mad_hdr.status = 0;
363 }
364 
365 /**
366  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
367  *
368  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
369  * Specification. See also section B.7, table B.8 in the SRP r16a document.
370  */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)371 static void srpt_get_svc_entries(u64 ioc_guid,
372 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
373 {
374 	struct ib_dm_svc_entries *svc_entries;
375 
376 	WARN_ON(!ioc_guid);
377 
378 	if (!slot || slot > 16) {
379 		mad->mad_hdr.status
380 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
381 		return;
382 	}
383 
384 	if (slot > 2 || lo > hi || hi > 1) {
385 		mad->mad_hdr.status
386 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
387 		return;
388 	}
389 
390 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
391 	memset(svc_entries, 0, sizeof *svc_entries);
392 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
393 	snprintf(svc_entries->service_entries[0].name,
394 		 sizeof(svc_entries->service_entries[0].name),
395 		 "%s%016llx",
396 		 SRP_SERVICE_NAME_PREFIX,
397 		 ioc_guid);
398 
399 	mad->mad_hdr.status = 0;
400 }
401 
402 /**
403  * srpt_mgmt_method_get() - Process a received management datagram.
404  * @sp:      source port through which the MAD has been received.
405  * @rq_mad:  received MAD.
406  * @rsp_mad: response MAD.
407  */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)408 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
409 				 struct ib_dm_mad *rsp_mad)
410 {
411 	u16 attr_id;
412 	u32 slot;
413 	u8 hi, lo;
414 
415 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
416 	switch (attr_id) {
417 	case DM_ATTR_CLASS_PORT_INFO:
418 		srpt_get_class_port_info(rsp_mad);
419 		break;
420 	case DM_ATTR_IOU_INFO:
421 		srpt_get_iou(rsp_mad);
422 		break;
423 	case DM_ATTR_IOC_PROFILE:
424 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
425 		srpt_get_ioc(sp, slot, rsp_mad);
426 		break;
427 	case DM_ATTR_SVC_ENTRIES:
428 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429 		hi = (u8) ((slot >> 8) & 0xff);
430 		lo = (u8) (slot & 0xff);
431 		slot = (u16) ((slot >> 16) & 0xffff);
432 		srpt_get_svc_entries(srpt_service_guid,
433 				     slot, hi, lo, rsp_mad);
434 		break;
435 	default:
436 		rsp_mad->mad_hdr.status =
437 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
438 		break;
439 	}
440 }
441 
442 /**
443  * srpt_mad_send_handler() - Post MAD-send callback function.
444  */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)445 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
446 				  struct ib_mad_send_wc *mad_wc)
447 {
448 	ib_destroy_ah(mad_wc->send_buf->ah);
449 	ib_free_send_mad(mad_wc->send_buf);
450 }
451 
452 /**
453  * srpt_mad_recv_handler() - MAD reception callback function.
454  */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_recv_wc * mad_wc)455 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
456 				  struct ib_mad_recv_wc *mad_wc)
457 {
458 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
459 	struct ib_ah *ah;
460 	struct ib_mad_send_buf *rsp;
461 	struct ib_dm_mad *dm_mad;
462 
463 	if (!mad_wc || !mad_wc->recv_buf.mad)
464 		return;
465 
466 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
467 				  mad_wc->recv_buf.grh, mad_agent->port_num);
468 	if (IS_ERR(ah))
469 		goto err;
470 
471 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
472 
473 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
474 				 mad_wc->wc->pkey_index, 0,
475 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
476 				 GFP_KERNEL,
477 				 IB_MGMT_BASE_VERSION);
478 	if (IS_ERR(rsp))
479 		goto err_rsp;
480 
481 	rsp->ah = ah;
482 
483 	dm_mad = rsp->mad;
484 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
485 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
486 	dm_mad->mad_hdr.status = 0;
487 
488 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
489 	case IB_MGMT_METHOD_GET:
490 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
491 		break;
492 	case IB_MGMT_METHOD_SET:
493 		dm_mad->mad_hdr.status =
494 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
495 		break;
496 	default:
497 		dm_mad->mad_hdr.status =
498 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
499 		break;
500 	}
501 
502 	if (!ib_post_send_mad(rsp, NULL)) {
503 		ib_free_recv_mad(mad_wc);
504 		/* will destroy_ah & free_send_mad in send completion */
505 		return;
506 	}
507 
508 	ib_free_send_mad(rsp);
509 
510 err_rsp:
511 	ib_destroy_ah(ah);
512 err:
513 	ib_free_recv_mad(mad_wc);
514 }
515 
516 /**
517  * srpt_refresh_port() - Configure a HCA port.
518  *
519  * Enable InfiniBand management datagram processing, update the cached sm_lid,
520  * lid and gid values, and register a callback function for processing MADs
521  * on the specified port.
522  *
523  * Note: It is safe to call this function more than once for the same port.
524  */
srpt_refresh_port(struct srpt_port * sport)525 static int srpt_refresh_port(struct srpt_port *sport)
526 {
527 	struct ib_mad_reg_req reg_req;
528 	struct ib_port_modify port_modify;
529 	struct ib_port_attr port_attr;
530 	int ret;
531 
532 	memset(&port_modify, 0, sizeof port_modify);
533 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
534 	port_modify.clr_port_cap_mask = 0;
535 
536 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
537 	if (ret)
538 		goto err_mod_port;
539 
540 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
541 	if (ret)
542 		goto err_query_port;
543 
544 	sport->sm_lid = port_attr.sm_lid;
545 	sport->lid = port_attr.lid;
546 
547 	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
548 			   NULL);
549 	if (ret)
550 		goto err_query_port;
551 
552 	if (!sport->mad_agent) {
553 		memset(&reg_req, 0, sizeof reg_req);
554 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
555 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
556 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
557 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
558 
559 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
560 							 sport->port,
561 							 IB_QPT_GSI,
562 							 &reg_req, 0,
563 							 srpt_mad_send_handler,
564 							 srpt_mad_recv_handler,
565 							 sport, 0);
566 		if (IS_ERR(sport->mad_agent)) {
567 			ret = PTR_ERR(sport->mad_agent);
568 			sport->mad_agent = NULL;
569 			goto err_query_port;
570 		}
571 	}
572 
573 	return 0;
574 
575 err_query_port:
576 
577 	port_modify.set_port_cap_mask = 0;
578 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
579 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
580 
581 err_mod_port:
582 
583 	return ret;
584 }
585 
586 /**
587  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
588  *
589  * Note: It is safe to call this function more than once for the same device.
590  */
srpt_unregister_mad_agent(struct srpt_device * sdev)591 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
592 {
593 	struct ib_port_modify port_modify = {
594 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
595 	};
596 	struct srpt_port *sport;
597 	int i;
598 
599 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
600 		sport = &sdev->port[i - 1];
601 		WARN_ON(sport->port != i);
602 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
603 			pr_err("disabling MAD processing failed.\n");
604 		if (sport->mad_agent) {
605 			ib_unregister_mad_agent(sport->mad_agent);
606 			sport->mad_agent = NULL;
607 		}
608 	}
609 }
610 
611 /**
612  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
613  */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,int dma_size,enum dma_data_direction dir)614 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
615 					   int ioctx_size, int dma_size,
616 					   enum dma_data_direction dir)
617 {
618 	struct srpt_ioctx *ioctx;
619 
620 	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
621 	if (!ioctx)
622 		goto err;
623 
624 	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
625 	if (!ioctx->buf)
626 		goto err_free_ioctx;
627 
628 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
629 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
630 		goto err_free_buf;
631 
632 	return ioctx;
633 
634 err_free_buf:
635 	kfree(ioctx->buf);
636 err_free_ioctx:
637 	kfree(ioctx);
638 err:
639 	return NULL;
640 }
641 
642 /**
643  * srpt_free_ioctx() - Free an SRPT I/O context structure.
644  */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,int dma_size,enum dma_data_direction dir)645 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
646 			    int dma_size, enum dma_data_direction dir)
647 {
648 	if (!ioctx)
649 		return;
650 
651 	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
652 	kfree(ioctx->buf);
653 	kfree(ioctx);
654 }
655 
656 /**
657  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
658  * @sdev:       Device to allocate the I/O context ring for.
659  * @ring_size:  Number of elements in the I/O context ring.
660  * @ioctx_size: I/O context size.
661  * @dma_size:   DMA buffer size.
662  * @dir:        DMA data direction.
663  */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,int dma_size,enum dma_data_direction dir)664 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
665 				int ring_size, int ioctx_size,
666 				int dma_size, enum dma_data_direction dir)
667 {
668 	struct srpt_ioctx **ring;
669 	int i;
670 
671 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
672 		&& ioctx_size != sizeof(struct srpt_send_ioctx));
673 
674 	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
675 	if (!ring)
676 		goto out;
677 	for (i = 0; i < ring_size; ++i) {
678 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
679 		if (!ring[i])
680 			goto err;
681 		ring[i]->index = i;
682 	}
683 	goto out;
684 
685 err:
686 	while (--i >= 0)
687 		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
688 	kfree(ring);
689 	ring = NULL;
690 out:
691 	return ring;
692 }
693 
694 /**
695  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
696  */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,int dma_size,enum dma_data_direction dir)697 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
698 				 struct srpt_device *sdev, int ring_size,
699 				 int dma_size, enum dma_data_direction dir)
700 {
701 	int i;
702 
703 	for (i = 0; i < ring_size; ++i)
704 		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
705 	kfree(ioctx_ring);
706 }
707 
708 /**
709  * srpt_get_cmd_state() - Get the state of a SCSI command.
710  */
srpt_get_cmd_state(struct srpt_send_ioctx * ioctx)711 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
712 {
713 	enum srpt_command_state state;
714 	unsigned long flags;
715 
716 	BUG_ON(!ioctx);
717 
718 	spin_lock_irqsave(&ioctx->spinlock, flags);
719 	state = ioctx->state;
720 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
721 	return state;
722 }
723 
724 /**
725  * srpt_set_cmd_state() - Set the state of a SCSI command.
726  *
727  * Does not modify the state of aborted commands. Returns the previous command
728  * state.
729  */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)730 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
731 						  enum srpt_command_state new)
732 {
733 	enum srpt_command_state previous;
734 	unsigned long flags;
735 
736 	BUG_ON(!ioctx);
737 
738 	spin_lock_irqsave(&ioctx->spinlock, flags);
739 	previous = ioctx->state;
740 	if (previous != SRPT_STATE_DONE)
741 		ioctx->state = new;
742 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
743 
744 	return previous;
745 }
746 
747 /**
748  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
749  *
750  * Returns true if and only if the previous command state was equal to 'old'.
751  */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
753 					enum srpt_command_state old,
754 					enum srpt_command_state new)
755 {
756 	enum srpt_command_state previous;
757 	unsigned long flags;
758 
759 	WARN_ON(!ioctx);
760 	WARN_ON(old == SRPT_STATE_DONE);
761 	WARN_ON(new == SRPT_STATE_NEW);
762 
763 	spin_lock_irqsave(&ioctx->spinlock, flags);
764 	previous = ioctx->state;
765 	if (previous == old)
766 		ioctx->state = new;
767 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
768 	return previous == old;
769 }
770 
771 /**
772  * srpt_post_recv() - Post an IB receive request.
773  */
srpt_post_recv(struct srpt_device * sdev,struct srpt_recv_ioctx * ioctx)774 static int srpt_post_recv(struct srpt_device *sdev,
775 			  struct srpt_recv_ioctx *ioctx)
776 {
777 	struct ib_sge list;
778 	struct ib_recv_wr wr, *bad_wr;
779 
780 	BUG_ON(!sdev);
781 	wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
782 
783 	list.addr = ioctx->ioctx.dma;
784 	list.length = srp_max_req_size;
785 	list.lkey = sdev->pd->local_dma_lkey;
786 
787 	wr.next = NULL;
788 	wr.sg_list = &list;
789 	wr.num_sge = 1;
790 
791 	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
792 }
793 
794 /**
795  * srpt_post_send() - Post an IB send request.
796  *
797  * Returns zero upon success and a non-zero value upon failure.
798  */
srpt_post_send(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,int len)799 static int srpt_post_send(struct srpt_rdma_ch *ch,
800 			  struct srpt_send_ioctx *ioctx, int len)
801 {
802 	struct ib_sge list;
803 	struct ib_send_wr wr, *bad_wr;
804 	struct srpt_device *sdev = ch->sport->sdev;
805 	int ret;
806 
807 	atomic_inc(&ch->req_lim);
808 
809 	ret = -ENOMEM;
810 	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
811 		pr_warn("IB send queue full (needed 1)\n");
812 		goto out;
813 	}
814 
815 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
816 				      DMA_TO_DEVICE);
817 
818 	list.addr = ioctx->ioctx.dma;
819 	list.length = len;
820 	list.lkey = sdev->pd->local_dma_lkey;
821 
822 	wr.next = NULL;
823 	wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
824 	wr.sg_list = &list;
825 	wr.num_sge = 1;
826 	wr.opcode = IB_WR_SEND;
827 	wr.send_flags = IB_SEND_SIGNALED;
828 
829 	ret = ib_post_send(ch->qp, &wr, &bad_wr);
830 
831 out:
832 	if (ret < 0) {
833 		atomic_inc(&ch->sq_wr_avail);
834 		atomic_dec(&ch->req_lim);
835 	}
836 	return ret;
837 }
838 
839 /**
840  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841  * @ioctx: Pointer to the I/O context associated with the request.
842  * @srp_cmd: Pointer to the SRP_CMD request data.
843  * @dir: Pointer to the variable to which the transfer direction will be
844  *   written.
845  * @data_len: Pointer to the variable to which the total data length of all
846  *   descriptors in the SRP_CMD request will be written.
847  *
848  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
849  *
850  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851  * -ENOMEM when memory allocation fails and zero upon success.
852  */
srpt_get_desc_tbl(struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,u64 * data_len)853 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
854 			     struct srp_cmd *srp_cmd,
855 			     enum dma_data_direction *dir, u64 *data_len)
856 {
857 	struct srp_indirect_buf *idb;
858 	struct srp_direct_buf *db;
859 	unsigned add_cdb_offset;
860 	int ret;
861 
862 	/*
863 	 * The pointer computations below will only be compiled correctly
864 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865 	 * whether srp_cmd::add_data has been declared as a byte pointer.
866 	 */
867 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
868 		     && !__same_type(srp_cmd->add_data[0], (u8)0));
869 
870 	BUG_ON(!dir);
871 	BUG_ON(!data_len);
872 
873 	ret = 0;
874 	*data_len = 0;
875 
876 	/*
877 	 * The lower four bits of the buffer format field contain the DATA-IN
878 	 * buffer descriptor format, and the highest four bits contain the
879 	 * DATA-OUT buffer descriptor format.
880 	 */
881 	*dir = DMA_NONE;
882 	if (srp_cmd->buf_fmt & 0xf)
883 		/* DATA-IN: transfer data from target to initiator (read). */
884 		*dir = DMA_FROM_DEVICE;
885 	else if (srp_cmd->buf_fmt >> 4)
886 		/* DATA-OUT: transfer data from initiator to target (write). */
887 		*dir = DMA_TO_DEVICE;
888 
889 	/*
890 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891 	 * CDB LENGTH' field are reserved and the size in bytes of this field
892 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
893 	 */
894 	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
895 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
896 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
897 		ioctx->n_rbuf = 1;
898 		ioctx->rbufs = &ioctx->single_rbuf;
899 
900 		db = (struct srp_direct_buf *)(srp_cmd->add_data
901 					       + add_cdb_offset);
902 		memcpy(ioctx->rbufs, db, sizeof *db);
903 		*data_len = be32_to_cpu(db->len);
904 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
905 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
906 		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
907 						  + add_cdb_offset);
908 
909 		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
910 
911 		if (ioctx->n_rbuf >
912 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
913 			pr_err("received unsupported SRP_CMD request"
914 			       " type (%u out + %u in != %u / %zu)\n",
915 			       srp_cmd->data_out_desc_cnt,
916 			       srp_cmd->data_in_desc_cnt,
917 			       be32_to_cpu(idb->table_desc.len),
918 			       sizeof(*db));
919 			ioctx->n_rbuf = 0;
920 			ret = -EINVAL;
921 			goto out;
922 		}
923 
924 		if (ioctx->n_rbuf == 1)
925 			ioctx->rbufs = &ioctx->single_rbuf;
926 		else {
927 			ioctx->rbufs =
928 				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
929 			if (!ioctx->rbufs) {
930 				ioctx->n_rbuf = 0;
931 				ret = -ENOMEM;
932 				goto out;
933 			}
934 		}
935 
936 		db = idb->desc_list;
937 		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
938 		*data_len = be32_to_cpu(idb->len);
939 	}
940 out:
941 	return ret;
942 }
943 
944 /**
945  * srpt_init_ch_qp() - Initialize queue pair attributes.
946  *
947  * Initialized the attributes of queue pair 'qp' by allowing local write,
948  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
949  */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)950 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
951 {
952 	struct ib_qp_attr *attr;
953 	int ret;
954 
955 	attr = kzalloc(sizeof *attr, GFP_KERNEL);
956 	if (!attr)
957 		return -ENOMEM;
958 
959 	attr->qp_state = IB_QPS_INIT;
960 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
961 	attr->port_num = ch->sport->port;
962 	attr->pkey_index = 0;
963 
964 	ret = ib_modify_qp(qp, attr,
965 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
966 			   IB_QP_PKEY_INDEX);
967 
968 	kfree(attr);
969 	return ret;
970 }
971 
972 /**
973  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
974  * @ch: channel of the queue pair.
975  * @qp: queue pair to change the state of.
976  *
977  * Returns zero upon success and a negative value upon failure.
978  *
979  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
980  * If this structure ever becomes larger, it might be necessary to allocate
981  * it dynamically instead of on the stack.
982  */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)983 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
984 {
985 	struct ib_qp_attr qp_attr;
986 	int attr_mask;
987 	int ret;
988 
989 	qp_attr.qp_state = IB_QPS_RTR;
990 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
991 	if (ret)
992 		goto out;
993 
994 	qp_attr.max_dest_rd_atomic = 4;
995 
996 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
997 
998 out:
999 	return ret;
1000 }
1001 
1002 /**
1003  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1004  * @ch: channel of the queue pair.
1005  * @qp: queue pair to change the state of.
1006  *
1007  * Returns zero upon success and a negative value upon failure.
1008  *
1009  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1010  * If this structure ever becomes larger, it might be necessary to allocate
1011  * it dynamically instead of on the stack.
1012  */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1013 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1014 {
1015 	struct ib_qp_attr qp_attr;
1016 	int attr_mask;
1017 	int ret;
1018 
1019 	qp_attr.qp_state = IB_QPS_RTS;
1020 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1021 	if (ret)
1022 		goto out;
1023 
1024 	qp_attr.max_rd_atomic = 4;
1025 
1026 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1027 
1028 out:
1029 	return ret;
1030 }
1031 
1032 /**
1033  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1034  */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1035 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1036 {
1037 	struct ib_qp_attr qp_attr;
1038 
1039 	qp_attr.qp_state = IB_QPS_ERR;
1040 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1041 }
1042 
1043 /**
1044  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1045  */
srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1046 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1047 				    struct srpt_send_ioctx *ioctx)
1048 {
1049 	struct scatterlist *sg;
1050 	enum dma_data_direction dir;
1051 
1052 	BUG_ON(!ch);
1053 	BUG_ON(!ioctx);
1054 	BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1055 
1056 	while (ioctx->n_rdma)
1057 		kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1058 
1059 	kfree(ioctx->rdma_ius);
1060 	ioctx->rdma_ius = NULL;
1061 
1062 	if (ioctx->mapped_sg_count) {
1063 		sg = ioctx->sg;
1064 		WARN_ON(!sg);
1065 		dir = ioctx->cmd.data_direction;
1066 		BUG_ON(dir == DMA_NONE);
1067 		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1068 				opposite_dma_dir(dir));
1069 		ioctx->mapped_sg_count = 0;
1070 	}
1071 }
1072 
1073 /**
1074  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1075  */
srpt_map_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1076 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1077 				 struct srpt_send_ioctx *ioctx)
1078 {
1079 	struct ib_device *dev = ch->sport->sdev->device;
1080 	struct se_cmd *cmd;
1081 	struct scatterlist *sg, *sg_orig;
1082 	int sg_cnt;
1083 	enum dma_data_direction dir;
1084 	struct rdma_iu *riu;
1085 	struct srp_direct_buf *db;
1086 	dma_addr_t dma_addr;
1087 	struct ib_sge *sge;
1088 	u64 raddr;
1089 	u32 rsize;
1090 	u32 tsize;
1091 	u32 dma_len;
1092 	int count, nrdma;
1093 	int i, j, k;
1094 
1095 	BUG_ON(!ch);
1096 	BUG_ON(!ioctx);
1097 	cmd = &ioctx->cmd;
1098 	dir = cmd->data_direction;
1099 	BUG_ON(dir == DMA_NONE);
1100 
1101 	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1102 	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1103 
1104 	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1105 			      opposite_dma_dir(dir));
1106 	if (unlikely(!count))
1107 		return -EAGAIN;
1108 
1109 	ioctx->mapped_sg_count = count;
1110 
1111 	if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1112 		nrdma = ioctx->n_rdma_ius;
1113 	else {
1114 		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1115 			+ ioctx->n_rbuf;
1116 
1117 		ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1118 		if (!ioctx->rdma_ius)
1119 			goto free_mem;
1120 
1121 		ioctx->n_rdma_ius = nrdma;
1122 	}
1123 
1124 	db = ioctx->rbufs;
1125 	tsize = cmd->data_length;
1126 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1127 	riu = ioctx->rdma_ius;
1128 
1129 	/*
1130 	 * For each remote desc - calculate the #ib_sge.
1131 	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1132 	 *      each remote desc rdma_iu is required a rdma wr;
1133 	 * else
1134 	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1135 	 *      another rdma wr
1136 	 */
1137 	for (i = 0, j = 0;
1138 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1139 		rsize = be32_to_cpu(db->len);
1140 		raddr = be64_to_cpu(db->va);
1141 		riu->raddr = raddr;
1142 		riu->rkey = be32_to_cpu(db->key);
1143 		riu->sge_cnt = 0;
1144 
1145 		/* calculate how many sge required for this remote_buf */
1146 		while (rsize > 0 && tsize > 0) {
1147 
1148 			if (rsize >= dma_len) {
1149 				tsize -= dma_len;
1150 				rsize -= dma_len;
1151 				raddr += dma_len;
1152 
1153 				if (tsize > 0) {
1154 					++j;
1155 					if (j < count) {
1156 						sg = sg_next(sg);
1157 						dma_len = ib_sg_dma_len(
1158 								dev, sg);
1159 					}
1160 				}
1161 			} else {
1162 				tsize -= rsize;
1163 				dma_len -= rsize;
1164 				rsize = 0;
1165 			}
1166 
1167 			++riu->sge_cnt;
1168 
1169 			if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170 				++ioctx->n_rdma;
1171 				riu->sge =
1172 				    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173 					    GFP_KERNEL);
1174 				if (!riu->sge)
1175 					goto free_mem;
1176 
1177 				++riu;
1178 				riu->sge_cnt = 0;
1179 				riu->raddr = raddr;
1180 				riu->rkey = be32_to_cpu(db->key);
1181 			}
1182 		}
1183 
1184 		++ioctx->n_rdma;
1185 		riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186 				   GFP_KERNEL);
1187 		if (!riu->sge)
1188 			goto free_mem;
1189 	}
1190 
1191 	db = ioctx->rbufs;
1192 	tsize = cmd->data_length;
1193 	riu = ioctx->rdma_ius;
1194 	sg = sg_orig;
1195 	dma_len = ib_sg_dma_len(dev, &sg[0]);
1196 	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1197 
1198 	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199 	for (i = 0, j = 0;
1200 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201 		rsize = be32_to_cpu(db->len);
1202 		sge = riu->sge;
1203 		k = 0;
1204 
1205 		while (rsize > 0 && tsize > 0) {
1206 			sge->addr = dma_addr;
1207 			sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1208 
1209 			if (rsize >= dma_len) {
1210 				sge->length =
1211 					(tsize < dma_len) ? tsize : dma_len;
1212 				tsize -= dma_len;
1213 				rsize -= dma_len;
1214 
1215 				if (tsize > 0) {
1216 					++j;
1217 					if (j < count) {
1218 						sg = sg_next(sg);
1219 						dma_len = ib_sg_dma_len(
1220 								dev, sg);
1221 						dma_addr = ib_sg_dma_address(
1222 								dev, sg);
1223 					}
1224 				}
1225 			} else {
1226 				sge->length = (tsize < rsize) ? tsize : rsize;
1227 				tsize -= rsize;
1228 				dma_len -= rsize;
1229 				dma_addr += rsize;
1230 				rsize = 0;
1231 			}
1232 
1233 			++k;
1234 			if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1235 				++riu;
1236 				sge = riu->sge;
1237 				k = 0;
1238 			} else if (rsize > 0 && tsize > 0)
1239 				++sge;
1240 		}
1241 	}
1242 
1243 	return 0;
1244 
1245 free_mem:
1246 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
1247 
1248 	return -ENOMEM;
1249 }
1250 
1251 /**
1252  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1253  */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1254 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1255 {
1256 	struct srpt_send_ioctx *ioctx;
1257 	unsigned long flags;
1258 
1259 	BUG_ON(!ch);
1260 
1261 	ioctx = NULL;
1262 	spin_lock_irqsave(&ch->spinlock, flags);
1263 	if (!list_empty(&ch->free_list)) {
1264 		ioctx = list_first_entry(&ch->free_list,
1265 					 struct srpt_send_ioctx, free_list);
1266 		list_del(&ioctx->free_list);
1267 	}
1268 	spin_unlock_irqrestore(&ch->spinlock, flags);
1269 
1270 	if (!ioctx)
1271 		return ioctx;
1272 
1273 	BUG_ON(ioctx->ch != ch);
1274 	spin_lock_init(&ioctx->spinlock);
1275 	ioctx->state = SRPT_STATE_NEW;
1276 	ioctx->n_rbuf = 0;
1277 	ioctx->rbufs = NULL;
1278 	ioctx->n_rdma = 0;
1279 	ioctx->n_rdma_ius = 0;
1280 	ioctx->rdma_ius = NULL;
1281 	ioctx->mapped_sg_count = 0;
1282 	init_completion(&ioctx->tx_done);
1283 	ioctx->queue_status_only = false;
1284 	/*
1285 	 * transport_init_se_cmd() does not initialize all fields, so do it
1286 	 * here.
1287 	 */
1288 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1289 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1290 
1291 	return ioctx;
1292 }
1293 
1294 /**
1295  * srpt_abort_cmd() - Abort a SCSI command.
1296  * @ioctx:   I/O context associated with the SCSI command.
1297  * @context: Preferred execution context.
1298  */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1299 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1300 {
1301 	enum srpt_command_state state;
1302 	unsigned long flags;
1303 
1304 	BUG_ON(!ioctx);
1305 
1306 	/*
1307 	 * If the command is in a state where the target core is waiting for
1308 	 * the ib_srpt driver, change the state to the next state. Changing
1309 	 * the state of the command from SRPT_STATE_NEED_DATA to
1310 	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1311 	 * function a second time.
1312 	 */
1313 
1314 	spin_lock_irqsave(&ioctx->spinlock, flags);
1315 	state = ioctx->state;
1316 	switch (state) {
1317 	case SRPT_STATE_NEED_DATA:
1318 		ioctx->state = SRPT_STATE_DATA_IN;
1319 		break;
1320 	case SRPT_STATE_DATA_IN:
1321 	case SRPT_STATE_CMD_RSP_SENT:
1322 	case SRPT_STATE_MGMT_RSP_SENT:
1323 		ioctx->state = SRPT_STATE_DONE;
1324 		break;
1325 	default:
1326 		break;
1327 	}
1328 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1329 
1330 	if (state == SRPT_STATE_DONE) {
1331 		struct srpt_rdma_ch *ch = ioctx->ch;
1332 
1333 		BUG_ON(ch->sess == NULL);
1334 
1335 		target_put_sess_cmd(&ioctx->cmd);
1336 		goto out;
1337 	}
1338 
1339 	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1340 		 ioctx->cmd.tag);
1341 
1342 	switch (state) {
1343 	case SRPT_STATE_NEW:
1344 	case SRPT_STATE_DATA_IN:
1345 	case SRPT_STATE_MGMT:
1346 		/*
1347 		 * Do nothing - defer abort processing until
1348 		 * srpt_queue_response() is invoked.
1349 		 */
1350 		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1351 		break;
1352 	case SRPT_STATE_NEED_DATA:
1353 		/* DMA_TO_DEVICE (write) - RDMA read error. */
1354 
1355 		/* XXX(hch): this is a horrible layering violation.. */
1356 		spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1357 		ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1358 		spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1359 		break;
1360 	case SRPT_STATE_CMD_RSP_SENT:
1361 		/*
1362 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1363 		 * not been received in time.
1364 		 */
1365 		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1366 		target_put_sess_cmd(&ioctx->cmd);
1367 		break;
1368 	case SRPT_STATE_MGMT_RSP_SENT:
1369 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1370 		target_put_sess_cmd(&ioctx->cmd);
1371 		break;
1372 	default:
1373 		WARN(1, "Unexpected command state (%d)", state);
1374 		break;
1375 	}
1376 
1377 out:
1378 	return state;
1379 }
1380 
1381 /**
1382  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1383  */
srpt_handle_send_err_comp(struct srpt_rdma_ch * ch,u64 wr_id)1384 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1385 {
1386 	struct srpt_send_ioctx *ioctx;
1387 	enum srpt_command_state state;
1388 	u32 index;
1389 
1390 	atomic_inc(&ch->sq_wr_avail);
1391 
1392 	index = idx_from_wr_id(wr_id);
1393 	ioctx = ch->ioctx_ring[index];
1394 	state = srpt_get_cmd_state(ioctx);
1395 
1396 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1397 		&& state != SRPT_STATE_MGMT_RSP_SENT
1398 		&& state != SRPT_STATE_NEED_DATA
1399 		&& state != SRPT_STATE_DONE);
1400 
1401 	/* If SRP_RSP sending failed, undo the ch->req_lim change. */
1402 	if (state == SRPT_STATE_CMD_RSP_SENT
1403 	    || state == SRPT_STATE_MGMT_RSP_SENT)
1404 		atomic_dec(&ch->req_lim);
1405 
1406 	srpt_abort_cmd(ioctx);
1407 }
1408 
1409 /**
1410  * srpt_handle_send_comp() - Process an IB send completion notification.
1411  */
srpt_handle_send_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1412 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1413 				  struct srpt_send_ioctx *ioctx)
1414 {
1415 	enum srpt_command_state state;
1416 
1417 	atomic_inc(&ch->sq_wr_avail);
1418 
1419 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1420 
1421 	if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1422 		    && state != SRPT_STATE_MGMT_RSP_SENT
1423 		    && state != SRPT_STATE_DONE))
1424 		pr_debug("state = %d\n", state);
1425 
1426 	if (state != SRPT_STATE_DONE) {
1427 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
1428 		transport_generic_free_cmd(&ioctx->cmd, 0);
1429 	} else {
1430 		pr_err("IB completion has been received too late for"
1431 		       " wr_id = %u.\n", ioctx->ioctx.index);
1432 	}
1433 }
1434 
1435 /**
1436  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1437  *
1438  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1439  * the data that has been transferred via IB RDMA had to be postponed until the
1440  * check_stop_free() callback.  None of this is necessary anymore and needs to
1441  * be cleaned up.
1442  */
srpt_handle_rdma_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1443 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1444 				  struct srpt_send_ioctx *ioctx,
1445 				  enum srpt_opcode opcode)
1446 {
1447 	WARN_ON(ioctx->n_rdma <= 0);
1448 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1449 
1450 	if (opcode == SRPT_RDMA_READ_LAST) {
1451 		if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1452 						SRPT_STATE_DATA_IN))
1453 			target_execute_cmd(&ioctx->cmd);
1454 		else
1455 			pr_err("%s[%d]: wrong state = %d\n", __func__,
1456 			       __LINE__, srpt_get_cmd_state(ioctx));
1457 	} else if (opcode == SRPT_RDMA_ABORT) {
1458 		ioctx->rdma_aborted = true;
1459 	} else {
1460 		WARN(true, "unexpected opcode %d\n", opcode);
1461 	}
1462 }
1463 
1464 /**
1465  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1466  */
srpt_handle_rdma_err_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1467 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1468 				      struct srpt_send_ioctx *ioctx,
1469 				      enum srpt_opcode opcode)
1470 {
1471 	enum srpt_command_state state;
1472 
1473 	state = srpt_get_cmd_state(ioctx);
1474 	switch (opcode) {
1475 	case SRPT_RDMA_READ_LAST:
1476 		if (ioctx->n_rdma <= 0) {
1477 			pr_err("Received invalid RDMA read"
1478 			       " error completion with idx %d\n",
1479 			       ioctx->ioctx.index);
1480 			break;
1481 		}
1482 		atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1483 		if (state == SRPT_STATE_NEED_DATA)
1484 			srpt_abort_cmd(ioctx);
1485 		else
1486 			pr_err("%s[%d]: wrong state = %d\n",
1487 			       __func__, __LINE__, state);
1488 		break;
1489 	case SRPT_RDMA_WRITE_LAST:
1490 		break;
1491 	default:
1492 		pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1493 		break;
1494 	}
1495 }
1496 
1497 /**
1498  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1499  * @ch: RDMA channel through which the request has been received.
1500  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1501  *   be built in the buffer ioctx->buf points at and hence this function will
1502  *   overwrite the request data.
1503  * @tag: tag of the request for which this response is being generated.
1504  * @status: value for the STATUS field of the SRP_RSP information unit.
1505  *
1506  * Returns the size in bytes of the SRP_RSP response.
1507  *
1508  * An SRP_RSP response contains a SCSI status or service response. See also
1509  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1510  * response. See also SPC-2 for more information about sense data.
1511  */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1512 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1513 			      struct srpt_send_ioctx *ioctx, u64 tag,
1514 			      int status)
1515 {
1516 	struct se_cmd *cmd = &ioctx->cmd;
1517 	struct srp_rsp *srp_rsp;
1518 	const u8 *sense_data;
1519 	int sense_data_len, max_sense_len;
1520 	u32 resid = cmd->residual_count;
1521 
1522 	/*
1523 	 * The lowest bit of all SAM-3 status codes is zero (see also
1524 	 * paragraph 5.3 in SAM-3).
1525 	 */
1526 	WARN_ON(status & 1);
1527 
1528 	srp_rsp = ioctx->ioctx.buf;
1529 	BUG_ON(!srp_rsp);
1530 
1531 	sense_data = ioctx->sense_data;
1532 	sense_data_len = ioctx->cmd.scsi_sense_length;
1533 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1534 
1535 	memset(srp_rsp, 0, sizeof *srp_rsp);
1536 	srp_rsp->opcode = SRP_RSP;
1537 	srp_rsp->req_lim_delta =
1538 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1539 	srp_rsp->tag = tag;
1540 	srp_rsp->status = status;
1541 
1542 	if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1543 		if (cmd->data_direction == DMA_TO_DEVICE) {
1544 			/* residual data from an underflow write */
1545 			srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1546 			srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1547 		} else if (cmd->data_direction == DMA_FROM_DEVICE) {
1548 			/* residual data from an underflow read */
1549 			srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1550 			srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1551 		}
1552 	} else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1553 		if (cmd->data_direction == DMA_TO_DEVICE) {
1554 			/* residual data from an overflow write */
1555 			srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1556 			srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1557 		} else if (cmd->data_direction == DMA_FROM_DEVICE) {
1558 			/* residual data from an overflow read */
1559 			srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1560 			srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1561 		}
1562 	}
1563 
1564 	if (sense_data_len) {
1565 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1566 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1567 		if (sense_data_len > max_sense_len) {
1568 			pr_warn("truncated sense data from %d to %d"
1569 				" bytes\n", sense_data_len, max_sense_len);
1570 			sense_data_len = max_sense_len;
1571 		}
1572 
1573 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1574 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1575 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1576 	}
1577 
1578 	return sizeof(*srp_rsp) + sense_data_len;
1579 }
1580 
1581 /**
1582  * srpt_build_tskmgmt_rsp() - Build a task management response.
1583  * @ch:       RDMA channel through which the request has been received.
1584  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1585  * @rsp_code: RSP_CODE that will be stored in the response.
1586  * @tag:      Tag of the request for which this response is being generated.
1587  *
1588  * Returns the size in bytes of the SRP_RSP response.
1589  *
1590  * An SRP_RSP response contains a SCSI status or service response. See also
1591  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1592  * response.
1593  */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1594 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1595 				  struct srpt_send_ioctx *ioctx,
1596 				  u8 rsp_code, u64 tag)
1597 {
1598 	struct srp_rsp *srp_rsp;
1599 	int resp_data_len;
1600 	int resp_len;
1601 
1602 	resp_data_len = 4;
1603 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1604 
1605 	srp_rsp = ioctx->ioctx.buf;
1606 	BUG_ON(!srp_rsp);
1607 	memset(srp_rsp, 0, sizeof *srp_rsp);
1608 
1609 	srp_rsp->opcode = SRP_RSP;
1610 	srp_rsp->req_lim_delta =
1611 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1612 	srp_rsp->tag = tag;
1613 
1614 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1615 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1616 	srp_rsp->data[3] = rsp_code;
1617 
1618 	return resp_len;
1619 }
1620 
1621 #define NO_SUCH_LUN ((uint64_t)-1LL)
1622 
1623 /*
1624  * SCSI LUN addressing method. See also SAM-2 and the section about
1625  * eight byte LUNs.
1626  */
1627 enum scsi_lun_addr_method {
1628 	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1629 	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1630 	SCSI_LUN_ADDR_METHOD_LUN          = 2,
1631 	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1632 };
1633 
1634 /*
1635  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1636  *
1637  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1638  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1639  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1640  */
srpt_unpack_lun(const uint8_t * lun,int len)1641 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1642 {
1643 	uint64_t res = NO_SUCH_LUN;
1644 	int addressing_method;
1645 
1646 	if (unlikely(len < 2)) {
1647 		pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1648 		       len);
1649 		goto out;
1650 	}
1651 
1652 	switch (len) {
1653 	case 8:
1654 		if ((*((__be64 *)lun) &
1655 		     cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1656 			goto out_err;
1657 		break;
1658 	case 4:
1659 		if (*((__be16 *)&lun[2]) != 0)
1660 			goto out_err;
1661 		break;
1662 	case 6:
1663 		if (*((__be32 *)&lun[2]) != 0)
1664 			goto out_err;
1665 		break;
1666 	case 2:
1667 		break;
1668 	default:
1669 		goto out_err;
1670 	}
1671 
1672 	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1673 	switch (addressing_method) {
1674 	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1675 	case SCSI_LUN_ADDR_METHOD_FLAT:
1676 	case SCSI_LUN_ADDR_METHOD_LUN:
1677 		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1678 		break;
1679 
1680 	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1681 	default:
1682 		pr_err("Unimplemented LUN addressing method %u\n",
1683 		       addressing_method);
1684 		break;
1685 	}
1686 
1687 out:
1688 	return res;
1689 
1690 out_err:
1691 	pr_err("Support for multi-level LUNs has not yet been implemented\n");
1692 	goto out;
1693 }
1694 
srpt_check_stop_free(struct se_cmd * cmd)1695 static int srpt_check_stop_free(struct se_cmd *cmd)
1696 {
1697 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1698 				struct srpt_send_ioctx, cmd);
1699 
1700 	return target_put_sess_cmd(&ioctx->cmd);
1701 }
1702 
1703 /**
1704  * srpt_handle_cmd() - Process SRP_CMD.
1705  */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1706 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1707 			   struct srpt_recv_ioctx *recv_ioctx,
1708 			   struct srpt_send_ioctx *send_ioctx)
1709 {
1710 	struct se_cmd *cmd;
1711 	struct srp_cmd *srp_cmd;
1712 	uint64_t unpacked_lun;
1713 	u64 data_len;
1714 	enum dma_data_direction dir;
1715 	sense_reason_t ret;
1716 	int rc;
1717 
1718 	BUG_ON(!send_ioctx);
1719 
1720 	srp_cmd = recv_ioctx->ioctx.buf;
1721 	cmd = &send_ioctx->cmd;
1722 	cmd->tag = srp_cmd->tag;
1723 
1724 	switch (srp_cmd->task_attr) {
1725 	case SRP_CMD_SIMPLE_Q:
1726 		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1727 		break;
1728 	case SRP_CMD_ORDERED_Q:
1729 	default:
1730 		cmd->sam_task_attr = TCM_ORDERED_TAG;
1731 		break;
1732 	case SRP_CMD_HEAD_OF_Q:
1733 		cmd->sam_task_attr = TCM_HEAD_TAG;
1734 		break;
1735 	case SRP_CMD_ACA:
1736 		cmd->sam_task_attr = TCM_ACA_TAG;
1737 		break;
1738 	}
1739 
1740 	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1741 		pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1742 		       srp_cmd->tag);
1743 		ret = TCM_INVALID_CDB_FIELD;
1744 		goto send_sense;
1745 	}
1746 
1747 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1748 				       sizeof(srp_cmd->lun));
1749 	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1750 			&send_ioctx->sense_data[0], unpacked_lun, data_len,
1751 			TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1752 	if (rc != 0) {
1753 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1754 		goto send_sense;
1755 	}
1756 	return 0;
1757 
1758 send_sense:
1759 	transport_send_check_condition_and_sense(cmd, ret, 0);
1760 	return -1;
1761 }
1762 
srp_tmr_to_tcm(int fn)1763 static int srp_tmr_to_tcm(int fn)
1764 {
1765 	switch (fn) {
1766 	case SRP_TSK_ABORT_TASK:
1767 		return TMR_ABORT_TASK;
1768 	case SRP_TSK_ABORT_TASK_SET:
1769 		return TMR_ABORT_TASK_SET;
1770 	case SRP_TSK_CLEAR_TASK_SET:
1771 		return TMR_CLEAR_TASK_SET;
1772 	case SRP_TSK_LUN_RESET:
1773 		return TMR_LUN_RESET;
1774 	case SRP_TSK_CLEAR_ACA:
1775 		return TMR_CLEAR_ACA;
1776 	default:
1777 		return -1;
1778 	}
1779 }
1780 
1781 /**
1782  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1783  *
1784  * Returns 0 if and only if the request will be processed by the target core.
1785  *
1786  * For more information about SRP_TSK_MGMT information units, see also section
1787  * 6.7 in the SRP r16a document.
1788  */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1789 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1790 				 struct srpt_recv_ioctx *recv_ioctx,
1791 				 struct srpt_send_ioctx *send_ioctx)
1792 {
1793 	struct srp_tsk_mgmt *srp_tsk;
1794 	struct se_cmd *cmd;
1795 	struct se_session *sess = ch->sess;
1796 	uint64_t unpacked_lun;
1797 	int tcm_tmr;
1798 	int rc;
1799 
1800 	BUG_ON(!send_ioctx);
1801 
1802 	srp_tsk = recv_ioctx->ioctx.buf;
1803 	cmd = &send_ioctx->cmd;
1804 
1805 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1806 		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1807 		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1808 
1809 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1810 	send_ioctx->cmd.tag = srp_tsk->tag;
1811 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1812 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1813 				       sizeof(srp_tsk->lun));
1814 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1815 				srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag,
1816 				TARGET_SCF_ACK_KREF);
1817 	if (rc != 0) {
1818 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1819 		goto fail;
1820 	}
1821 	return;
1822 fail:
1823 	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1824 }
1825 
1826 /**
1827  * srpt_handle_new_iu() - Process a newly received information unit.
1828  * @ch:    RDMA channel through which the information unit has been received.
1829  * @ioctx: SRPT I/O context associated with the information unit.
1830  */
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1831 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1832 			       struct srpt_recv_ioctx *recv_ioctx,
1833 			       struct srpt_send_ioctx *send_ioctx)
1834 {
1835 	struct srp_cmd *srp_cmd;
1836 	enum rdma_ch_state ch_state;
1837 
1838 	BUG_ON(!ch);
1839 	BUG_ON(!recv_ioctx);
1840 
1841 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1842 				   recv_ioctx->ioctx.dma, srp_max_req_size,
1843 				   DMA_FROM_DEVICE);
1844 
1845 	ch_state = srpt_get_ch_state(ch);
1846 	if (unlikely(ch_state == CH_CONNECTING)) {
1847 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1848 		goto out;
1849 	}
1850 
1851 	if (unlikely(ch_state != CH_LIVE))
1852 		goto out;
1853 
1854 	srp_cmd = recv_ioctx->ioctx.buf;
1855 	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1856 		if (!send_ioctx)
1857 			send_ioctx = srpt_get_send_ioctx(ch);
1858 		if (unlikely(!send_ioctx)) {
1859 			list_add_tail(&recv_ioctx->wait_list,
1860 				      &ch->cmd_wait_list);
1861 			goto out;
1862 		}
1863 	}
1864 
1865 	switch (srp_cmd->opcode) {
1866 	case SRP_CMD:
1867 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1868 		break;
1869 	case SRP_TSK_MGMT:
1870 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1871 		break;
1872 	case SRP_I_LOGOUT:
1873 		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1874 		break;
1875 	case SRP_CRED_RSP:
1876 		pr_debug("received SRP_CRED_RSP\n");
1877 		break;
1878 	case SRP_AER_RSP:
1879 		pr_debug("received SRP_AER_RSP\n");
1880 		break;
1881 	case SRP_RSP:
1882 		pr_err("Received SRP_RSP\n");
1883 		break;
1884 	default:
1885 		pr_err("received IU with unknown opcode 0x%x\n",
1886 		       srp_cmd->opcode);
1887 		break;
1888 	}
1889 
1890 	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1891 out:
1892 	return;
1893 }
1894 
srpt_process_rcv_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1895 static void srpt_process_rcv_completion(struct ib_cq *cq,
1896 					struct srpt_rdma_ch *ch,
1897 					struct ib_wc *wc)
1898 {
1899 	struct srpt_device *sdev = ch->sport->sdev;
1900 	struct srpt_recv_ioctx *ioctx;
1901 	u32 index;
1902 
1903 	index = idx_from_wr_id(wc->wr_id);
1904 	if (wc->status == IB_WC_SUCCESS) {
1905 		int req_lim;
1906 
1907 		req_lim = atomic_dec_return(&ch->req_lim);
1908 		if (unlikely(req_lim < 0))
1909 			pr_err("req_lim = %d < 0\n", req_lim);
1910 		ioctx = sdev->ioctx_ring[index];
1911 		srpt_handle_new_iu(ch, ioctx, NULL);
1912 	} else {
1913 		pr_info("receiving failed for idx %u with status %d\n",
1914 			index, wc->status);
1915 	}
1916 }
1917 
1918 /**
1919  * srpt_process_send_completion() - Process an IB send completion.
1920  *
1921  * Note: Although this has not yet been observed during tests, at least in
1922  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1923  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1924  * value in each response is set to one, and it is possible that this response
1925  * makes the initiator send a new request before the send completion for that
1926  * response has been processed. This could e.g. happen if the call to
1927  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1928  * if IB retransmission causes generation of the send completion to be
1929  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1930  * are queued on cmd_wait_list. The code below processes these delayed
1931  * requests one at a time.
1932  */
srpt_process_send_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1933 static void srpt_process_send_completion(struct ib_cq *cq,
1934 					 struct srpt_rdma_ch *ch,
1935 					 struct ib_wc *wc)
1936 {
1937 	struct srpt_send_ioctx *send_ioctx;
1938 	uint32_t index;
1939 	enum srpt_opcode opcode;
1940 
1941 	index = idx_from_wr_id(wc->wr_id);
1942 	opcode = opcode_from_wr_id(wc->wr_id);
1943 	send_ioctx = ch->ioctx_ring[index];
1944 	if (wc->status == IB_WC_SUCCESS) {
1945 		if (opcode == SRPT_SEND)
1946 			srpt_handle_send_comp(ch, send_ioctx);
1947 		else {
1948 			WARN_ON(opcode != SRPT_RDMA_ABORT &&
1949 				wc->opcode != IB_WC_RDMA_READ);
1950 			srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1951 		}
1952 	} else {
1953 		if (opcode == SRPT_SEND) {
1954 			pr_info("sending response for idx %u failed"
1955 				" with status %d\n", index, wc->status);
1956 			srpt_handle_send_err_comp(ch, wc->wr_id);
1957 		} else if (opcode != SRPT_RDMA_MID) {
1958 			pr_info("RDMA t %d for idx %u failed with"
1959 				" status %d\n", opcode, index, wc->status);
1960 			srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1961 		}
1962 	}
1963 
1964 	while (unlikely(opcode == SRPT_SEND
1965 			&& !list_empty(&ch->cmd_wait_list)
1966 			&& srpt_get_ch_state(ch) == CH_LIVE
1967 			&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
1968 		struct srpt_recv_ioctx *recv_ioctx;
1969 
1970 		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1971 					      struct srpt_recv_ioctx,
1972 					      wait_list);
1973 		list_del(&recv_ioctx->wait_list);
1974 		srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
1975 	}
1976 }
1977 
srpt_process_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch)1978 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
1979 {
1980 	struct ib_wc *const wc = ch->wc;
1981 	int i, n;
1982 
1983 	WARN_ON(cq != ch->cq);
1984 
1985 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1986 	while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
1987 		for (i = 0; i < n; i++) {
1988 			if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
1989 				srpt_process_rcv_completion(cq, ch, &wc[i]);
1990 			else
1991 				srpt_process_send_completion(cq, ch, &wc[i]);
1992 		}
1993 	}
1994 }
1995 
1996 /**
1997  * srpt_completion() - IB completion queue callback function.
1998  *
1999  * Notes:
2000  * - It is guaranteed that a completion handler will never be invoked
2001  *   concurrently on two different CPUs for the same completion queue. See also
2002  *   Documentation/infiniband/core_locking.txt and the implementation of
2003  *   handle_edge_irq() in kernel/irq/chip.c.
2004  * - When threaded IRQs are enabled, completion handlers are invoked in thread
2005  *   context instead of interrupt context.
2006  */
srpt_completion(struct ib_cq * cq,void * ctx)2007 static void srpt_completion(struct ib_cq *cq, void *ctx)
2008 {
2009 	struct srpt_rdma_ch *ch = ctx;
2010 
2011 	wake_up_interruptible(&ch->wait_queue);
2012 }
2013 
srpt_compl_thread(void * arg)2014 static int srpt_compl_thread(void *arg)
2015 {
2016 	struct srpt_rdma_ch *ch;
2017 
2018 	/* Hibernation / freezing of the SRPT kernel thread is not supported. */
2019 	current->flags |= PF_NOFREEZE;
2020 
2021 	ch = arg;
2022 	BUG_ON(!ch);
2023 	pr_info("Session %s: kernel thread %s (PID %d) started\n",
2024 		ch->sess_name, ch->thread->comm, current->pid);
2025 	while (!kthread_should_stop()) {
2026 		wait_event_interruptible(ch->wait_queue,
2027 			(srpt_process_completion(ch->cq, ch),
2028 			 kthread_should_stop()));
2029 	}
2030 	pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2031 		ch->sess_name, ch->thread->comm, current->pid);
2032 	return 0;
2033 }
2034 
2035 /**
2036  * srpt_create_ch_ib() - Create receive and send completion queues.
2037  */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)2038 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2039 {
2040 	struct ib_qp_init_attr *qp_init;
2041 	struct srpt_port *sport = ch->sport;
2042 	struct srpt_device *sdev = sport->sdev;
2043 	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2044 	struct ib_cq_init_attr cq_attr = {};
2045 	int ret;
2046 
2047 	WARN_ON(ch->rq_size < 1);
2048 
2049 	ret = -ENOMEM;
2050 	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2051 	if (!qp_init)
2052 		goto out;
2053 
2054 retry:
2055 	cq_attr.cqe = ch->rq_size + srp_sq_size;
2056 	ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2057 			      &cq_attr);
2058 	if (IS_ERR(ch->cq)) {
2059 		ret = PTR_ERR(ch->cq);
2060 		pr_err("failed to create CQ cqe= %d ret= %d\n",
2061 		       ch->rq_size + srp_sq_size, ret);
2062 		goto out;
2063 	}
2064 
2065 	qp_init->qp_context = (void *)ch;
2066 	qp_init->event_handler
2067 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
2068 	qp_init->send_cq = ch->cq;
2069 	qp_init->recv_cq = ch->cq;
2070 	qp_init->srq = sdev->srq;
2071 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2072 	qp_init->qp_type = IB_QPT_RC;
2073 	qp_init->cap.max_send_wr = srp_sq_size;
2074 	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2075 
2076 	ch->qp = ib_create_qp(sdev->pd, qp_init);
2077 	if (IS_ERR(ch->qp)) {
2078 		ret = PTR_ERR(ch->qp);
2079 		if (ret == -ENOMEM) {
2080 			srp_sq_size /= 2;
2081 			if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2082 				ib_destroy_cq(ch->cq);
2083 				goto retry;
2084 			}
2085 		}
2086 		pr_err("failed to create_qp ret= %d\n", ret);
2087 		goto err_destroy_cq;
2088 	}
2089 
2090 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2091 
2092 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2093 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2094 		 qp_init->cap.max_send_wr, ch->cm_id);
2095 
2096 	ret = srpt_init_ch_qp(ch, ch->qp);
2097 	if (ret)
2098 		goto err_destroy_qp;
2099 
2100 	init_waitqueue_head(&ch->wait_queue);
2101 
2102 	pr_debug("creating thread for session %s\n", ch->sess_name);
2103 
2104 	ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2105 	if (IS_ERR(ch->thread)) {
2106 		pr_err("failed to create kernel thread %ld\n",
2107 		       PTR_ERR(ch->thread));
2108 		ch->thread = NULL;
2109 		goto err_destroy_qp;
2110 	}
2111 
2112 out:
2113 	kfree(qp_init);
2114 	return ret;
2115 
2116 err_destroy_qp:
2117 	ib_destroy_qp(ch->qp);
2118 err_destroy_cq:
2119 	ib_destroy_cq(ch->cq);
2120 	goto out;
2121 }
2122 
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)2123 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2124 {
2125 	if (ch->thread)
2126 		kthread_stop(ch->thread);
2127 
2128 	ib_destroy_qp(ch->qp);
2129 	ib_destroy_cq(ch->cq);
2130 }
2131 
2132 /**
2133  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2134  *
2135  * Reset the QP and make sure all resources associated with the channel will
2136  * be deallocated at an appropriate time.
2137  *
2138  * Note: The caller must hold ch->sport->sdev->spinlock.
2139  */
__srpt_close_ch(struct srpt_rdma_ch * ch)2140 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2141 {
2142 	enum rdma_ch_state prev_state;
2143 	unsigned long flags;
2144 
2145 	spin_lock_irqsave(&ch->spinlock, flags);
2146 	prev_state = ch->state;
2147 	switch (prev_state) {
2148 	case CH_CONNECTING:
2149 	case CH_LIVE:
2150 		ch->state = CH_DISCONNECTING;
2151 		break;
2152 	default:
2153 		break;
2154 	}
2155 	spin_unlock_irqrestore(&ch->spinlock, flags);
2156 
2157 	switch (prev_state) {
2158 	case CH_CONNECTING:
2159 		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2160 			       NULL, 0);
2161 		/* fall through */
2162 	case CH_LIVE:
2163 		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2164 			pr_err("sending CM DREQ failed.\n");
2165 		break;
2166 	case CH_DISCONNECTING:
2167 		break;
2168 	case CH_DRAINING:
2169 	case CH_RELEASING:
2170 		break;
2171 	}
2172 }
2173 
2174 /**
2175  * srpt_close_ch() - Close an RDMA channel.
2176  */
srpt_close_ch(struct srpt_rdma_ch * ch)2177 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2178 {
2179 	struct srpt_device *sdev;
2180 
2181 	sdev = ch->sport->sdev;
2182 	spin_lock_irq(&sdev->spinlock);
2183 	__srpt_close_ch(ch);
2184 	spin_unlock_irq(&sdev->spinlock);
2185 }
2186 
2187 /**
2188  * srpt_shutdown_session() - Whether or not a session may be shut down.
2189  */
srpt_shutdown_session(struct se_session * se_sess)2190 static int srpt_shutdown_session(struct se_session *se_sess)
2191 {
2192 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2193 	unsigned long flags;
2194 
2195 	spin_lock_irqsave(&ch->spinlock, flags);
2196 	if (ch->in_shutdown) {
2197 		spin_unlock_irqrestore(&ch->spinlock, flags);
2198 		return true;
2199 	}
2200 
2201 	ch->in_shutdown = true;
2202 	target_sess_cmd_list_set_waiting(se_sess);
2203 	spin_unlock_irqrestore(&ch->spinlock, flags);
2204 
2205 	return true;
2206 }
2207 
2208 /**
2209  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2210  * @cm_id: Pointer to the CM ID of the channel to be drained.
2211  *
2212  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2213  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2214  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2215  * waits until all target sessions for the associated IB device have been
2216  * unregistered and target session registration involves a call to
2217  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2218  * this function has finished).
2219  */
srpt_drain_channel(struct ib_cm_id * cm_id)2220 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2221 {
2222 	struct srpt_device *sdev;
2223 	struct srpt_rdma_ch *ch;
2224 	int ret;
2225 	bool do_reset = false;
2226 
2227 	WARN_ON_ONCE(irqs_disabled());
2228 
2229 	sdev = cm_id->context;
2230 	BUG_ON(!sdev);
2231 	spin_lock_irq(&sdev->spinlock);
2232 	list_for_each_entry(ch, &sdev->rch_list, list) {
2233 		if (ch->cm_id == cm_id) {
2234 			do_reset = srpt_test_and_set_ch_state(ch,
2235 					CH_CONNECTING, CH_DRAINING) ||
2236 				   srpt_test_and_set_ch_state(ch,
2237 					CH_LIVE, CH_DRAINING) ||
2238 				   srpt_test_and_set_ch_state(ch,
2239 					CH_DISCONNECTING, CH_DRAINING);
2240 			break;
2241 		}
2242 	}
2243 	spin_unlock_irq(&sdev->spinlock);
2244 
2245 	if (do_reset) {
2246 		if (ch->sess)
2247 			srpt_shutdown_session(ch->sess);
2248 
2249 		ret = srpt_ch_qp_err(ch);
2250 		if (ret < 0)
2251 			pr_err("Setting queue pair in error state"
2252 			       " failed: %d\n", ret);
2253 	}
2254 }
2255 
2256 /**
2257  * srpt_find_channel() - Look up an RDMA channel.
2258  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2259  *
2260  * Return NULL if no matching RDMA channel has been found.
2261  */
srpt_find_channel(struct srpt_device * sdev,struct ib_cm_id * cm_id)2262 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2263 					      struct ib_cm_id *cm_id)
2264 {
2265 	struct srpt_rdma_ch *ch;
2266 	bool found;
2267 
2268 	WARN_ON_ONCE(irqs_disabled());
2269 	BUG_ON(!sdev);
2270 
2271 	found = false;
2272 	spin_lock_irq(&sdev->spinlock);
2273 	list_for_each_entry(ch, &sdev->rch_list, list) {
2274 		if (ch->cm_id == cm_id) {
2275 			found = true;
2276 			break;
2277 		}
2278 	}
2279 	spin_unlock_irq(&sdev->spinlock);
2280 
2281 	return found ? ch : NULL;
2282 }
2283 
2284 /**
2285  * srpt_release_channel() - Release channel resources.
2286  *
2287  * Schedules the actual release because:
2288  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2289  *   trigger a deadlock.
2290  * - It is not safe to call TCM transport_* functions from interrupt context.
2291  */
srpt_release_channel(struct srpt_rdma_ch * ch)2292 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2293 {
2294 	schedule_work(&ch->release_work);
2295 }
2296 
srpt_release_channel_work(struct work_struct * w)2297 static void srpt_release_channel_work(struct work_struct *w)
2298 {
2299 	struct srpt_rdma_ch *ch;
2300 	struct srpt_device *sdev;
2301 	struct se_session *se_sess;
2302 
2303 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2304 	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2305 		 ch->release_done);
2306 
2307 	sdev = ch->sport->sdev;
2308 	BUG_ON(!sdev);
2309 
2310 	se_sess = ch->sess;
2311 	BUG_ON(!se_sess);
2312 
2313 	target_wait_for_sess_cmds(se_sess);
2314 
2315 	transport_deregister_session_configfs(se_sess);
2316 	transport_deregister_session(se_sess);
2317 	ch->sess = NULL;
2318 
2319 	ib_destroy_cm_id(ch->cm_id);
2320 
2321 	srpt_destroy_ch_ib(ch);
2322 
2323 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2324 			     ch->sport->sdev, ch->rq_size,
2325 			     ch->rsp_size, DMA_TO_DEVICE);
2326 
2327 	spin_lock_irq(&sdev->spinlock);
2328 	list_del(&ch->list);
2329 	spin_unlock_irq(&sdev->spinlock);
2330 
2331 	if (ch->release_done)
2332 		complete(ch->release_done);
2333 
2334 	wake_up(&sdev->ch_releaseQ);
2335 
2336 	kfree(ch);
2337 }
2338 
__srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2339 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2340 					       u8 i_port_id[16])
2341 {
2342 	struct srpt_node_acl *nacl;
2343 
2344 	list_for_each_entry(nacl, &sport->port_acl_list, list)
2345 		if (memcmp(nacl->i_port_id, i_port_id,
2346 			   sizeof(nacl->i_port_id)) == 0)
2347 			return nacl;
2348 
2349 	return NULL;
2350 }
2351 
srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2352 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2353 					     u8 i_port_id[16])
2354 {
2355 	struct srpt_node_acl *nacl;
2356 
2357 	spin_lock_irq(&sport->port_acl_lock);
2358 	nacl = __srpt_lookup_acl(sport, i_port_id);
2359 	spin_unlock_irq(&sport->port_acl_lock);
2360 
2361 	return nacl;
2362 }
2363 
2364 /**
2365  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2366  *
2367  * Ownership of the cm_id is transferred to the target session if this
2368  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2369  */
srpt_cm_req_recv(struct ib_cm_id * cm_id,struct ib_cm_req_event_param * param,void * private_data)2370 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2371 			    struct ib_cm_req_event_param *param,
2372 			    void *private_data)
2373 {
2374 	struct srpt_device *sdev = cm_id->context;
2375 	struct srpt_port *sport = &sdev->port[param->port - 1];
2376 	struct srp_login_req *req;
2377 	struct srp_login_rsp *rsp;
2378 	struct srp_login_rej *rej;
2379 	struct ib_cm_rep_param *rep_param;
2380 	struct srpt_rdma_ch *ch, *tmp_ch;
2381 	struct srpt_node_acl *nacl;
2382 	u32 it_iu_len;
2383 	int i;
2384 	int ret = 0;
2385 
2386 	WARN_ON_ONCE(irqs_disabled());
2387 
2388 	if (WARN_ON(!sdev || !private_data))
2389 		return -EINVAL;
2390 
2391 	req = (struct srp_login_req *)private_data;
2392 
2393 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2394 
2395 	pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2396 		" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2397 		" (guid=0x%llx:0x%llx)\n",
2398 		be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2399 		be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2400 		be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2401 		be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2402 		it_iu_len,
2403 		param->port,
2404 		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2405 		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2406 
2407 	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2408 	rej = kzalloc(sizeof *rej, GFP_KERNEL);
2409 	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2410 
2411 	if (!rsp || !rej || !rep_param) {
2412 		ret = -ENOMEM;
2413 		goto out;
2414 	}
2415 
2416 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2417 		rej->reason = cpu_to_be32(
2418 			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2419 		ret = -EINVAL;
2420 		pr_err("rejected SRP_LOGIN_REQ because its"
2421 		       " length (%d bytes) is out of range (%d .. %d)\n",
2422 		       it_iu_len, 64, srp_max_req_size);
2423 		goto reject;
2424 	}
2425 
2426 	if (!sport->enabled) {
2427 		rej->reason = cpu_to_be32(
2428 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2429 		ret = -EINVAL;
2430 		pr_err("rejected SRP_LOGIN_REQ because the target port"
2431 		       " has not yet been enabled\n");
2432 		goto reject;
2433 	}
2434 
2435 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2436 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2437 
2438 		spin_lock_irq(&sdev->spinlock);
2439 
2440 		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2441 			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2442 			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
2443 			    && param->port == ch->sport->port
2444 			    && param->listen_id == ch->sport->sdev->cm_id
2445 			    && ch->cm_id) {
2446 				enum rdma_ch_state ch_state;
2447 
2448 				ch_state = srpt_get_ch_state(ch);
2449 				if (ch_state != CH_CONNECTING
2450 				    && ch_state != CH_LIVE)
2451 					continue;
2452 
2453 				/* found an existing channel */
2454 				pr_debug("Found existing channel %s"
2455 					 " cm_id= %p state= %d\n",
2456 					 ch->sess_name, ch->cm_id, ch_state);
2457 
2458 				__srpt_close_ch(ch);
2459 
2460 				rsp->rsp_flags =
2461 					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2462 			}
2463 		}
2464 
2465 		spin_unlock_irq(&sdev->spinlock);
2466 
2467 	} else
2468 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2469 
2470 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2471 	    || *(__be64 *)(req->target_port_id + 8) !=
2472 	       cpu_to_be64(srpt_service_guid)) {
2473 		rej->reason = cpu_to_be32(
2474 			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2475 		ret = -ENOMEM;
2476 		pr_err("rejected SRP_LOGIN_REQ because it"
2477 		       " has an invalid target port identifier.\n");
2478 		goto reject;
2479 	}
2480 
2481 	ch = kzalloc(sizeof *ch, GFP_KERNEL);
2482 	if (!ch) {
2483 		rej->reason = cpu_to_be32(
2484 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2485 		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2486 		ret = -ENOMEM;
2487 		goto reject;
2488 	}
2489 
2490 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2491 	memcpy(ch->i_port_id, req->initiator_port_id, 16);
2492 	memcpy(ch->t_port_id, req->target_port_id, 16);
2493 	ch->sport = &sdev->port[param->port - 1];
2494 	ch->cm_id = cm_id;
2495 	/*
2496 	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2497 	 * for the SRP protocol to the command queue size.
2498 	 */
2499 	ch->rq_size = SRPT_RQ_SIZE;
2500 	spin_lock_init(&ch->spinlock);
2501 	ch->state = CH_CONNECTING;
2502 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2503 	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2504 
2505 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2506 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2507 				      sizeof(*ch->ioctx_ring[0]),
2508 				      ch->rsp_size, DMA_TO_DEVICE);
2509 	if (!ch->ioctx_ring)
2510 		goto free_ch;
2511 
2512 	INIT_LIST_HEAD(&ch->free_list);
2513 	for (i = 0; i < ch->rq_size; i++) {
2514 		ch->ioctx_ring[i]->ch = ch;
2515 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2516 	}
2517 
2518 	ret = srpt_create_ch_ib(ch);
2519 	if (ret) {
2520 		rej->reason = cpu_to_be32(
2521 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2522 		pr_err("rejected SRP_LOGIN_REQ because creating"
2523 		       " a new RDMA channel failed.\n");
2524 		goto free_ring;
2525 	}
2526 
2527 	ret = srpt_ch_qp_rtr(ch, ch->qp);
2528 	if (ret) {
2529 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2530 		pr_err("rejected SRP_LOGIN_REQ because enabling"
2531 		       " RTR failed (error code = %d)\n", ret);
2532 		goto destroy_ib;
2533 	}
2534 	/*
2535 	 * Use the initator port identifier as the session name.
2536 	 */
2537 	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2538 			be64_to_cpu(*(__be64 *)ch->i_port_id),
2539 			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2540 
2541 	pr_debug("registering session %s\n", ch->sess_name);
2542 
2543 	nacl = srpt_lookup_acl(sport, ch->i_port_id);
2544 	if (!nacl) {
2545 		pr_info("Rejected login because no ACL has been"
2546 			" configured yet for initiator %s.\n", ch->sess_name);
2547 		rej->reason = cpu_to_be32(
2548 			      SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2549 		goto destroy_ib;
2550 	}
2551 
2552 	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2553 	if (IS_ERR(ch->sess)) {
2554 		rej->reason = cpu_to_be32(
2555 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2556 		pr_debug("Failed to create session\n");
2557 		goto deregister_session;
2558 	}
2559 	ch->sess->se_node_acl = &nacl->nacl;
2560 	transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2561 
2562 	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2563 		 ch->sess_name, ch->cm_id);
2564 
2565 	/* create srp_login_response */
2566 	rsp->opcode = SRP_LOGIN_RSP;
2567 	rsp->tag = req->tag;
2568 	rsp->max_it_iu_len = req->req_it_iu_len;
2569 	rsp->max_ti_iu_len = req->req_it_iu_len;
2570 	ch->max_ti_iu_len = it_iu_len;
2571 	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2572 				   | SRP_BUF_FORMAT_INDIRECT);
2573 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2574 	atomic_set(&ch->req_lim, ch->rq_size);
2575 	atomic_set(&ch->req_lim_delta, 0);
2576 
2577 	/* create cm reply */
2578 	rep_param->qp_num = ch->qp->qp_num;
2579 	rep_param->private_data = (void *)rsp;
2580 	rep_param->private_data_len = sizeof *rsp;
2581 	rep_param->rnr_retry_count = 7;
2582 	rep_param->flow_control = 1;
2583 	rep_param->failover_accepted = 0;
2584 	rep_param->srq = 1;
2585 	rep_param->responder_resources = 4;
2586 	rep_param->initiator_depth = 4;
2587 
2588 	ret = ib_send_cm_rep(cm_id, rep_param);
2589 	if (ret) {
2590 		pr_err("sending SRP_LOGIN_REQ response failed"
2591 		       " (error code = %d)\n", ret);
2592 		goto release_channel;
2593 	}
2594 
2595 	spin_lock_irq(&sdev->spinlock);
2596 	list_add_tail(&ch->list, &sdev->rch_list);
2597 	spin_unlock_irq(&sdev->spinlock);
2598 
2599 	goto out;
2600 
2601 release_channel:
2602 	srpt_set_ch_state(ch, CH_RELEASING);
2603 	transport_deregister_session_configfs(ch->sess);
2604 
2605 deregister_session:
2606 	transport_deregister_session(ch->sess);
2607 	ch->sess = NULL;
2608 
2609 destroy_ib:
2610 	srpt_destroy_ch_ib(ch);
2611 
2612 free_ring:
2613 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2614 			     ch->sport->sdev, ch->rq_size,
2615 			     ch->rsp_size, DMA_TO_DEVICE);
2616 free_ch:
2617 	kfree(ch);
2618 
2619 reject:
2620 	rej->opcode = SRP_LOGIN_REJ;
2621 	rej->tag = req->tag;
2622 	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2623 				   | SRP_BUF_FORMAT_INDIRECT);
2624 
2625 	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2626 			     (void *)rej, sizeof *rej);
2627 
2628 out:
2629 	kfree(rep_param);
2630 	kfree(rsp);
2631 	kfree(rej);
2632 
2633 	return ret;
2634 }
2635 
srpt_cm_rej_recv(struct ib_cm_id * cm_id)2636 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2637 {
2638 	pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2639 	srpt_drain_channel(cm_id);
2640 }
2641 
2642 /**
2643  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2644  *
2645  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2646  * and that the recipient may begin transmitting (RTU = ready to use).
2647  */
srpt_cm_rtu_recv(struct ib_cm_id * cm_id)2648 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2649 {
2650 	struct srpt_rdma_ch *ch;
2651 	int ret;
2652 
2653 	ch = srpt_find_channel(cm_id->context, cm_id);
2654 	BUG_ON(!ch);
2655 
2656 	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2657 		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2658 
2659 		ret = srpt_ch_qp_rts(ch, ch->qp);
2660 
2661 		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2662 					 wait_list) {
2663 			list_del(&ioctx->wait_list);
2664 			srpt_handle_new_iu(ch, ioctx, NULL);
2665 		}
2666 		if (ret)
2667 			srpt_close_ch(ch);
2668 	}
2669 }
2670 
srpt_cm_timewait_exit(struct ib_cm_id * cm_id)2671 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2672 {
2673 	pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2674 	srpt_drain_channel(cm_id);
2675 }
2676 
srpt_cm_rep_error(struct ib_cm_id * cm_id)2677 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2678 {
2679 	pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2680 	srpt_drain_channel(cm_id);
2681 }
2682 
2683 /**
2684  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2685  */
srpt_cm_dreq_recv(struct ib_cm_id * cm_id)2686 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2687 {
2688 	struct srpt_rdma_ch *ch;
2689 	unsigned long flags;
2690 	bool send_drep = false;
2691 
2692 	ch = srpt_find_channel(cm_id->context, cm_id);
2693 	BUG_ON(!ch);
2694 
2695 	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2696 
2697 	spin_lock_irqsave(&ch->spinlock, flags);
2698 	switch (ch->state) {
2699 	case CH_CONNECTING:
2700 	case CH_LIVE:
2701 		send_drep = true;
2702 		ch->state = CH_DISCONNECTING;
2703 		break;
2704 	case CH_DISCONNECTING:
2705 	case CH_DRAINING:
2706 	case CH_RELEASING:
2707 		WARN(true, "unexpected channel state %d\n", ch->state);
2708 		break;
2709 	}
2710 	spin_unlock_irqrestore(&ch->spinlock, flags);
2711 
2712 	if (send_drep) {
2713 		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2714 			pr_err("Sending IB DREP failed.\n");
2715 		pr_info("Received DREQ and sent DREP for session %s.\n",
2716 			ch->sess_name);
2717 	}
2718 }
2719 
2720 /**
2721  * srpt_cm_drep_recv() - Process reception of a DREP message.
2722  */
srpt_cm_drep_recv(struct ib_cm_id * cm_id)2723 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2724 {
2725 	pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2726 	srpt_drain_channel(cm_id);
2727 }
2728 
2729 /**
2730  * srpt_cm_handler() - IB connection manager callback function.
2731  *
2732  * A non-zero return value will cause the caller destroy the CM ID.
2733  *
2734  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2735  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2736  * a non-zero value in any other case will trigger a race with the
2737  * ib_destroy_cm_id() call in srpt_release_channel().
2738  */
srpt_cm_handler(struct ib_cm_id * cm_id,struct ib_cm_event * event)2739 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2740 {
2741 	int ret;
2742 
2743 	ret = 0;
2744 	switch (event->event) {
2745 	case IB_CM_REQ_RECEIVED:
2746 		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2747 				       event->private_data);
2748 		break;
2749 	case IB_CM_REJ_RECEIVED:
2750 		srpt_cm_rej_recv(cm_id);
2751 		break;
2752 	case IB_CM_RTU_RECEIVED:
2753 	case IB_CM_USER_ESTABLISHED:
2754 		srpt_cm_rtu_recv(cm_id);
2755 		break;
2756 	case IB_CM_DREQ_RECEIVED:
2757 		srpt_cm_dreq_recv(cm_id);
2758 		break;
2759 	case IB_CM_DREP_RECEIVED:
2760 		srpt_cm_drep_recv(cm_id);
2761 		break;
2762 	case IB_CM_TIMEWAIT_EXIT:
2763 		srpt_cm_timewait_exit(cm_id);
2764 		break;
2765 	case IB_CM_REP_ERROR:
2766 		srpt_cm_rep_error(cm_id);
2767 		break;
2768 	case IB_CM_DREQ_ERROR:
2769 		pr_info("Received IB DREQ ERROR event.\n");
2770 		break;
2771 	case IB_CM_MRA_RECEIVED:
2772 		pr_info("Received IB MRA event\n");
2773 		break;
2774 	default:
2775 		pr_err("received unrecognized IB CM event %d\n", event->event);
2776 		break;
2777 	}
2778 
2779 	return ret;
2780 }
2781 
2782 /**
2783  * srpt_perform_rdmas() - Perform IB RDMA.
2784  *
2785  * Returns zero upon success or a negative number upon failure.
2786  */
srpt_perform_rdmas(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2787 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2788 			      struct srpt_send_ioctx *ioctx)
2789 {
2790 	struct ib_rdma_wr wr;
2791 	struct ib_send_wr *bad_wr;
2792 	struct rdma_iu *riu;
2793 	int i;
2794 	int ret;
2795 	int sq_wr_avail;
2796 	enum dma_data_direction dir;
2797 	const int n_rdma = ioctx->n_rdma;
2798 
2799 	dir = ioctx->cmd.data_direction;
2800 	if (dir == DMA_TO_DEVICE) {
2801 		/* write */
2802 		ret = -ENOMEM;
2803 		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2804 		if (sq_wr_avail < 0) {
2805 			pr_warn("IB send queue full (needed %d)\n",
2806 				n_rdma);
2807 			goto out;
2808 		}
2809 	}
2810 
2811 	ioctx->rdma_aborted = false;
2812 	ret = 0;
2813 	riu = ioctx->rdma_ius;
2814 	memset(&wr, 0, sizeof wr);
2815 
2816 	for (i = 0; i < n_rdma; ++i, ++riu) {
2817 		if (dir == DMA_FROM_DEVICE) {
2818 			wr.wr.opcode = IB_WR_RDMA_WRITE;
2819 			wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2820 						SRPT_RDMA_WRITE_LAST :
2821 						SRPT_RDMA_MID,
2822 						ioctx->ioctx.index);
2823 		} else {
2824 			wr.wr.opcode = IB_WR_RDMA_READ;
2825 			wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2826 						SRPT_RDMA_READ_LAST :
2827 						SRPT_RDMA_MID,
2828 						ioctx->ioctx.index);
2829 		}
2830 		wr.wr.next = NULL;
2831 		wr.remote_addr = riu->raddr;
2832 		wr.rkey = riu->rkey;
2833 		wr.wr.num_sge = riu->sge_cnt;
2834 		wr.wr.sg_list = riu->sge;
2835 
2836 		/* only get completion event for the last rdma write */
2837 		if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2838 			wr.wr.send_flags = IB_SEND_SIGNALED;
2839 
2840 		ret = ib_post_send(ch->qp, &wr.wr, &bad_wr);
2841 		if (ret)
2842 			break;
2843 	}
2844 
2845 	if (ret)
2846 		pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2847 				 __func__, __LINE__, ret, i, n_rdma);
2848 	if (ret && i > 0) {
2849 		wr.wr.num_sge = 0;
2850 		wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2851 		wr.wr.send_flags = IB_SEND_SIGNALED;
2852 		while (ch->state == CH_LIVE &&
2853 			ib_post_send(ch->qp, &wr.wr, &bad_wr) != 0) {
2854 			pr_info("Trying to abort failed RDMA transfer [%d]\n",
2855 				ioctx->ioctx.index);
2856 			msleep(1000);
2857 		}
2858 		while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2859 			pr_info("Waiting until RDMA abort finished [%d]\n",
2860 				ioctx->ioctx.index);
2861 			msleep(1000);
2862 		}
2863 	}
2864 out:
2865 	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2866 		atomic_add(n_rdma, &ch->sq_wr_avail);
2867 	return ret;
2868 }
2869 
2870 /**
2871  * srpt_xfer_data() - Start data transfer from initiator to target.
2872  */
srpt_xfer_data(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2873 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2874 			  struct srpt_send_ioctx *ioctx)
2875 {
2876 	int ret;
2877 
2878 	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2879 	if (ret) {
2880 		pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2881 		goto out;
2882 	}
2883 
2884 	ret = srpt_perform_rdmas(ch, ioctx);
2885 	if (ret) {
2886 		if (ret == -EAGAIN || ret == -ENOMEM)
2887 			pr_info("%s[%d] queue full -- ret=%d\n",
2888 				__func__, __LINE__, ret);
2889 		else
2890 			pr_err("%s[%d] fatal error -- ret=%d\n",
2891 			       __func__, __LINE__, ret);
2892 		goto out_unmap;
2893 	}
2894 
2895 out:
2896 	return ret;
2897 out_unmap:
2898 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
2899 	goto out;
2900 }
2901 
srpt_write_pending_status(struct se_cmd * se_cmd)2902 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2903 {
2904 	struct srpt_send_ioctx *ioctx;
2905 
2906 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2907 	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2908 }
2909 
2910 /*
2911  * srpt_write_pending() - Start data transfer from initiator to target (write).
2912  */
srpt_write_pending(struct se_cmd * se_cmd)2913 static int srpt_write_pending(struct se_cmd *se_cmd)
2914 {
2915 	struct srpt_rdma_ch *ch;
2916 	struct srpt_send_ioctx *ioctx;
2917 	enum srpt_command_state new_state;
2918 	enum rdma_ch_state ch_state;
2919 	int ret;
2920 
2921 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2922 
2923 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2924 	WARN_ON(new_state == SRPT_STATE_DONE);
2925 
2926 	ch = ioctx->ch;
2927 	BUG_ON(!ch);
2928 
2929 	ch_state = srpt_get_ch_state(ch);
2930 	switch (ch_state) {
2931 	case CH_CONNECTING:
2932 		WARN(true, "unexpected channel state %d\n", ch_state);
2933 		ret = -EINVAL;
2934 		goto out;
2935 	case CH_LIVE:
2936 		break;
2937 	case CH_DISCONNECTING:
2938 	case CH_DRAINING:
2939 	case CH_RELEASING:
2940 		pr_debug("cmd with tag %lld: channel disconnecting\n",
2941 			 ioctx->cmd.tag);
2942 		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2943 		ret = -EINVAL;
2944 		goto out;
2945 	}
2946 	ret = srpt_xfer_data(ch, ioctx);
2947 
2948 out:
2949 	return ret;
2950 }
2951 
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2952 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2953 {
2954 	switch (tcm_mgmt_status) {
2955 	case TMR_FUNCTION_COMPLETE:
2956 		return SRP_TSK_MGMT_SUCCESS;
2957 	case TMR_FUNCTION_REJECTED:
2958 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2959 	}
2960 	return SRP_TSK_MGMT_FAILED;
2961 }
2962 
2963 /**
2964  * srpt_queue_response() - Transmits the response to a SCSI command.
2965  *
2966  * Callback function called by the TCM core. Must not block since it can be
2967  * invoked on the context of the IB completion handler.
2968  */
srpt_queue_response(struct se_cmd * cmd)2969 static void srpt_queue_response(struct se_cmd *cmd)
2970 {
2971 	struct srpt_rdma_ch *ch;
2972 	struct srpt_send_ioctx *ioctx;
2973 	enum srpt_command_state state;
2974 	unsigned long flags;
2975 	int ret;
2976 	enum dma_data_direction dir;
2977 	int resp_len;
2978 	u8 srp_tm_status;
2979 
2980 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2981 	ch = ioctx->ch;
2982 	BUG_ON(!ch);
2983 
2984 	spin_lock_irqsave(&ioctx->spinlock, flags);
2985 	state = ioctx->state;
2986 	switch (state) {
2987 	case SRPT_STATE_NEW:
2988 	case SRPT_STATE_DATA_IN:
2989 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2990 		break;
2991 	case SRPT_STATE_MGMT:
2992 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2993 		break;
2994 	default:
2995 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2996 			ch, ioctx->ioctx.index, ioctx->state);
2997 		break;
2998 	}
2999 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
3000 
3001 	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
3002 		return;
3003 
3004 	dir = ioctx->cmd.data_direction;
3005 
3006 	/* For read commands, transfer the data to the initiator. */
3007 	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3008 	    !ioctx->queue_status_only) {
3009 		ret = srpt_xfer_data(ch, ioctx);
3010 		if (ret) {
3011 			pr_err("xfer_data failed for tag %llu\n",
3012 			       ioctx->cmd.tag);
3013 			return;
3014 		}
3015 	}
3016 
3017 	if (state != SRPT_STATE_MGMT)
3018 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3019 					      cmd->scsi_status);
3020 	else {
3021 		srp_tm_status
3022 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3023 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3024 						 ioctx->cmd.tag);
3025 	}
3026 	ret = srpt_post_send(ch, ioctx, resp_len);
3027 	if (ret) {
3028 		pr_err("sending cmd response failed for tag %llu\n",
3029 		       ioctx->cmd.tag);
3030 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
3031 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3032 		target_put_sess_cmd(&ioctx->cmd);
3033 	}
3034 }
3035 
srpt_queue_data_in(struct se_cmd * cmd)3036 static int srpt_queue_data_in(struct se_cmd *cmd)
3037 {
3038 	srpt_queue_response(cmd);
3039 	return 0;
3040 }
3041 
srpt_queue_tm_rsp(struct se_cmd * cmd)3042 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3043 {
3044 	srpt_queue_response(cmd);
3045 }
3046 
srpt_aborted_task(struct se_cmd * cmd)3047 static void srpt_aborted_task(struct se_cmd *cmd)
3048 {
3049 	struct srpt_send_ioctx *ioctx = container_of(cmd,
3050 				struct srpt_send_ioctx, cmd);
3051 
3052 	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3053 }
3054 
srpt_queue_status(struct se_cmd * cmd)3055 static int srpt_queue_status(struct se_cmd *cmd)
3056 {
3057 	struct srpt_send_ioctx *ioctx;
3058 
3059 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3060 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3061 	if (cmd->se_cmd_flags &
3062 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3063 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3064 	ioctx->queue_status_only = true;
3065 	srpt_queue_response(cmd);
3066 	return 0;
3067 }
3068 
srpt_refresh_port_work(struct work_struct * work)3069 static void srpt_refresh_port_work(struct work_struct *work)
3070 {
3071 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
3072 
3073 	srpt_refresh_port(sport);
3074 }
3075 
srpt_ch_list_empty(struct srpt_device * sdev)3076 static int srpt_ch_list_empty(struct srpt_device *sdev)
3077 {
3078 	int res;
3079 
3080 	spin_lock_irq(&sdev->spinlock);
3081 	res = list_empty(&sdev->rch_list);
3082 	spin_unlock_irq(&sdev->spinlock);
3083 
3084 	return res;
3085 }
3086 
3087 /**
3088  * srpt_release_sdev() - Free the channel resources associated with a target.
3089  */
srpt_release_sdev(struct srpt_device * sdev)3090 static int srpt_release_sdev(struct srpt_device *sdev)
3091 {
3092 	struct srpt_rdma_ch *ch, *tmp_ch;
3093 	int res;
3094 
3095 	WARN_ON_ONCE(irqs_disabled());
3096 
3097 	BUG_ON(!sdev);
3098 
3099 	spin_lock_irq(&sdev->spinlock);
3100 	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3101 		__srpt_close_ch(ch);
3102 	spin_unlock_irq(&sdev->spinlock);
3103 
3104 	res = wait_event_interruptible(sdev->ch_releaseQ,
3105 				       srpt_ch_list_empty(sdev));
3106 	if (res)
3107 		pr_err("%s: interrupted.\n", __func__);
3108 
3109 	return 0;
3110 }
3111 
__srpt_lookup_port(const char * name)3112 static struct srpt_port *__srpt_lookup_port(const char *name)
3113 {
3114 	struct ib_device *dev;
3115 	struct srpt_device *sdev;
3116 	struct srpt_port *sport;
3117 	int i;
3118 
3119 	list_for_each_entry(sdev, &srpt_dev_list, list) {
3120 		dev = sdev->device;
3121 		if (!dev)
3122 			continue;
3123 
3124 		for (i = 0; i < dev->phys_port_cnt; i++) {
3125 			sport = &sdev->port[i];
3126 
3127 			if (!strcmp(sport->port_guid, name))
3128 				return sport;
3129 		}
3130 	}
3131 
3132 	return NULL;
3133 }
3134 
srpt_lookup_port(const char * name)3135 static struct srpt_port *srpt_lookup_port(const char *name)
3136 {
3137 	struct srpt_port *sport;
3138 
3139 	spin_lock(&srpt_dev_lock);
3140 	sport = __srpt_lookup_port(name);
3141 	spin_unlock(&srpt_dev_lock);
3142 
3143 	return sport;
3144 }
3145 
3146 /**
3147  * srpt_add_one() - Infiniband device addition callback function.
3148  */
srpt_add_one(struct ib_device * device)3149 static void srpt_add_one(struct ib_device *device)
3150 {
3151 	struct srpt_device *sdev;
3152 	struct srpt_port *sport;
3153 	struct ib_srq_init_attr srq_attr;
3154 	int i;
3155 
3156 	pr_debug("device = %p, device->dma_ops = %p\n", device,
3157 		 device->dma_ops);
3158 
3159 	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3160 	if (!sdev)
3161 		goto err;
3162 
3163 	sdev->device = device;
3164 	INIT_LIST_HEAD(&sdev->rch_list);
3165 	init_waitqueue_head(&sdev->ch_releaseQ);
3166 	spin_lock_init(&sdev->spinlock);
3167 
3168 	if (ib_query_device(device, &sdev->dev_attr))
3169 		goto free_dev;
3170 
3171 	sdev->pd = ib_alloc_pd(device);
3172 	if (IS_ERR(sdev->pd))
3173 		goto free_dev;
3174 
3175 	sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3176 
3177 	srq_attr.event_handler = srpt_srq_event;
3178 	srq_attr.srq_context = (void *)sdev;
3179 	srq_attr.attr.max_wr = sdev->srq_size;
3180 	srq_attr.attr.max_sge = 1;
3181 	srq_attr.attr.srq_limit = 0;
3182 	srq_attr.srq_type = IB_SRQT_BASIC;
3183 
3184 	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3185 	if (IS_ERR(sdev->srq))
3186 		goto err_pd;
3187 
3188 	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3189 		 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3190 		 device->name);
3191 
3192 	if (!srpt_service_guid)
3193 		srpt_service_guid = be64_to_cpu(device->node_guid);
3194 
3195 	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3196 	if (IS_ERR(sdev->cm_id))
3197 		goto err_srq;
3198 
3199 	/* print out target login information */
3200 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3201 		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3202 		 srpt_service_guid, srpt_service_guid);
3203 
3204 	/*
3205 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3206 	 * to identify this target. We currently use the guid of the first HCA
3207 	 * in the system as service_id; therefore, the target_id will change
3208 	 * if this HCA is gone bad and replaced by different HCA
3209 	 */
3210 	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
3211 		goto err_cm;
3212 
3213 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3214 			      srpt_event_handler);
3215 	if (ib_register_event_handler(&sdev->event_handler))
3216 		goto err_cm;
3217 
3218 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3219 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3220 				      sizeof(*sdev->ioctx_ring[0]),
3221 				      srp_max_req_size, DMA_FROM_DEVICE);
3222 	if (!sdev->ioctx_ring)
3223 		goto err_event;
3224 
3225 	for (i = 0; i < sdev->srq_size; ++i)
3226 		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3227 
3228 	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3229 
3230 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3231 		sport = &sdev->port[i - 1];
3232 		sport->sdev = sdev;
3233 		sport->port = i;
3234 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3235 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3236 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3237 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3238 		INIT_LIST_HEAD(&sport->port_acl_list);
3239 		spin_lock_init(&sport->port_acl_lock);
3240 
3241 		if (srpt_refresh_port(sport)) {
3242 			pr_err("MAD registration failed for %s-%d.\n",
3243 			       srpt_sdev_name(sdev), i);
3244 			goto err_ring;
3245 		}
3246 		snprintf(sport->port_guid, sizeof(sport->port_guid),
3247 			"0x%016llx%016llx",
3248 			be64_to_cpu(sport->gid.global.subnet_prefix),
3249 			be64_to_cpu(sport->gid.global.interface_id));
3250 	}
3251 
3252 	spin_lock(&srpt_dev_lock);
3253 	list_add_tail(&sdev->list, &srpt_dev_list);
3254 	spin_unlock(&srpt_dev_lock);
3255 
3256 out:
3257 	ib_set_client_data(device, &srpt_client, sdev);
3258 	pr_debug("added %s.\n", device->name);
3259 	return;
3260 
3261 err_ring:
3262 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3263 			     sdev->srq_size, srp_max_req_size,
3264 			     DMA_FROM_DEVICE);
3265 err_event:
3266 	ib_unregister_event_handler(&sdev->event_handler);
3267 err_cm:
3268 	ib_destroy_cm_id(sdev->cm_id);
3269 err_srq:
3270 	ib_destroy_srq(sdev->srq);
3271 err_pd:
3272 	ib_dealloc_pd(sdev->pd);
3273 free_dev:
3274 	kfree(sdev);
3275 err:
3276 	sdev = NULL;
3277 	pr_info("%s(%s) failed.\n", __func__, device->name);
3278 	goto out;
3279 }
3280 
3281 /**
3282  * srpt_remove_one() - InfiniBand device removal callback function.
3283  */
srpt_remove_one(struct ib_device * device,void * client_data)3284 static void srpt_remove_one(struct ib_device *device, void *client_data)
3285 {
3286 	struct srpt_device *sdev = client_data;
3287 	int i;
3288 
3289 	if (!sdev) {
3290 		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3291 		return;
3292 	}
3293 
3294 	srpt_unregister_mad_agent(sdev);
3295 
3296 	ib_unregister_event_handler(&sdev->event_handler);
3297 
3298 	/* Cancel any work queued by the just unregistered IB event handler. */
3299 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3300 		cancel_work_sync(&sdev->port[i].work);
3301 
3302 	ib_destroy_cm_id(sdev->cm_id);
3303 
3304 	/*
3305 	 * Unregistering a target must happen after destroying sdev->cm_id
3306 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3307 	 * destroying the target.
3308 	 */
3309 	spin_lock(&srpt_dev_lock);
3310 	list_del(&sdev->list);
3311 	spin_unlock(&srpt_dev_lock);
3312 	srpt_release_sdev(sdev);
3313 
3314 	ib_destroy_srq(sdev->srq);
3315 	ib_dealloc_pd(sdev->pd);
3316 
3317 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3318 			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3319 	sdev->ioctx_ring = NULL;
3320 	kfree(sdev);
3321 }
3322 
3323 static struct ib_client srpt_client = {
3324 	.name = DRV_NAME,
3325 	.add = srpt_add_one,
3326 	.remove = srpt_remove_one
3327 };
3328 
srpt_check_true(struct se_portal_group * se_tpg)3329 static int srpt_check_true(struct se_portal_group *se_tpg)
3330 {
3331 	return 1;
3332 }
3333 
srpt_check_false(struct se_portal_group * se_tpg)3334 static int srpt_check_false(struct se_portal_group *se_tpg)
3335 {
3336 	return 0;
3337 }
3338 
srpt_get_fabric_name(void)3339 static char *srpt_get_fabric_name(void)
3340 {
3341 	return "srpt";
3342 }
3343 
srpt_get_fabric_wwn(struct se_portal_group * tpg)3344 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3345 {
3346 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3347 
3348 	return sport->port_guid;
3349 }
3350 
srpt_get_tag(struct se_portal_group * tpg)3351 static u16 srpt_get_tag(struct se_portal_group *tpg)
3352 {
3353 	return 1;
3354 }
3355 
srpt_tpg_get_inst_index(struct se_portal_group * se_tpg)3356 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3357 {
3358 	return 1;
3359 }
3360 
srpt_release_cmd(struct se_cmd * se_cmd)3361 static void srpt_release_cmd(struct se_cmd *se_cmd)
3362 {
3363 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3364 				struct srpt_send_ioctx, cmd);
3365 	struct srpt_rdma_ch *ch = ioctx->ch;
3366 	unsigned long flags;
3367 
3368 	WARN_ON(ioctx->state != SRPT_STATE_DONE);
3369 	WARN_ON(ioctx->mapped_sg_count != 0);
3370 
3371 	if (ioctx->n_rbuf > 1) {
3372 		kfree(ioctx->rbufs);
3373 		ioctx->rbufs = NULL;
3374 		ioctx->n_rbuf = 0;
3375 	}
3376 
3377 	spin_lock_irqsave(&ch->spinlock, flags);
3378 	list_add(&ioctx->free_list, &ch->free_list);
3379 	spin_unlock_irqrestore(&ch->spinlock, flags);
3380 }
3381 
3382 /**
3383  * srpt_close_session() - Forcibly close a session.
3384  *
3385  * Callback function invoked by the TCM core to clean up sessions associated
3386  * with a node ACL when the user invokes
3387  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3388  */
srpt_close_session(struct se_session * se_sess)3389 static void srpt_close_session(struct se_session *se_sess)
3390 {
3391 	DECLARE_COMPLETION_ONSTACK(release_done);
3392 	struct srpt_rdma_ch *ch;
3393 	struct srpt_device *sdev;
3394 	unsigned long res;
3395 
3396 	ch = se_sess->fabric_sess_ptr;
3397 	WARN_ON(ch->sess != se_sess);
3398 
3399 	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3400 
3401 	sdev = ch->sport->sdev;
3402 	spin_lock_irq(&sdev->spinlock);
3403 	BUG_ON(ch->release_done);
3404 	ch->release_done = &release_done;
3405 	__srpt_close_ch(ch);
3406 	spin_unlock_irq(&sdev->spinlock);
3407 
3408 	res = wait_for_completion_timeout(&release_done, 60 * HZ);
3409 	WARN_ON(res == 0);
3410 }
3411 
3412 /**
3413  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3414  *
3415  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3416  * This object represents an arbitrary integer used to uniquely identify a
3417  * particular attached remote initiator port to a particular SCSI target port
3418  * within a particular SCSI target device within a particular SCSI instance.
3419  */
srpt_sess_get_index(struct se_session * se_sess)3420 static u32 srpt_sess_get_index(struct se_session *se_sess)
3421 {
3422 	return 0;
3423 }
3424 
srpt_set_default_node_attrs(struct se_node_acl * nacl)3425 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3426 {
3427 }
3428 
3429 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3430 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3431 {
3432 	struct srpt_send_ioctx *ioctx;
3433 
3434 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3435 	return srpt_get_cmd_state(ioctx);
3436 }
3437 
3438 /**
3439  * srpt_parse_i_port_id() - Parse an initiator port ID.
3440  * @name: ASCII representation of a 128-bit initiator port ID.
3441  * @i_port_id: Binary 128-bit port ID.
3442  */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3443 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3444 {
3445 	const char *p;
3446 	unsigned len, count, leading_zero_bytes;
3447 	int ret;
3448 
3449 	p = name;
3450 	if (strncasecmp(p, "0x", 2) == 0)
3451 		p += 2;
3452 	ret = -EINVAL;
3453 	len = strlen(p);
3454 	if (len % 2)
3455 		goto out;
3456 	count = min(len / 2, 16U);
3457 	leading_zero_bytes = 16 - count;
3458 	memset(i_port_id, 0, leading_zero_bytes);
3459 	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3460 	if (ret < 0)
3461 		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
3462 out:
3463 	return ret;
3464 }
3465 
3466 /*
3467  * configfs callback function invoked for
3468  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3469  */
srpt_init_nodeacl(struct se_node_acl * se_nacl,const char * name)3470 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3471 {
3472 	struct srpt_port *sport =
3473 		container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3474 	struct srpt_node_acl *nacl =
3475 		container_of(se_nacl, struct srpt_node_acl, nacl);
3476 	u8 i_port_id[16];
3477 
3478 	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3479 		pr_err("invalid initiator port ID %s\n", name);
3480 		return -EINVAL;
3481 	}
3482 
3483 	memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3484 	nacl->sport = sport;
3485 
3486 	spin_lock_irq(&sport->port_acl_lock);
3487 	list_add_tail(&nacl->list, &sport->port_acl_list);
3488 	spin_unlock_irq(&sport->port_acl_lock);
3489 
3490 	return 0;
3491 }
3492 
3493 /*
3494  * configfs callback function invoked for
3495  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3496  */
srpt_cleanup_nodeacl(struct se_node_acl * se_nacl)3497 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3498 {
3499 	struct srpt_node_acl *nacl =
3500 		container_of(se_nacl, struct srpt_node_acl, nacl);
3501 	struct srpt_port *sport = nacl->sport;
3502 
3503 	spin_lock_irq(&sport->port_acl_lock);
3504 	list_del(&nacl->list);
3505 	spin_unlock_irq(&sport->port_acl_lock);
3506 }
3507 
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item * item,char * page)3508 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3509 		char *page)
3510 {
3511 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3512 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3513 
3514 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3515 }
3516 
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item * item,const char * page,size_t count)3517 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3518 		const char *page, size_t count)
3519 {
3520 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3521 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3522 	unsigned long val;
3523 	int ret;
3524 
3525 	ret = kstrtoul(page, 0, &val);
3526 	if (ret < 0) {
3527 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3528 		return -EINVAL;
3529 	}
3530 	if (val > MAX_SRPT_RDMA_SIZE) {
3531 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3532 			MAX_SRPT_RDMA_SIZE);
3533 		return -EINVAL;
3534 	}
3535 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3536 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3537 			val, DEFAULT_MAX_RDMA_SIZE);
3538 		return -EINVAL;
3539 	}
3540 	sport->port_attrib.srp_max_rdma_size = val;
3541 
3542 	return count;
3543 }
3544 
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item * item,char * page)3545 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3546 		char *page)
3547 {
3548 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3549 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3550 
3551 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3552 }
3553 
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item * item,const char * page,size_t count)3554 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3555 		const char *page, size_t count)
3556 {
3557 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3558 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3559 	unsigned long val;
3560 	int ret;
3561 
3562 	ret = kstrtoul(page, 0, &val);
3563 	if (ret < 0) {
3564 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3565 		return -EINVAL;
3566 	}
3567 	if (val > MAX_SRPT_RSP_SIZE) {
3568 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3569 			MAX_SRPT_RSP_SIZE);
3570 		return -EINVAL;
3571 	}
3572 	if (val < MIN_MAX_RSP_SIZE) {
3573 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3574 			MIN_MAX_RSP_SIZE);
3575 		return -EINVAL;
3576 	}
3577 	sport->port_attrib.srp_max_rsp_size = val;
3578 
3579 	return count;
3580 }
3581 
srpt_tpg_attrib_srp_sq_size_show(struct config_item * item,char * page)3582 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3583 		char *page)
3584 {
3585 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3586 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3587 
3588 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3589 }
3590 
srpt_tpg_attrib_srp_sq_size_store(struct config_item * item,const char * page,size_t count)3591 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3592 		const char *page, size_t count)
3593 {
3594 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3595 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3596 	unsigned long val;
3597 	int ret;
3598 
3599 	ret = kstrtoul(page, 0, &val);
3600 	if (ret < 0) {
3601 		pr_err("kstrtoul() failed with ret: %d\n", ret);
3602 		return -EINVAL;
3603 	}
3604 	if (val > MAX_SRPT_SRQ_SIZE) {
3605 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3606 			MAX_SRPT_SRQ_SIZE);
3607 		return -EINVAL;
3608 	}
3609 	if (val < MIN_SRPT_SRQ_SIZE) {
3610 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3611 			MIN_SRPT_SRQ_SIZE);
3612 		return -EINVAL;
3613 	}
3614 	sport->port_attrib.srp_sq_size = val;
3615 
3616 	return count;
3617 }
3618 
3619 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3620 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3621 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3622 
3623 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3624 	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3625 	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3626 	&srpt_tpg_attrib_attr_srp_sq_size,
3627 	NULL,
3628 };
3629 
srpt_tpg_enable_show(struct config_item * item,char * page)3630 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3631 {
3632 	struct se_portal_group *se_tpg = to_tpg(item);
3633 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3634 
3635 	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3636 }
3637 
srpt_tpg_enable_store(struct config_item * item,const char * page,size_t count)3638 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3639 		const char *page, size_t count)
3640 {
3641 	struct se_portal_group *se_tpg = to_tpg(item);
3642 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3643 	unsigned long tmp;
3644         int ret;
3645 
3646 	ret = kstrtoul(page, 0, &tmp);
3647 	if (ret < 0) {
3648 		pr_err("Unable to extract srpt_tpg_store_enable\n");
3649 		return -EINVAL;
3650 	}
3651 
3652 	if ((tmp != 0) && (tmp != 1)) {
3653 		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3654 		return -EINVAL;
3655 	}
3656 	if (tmp == 1)
3657 		sport->enabled = true;
3658 	else
3659 		sport->enabled = false;
3660 
3661 	return count;
3662 }
3663 
3664 CONFIGFS_ATTR(srpt_tpg_, enable);
3665 
3666 static struct configfs_attribute *srpt_tpg_attrs[] = {
3667 	&srpt_tpg_attr_enable,
3668 	NULL,
3669 };
3670 
3671 /**
3672  * configfs callback invoked for
3673  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3674  */
srpt_make_tpg(struct se_wwn * wwn,struct config_group * group,const char * name)3675 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3676 					     struct config_group *group,
3677 					     const char *name)
3678 {
3679 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3680 	int res;
3681 
3682 	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3683 	res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3684 	if (res)
3685 		return ERR_PTR(res);
3686 
3687 	return &sport->port_tpg_1;
3688 }
3689 
3690 /**
3691  * configfs callback invoked for
3692  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3693  */
srpt_drop_tpg(struct se_portal_group * tpg)3694 static void srpt_drop_tpg(struct se_portal_group *tpg)
3695 {
3696 	struct srpt_port *sport = container_of(tpg,
3697 				struct srpt_port, port_tpg_1);
3698 
3699 	sport->enabled = false;
3700 	core_tpg_deregister(&sport->port_tpg_1);
3701 }
3702 
3703 /**
3704  * configfs callback invoked for
3705  * mkdir /sys/kernel/config/target/$driver/$port
3706  */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3707 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3708 				      struct config_group *group,
3709 				      const char *name)
3710 {
3711 	struct srpt_port *sport;
3712 	int ret;
3713 
3714 	sport = srpt_lookup_port(name);
3715 	pr_debug("make_tport(%s)\n", name);
3716 	ret = -EINVAL;
3717 	if (!sport)
3718 		goto err;
3719 
3720 	return &sport->port_wwn;
3721 
3722 err:
3723 	return ERR_PTR(ret);
3724 }
3725 
3726 /**
3727  * configfs callback invoked for
3728  * rmdir /sys/kernel/config/target/$driver/$port
3729  */
srpt_drop_tport(struct se_wwn * wwn)3730 static void srpt_drop_tport(struct se_wwn *wwn)
3731 {
3732 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3733 
3734 	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3735 }
3736 
srpt_wwn_version_show(struct config_item * item,char * buf)3737 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3738 {
3739 	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3740 }
3741 
3742 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3743 
3744 static struct configfs_attribute *srpt_wwn_attrs[] = {
3745 	&srpt_wwn_attr_version,
3746 	NULL,
3747 };
3748 
3749 static const struct target_core_fabric_ops srpt_template = {
3750 	.module				= THIS_MODULE,
3751 	.name				= "srpt",
3752 	.node_acl_size			= sizeof(struct srpt_node_acl),
3753 	.get_fabric_name		= srpt_get_fabric_name,
3754 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3755 	.tpg_get_tag			= srpt_get_tag,
3756 	.tpg_check_demo_mode		= srpt_check_false,
3757 	.tpg_check_demo_mode_cache	= srpt_check_true,
3758 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3759 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3760 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3761 	.release_cmd			= srpt_release_cmd,
3762 	.check_stop_free		= srpt_check_stop_free,
3763 	.shutdown_session		= srpt_shutdown_session,
3764 	.close_session			= srpt_close_session,
3765 	.sess_get_index			= srpt_sess_get_index,
3766 	.sess_get_initiator_sid		= NULL,
3767 	.write_pending			= srpt_write_pending,
3768 	.write_pending_status		= srpt_write_pending_status,
3769 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3770 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3771 	.queue_data_in			= srpt_queue_data_in,
3772 	.queue_status			= srpt_queue_status,
3773 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3774 	.aborted_task			= srpt_aborted_task,
3775 	/*
3776 	 * Setup function pointers for generic logic in
3777 	 * target_core_fabric_configfs.c
3778 	 */
3779 	.fabric_make_wwn		= srpt_make_tport,
3780 	.fabric_drop_wwn		= srpt_drop_tport,
3781 	.fabric_make_tpg		= srpt_make_tpg,
3782 	.fabric_drop_tpg		= srpt_drop_tpg,
3783 	.fabric_init_nodeacl		= srpt_init_nodeacl,
3784 	.fabric_cleanup_nodeacl		= srpt_cleanup_nodeacl,
3785 
3786 	.tfc_wwn_attrs			= srpt_wwn_attrs,
3787 	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3788 	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3789 };
3790 
3791 /**
3792  * srpt_init_module() - Kernel module initialization.
3793  *
3794  * Note: Since ib_register_client() registers callback functions, and since at
3795  * least one of these callback functions (srpt_add_one()) calls target core
3796  * functions, this driver must be registered with the target core before
3797  * ib_register_client() is called.
3798  */
srpt_init_module(void)3799 static int __init srpt_init_module(void)
3800 {
3801 	int ret;
3802 
3803 	ret = -EINVAL;
3804 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3805 		pr_err("invalid value %d for kernel module parameter"
3806 		       " srp_max_req_size -- must be at least %d.\n",
3807 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3808 		goto out;
3809 	}
3810 
3811 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3812 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3813 		pr_err("invalid value %d for kernel module parameter"
3814 		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3815 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3816 		goto out;
3817 	}
3818 
3819 	ret = target_register_template(&srpt_template);
3820 	if (ret)
3821 		goto out;
3822 
3823 	ret = ib_register_client(&srpt_client);
3824 	if (ret) {
3825 		pr_err("couldn't register IB client\n");
3826 		goto out_unregister_target;
3827 	}
3828 
3829 	return 0;
3830 
3831 out_unregister_target:
3832 	target_unregister_template(&srpt_template);
3833 out:
3834 	return ret;
3835 }
3836 
srpt_cleanup_module(void)3837 static void __exit srpt_cleanup_module(void)
3838 {
3839 	ib_unregister_client(&srpt_client);
3840 	target_unregister_template(&srpt_template);
3841 }
3842 
3843 module_init(srpt_init_module);
3844 module_exit(srpt_cleanup_module);
3845