1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
49
50 /* Name of this kernel module. */
51 #define DRV_NAME "ib_srpt"
52 #define DRV_VERSION "2.0.0"
53 #define DRV_RELDATE "2011-02-14"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64
65 /*
66 * Global Variables
67 */
68
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
72
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 "Maximum size of SRP request messages in bytes.");
77
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 "Shared receive queue (SRQ) size.");
82
srpt_get_u64_x(char * buffer,struct kernel_param * kp)83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
84 {
85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 }
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 " instead of using the node_guid of the first HCA.");
92
93 static struct ib_client srpt_client;
94 static void srpt_release_channel(struct srpt_rdma_ch *ch);
95 static int srpt_queue_status(struct se_cmd *cmd);
96
97 /**
98 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
99 */
100 static inline
opposite_dma_dir(enum dma_data_direction dir)101 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
102 {
103 switch (dir) {
104 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
105 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
106 default: return dir;
107 }
108 }
109
110 /**
111 * srpt_sdev_name() - Return the name associated with the HCA.
112 *
113 * Examples are ib0, ib1, ...
114 */
srpt_sdev_name(struct srpt_device * sdev)115 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
116 {
117 return sdev->device->name;
118 }
119
srpt_get_ch_state(struct srpt_rdma_ch * ch)120 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
121 {
122 unsigned long flags;
123 enum rdma_ch_state state;
124
125 spin_lock_irqsave(&ch->spinlock, flags);
126 state = ch->state;
127 spin_unlock_irqrestore(&ch->spinlock, flags);
128 return state;
129 }
130
131 static enum rdma_ch_state
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new_state)132 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
133 {
134 unsigned long flags;
135 enum rdma_ch_state prev;
136
137 spin_lock_irqsave(&ch->spinlock, flags);
138 prev = ch->state;
139 ch->state = new_state;
140 spin_unlock_irqrestore(&ch->spinlock, flags);
141 return prev;
142 }
143
144 /**
145 * srpt_test_and_set_ch_state() - Test and set the channel state.
146 *
147 * Returns true if and only if the channel state has been set to the new state.
148 */
149 static bool
srpt_test_and_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state old,enum rdma_ch_state new)150 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
151 enum rdma_ch_state new)
152 {
153 unsigned long flags;
154 enum rdma_ch_state prev;
155
156 spin_lock_irqsave(&ch->spinlock, flags);
157 prev = ch->state;
158 if (prev == old)
159 ch->state = new;
160 spin_unlock_irqrestore(&ch->spinlock, flags);
161 return prev == old;
162 }
163
164 /**
165 * srpt_event_handler() - Asynchronous IB event callback function.
166 *
167 * Callback function called by the InfiniBand core when an asynchronous IB
168 * event occurs. This callback may occur in interrupt context. See also
169 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
170 * Architecture Specification.
171 */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)172 static void srpt_event_handler(struct ib_event_handler *handler,
173 struct ib_event *event)
174 {
175 struct srpt_device *sdev;
176 struct srpt_port *sport;
177
178 sdev = ib_get_client_data(event->device, &srpt_client);
179 if (!sdev || sdev->device != event->device)
180 return;
181
182 pr_debug("ASYNC event= %d on device= %s\n", event->event,
183 srpt_sdev_name(sdev));
184
185 switch (event->event) {
186 case IB_EVENT_PORT_ERR:
187 if (event->element.port_num <= sdev->device->phys_port_cnt) {
188 sport = &sdev->port[event->element.port_num - 1];
189 sport->lid = 0;
190 sport->sm_lid = 0;
191 }
192 break;
193 case IB_EVENT_PORT_ACTIVE:
194 case IB_EVENT_LID_CHANGE:
195 case IB_EVENT_PKEY_CHANGE:
196 case IB_EVENT_SM_CHANGE:
197 case IB_EVENT_CLIENT_REREGISTER:
198 case IB_EVENT_GID_CHANGE:
199 /* Refresh port data asynchronously. */
200 if (event->element.port_num <= sdev->device->phys_port_cnt) {
201 sport = &sdev->port[event->element.port_num - 1];
202 if (!sport->lid && !sport->sm_lid)
203 schedule_work(&sport->work);
204 }
205 break;
206 default:
207 pr_err("received unrecognized IB event %d\n",
208 event->event);
209 break;
210 }
211 }
212
213 /**
214 * srpt_srq_event() - SRQ event callback function.
215 */
srpt_srq_event(struct ib_event * event,void * ctx)216 static void srpt_srq_event(struct ib_event *event, void *ctx)
217 {
218 pr_info("SRQ event %d\n", event->event);
219 }
220
221 /**
222 * srpt_qp_event() - QP event callback function.
223 */
srpt_qp_event(struct ib_event * event,struct srpt_rdma_ch * ch)224 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
225 {
226 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
227 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
228
229 switch (event->event) {
230 case IB_EVENT_COMM_EST:
231 ib_cm_notify(ch->cm_id, event->event);
232 break;
233 case IB_EVENT_QP_LAST_WQE_REACHED:
234 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
235 CH_RELEASING))
236 srpt_release_channel(ch);
237 else
238 pr_debug("%s: state %d - ignored LAST_WQE.\n",
239 ch->sess_name, srpt_get_ch_state(ch));
240 break;
241 default:
242 pr_err("received unrecognized IB QP event %d\n", event->event);
243 break;
244 }
245 }
246
247 /**
248 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
249 *
250 * @slot: one-based slot number.
251 * @value: four-bit value.
252 *
253 * Copies the lowest four bits of value in element slot of the array of four
254 * bit elements called c_list (controller list). The index slot is one-based.
255 */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)256 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
257 {
258 u16 id;
259 u8 tmp;
260
261 id = (slot - 1) / 2;
262 if (slot & 0x1) {
263 tmp = c_list[id] & 0xf;
264 c_list[id] = (value << 4) | tmp;
265 } else {
266 tmp = c_list[id] & 0xf0;
267 c_list[id] = (value & 0xf) | tmp;
268 }
269 }
270
271 /**
272 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
273 *
274 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
275 * Specification.
276 */
srpt_get_class_port_info(struct ib_dm_mad * mad)277 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
278 {
279 struct ib_class_port_info *cif;
280
281 cif = (struct ib_class_port_info *)mad->data;
282 memset(cif, 0, sizeof *cif);
283 cif->base_version = 1;
284 cif->class_version = 1;
285 cif->resp_time_value = 20;
286
287 mad->mad_hdr.status = 0;
288 }
289
290 /**
291 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
292 *
293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
295 */
srpt_get_iou(struct ib_dm_mad * mad)296 static void srpt_get_iou(struct ib_dm_mad *mad)
297 {
298 struct ib_dm_iou_info *ioui;
299 u8 slot;
300 int i;
301
302 ioui = (struct ib_dm_iou_info *)mad->data;
303 ioui->change_id = cpu_to_be16(1);
304 ioui->max_controllers = 16;
305
306 /* set present for slot 1 and empty for the rest */
307 srpt_set_ioc(ioui->controller_list, 1, 1);
308 for (i = 1, slot = 2; i < 16; i++, slot++)
309 srpt_set_ioc(ioui->controller_list, slot, 0);
310
311 mad->mad_hdr.status = 0;
312 }
313
314 /**
315 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
316 *
317 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
318 * Architecture Specification. See also section B.7, table B.7 in the SRP
319 * r16a document.
320 */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)321 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
322 struct ib_dm_mad *mad)
323 {
324 struct srpt_device *sdev = sport->sdev;
325 struct ib_dm_ioc_profile *iocp;
326
327 iocp = (struct ib_dm_ioc_profile *)mad->data;
328
329 if (!slot || slot > 16) {
330 mad->mad_hdr.status
331 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332 return;
333 }
334
335 if (slot > 2) {
336 mad->mad_hdr.status
337 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338 return;
339 }
340
341 memset(iocp, 0, sizeof *iocp);
342 strcpy(iocp->id_string, SRPT_ID_STRING);
343 iocp->guid = cpu_to_be64(srpt_service_guid);
344 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
345 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
346 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
347 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->subsys_device_id = 0x0;
349 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
350 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
351 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
352 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
354 iocp->rdma_read_depth = 4;
355 iocp->send_size = cpu_to_be32(srp_max_req_size);
356 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
357 1U << 24));
358 iocp->num_svc_entries = 1;
359 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
360 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
361
362 mad->mad_hdr.status = 0;
363 }
364
365 /**
366 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
367 *
368 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
369 * Specification. See also section B.7, table B.8 in the SRP r16a document.
370 */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)371 static void srpt_get_svc_entries(u64 ioc_guid,
372 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
373 {
374 struct ib_dm_svc_entries *svc_entries;
375
376 WARN_ON(!ioc_guid);
377
378 if (!slot || slot > 16) {
379 mad->mad_hdr.status
380 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
381 return;
382 }
383
384 if (slot > 2 || lo > hi || hi > 1) {
385 mad->mad_hdr.status
386 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
387 return;
388 }
389
390 svc_entries = (struct ib_dm_svc_entries *)mad->data;
391 memset(svc_entries, 0, sizeof *svc_entries);
392 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
393 snprintf(svc_entries->service_entries[0].name,
394 sizeof(svc_entries->service_entries[0].name),
395 "%s%016llx",
396 SRP_SERVICE_NAME_PREFIX,
397 ioc_guid);
398
399 mad->mad_hdr.status = 0;
400 }
401
402 /**
403 * srpt_mgmt_method_get() - Process a received management datagram.
404 * @sp: source port through which the MAD has been received.
405 * @rq_mad: received MAD.
406 * @rsp_mad: response MAD.
407 */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)408 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
409 struct ib_dm_mad *rsp_mad)
410 {
411 u16 attr_id;
412 u32 slot;
413 u8 hi, lo;
414
415 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
416 switch (attr_id) {
417 case DM_ATTR_CLASS_PORT_INFO:
418 srpt_get_class_port_info(rsp_mad);
419 break;
420 case DM_ATTR_IOU_INFO:
421 srpt_get_iou(rsp_mad);
422 break;
423 case DM_ATTR_IOC_PROFILE:
424 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
425 srpt_get_ioc(sp, slot, rsp_mad);
426 break;
427 case DM_ATTR_SVC_ENTRIES:
428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429 hi = (u8) ((slot >> 8) & 0xff);
430 lo = (u8) (slot & 0xff);
431 slot = (u16) ((slot >> 16) & 0xffff);
432 srpt_get_svc_entries(srpt_service_guid,
433 slot, hi, lo, rsp_mad);
434 break;
435 default:
436 rsp_mad->mad_hdr.status =
437 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
438 break;
439 }
440 }
441
442 /**
443 * srpt_mad_send_handler() - Post MAD-send callback function.
444 */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)445 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
446 struct ib_mad_send_wc *mad_wc)
447 {
448 ib_destroy_ah(mad_wc->send_buf->ah);
449 ib_free_send_mad(mad_wc->send_buf);
450 }
451
452 /**
453 * srpt_mad_recv_handler() - MAD reception callback function.
454 */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_recv_wc * mad_wc)455 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
456 struct ib_mad_recv_wc *mad_wc)
457 {
458 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
459 struct ib_ah *ah;
460 struct ib_mad_send_buf *rsp;
461 struct ib_dm_mad *dm_mad;
462
463 if (!mad_wc || !mad_wc->recv_buf.mad)
464 return;
465
466 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
467 mad_wc->recv_buf.grh, mad_agent->port_num);
468 if (IS_ERR(ah))
469 goto err;
470
471 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
472
473 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
474 mad_wc->wc->pkey_index, 0,
475 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
476 GFP_KERNEL,
477 IB_MGMT_BASE_VERSION);
478 if (IS_ERR(rsp))
479 goto err_rsp;
480
481 rsp->ah = ah;
482
483 dm_mad = rsp->mad;
484 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
485 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
486 dm_mad->mad_hdr.status = 0;
487
488 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
489 case IB_MGMT_METHOD_GET:
490 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
491 break;
492 case IB_MGMT_METHOD_SET:
493 dm_mad->mad_hdr.status =
494 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
495 break;
496 default:
497 dm_mad->mad_hdr.status =
498 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
499 break;
500 }
501
502 if (!ib_post_send_mad(rsp, NULL)) {
503 ib_free_recv_mad(mad_wc);
504 /* will destroy_ah & free_send_mad in send completion */
505 return;
506 }
507
508 ib_free_send_mad(rsp);
509
510 err_rsp:
511 ib_destroy_ah(ah);
512 err:
513 ib_free_recv_mad(mad_wc);
514 }
515
516 /**
517 * srpt_refresh_port() - Configure a HCA port.
518 *
519 * Enable InfiniBand management datagram processing, update the cached sm_lid,
520 * lid and gid values, and register a callback function for processing MADs
521 * on the specified port.
522 *
523 * Note: It is safe to call this function more than once for the same port.
524 */
srpt_refresh_port(struct srpt_port * sport)525 static int srpt_refresh_port(struct srpt_port *sport)
526 {
527 struct ib_mad_reg_req reg_req;
528 struct ib_port_modify port_modify;
529 struct ib_port_attr port_attr;
530 int ret;
531
532 memset(&port_modify, 0, sizeof port_modify);
533 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
534 port_modify.clr_port_cap_mask = 0;
535
536 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
537 if (ret)
538 goto err_mod_port;
539
540 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
541 if (ret)
542 goto err_query_port;
543
544 sport->sm_lid = port_attr.sm_lid;
545 sport->lid = port_attr.lid;
546
547 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
548 NULL);
549 if (ret)
550 goto err_query_port;
551
552 if (!sport->mad_agent) {
553 memset(®_req, 0, sizeof reg_req);
554 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
555 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
556 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
557 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
558
559 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
560 sport->port,
561 IB_QPT_GSI,
562 ®_req, 0,
563 srpt_mad_send_handler,
564 srpt_mad_recv_handler,
565 sport, 0);
566 if (IS_ERR(sport->mad_agent)) {
567 ret = PTR_ERR(sport->mad_agent);
568 sport->mad_agent = NULL;
569 goto err_query_port;
570 }
571 }
572
573 return 0;
574
575 err_query_port:
576
577 port_modify.set_port_cap_mask = 0;
578 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
579 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
580
581 err_mod_port:
582
583 return ret;
584 }
585
586 /**
587 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
588 *
589 * Note: It is safe to call this function more than once for the same device.
590 */
srpt_unregister_mad_agent(struct srpt_device * sdev)591 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
592 {
593 struct ib_port_modify port_modify = {
594 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
595 };
596 struct srpt_port *sport;
597 int i;
598
599 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
600 sport = &sdev->port[i - 1];
601 WARN_ON(sport->port != i);
602 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
603 pr_err("disabling MAD processing failed.\n");
604 if (sport->mad_agent) {
605 ib_unregister_mad_agent(sport->mad_agent);
606 sport->mad_agent = NULL;
607 }
608 }
609 }
610
611 /**
612 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
613 */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,int dma_size,enum dma_data_direction dir)614 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
615 int ioctx_size, int dma_size,
616 enum dma_data_direction dir)
617 {
618 struct srpt_ioctx *ioctx;
619
620 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
621 if (!ioctx)
622 goto err;
623
624 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
625 if (!ioctx->buf)
626 goto err_free_ioctx;
627
628 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
629 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
630 goto err_free_buf;
631
632 return ioctx;
633
634 err_free_buf:
635 kfree(ioctx->buf);
636 err_free_ioctx:
637 kfree(ioctx);
638 err:
639 return NULL;
640 }
641
642 /**
643 * srpt_free_ioctx() - Free an SRPT I/O context structure.
644 */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,int dma_size,enum dma_data_direction dir)645 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
646 int dma_size, enum dma_data_direction dir)
647 {
648 if (!ioctx)
649 return;
650
651 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
652 kfree(ioctx->buf);
653 kfree(ioctx);
654 }
655
656 /**
657 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
658 * @sdev: Device to allocate the I/O context ring for.
659 * @ring_size: Number of elements in the I/O context ring.
660 * @ioctx_size: I/O context size.
661 * @dma_size: DMA buffer size.
662 * @dir: DMA data direction.
663 */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,int dma_size,enum dma_data_direction dir)664 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
665 int ring_size, int ioctx_size,
666 int dma_size, enum dma_data_direction dir)
667 {
668 struct srpt_ioctx **ring;
669 int i;
670
671 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
672 && ioctx_size != sizeof(struct srpt_send_ioctx));
673
674 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
675 if (!ring)
676 goto out;
677 for (i = 0; i < ring_size; ++i) {
678 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
679 if (!ring[i])
680 goto err;
681 ring[i]->index = i;
682 }
683 goto out;
684
685 err:
686 while (--i >= 0)
687 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
688 kfree(ring);
689 ring = NULL;
690 out:
691 return ring;
692 }
693
694 /**
695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
696 */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,int dma_size,enum dma_data_direction dir)697 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
698 struct srpt_device *sdev, int ring_size,
699 int dma_size, enum dma_data_direction dir)
700 {
701 int i;
702
703 for (i = 0; i < ring_size; ++i)
704 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
705 kfree(ioctx_ring);
706 }
707
708 /**
709 * srpt_get_cmd_state() - Get the state of a SCSI command.
710 */
srpt_get_cmd_state(struct srpt_send_ioctx * ioctx)711 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
712 {
713 enum srpt_command_state state;
714 unsigned long flags;
715
716 BUG_ON(!ioctx);
717
718 spin_lock_irqsave(&ioctx->spinlock, flags);
719 state = ioctx->state;
720 spin_unlock_irqrestore(&ioctx->spinlock, flags);
721 return state;
722 }
723
724 /**
725 * srpt_set_cmd_state() - Set the state of a SCSI command.
726 *
727 * Does not modify the state of aborted commands. Returns the previous command
728 * state.
729 */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)730 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
731 enum srpt_command_state new)
732 {
733 enum srpt_command_state previous;
734 unsigned long flags;
735
736 BUG_ON(!ioctx);
737
738 spin_lock_irqsave(&ioctx->spinlock, flags);
739 previous = ioctx->state;
740 if (previous != SRPT_STATE_DONE)
741 ioctx->state = new;
742 spin_unlock_irqrestore(&ioctx->spinlock, flags);
743
744 return previous;
745 }
746
747 /**
748 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
749 *
750 * Returns true if and only if the previous command state was equal to 'old'.
751 */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
753 enum srpt_command_state old,
754 enum srpt_command_state new)
755 {
756 enum srpt_command_state previous;
757 unsigned long flags;
758
759 WARN_ON(!ioctx);
760 WARN_ON(old == SRPT_STATE_DONE);
761 WARN_ON(new == SRPT_STATE_NEW);
762
763 spin_lock_irqsave(&ioctx->spinlock, flags);
764 previous = ioctx->state;
765 if (previous == old)
766 ioctx->state = new;
767 spin_unlock_irqrestore(&ioctx->spinlock, flags);
768 return previous == old;
769 }
770
771 /**
772 * srpt_post_recv() - Post an IB receive request.
773 */
srpt_post_recv(struct srpt_device * sdev,struct srpt_recv_ioctx * ioctx)774 static int srpt_post_recv(struct srpt_device *sdev,
775 struct srpt_recv_ioctx *ioctx)
776 {
777 struct ib_sge list;
778 struct ib_recv_wr wr, *bad_wr;
779
780 BUG_ON(!sdev);
781 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
782
783 list.addr = ioctx->ioctx.dma;
784 list.length = srp_max_req_size;
785 list.lkey = sdev->pd->local_dma_lkey;
786
787 wr.next = NULL;
788 wr.sg_list = &list;
789 wr.num_sge = 1;
790
791 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
792 }
793
794 /**
795 * srpt_post_send() - Post an IB send request.
796 *
797 * Returns zero upon success and a non-zero value upon failure.
798 */
srpt_post_send(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,int len)799 static int srpt_post_send(struct srpt_rdma_ch *ch,
800 struct srpt_send_ioctx *ioctx, int len)
801 {
802 struct ib_sge list;
803 struct ib_send_wr wr, *bad_wr;
804 struct srpt_device *sdev = ch->sport->sdev;
805 int ret;
806
807 atomic_inc(&ch->req_lim);
808
809 ret = -ENOMEM;
810 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
811 pr_warn("IB send queue full (needed 1)\n");
812 goto out;
813 }
814
815 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
816 DMA_TO_DEVICE);
817
818 list.addr = ioctx->ioctx.dma;
819 list.length = len;
820 list.lkey = sdev->pd->local_dma_lkey;
821
822 wr.next = NULL;
823 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
824 wr.sg_list = &list;
825 wr.num_sge = 1;
826 wr.opcode = IB_WR_SEND;
827 wr.send_flags = IB_SEND_SIGNALED;
828
829 ret = ib_post_send(ch->qp, &wr, &bad_wr);
830
831 out:
832 if (ret < 0) {
833 atomic_inc(&ch->sq_wr_avail);
834 atomic_dec(&ch->req_lim);
835 }
836 return ret;
837 }
838
839 /**
840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841 * @ioctx: Pointer to the I/O context associated with the request.
842 * @srp_cmd: Pointer to the SRP_CMD request data.
843 * @dir: Pointer to the variable to which the transfer direction will be
844 * written.
845 * @data_len: Pointer to the variable to which the total data length of all
846 * descriptors in the SRP_CMD request will be written.
847 *
848 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
849 *
850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851 * -ENOMEM when memory allocation fails and zero upon success.
852 */
srpt_get_desc_tbl(struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,u64 * data_len)853 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
854 struct srp_cmd *srp_cmd,
855 enum dma_data_direction *dir, u64 *data_len)
856 {
857 struct srp_indirect_buf *idb;
858 struct srp_direct_buf *db;
859 unsigned add_cdb_offset;
860 int ret;
861
862 /*
863 * The pointer computations below will only be compiled correctly
864 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865 * whether srp_cmd::add_data has been declared as a byte pointer.
866 */
867 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
868 && !__same_type(srp_cmd->add_data[0], (u8)0));
869
870 BUG_ON(!dir);
871 BUG_ON(!data_len);
872
873 ret = 0;
874 *data_len = 0;
875
876 /*
877 * The lower four bits of the buffer format field contain the DATA-IN
878 * buffer descriptor format, and the highest four bits contain the
879 * DATA-OUT buffer descriptor format.
880 */
881 *dir = DMA_NONE;
882 if (srp_cmd->buf_fmt & 0xf)
883 /* DATA-IN: transfer data from target to initiator (read). */
884 *dir = DMA_FROM_DEVICE;
885 else if (srp_cmd->buf_fmt >> 4)
886 /* DATA-OUT: transfer data from initiator to target (write). */
887 *dir = DMA_TO_DEVICE;
888
889 /*
890 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891 * CDB LENGTH' field are reserved and the size in bytes of this field
892 * is four times the value specified in bits 3..7. Hence the "& ~3".
893 */
894 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
895 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
896 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
897 ioctx->n_rbuf = 1;
898 ioctx->rbufs = &ioctx->single_rbuf;
899
900 db = (struct srp_direct_buf *)(srp_cmd->add_data
901 + add_cdb_offset);
902 memcpy(ioctx->rbufs, db, sizeof *db);
903 *data_len = be32_to_cpu(db->len);
904 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
905 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
906 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
907 + add_cdb_offset);
908
909 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
910
911 if (ioctx->n_rbuf >
912 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
913 pr_err("received unsupported SRP_CMD request"
914 " type (%u out + %u in != %u / %zu)\n",
915 srp_cmd->data_out_desc_cnt,
916 srp_cmd->data_in_desc_cnt,
917 be32_to_cpu(idb->table_desc.len),
918 sizeof(*db));
919 ioctx->n_rbuf = 0;
920 ret = -EINVAL;
921 goto out;
922 }
923
924 if (ioctx->n_rbuf == 1)
925 ioctx->rbufs = &ioctx->single_rbuf;
926 else {
927 ioctx->rbufs =
928 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
929 if (!ioctx->rbufs) {
930 ioctx->n_rbuf = 0;
931 ret = -ENOMEM;
932 goto out;
933 }
934 }
935
936 db = idb->desc_list;
937 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
938 *data_len = be32_to_cpu(idb->len);
939 }
940 out:
941 return ret;
942 }
943
944 /**
945 * srpt_init_ch_qp() - Initialize queue pair attributes.
946 *
947 * Initialized the attributes of queue pair 'qp' by allowing local write,
948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
949 */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)950 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
951 {
952 struct ib_qp_attr *attr;
953 int ret;
954
955 attr = kzalloc(sizeof *attr, GFP_KERNEL);
956 if (!attr)
957 return -ENOMEM;
958
959 attr->qp_state = IB_QPS_INIT;
960 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
961 attr->port_num = ch->sport->port;
962 attr->pkey_index = 0;
963
964 ret = ib_modify_qp(qp, attr,
965 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
966 IB_QP_PKEY_INDEX);
967
968 kfree(attr);
969 return ret;
970 }
971
972 /**
973 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
974 * @ch: channel of the queue pair.
975 * @qp: queue pair to change the state of.
976 *
977 * Returns zero upon success and a negative value upon failure.
978 *
979 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
980 * If this structure ever becomes larger, it might be necessary to allocate
981 * it dynamically instead of on the stack.
982 */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)983 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
984 {
985 struct ib_qp_attr qp_attr;
986 int attr_mask;
987 int ret;
988
989 qp_attr.qp_state = IB_QPS_RTR;
990 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
991 if (ret)
992 goto out;
993
994 qp_attr.max_dest_rd_atomic = 4;
995
996 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
997
998 out:
999 return ret;
1000 }
1001
1002 /**
1003 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1004 * @ch: channel of the queue pair.
1005 * @qp: queue pair to change the state of.
1006 *
1007 * Returns zero upon success and a negative value upon failure.
1008 *
1009 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1010 * If this structure ever becomes larger, it might be necessary to allocate
1011 * it dynamically instead of on the stack.
1012 */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1013 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1014 {
1015 struct ib_qp_attr qp_attr;
1016 int attr_mask;
1017 int ret;
1018
1019 qp_attr.qp_state = IB_QPS_RTS;
1020 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1021 if (ret)
1022 goto out;
1023
1024 qp_attr.max_rd_atomic = 4;
1025
1026 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1027
1028 out:
1029 return ret;
1030 }
1031
1032 /**
1033 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1034 */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1035 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1036 {
1037 struct ib_qp_attr qp_attr;
1038
1039 qp_attr.qp_state = IB_QPS_ERR;
1040 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1041 }
1042
1043 /**
1044 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1045 */
srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1046 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1047 struct srpt_send_ioctx *ioctx)
1048 {
1049 struct scatterlist *sg;
1050 enum dma_data_direction dir;
1051
1052 BUG_ON(!ch);
1053 BUG_ON(!ioctx);
1054 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1055
1056 while (ioctx->n_rdma)
1057 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1058
1059 kfree(ioctx->rdma_ius);
1060 ioctx->rdma_ius = NULL;
1061
1062 if (ioctx->mapped_sg_count) {
1063 sg = ioctx->sg;
1064 WARN_ON(!sg);
1065 dir = ioctx->cmd.data_direction;
1066 BUG_ON(dir == DMA_NONE);
1067 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1068 opposite_dma_dir(dir));
1069 ioctx->mapped_sg_count = 0;
1070 }
1071 }
1072
1073 /**
1074 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1075 */
srpt_map_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1076 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1077 struct srpt_send_ioctx *ioctx)
1078 {
1079 struct ib_device *dev = ch->sport->sdev->device;
1080 struct se_cmd *cmd;
1081 struct scatterlist *sg, *sg_orig;
1082 int sg_cnt;
1083 enum dma_data_direction dir;
1084 struct rdma_iu *riu;
1085 struct srp_direct_buf *db;
1086 dma_addr_t dma_addr;
1087 struct ib_sge *sge;
1088 u64 raddr;
1089 u32 rsize;
1090 u32 tsize;
1091 u32 dma_len;
1092 int count, nrdma;
1093 int i, j, k;
1094
1095 BUG_ON(!ch);
1096 BUG_ON(!ioctx);
1097 cmd = &ioctx->cmd;
1098 dir = cmd->data_direction;
1099 BUG_ON(dir == DMA_NONE);
1100
1101 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1102 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1103
1104 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1105 opposite_dma_dir(dir));
1106 if (unlikely(!count))
1107 return -EAGAIN;
1108
1109 ioctx->mapped_sg_count = count;
1110
1111 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1112 nrdma = ioctx->n_rdma_ius;
1113 else {
1114 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1115 + ioctx->n_rbuf;
1116
1117 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1118 if (!ioctx->rdma_ius)
1119 goto free_mem;
1120
1121 ioctx->n_rdma_ius = nrdma;
1122 }
1123
1124 db = ioctx->rbufs;
1125 tsize = cmd->data_length;
1126 dma_len = ib_sg_dma_len(dev, &sg[0]);
1127 riu = ioctx->rdma_ius;
1128
1129 /*
1130 * For each remote desc - calculate the #ib_sge.
1131 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1132 * each remote desc rdma_iu is required a rdma wr;
1133 * else
1134 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1135 * another rdma wr
1136 */
1137 for (i = 0, j = 0;
1138 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1139 rsize = be32_to_cpu(db->len);
1140 raddr = be64_to_cpu(db->va);
1141 riu->raddr = raddr;
1142 riu->rkey = be32_to_cpu(db->key);
1143 riu->sge_cnt = 0;
1144
1145 /* calculate how many sge required for this remote_buf */
1146 while (rsize > 0 && tsize > 0) {
1147
1148 if (rsize >= dma_len) {
1149 tsize -= dma_len;
1150 rsize -= dma_len;
1151 raddr += dma_len;
1152
1153 if (tsize > 0) {
1154 ++j;
1155 if (j < count) {
1156 sg = sg_next(sg);
1157 dma_len = ib_sg_dma_len(
1158 dev, sg);
1159 }
1160 }
1161 } else {
1162 tsize -= rsize;
1163 dma_len -= rsize;
1164 rsize = 0;
1165 }
1166
1167 ++riu->sge_cnt;
1168
1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170 ++ioctx->n_rdma;
1171 riu->sge =
1172 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173 GFP_KERNEL);
1174 if (!riu->sge)
1175 goto free_mem;
1176
1177 ++riu;
1178 riu->sge_cnt = 0;
1179 riu->raddr = raddr;
1180 riu->rkey = be32_to_cpu(db->key);
1181 }
1182 }
1183
1184 ++ioctx->n_rdma;
1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186 GFP_KERNEL);
1187 if (!riu->sge)
1188 goto free_mem;
1189 }
1190
1191 db = ioctx->rbufs;
1192 tsize = cmd->data_length;
1193 riu = ioctx->rdma_ius;
1194 sg = sg_orig;
1195 dma_len = ib_sg_dma_len(dev, &sg[0]);
1196 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1197
1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199 for (i = 0, j = 0;
1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201 rsize = be32_to_cpu(db->len);
1202 sge = riu->sge;
1203 k = 0;
1204
1205 while (rsize > 0 && tsize > 0) {
1206 sge->addr = dma_addr;
1207 sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1208
1209 if (rsize >= dma_len) {
1210 sge->length =
1211 (tsize < dma_len) ? tsize : dma_len;
1212 tsize -= dma_len;
1213 rsize -= dma_len;
1214
1215 if (tsize > 0) {
1216 ++j;
1217 if (j < count) {
1218 sg = sg_next(sg);
1219 dma_len = ib_sg_dma_len(
1220 dev, sg);
1221 dma_addr = ib_sg_dma_address(
1222 dev, sg);
1223 }
1224 }
1225 } else {
1226 sge->length = (tsize < rsize) ? tsize : rsize;
1227 tsize -= rsize;
1228 dma_len -= rsize;
1229 dma_addr += rsize;
1230 rsize = 0;
1231 }
1232
1233 ++k;
1234 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1235 ++riu;
1236 sge = riu->sge;
1237 k = 0;
1238 } else if (rsize > 0 && tsize > 0)
1239 ++sge;
1240 }
1241 }
1242
1243 return 0;
1244
1245 free_mem:
1246 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1247
1248 return -ENOMEM;
1249 }
1250
1251 /**
1252 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1253 */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1254 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1255 {
1256 struct srpt_send_ioctx *ioctx;
1257 unsigned long flags;
1258
1259 BUG_ON(!ch);
1260
1261 ioctx = NULL;
1262 spin_lock_irqsave(&ch->spinlock, flags);
1263 if (!list_empty(&ch->free_list)) {
1264 ioctx = list_first_entry(&ch->free_list,
1265 struct srpt_send_ioctx, free_list);
1266 list_del(&ioctx->free_list);
1267 }
1268 spin_unlock_irqrestore(&ch->spinlock, flags);
1269
1270 if (!ioctx)
1271 return ioctx;
1272
1273 BUG_ON(ioctx->ch != ch);
1274 spin_lock_init(&ioctx->spinlock);
1275 ioctx->state = SRPT_STATE_NEW;
1276 ioctx->n_rbuf = 0;
1277 ioctx->rbufs = NULL;
1278 ioctx->n_rdma = 0;
1279 ioctx->n_rdma_ius = 0;
1280 ioctx->rdma_ius = NULL;
1281 ioctx->mapped_sg_count = 0;
1282 init_completion(&ioctx->tx_done);
1283 ioctx->queue_status_only = false;
1284 /*
1285 * transport_init_se_cmd() does not initialize all fields, so do it
1286 * here.
1287 */
1288 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1289 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1290
1291 return ioctx;
1292 }
1293
1294 /**
1295 * srpt_abort_cmd() - Abort a SCSI command.
1296 * @ioctx: I/O context associated with the SCSI command.
1297 * @context: Preferred execution context.
1298 */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1299 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1300 {
1301 enum srpt_command_state state;
1302 unsigned long flags;
1303
1304 BUG_ON(!ioctx);
1305
1306 /*
1307 * If the command is in a state where the target core is waiting for
1308 * the ib_srpt driver, change the state to the next state. Changing
1309 * the state of the command from SRPT_STATE_NEED_DATA to
1310 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1311 * function a second time.
1312 */
1313
1314 spin_lock_irqsave(&ioctx->spinlock, flags);
1315 state = ioctx->state;
1316 switch (state) {
1317 case SRPT_STATE_NEED_DATA:
1318 ioctx->state = SRPT_STATE_DATA_IN;
1319 break;
1320 case SRPT_STATE_DATA_IN:
1321 case SRPT_STATE_CMD_RSP_SENT:
1322 case SRPT_STATE_MGMT_RSP_SENT:
1323 ioctx->state = SRPT_STATE_DONE;
1324 break;
1325 default:
1326 break;
1327 }
1328 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1329
1330 if (state == SRPT_STATE_DONE) {
1331 struct srpt_rdma_ch *ch = ioctx->ch;
1332
1333 BUG_ON(ch->sess == NULL);
1334
1335 target_put_sess_cmd(&ioctx->cmd);
1336 goto out;
1337 }
1338
1339 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1340 ioctx->cmd.tag);
1341
1342 switch (state) {
1343 case SRPT_STATE_NEW:
1344 case SRPT_STATE_DATA_IN:
1345 case SRPT_STATE_MGMT:
1346 /*
1347 * Do nothing - defer abort processing until
1348 * srpt_queue_response() is invoked.
1349 */
1350 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1351 break;
1352 case SRPT_STATE_NEED_DATA:
1353 /* DMA_TO_DEVICE (write) - RDMA read error. */
1354
1355 /* XXX(hch): this is a horrible layering violation.. */
1356 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1357 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1358 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1359 break;
1360 case SRPT_STATE_CMD_RSP_SENT:
1361 /*
1362 * SRP_RSP sending failed or the SRP_RSP send completion has
1363 * not been received in time.
1364 */
1365 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1366 target_put_sess_cmd(&ioctx->cmd);
1367 break;
1368 case SRPT_STATE_MGMT_RSP_SENT:
1369 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1370 target_put_sess_cmd(&ioctx->cmd);
1371 break;
1372 default:
1373 WARN(1, "Unexpected command state (%d)", state);
1374 break;
1375 }
1376
1377 out:
1378 return state;
1379 }
1380
1381 /**
1382 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1383 */
srpt_handle_send_err_comp(struct srpt_rdma_ch * ch,u64 wr_id)1384 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1385 {
1386 struct srpt_send_ioctx *ioctx;
1387 enum srpt_command_state state;
1388 u32 index;
1389
1390 atomic_inc(&ch->sq_wr_avail);
1391
1392 index = idx_from_wr_id(wr_id);
1393 ioctx = ch->ioctx_ring[index];
1394 state = srpt_get_cmd_state(ioctx);
1395
1396 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1397 && state != SRPT_STATE_MGMT_RSP_SENT
1398 && state != SRPT_STATE_NEED_DATA
1399 && state != SRPT_STATE_DONE);
1400
1401 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1402 if (state == SRPT_STATE_CMD_RSP_SENT
1403 || state == SRPT_STATE_MGMT_RSP_SENT)
1404 atomic_dec(&ch->req_lim);
1405
1406 srpt_abort_cmd(ioctx);
1407 }
1408
1409 /**
1410 * srpt_handle_send_comp() - Process an IB send completion notification.
1411 */
srpt_handle_send_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1412 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1413 struct srpt_send_ioctx *ioctx)
1414 {
1415 enum srpt_command_state state;
1416
1417 atomic_inc(&ch->sq_wr_avail);
1418
1419 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1420
1421 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1422 && state != SRPT_STATE_MGMT_RSP_SENT
1423 && state != SRPT_STATE_DONE))
1424 pr_debug("state = %d\n", state);
1425
1426 if (state != SRPT_STATE_DONE) {
1427 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1428 transport_generic_free_cmd(&ioctx->cmd, 0);
1429 } else {
1430 pr_err("IB completion has been received too late for"
1431 " wr_id = %u.\n", ioctx->ioctx.index);
1432 }
1433 }
1434
1435 /**
1436 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1437 *
1438 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1439 * the data that has been transferred via IB RDMA had to be postponed until the
1440 * check_stop_free() callback. None of this is necessary anymore and needs to
1441 * be cleaned up.
1442 */
srpt_handle_rdma_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1443 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1444 struct srpt_send_ioctx *ioctx,
1445 enum srpt_opcode opcode)
1446 {
1447 WARN_ON(ioctx->n_rdma <= 0);
1448 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1449
1450 if (opcode == SRPT_RDMA_READ_LAST) {
1451 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1452 SRPT_STATE_DATA_IN))
1453 target_execute_cmd(&ioctx->cmd);
1454 else
1455 pr_err("%s[%d]: wrong state = %d\n", __func__,
1456 __LINE__, srpt_get_cmd_state(ioctx));
1457 } else if (opcode == SRPT_RDMA_ABORT) {
1458 ioctx->rdma_aborted = true;
1459 } else {
1460 WARN(true, "unexpected opcode %d\n", opcode);
1461 }
1462 }
1463
1464 /**
1465 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1466 */
srpt_handle_rdma_err_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1467 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1468 struct srpt_send_ioctx *ioctx,
1469 enum srpt_opcode opcode)
1470 {
1471 enum srpt_command_state state;
1472
1473 state = srpt_get_cmd_state(ioctx);
1474 switch (opcode) {
1475 case SRPT_RDMA_READ_LAST:
1476 if (ioctx->n_rdma <= 0) {
1477 pr_err("Received invalid RDMA read"
1478 " error completion with idx %d\n",
1479 ioctx->ioctx.index);
1480 break;
1481 }
1482 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1483 if (state == SRPT_STATE_NEED_DATA)
1484 srpt_abort_cmd(ioctx);
1485 else
1486 pr_err("%s[%d]: wrong state = %d\n",
1487 __func__, __LINE__, state);
1488 break;
1489 case SRPT_RDMA_WRITE_LAST:
1490 break;
1491 default:
1492 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1493 break;
1494 }
1495 }
1496
1497 /**
1498 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1499 * @ch: RDMA channel through which the request has been received.
1500 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1501 * be built in the buffer ioctx->buf points at and hence this function will
1502 * overwrite the request data.
1503 * @tag: tag of the request for which this response is being generated.
1504 * @status: value for the STATUS field of the SRP_RSP information unit.
1505 *
1506 * Returns the size in bytes of the SRP_RSP response.
1507 *
1508 * An SRP_RSP response contains a SCSI status or service response. See also
1509 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1510 * response. See also SPC-2 for more information about sense data.
1511 */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1512 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1513 struct srpt_send_ioctx *ioctx, u64 tag,
1514 int status)
1515 {
1516 struct se_cmd *cmd = &ioctx->cmd;
1517 struct srp_rsp *srp_rsp;
1518 const u8 *sense_data;
1519 int sense_data_len, max_sense_len;
1520 u32 resid = cmd->residual_count;
1521
1522 /*
1523 * The lowest bit of all SAM-3 status codes is zero (see also
1524 * paragraph 5.3 in SAM-3).
1525 */
1526 WARN_ON(status & 1);
1527
1528 srp_rsp = ioctx->ioctx.buf;
1529 BUG_ON(!srp_rsp);
1530
1531 sense_data = ioctx->sense_data;
1532 sense_data_len = ioctx->cmd.scsi_sense_length;
1533 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1534
1535 memset(srp_rsp, 0, sizeof *srp_rsp);
1536 srp_rsp->opcode = SRP_RSP;
1537 srp_rsp->req_lim_delta =
1538 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1539 srp_rsp->tag = tag;
1540 srp_rsp->status = status;
1541
1542 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1543 if (cmd->data_direction == DMA_TO_DEVICE) {
1544 /* residual data from an underflow write */
1545 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1546 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1547 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1548 /* residual data from an underflow read */
1549 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1550 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1551 }
1552 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1553 if (cmd->data_direction == DMA_TO_DEVICE) {
1554 /* residual data from an overflow write */
1555 srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1556 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1557 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1558 /* residual data from an overflow read */
1559 srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1560 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1561 }
1562 }
1563
1564 if (sense_data_len) {
1565 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1566 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1567 if (sense_data_len > max_sense_len) {
1568 pr_warn("truncated sense data from %d to %d"
1569 " bytes\n", sense_data_len, max_sense_len);
1570 sense_data_len = max_sense_len;
1571 }
1572
1573 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1574 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1575 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1576 }
1577
1578 return sizeof(*srp_rsp) + sense_data_len;
1579 }
1580
1581 /**
1582 * srpt_build_tskmgmt_rsp() - Build a task management response.
1583 * @ch: RDMA channel through which the request has been received.
1584 * @ioctx: I/O context in which the SRP_RSP response will be built.
1585 * @rsp_code: RSP_CODE that will be stored in the response.
1586 * @tag: Tag of the request for which this response is being generated.
1587 *
1588 * Returns the size in bytes of the SRP_RSP response.
1589 *
1590 * An SRP_RSP response contains a SCSI status or service response. See also
1591 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1592 * response.
1593 */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1594 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1595 struct srpt_send_ioctx *ioctx,
1596 u8 rsp_code, u64 tag)
1597 {
1598 struct srp_rsp *srp_rsp;
1599 int resp_data_len;
1600 int resp_len;
1601
1602 resp_data_len = 4;
1603 resp_len = sizeof(*srp_rsp) + resp_data_len;
1604
1605 srp_rsp = ioctx->ioctx.buf;
1606 BUG_ON(!srp_rsp);
1607 memset(srp_rsp, 0, sizeof *srp_rsp);
1608
1609 srp_rsp->opcode = SRP_RSP;
1610 srp_rsp->req_lim_delta =
1611 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1612 srp_rsp->tag = tag;
1613
1614 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1615 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1616 srp_rsp->data[3] = rsp_code;
1617
1618 return resp_len;
1619 }
1620
1621 #define NO_SUCH_LUN ((uint64_t)-1LL)
1622
1623 /*
1624 * SCSI LUN addressing method. See also SAM-2 and the section about
1625 * eight byte LUNs.
1626 */
1627 enum scsi_lun_addr_method {
1628 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1629 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1630 SCSI_LUN_ADDR_METHOD_LUN = 2,
1631 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1632 };
1633
1634 /*
1635 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1636 *
1637 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1638 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1639 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1640 */
srpt_unpack_lun(const uint8_t * lun,int len)1641 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1642 {
1643 uint64_t res = NO_SUCH_LUN;
1644 int addressing_method;
1645
1646 if (unlikely(len < 2)) {
1647 pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1648 len);
1649 goto out;
1650 }
1651
1652 switch (len) {
1653 case 8:
1654 if ((*((__be64 *)lun) &
1655 cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1656 goto out_err;
1657 break;
1658 case 4:
1659 if (*((__be16 *)&lun[2]) != 0)
1660 goto out_err;
1661 break;
1662 case 6:
1663 if (*((__be32 *)&lun[2]) != 0)
1664 goto out_err;
1665 break;
1666 case 2:
1667 break;
1668 default:
1669 goto out_err;
1670 }
1671
1672 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1673 switch (addressing_method) {
1674 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1675 case SCSI_LUN_ADDR_METHOD_FLAT:
1676 case SCSI_LUN_ADDR_METHOD_LUN:
1677 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1678 break;
1679
1680 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1681 default:
1682 pr_err("Unimplemented LUN addressing method %u\n",
1683 addressing_method);
1684 break;
1685 }
1686
1687 out:
1688 return res;
1689
1690 out_err:
1691 pr_err("Support for multi-level LUNs has not yet been implemented\n");
1692 goto out;
1693 }
1694
srpt_check_stop_free(struct se_cmd * cmd)1695 static int srpt_check_stop_free(struct se_cmd *cmd)
1696 {
1697 struct srpt_send_ioctx *ioctx = container_of(cmd,
1698 struct srpt_send_ioctx, cmd);
1699
1700 return target_put_sess_cmd(&ioctx->cmd);
1701 }
1702
1703 /**
1704 * srpt_handle_cmd() - Process SRP_CMD.
1705 */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1706 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1707 struct srpt_recv_ioctx *recv_ioctx,
1708 struct srpt_send_ioctx *send_ioctx)
1709 {
1710 struct se_cmd *cmd;
1711 struct srp_cmd *srp_cmd;
1712 uint64_t unpacked_lun;
1713 u64 data_len;
1714 enum dma_data_direction dir;
1715 sense_reason_t ret;
1716 int rc;
1717
1718 BUG_ON(!send_ioctx);
1719
1720 srp_cmd = recv_ioctx->ioctx.buf;
1721 cmd = &send_ioctx->cmd;
1722 cmd->tag = srp_cmd->tag;
1723
1724 switch (srp_cmd->task_attr) {
1725 case SRP_CMD_SIMPLE_Q:
1726 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1727 break;
1728 case SRP_CMD_ORDERED_Q:
1729 default:
1730 cmd->sam_task_attr = TCM_ORDERED_TAG;
1731 break;
1732 case SRP_CMD_HEAD_OF_Q:
1733 cmd->sam_task_attr = TCM_HEAD_TAG;
1734 break;
1735 case SRP_CMD_ACA:
1736 cmd->sam_task_attr = TCM_ACA_TAG;
1737 break;
1738 }
1739
1740 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1741 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1742 srp_cmd->tag);
1743 ret = TCM_INVALID_CDB_FIELD;
1744 goto send_sense;
1745 }
1746
1747 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1748 sizeof(srp_cmd->lun));
1749 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1750 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1751 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1752 if (rc != 0) {
1753 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1754 goto send_sense;
1755 }
1756 return 0;
1757
1758 send_sense:
1759 transport_send_check_condition_and_sense(cmd, ret, 0);
1760 return -1;
1761 }
1762
srp_tmr_to_tcm(int fn)1763 static int srp_tmr_to_tcm(int fn)
1764 {
1765 switch (fn) {
1766 case SRP_TSK_ABORT_TASK:
1767 return TMR_ABORT_TASK;
1768 case SRP_TSK_ABORT_TASK_SET:
1769 return TMR_ABORT_TASK_SET;
1770 case SRP_TSK_CLEAR_TASK_SET:
1771 return TMR_CLEAR_TASK_SET;
1772 case SRP_TSK_LUN_RESET:
1773 return TMR_LUN_RESET;
1774 case SRP_TSK_CLEAR_ACA:
1775 return TMR_CLEAR_ACA;
1776 default:
1777 return -1;
1778 }
1779 }
1780
1781 /**
1782 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1783 *
1784 * Returns 0 if and only if the request will be processed by the target core.
1785 *
1786 * For more information about SRP_TSK_MGMT information units, see also section
1787 * 6.7 in the SRP r16a document.
1788 */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1789 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1790 struct srpt_recv_ioctx *recv_ioctx,
1791 struct srpt_send_ioctx *send_ioctx)
1792 {
1793 struct srp_tsk_mgmt *srp_tsk;
1794 struct se_cmd *cmd;
1795 struct se_session *sess = ch->sess;
1796 uint64_t unpacked_lun;
1797 int tcm_tmr;
1798 int rc;
1799
1800 BUG_ON(!send_ioctx);
1801
1802 srp_tsk = recv_ioctx->ioctx.buf;
1803 cmd = &send_ioctx->cmd;
1804
1805 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1806 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1807 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1808
1809 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1810 send_ioctx->cmd.tag = srp_tsk->tag;
1811 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1812 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1813 sizeof(srp_tsk->lun));
1814 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1815 srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag,
1816 TARGET_SCF_ACK_KREF);
1817 if (rc != 0) {
1818 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1819 goto fail;
1820 }
1821 return;
1822 fail:
1823 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1824 }
1825
1826 /**
1827 * srpt_handle_new_iu() - Process a newly received information unit.
1828 * @ch: RDMA channel through which the information unit has been received.
1829 * @ioctx: SRPT I/O context associated with the information unit.
1830 */
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1831 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1832 struct srpt_recv_ioctx *recv_ioctx,
1833 struct srpt_send_ioctx *send_ioctx)
1834 {
1835 struct srp_cmd *srp_cmd;
1836 enum rdma_ch_state ch_state;
1837
1838 BUG_ON(!ch);
1839 BUG_ON(!recv_ioctx);
1840
1841 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1842 recv_ioctx->ioctx.dma, srp_max_req_size,
1843 DMA_FROM_DEVICE);
1844
1845 ch_state = srpt_get_ch_state(ch);
1846 if (unlikely(ch_state == CH_CONNECTING)) {
1847 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1848 goto out;
1849 }
1850
1851 if (unlikely(ch_state != CH_LIVE))
1852 goto out;
1853
1854 srp_cmd = recv_ioctx->ioctx.buf;
1855 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1856 if (!send_ioctx)
1857 send_ioctx = srpt_get_send_ioctx(ch);
1858 if (unlikely(!send_ioctx)) {
1859 list_add_tail(&recv_ioctx->wait_list,
1860 &ch->cmd_wait_list);
1861 goto out;
1862 }
1863 }
1864
1865 switch (srp_cmd->opcode) {
1866 case SRP_CMD:
1867 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1868 break;
1869 case SRP_TSK_MGMT:
1870 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1871 break;
1872 case SRP_I_LOGOUT:
1873 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1874 break;
1875 case SRP_CRED_RSP:
1876 pr_debug("received SRP_CRED_RSP\n");
1877 break;
1878 case SRP_AER_RSP:
1879 pr_debug("received SRP_AER_RSP\n");
1880 break;
1881 case SRP_RSP:
1882 pr_err("Received SRP_RSP\n");
1883 break;
1884 default:
1885 pr_err("received IU with unknown opcode 0x%x\n",
1886 srp_cmd->opcode);
1887 break;
1888 }
1889
1890 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1891 out:
1892 return;
1893 }
1894
srpt_process_rcv_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1895 static void srpt_process_rcv_completion(struct ib_cq *cq,
1896 struct srpt_rdma_ch *ch,
1897 struct ib_wc *wc)
1898 {
1899 struct srpt_device *sdev = ch->sport->sdev;
1900 struct srpt_recv_ioctx *ioctx;
1901 u32 index;
1902
1903 index = idx_from_wr_id(wc->wr_id);
1904 if (wc->status == IB_WC_SUCCESS) {
1905 int req_lim;
1906
1907 req_lim = atomic_dec_return(&ch->req_lim);
1908 if (unlikely(req_lim < 0))
1909 pr_err("req_lim = %d < 0\n", req_lim);
1910 ioctx = sdev->ioctx_ring[index];
1911 srpt_handle_new_iu(ch, ioctx, NULL);
1912 } else {
1913 pr_info("receiving failed for idx %u with status %d\n",
1914 index, wc->status);
1915 }
1916 }
1917
1918 /**
1919 * srpt_process_send_completion() - Process an IB send completion.
1920 *
1921 * Note: Although this has not yet been observed during tests, at least in
1922 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1923 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1924 * value in each response is set to one, and it is possible that this response
1925 * makes the initiator send a new request before the send completion for that
1926 * response has been processed. This could e.g. happen if the call to
1927 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1928 * if IB retransmission causes generation of the send completion to be
1929 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1930 * are queued on cmd_wait_list. The code below processes these delayed
1931 * requests one at a time.
1932 */
srpt_process_send_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1933 static void srpt_process_send_completion(struct ib_cq *cq,
1934 struct srpt_rdma_ch *ch,
1935 struct ib_wc *wc)
1936 {
1937 struct srpt_send_ioctx *send_ioctx;
1938 uint32_t index;
1939 enum srpt_opcode opcode;
1940
1941 index = idx_from_wr_id(wc->wr_id);
1942 opcode = opcode_from_wr_id(wc->wr_id);
1943 send_ioctx = ch->ioctx_ring[index];
1944 if (wc->status == IB_WC_SUCCESS) {
1945 if (opcode == SRPT_SEND)
1946 srpt_handle_send_comp(ch, send_ioctx);
1947 else {
1948 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1949 wc->opcode != IB_WC_RDMA_READ);
1950 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1951 }
1952 } else {
1953 if (opcode == SRPT_SEND) {
1954 pr_info("sending response for idx %u failed"
1955 " with status %d\n", index, wc->status);
1956 srpt_handle_send_err_comp(ch, wc->wr_id);
1957 } else if (opcode != SRPT_RDMA_MID) {
1958 pr_info("RDMA t %d for idx %u failed with"
1959 " status %d\n", opcode, index, wc->status);
1960 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1961 }
1962 }
1963
1964 while (unlikely(opcode == SRPT_SEND
1965 && !list_empty(&ch->cmd_wait_list)
1966 && srpt_get_ch_state(ch) == CH_LIVE
1967 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
1968 struct srpt_recv_ioctx *recv_ioctx;
1969
1970 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1971 struct srpt_recv_ioctx,
1972 wait_list);
1973 list_del(&recv_ioctx->wait_list);
1974 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
1975 }
1976 }
1977
srpt_process_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch)1978 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
1979 {
1980 struct ib_wc *const wc = ch->wc;
1981 int i, n;
1982
1983 WARN_ON(cq != ch->cq);
1984
1985 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1986 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
1987 for (i = 0; i < n; i++) {
1988 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
1989 srpt_process_rcv_completion(cq, ch, &wc[i]);
1990 else
1991 srpt_process_send_completion(cq, ch, &wc[i]);
1992 }
1993 }
1994 }
1995
1996 /**
1997 * srpt_completion() - IB completion queue callback function.
1998 *
1999 * Notes:
2000 * - It is guaranteed that a completion handler will never be invoked
2001 * concurrently on two different CPUs for the same completion queue. See also
2002 * Documentation/infiniband/core_locking.txt and the implementation of
2003 * handle_edge_irq() in kernel/irq/chip.c.
2004 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2005 * context instead of interrupt context.
2006 */
srpt_completion(struct ib_cq * cq,void * ctx)2007 static void srpt_completion(struct ib_cq *cq, void *ctx)
2008 {
2009 struct srpt_rdma_ch *ch = ctx;
2010
2011 wake_up_interruptible(&ch->wait_queue);
2012 }
2013
srpt_compl_thread(void * arg)2014 static int srpt_compl_thread(void *arg)
2015 {
2016 struct srpt_rdma_ch *ch;
2017
2018 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2019 current->flags |= PF_NOFREEZE;
2020
2021 ch = arg;
2022 BUG_ON(!ch);
2023 pr_info("Session %s: kernel thread %s (PID %d) started\n",
2024 ch->sess_name, ch->thread->comm, current->pid);
2025 while (!kthread_should_stop()) {
2026 wait_event_interruptible(ch->wait_queue,
2027 (srpt_process_completion(ch->cq, ch),
2028 kthread_should_stop()));
2029 }
2030 pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2031 ch->sess_name, ch->thread->comm, current->pid);
2032 return 0;
2033 }
2034
2035 /**
2036 * srpt_create_ch_ib() - Create receive and send completion queues.
2037 */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)2038 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2039 {
2040 struct ib_qp_init_attr *qp_init;
2041 struct srpt_port *sport = ch->sport;
2042 struct srpt_device *sdev = sport->sdev;
2043 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2044 struct ib_cq_init_attr cq_attr = {};
2045 int ret;
2046
2047 WARN_ON(ch->rq_size < 1);
2048
2049 ret = -ENOMEM;
2050 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2051 if (!qp_init)
2052 goto out;
2053
2054 retry:
2055 cq_attr.cqe = ch->rq_size + srp_sq_size;
2056 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2057 &cq_attr);
2058 if (IS_ERR(ch->cq)) {
2059 ret = PTR_ERR(ch->cq);
2060 pr_err("failed to create CQ cqe= %d ret= %d\n",
2061 ch->rq_size + srp_sq_size, ret);
2062 goto out;
2063 }
2064
2065 qp_init->qp_context = (void *)ch;
2066 qp_init->event_handler
2067 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2068 qp_init->send_cq = ch->cq;
2069 qp_init->recv_cq = ch->cq;
2070 qp_init->srq = sdev->srq;
2071 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2072 qp_init->qp_type = IB_QPT_RC;
2073 qp_init->cap.max_send_wr = srp_sq_size;
2074 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2075
2076 ch->qp = ib_create_qp(sdev->pd, qp_init);
2077 if (IS_ERR(ch->qp)) {
2078 ret = PTR_ERR(ch->qp);
2079 if (ret == -ENOMEM) {
2080 srp_sq_size /= 2;
2081 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2082 ib_destroy_cq(ch->cq);
2083 goto retry;
2084 }
2085 }
2086 pr_err("failed to create_qp ret= %d\n", ret);
2087 goto err_destroy_cq;
2088 }
2089
2090 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2091
2092 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2093 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2094 qp_init->cap.max_send_wr, ch->cm_id);
2095
2096 ret = srpt_init_ch_qp(ch, ch->qp);
2097 if (ret)
2098 goto err_destroy_qp;
2099
2100 init_waitqueue_head(&ch->wait_queue);
2101
2102 pr_debug("creating thread for session %s\n", ch->sess_name);
2103
2104 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2105 if (IS_ERR(ch->thread)) {
2106 pr_err("failed to create kernel thread %ld\n",
2107 PTR_ERR(ch->thread));
2108 ch->thread = NULL;
2109 goto err_destroy_qp;
2110 }
2111
2112 out:
2113 kfree(qp_init);
2114 return ret;
2115
2116 err_destroy_qp:
2117 ib_destroy_qp(ch->qp);
2118 err_destroy_cq:
2119 ib_destroy_cq(ch->cq);
2120 goto out;
2121 }
2122
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)2123 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2124 {
2125 if (ch->thread)
2126 kthread_stop(ch->thread);
2127
2128 ib_destroy_qp(ch->qp);
2129 ib_destroy_cq(ch->cq);
2130 }
2131
2132 /**
2133 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2134 *
2135 * Reset the QP and make sure all resources associated with the channel will
2136 * be deallocated at an appropriate time.
2137 *
2138 * Note: The caller must hold ch->sport->sdev->spinlock.
2139 */
__srpt_close_ch(struct srpt_rdma_ch * ch)2140 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2141 {
2142 enum rdma_ch_state prev_state;
2143 unsigned long flags;
2144
2145 spin_lock_irqsave(&ch->spinlock, flags);
2146 prev_state = ch->state;
2147 switch (prev_state) {
2148 case CH_CONNECTING:
2149 case CH_LIVE:
2150 ch->state = CH_DISCONNECTING;
2151 break;
2152 default:
2153 break;
2154 }
2155 spin_unlock_irqrestore(&ch->spinlock, flags);
2156
2157 switch (prev_state) {
2158 case CH_CONNECTING:
2159 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2160 NULL, 0);
2161 /* fall through */
2162 case CH_LIVE:
2163 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2164 pr_err("sending CM DREQ failed.\n");
2165 break;
2166 case CH_DISCONNECTING:
2167 break;
2168 case CH_DRAINING:
2169 case CH_RELEASING:
2170 break;
2171 }
2172 }
2173
2174 /**
2175 * srpt_close_ch() - Close an RDMA channel.
2176 */
srpt_close_ch(struct srpt_rdma_ch * ch)2177 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2178 {
2179 struct srpt_device *sdev;
2180
2181 sdev = ch->sport->sdev;
2182 spin_lock_irq(&sdev->spinlock);
2183 __srpt_close_ch(ch);
2184 spin_unlock_irq(&sdev->spinlock);
2185 }
2186
2187 /**
2188 * srpt_shutdown_session() - Whether or not a session may be shut down.
2189 */
srpt_shutdown_session(struct se_session * se_sess)2190 static int srpt_shutdown_session(struct se_session *se_sess)
2191 {
2192 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2193 unsigned long flags;
2194
2195 spin_lock_irqsave(&ch->spinlock, flags);
2196 if (ch->in_shutdown) {
2197 spin_unlock_irqrestore(&ch->spinlock, flags);
2198 return true;
2199 }
2200
2201 ch->in_shutdown = true;
2202 target_sess_cmd_list_set_waiting(se_sess);
2203 spin_unlock_irqrestore(&ch->spinlock, flags);
2204
2205 return true;
2206 }
2207
2208 /**
2209 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2210 * @cm_id: Pointer to the CM ID of the channel to be drained.
2211 *
2212 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2213 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2214 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2215 * waits until all target sessions for the associated IB device have been
2216 * unregistered and target session registration involves a call to
2217 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2218 * this function has finished).
2219 */
srpt_drain_channel(struct ib_cm_id * cm_id)2220 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2221 {
2222 struct srpt_device *sdev;
2223 struct srpt_rdma_ch *ch;
2224 int ret;
2225 bool do_reset = false;
2226
2227 WARN_ON_ONCE(irqs_disabled());
2228
2229 sdev = cm_id->context;
2230 BUG_ON(!sdev);
2231 spin_lock_irq(&sdev->spinlock);
2232 list_for_each_entry(ch, &sdev->rch_list, list) {
2233 if (ch->cm_id == cm_id) {
2234 do_reset = srpt_test_and_set_ch_state(ch,
2235 CH_CONNECTING, CH_DRAINING) ||
2236 srpt_test_and_set_ch_state(ch,
2237 CH_LIVE, CH_DRAINING) ||
2238 srpt_test_and_set_ch_state(ch,
2239 CH_DISCONNECTING, CH_DRAINING);
2240 break;
2241 }
2242 }
2243 spin_unlock_irq(&sdev->spinlock);
2244
2245 if (do_reset) {
2246 if (ch->sess)
2247 srpt_shutdown_session(ch->sess);
2248
2249 ret = srpt_ch_qp_err(ch);
2250 if (ret < 0)
2251 pr_err("Setting queue pair in error state"
2252 " failed: %d\n", ret);
2253 }
2254 }
2255
2256 /**
2257 * srpt_find_channel() - Look up an RDMA channel.
2258 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2259 *
2260 * Return NULL if no matching RDMA channel has been found.
2261 */
srpt_find_channel(struct srpt_device * sdev,struct ib_cm_id * cm_id)2262 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2263 struct ib_cm_id *cm_id)
2264 {
2265 struct srpt_rdma_ch *ch;
2266 bool found;
2267
2268 WARN_ON_ONCE(irqs_disabled());
2269 BUG_ON(!sdev);
2270
2271 found = false;
2272 spin_lock_irq(&sdev->spinlock);
2273 list_for_each_entry(ch, &sdev->rch_list, list) {
2274 if (ch->cm_id == cm_id) {
2275 found = true;
2276 break;
2277 }
2278 }
2279 spin_unlock_irq(&sdev->spinlock);
2280
2281 return found ? ch : NULL;
2282 }
2283
2284 /**
2285 * srpt_release_channel() - Release channel resources.
2286 *
2287 * Schedules the actual release because:
2288 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2289 * trigger a deadlock.
2290 * - It is not safe to call TCM transport_* functions from interrupt context.
2291 */
srpt_release_channel(struct srpt_rdma_ch * ch)2292 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2293 {
2294 schedule_work(&ch->release_work);
2295 }
2296
srpt_release_channel_work(struct work_struct * w)2297 static void srpt_release_channel_work(struct work_struct *w)
2298 {
2299 struct srpt_rdma_ch *ch;
2300 struct srpt_device *sdev;
2301 struct se_session *se_sess;
2302
2303 ch = container_of(w, struct srpt_rdma_ch, release_work);
2304 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2305 ch->release_done);
2306
2307 sdev = ch->sport->sdev;
2308 BUG_ON(!sdev);
2309
2310 se_sess = ch->sess;
2311 BUG_ON(!se_sess);
2312
2313 target_wait_for_sess_cmds(se_sess);
2314
2315 transport_deregister_session_configfs(se_sess);
2316 transport_deregister_session(se_sess);
2317 ch->sess = NULL;
2318
2319 ib_destroy_cm_id(ch->cm_id);
2320
2321 srpt_destroy_ch_ib(ch);
2322
2323 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2324 ch->sport->sdev, ch->rq_size,
2325 ch->rsp_size, DMA_TO_DEVICE);
2326
2327 spin_lock_irq(&sdev->spinlock);
2328 list_del(&ch->list);
2329 spin_unlock_irq(&sdev->spinlock);
2330
2331 if (ch->release_done)
2332 complete(ch->release_done);
2333
2334 wake_up(&sdev->ch_releaseQ);
2335
2336 kfree(ch);
2337 }
2338
__srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2339 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2340 u8 i_port_id[16])
2341 {
2342 struct srpt_node_acl *nacl;
2343
2344 list_for_each_entry(nacl, &sport->port_acl_list, list)
2345 if (memcmp(nacl->i_port_id, i_port_id,
2346 sizeof(nacl->i_port_id)) == 0)
2347 return nacl;
2348
2349 return NULL;
2350 }
2351
srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2352 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2353 u8 i_port_id[16])
2354 {
2355 struct srpt_node_acl *nacl;
2356
2357 spin_lock_irq(&sport->port_acl_lock);
2358 nacl = __srpt_lookup_acl(sport, i_port_id);
2359 spin_unlock_irq(&sport->port_acl_lock);
2360
2361 return nacl;
2362 }
2363
2364 /**
2365 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2366 *
2367 * Ownership of the cm_id is transferred to the target session if this
2368 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2369 */
srpt_cm_req_recv(struct ib_cm_id * cm_id,struct ib_cm_req_event_param * param,void * private_data)2370 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2371 struct ib_cm_req_event_param *param,
2372 void *private_data)
2373 {
2374 struct srpt_device *sdev = cm_id->context;
2375 struct srpt_port *sport = &sdev->port[param->port - 1];
2376 struct srp_login_req *req;
2377 struct srp_login_rsp *rsp;
2378 struct srp_login_rej *rej;
2379 struct ib_cm_rep_param *rep_param;
2380 struct srpt_rdma_ch *ch, *tmp_ch;
2381 struct srpt_node_acl *nacl;
2382 u32 it_iu_len;
2383 int i;
2384 int ret = 0;
2385
2386 WARN_ON_ONCE(irqs_disabled());
2387
2388 if (WARN_ON(!sdev || !private_data))
2389 return -EINVAL;
2390
2391 req = (struct srp_login_req *)private_data;
2392
2393 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2394
2395 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2396 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2397 " (guid=0x%llx:0x%llx)\n",
2398 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2399 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2400 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2401 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2402 it_iu_len,
2403 param->port,
2404 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2405 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2406
2407 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2408 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2409 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2410
2411 if (!rsp || !rej || !rep_param) {
2412 ret = -ENOMEM;
2413 goto out;
2414 }
2415
2416 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2417 rej->reason = cpu_to_be32(
2418 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2419 ret = -EINVAL;
2420 pr_err("rejected SRP_LOGIN_REQ because its"
2421 " length (%d bytes) is out of range (%d .. %d)\n",
2422 it_iu_len, 64, srp_max_req_size);
2423 goto reject;
2424 }
2425
2426 if (!sport->enabled) {
2427 rej->reason = cpu_to_be32(
2428 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2429 ret = -EINVAL;
2430 pr_err("rejected SRP_LOGIN_REQ because the target port"
2431 " has not yet been enabled\n");
2432 goto reject;
2433 }
2434
2435 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2436 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2437
2438 spin_lock_irq(&sdev->spinlock);
2439
2440 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2441 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2442 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2443 && param->port == ch->sport->port
2444 && param->listen_id == ch->sport->sdev->cm_id
2445 && ch->cm_id) {
2446 enum rdma_ch_state ch_state;
2447
2448 ch_state = srpt_get_ch_state(ch);
2449 if (ch_state != CH_CONNECTING
2450 && ch_state != CH_LIVE)
2451 continue;
2452
2453 /* found an existing channel */
2454 pr_debug("Found existing channel %s"
2455 " cm_id= %p state= %d\n",
2456 ch->sess_name, ch->cm_id, ch_state);
2457
2458 __srpt_close_ch(ch);
2459
2460 rsp->rsp_flags =
2461 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2462 }
2463 }
2464
2465 spin_unlock_irq(&sdev->spinlock);
2466
2467 } else
2468 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2469
2470 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2471 || *(__be64 *)(req->target_port_id + 8) !=
2472 cpu_to_be64(srpt_service_guid)) {
2473 rej->reason = cpu_to_be32(
2474 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2475 ret = -ENOMEM;
2476 pr_err("rejected SRP_LOGIN_REQ because it"
2477 " has an invalid target port identifier.\n");
2478 goto reject;
2479 }
2480
2481 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2482 if (!ch) {
2483 rej->reason = cpu_to_be32(
2484 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2485 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2486 ret = -ENOMEM;
2487 goto reject;
2488 }
2489
2490 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2491 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2492 memcpy(ch->t_port_id, req->target_port_id, 16);
2493 ch->sport = &sdev->port[param->port - 1];
2494 ch->cm_id = cm_id;
2495 /*
2496 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2497 * for the SRP protocol to the command queue size.
2498 */
2499 ch->rq_size = SRPT_RQ_SIZE;
2500 spin_lock_init(&ch->spinlock);
2501 ch->state = CH_CONNECTING;
2502 INIT_LIST_HEAD(&ch->cmd_wait_list);
2503 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2504
2505 ch->ioctx_ring = (struct srpt_send_ioctx **)
2506 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2507 sizeof(*ch->ioctx_ring[0]),
2508 ch->rsp_size, DMA_TO_DEVICE);
2509 if (!ch->ioctx_ring)
2510 goto free_ch;
2511
2512 INIT_LIST_HEAD(&ch->free_list);
2513 for (i = 0; i < ch->rq_size; i++) {
2514 ch->ioctx_ring[i]->ch = ch;
2515 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2516 }
2517
2518 ret = srpt_create_ch_ib(ch);
2519 if (ret) {
2520 rej->reason = cpu_to_be32(
2521 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2522 pr_err("rejected SRP_LOGIN_REQ because creating"
2523 " a new RDMA channel failed.\n");
2524 goto free_ring;
2525 }
2526
2527 ret = srpt_ch_qp_rtr(ch, ch->qp);
2528 if (ret) {
2529 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2530 pr_err("rejected SRP_LOGIN_REQ because enabling"
2531 " RTR failed (error code = %d)\n", ret);
2532 goto destroy_ib;
2533 }
2534 /*
2535 * Use the initator port identifier as the session name.
2536 */
2537 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2538 be64_to_cpu(*(__be64 *)ch->i_port_id),
2539 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2540
2541 pr_debug("registering session %s\n", ch->sess_name);
2542
2543 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2544 if (!nacl) {
2545 pr_info("Rejected login because no ACL has been"
2546 " configured yet for initiator %s.\n", ch->sess_name);
2547 rej->reason = cpu_to_be32(
2548 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2549 goto destroy_ib;
2550 }
2551
2552 ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2553 if (IS_ERR(ch->sess)) {
2554 rej->reason = cpu_to_be32(
2555 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2556 pr_debug("Failed to create session\n");
2557 goto deregister_session;
2558 }
2559 ch->sess->se_node_acl = &nacl->nacl;
2560 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2561
2562 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2563 ch->sess_name, ch->cm_id);
2564
2565 /* create srp_login_response */
2566 rsp->opcode = SRP_LOGIN_RSP;
2567 rsp->tag = req->tag;
2568 rsp->max_it_iu_len = req->req_it_iu_len;
2569 rsp->max_ti_iu_len = req->req_it_iu_len;
2570 ch->max_ti_iu_len = it_iu_len;
2571 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2572 | SRP_BUF_FORMAT_INDIRECT);
2573 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2574 atomic_set(&ch->req_lim, ch->rq_size);
2575 atomic_set(&ch->req_lim_delta, 0);
2576
2577 /* create cm reply */
2578 rep_param->qp_num = ch->qp->qp_num;
2579 rep_param->private_data = (void *)rsp;
2580 rep_param->private_data_len = sizeof *rsp;
2581 rep_param->rnr_retry_count = 7;
2582 rep_param->flow_control = 1;
2583 rep_param->failover_accepted = 0;
2584 rep_param->srq = 1;
2585 rep_param->responder_resources = 4;
2586 rep_param->initiator_depth = 4;
2587
2588 ret = ib_send_cm_rep(cm_id, rep_param);
2589 if (ret) {
2590 pr_err("sending SRP_LOGIN_REQ response failed"
2591 " (error code = %d)\n", ret);
2592 goto release_channel;
2593 }
2594
2595 spin_lock_irq(&sdev->spinlock);
2596 list_add_tail(&ch->list, &sdev->rch_list);
2597 spin_unlock_irq(&sdev->spinlock);
2598
2599 goto out;
2600
2601 release_channel:
2602 srpt_set_ch_state(ch, CH_RELEASING);
2603 transport_deregister_session_configfs(ch->sess);
2604
2605 deregister_session:
2606 transport_deregister_session(ch->sess);
2607 ch->sess = NULL;
2608
2609 destroy_ib:
2610 srpt_destroy_ch_ib(ch);
2611
2612 free_ring:
2613 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2614 ch->sport->sdev, ch->rq_size,
2615 ch->rsp_size, DMA_TO_DEVICE);
2616 free_ch:
2617 kfree(ch);
2618
2619 reject:
2620 rej->opcode = SRP_LOGIN_REJ;
2621 rej->tag = req->tag;
2622 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2623 | SRP_BUF_FORMAT_INDIRECT);
2624
2625 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2626 (void *)rej, sizeof *rej);
2627
2628 out:
2629 kfree(rep_param);
2630 kfree(rsp);
2631 kfree(rej);
2632
2633 return ret;
2634 }
2635
srpt_cm_rej_recv(struct ib_cm_id * cm_id)2636 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2637 {
2638 pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2639 srpt_drain_channel(cm_id);
2640 }
2641
2642 /**
2643 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2644 *
2645 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2646 * and that the recipient may begin transmitting (RTU = ready to use).
2647 */
srpt_cm_rtu_recv(struct ib_cm_id * cm_id)2648 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2649 {
2650 struct srpt_rdma_ch *ch;
2651 int ret;
2652
2653 ch = srpt_find_channel(cm_id->context, cm_id);
2654 BUG_ON(!ch);
2655
2656 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2657 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2658
2659 ret = srpt_ch_qp_rts(ch, ch->qp);
2660
2661 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2662 wait_list) {
2663 list_del(&ioctx->wait_list);
2664 srpt_handle_new_iu(ch, ioctx, NULL);
2665 }
2666 if (ret)
2667 srpt_close_ch(ch);
2668 }
2669 }
2670
srpt_cm_timewait_exit(struct ib_cm_id * cm_id)2671 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2672 {
2673 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2674 srpt_drain_channel(cm_id);
2675 }
2676
srpt_cm_rep_error(struct ib_cm_id * cm_id)2677 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2678 {
2679 pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2680 srpt_drain_channel(cm_id);
2681 }
2682
2683 /**
2684 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2685 */
srpt_cm_dreq_recv(struct ib_cm_id * cm_id)2686 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2687 {
2688 struct srpt_rdma_ch *ch;
2689 unsigned long flags;
2690 bool send_drep = false;
2691
2692 ch = srpt_find_channel(cm_id->context, cm_id);
2693 BUG_ON(!ch);
2694
2695 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2696
2697 spin_lock_irqsave(&ch->spinlock, flags);
2698 switch (ch->state) {
2699 case CH_CONNECTING:
2700 case CH_LIVE:
2701 send_drep = true;
2702 ch->state = CH_DISCONNECTING;
2703 break;
2704 case CH_DISCONNECTING:
2705 case CH_DRAINING:
2706 case CH_RELEASING:
2707 WARN(true, "unexpected channel state %d\n", ch->state);
2708 break;
2709 }
2710 spin_unlock_irqrestore(&ch->spinlock, flags);
2711
2712 if (send_drep) {
2713 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2714 pr_err("Sending IB DREP failed.\n");
2715 pr_info("Received DREQ and sent DREP for session %s.\n",
2716 ch->sess_name);
2717 }
2718 }
2719
2720 /**
2721 * srpt_cm_drep_recv() - Process reception of a DREP message.
2722 */
srpt_cm_drep_recv(struct ib_cm_id * cm_id)2723 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2724 {
2725 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2726 srpt_drain_channel(cm_id);
2727 }
2728
2729 /**
2730 * srpt_cm_handler() - IB connection manager callback function.
2731 *
2732 * A non-zero return value will cause the caller destroy the CM ID.
2733 *
2734 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2735 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2736 * a non-zero value in any other case will trigger a race with the
2737 * ib_destroy_cm_id() call in srpt_release_channel().
2738 */
srpt_cm_handler(struct ib_cm_id * cm_id,struct ib_cm_event * event)2739 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2740 {
2741 int ret;
2742
2743 ret = 0;
2744 switch (event->event) {
2745 case IB_CM_REQ_RECEIVED:
2746 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2747 event->private_data);
2748 break;
2749 case IB_CM_REJ_RECEIVED:
2750 srpt_cm_rej_recv(cm_id);
2751 break;
2752 case IB_CM_RTU_RECEIVED:
2753 case IB_CM_USER_ESTABLISHED:
2754 srpt_cm_rtu_recv(cm_id);
2755 break;
2756 case IB_CM_DREQ_RECEIVED:
2757 srpt_cm_dreq_recv(cm_id);
2758 break;
2759 case IB_CM_DREP_RECEIVED:
2760 srpt_cm_drep_recv(cm_id);
2761 break;
2762 case IB_CM_TIMEWAIT_EXIT:
2763 srpt_cm_timewait_exit(cm_id);
2764 break;
2765 case IB_CM_REP_ERROR:
2766 srpt_cm_rep_error(cm_id);
2767 break;
2768 case IB_CM_DREQ_ERROR:
2769 pr_info("Received IB DREQ ERROR event.\n");
2770 break;
2771 case IB_CM_MRA_RECEIVED:
2772 pr_info("Received IB MRA event\n");
2773 break;
2774 default:
2775 pr_err("received unrecognized IB CM event %d\n", event->event);
2776 break;
2777 }
2778
2779 return ret;
2780 }
2781
2782 /**
2783 * srpt_perform_rdmas() - Perform IB RDMA.
2784 *
2785 * Returns zero upon success or a negative number upon failure.
2786 */
srpt_perform_rdmas(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2787 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2788 struct srpt_send_ioctx *ioctx)
2789 {
2790 struct ib_rdma_wr wr;
2791 struct ib_send_wr *bad_wr;
2792 struct rdma_iu *riu;
2793 int i;
2794 int ret;
2795 int sq_wr_avail;
2796 enum dma_data_direction dir;
2797 const int n_rdma = ioctx->n_rdma;
2798
2799 dir = ioctx->cmd.data_direction;
2800 if (dir == DMA_TO_DEVICE) {
2801 /* write */
2802 ret = -ENOMEM;
2803 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2804 if (sq_wr_avail < 0) {
2805 pr_warn("IB send queue full (needed %d)\n",
2806 n_rdma);
2807 goto out;
2808 }
2809 }
2810
2811 ioctx->rdma_aborted = false;
2812 ret = 0;
2813 riu = ioctx->rdma_ius;
2814 memset(&wr, 0, sizeof wr);
2815
2816 for (i = 0; i < n_rdma; ++i, ++riu) {
2817 if (dir == DMA_FROM_DEVICE) {
2818 wr.wr.opcode = IB_WR_RDMA_WRITE;
2819 wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2820 SRPT_RDMA_WRITE_LAST :
2821 SRPT_RDMA_MID,
2822 ioctx->ioctx.index);
2823 } else {
2824 wr.wr.opcode = IB_WR_RDMA_READ;
2825 wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2826 SRPT_RDMA_READ_LAST :
2827 SRPT_RDMA_MID,
2828 ioctx->ioctx.index);
2829 }
2830 wr.wr.next = NULL;
2831 wr.remote_addr = riu->raddr;
2832 wr.rkey = riu->rkey;
2833 wr.wr.num_sge = riu->sge_cnt;
2834 wr.wr.sg_list = riu->sge;
2835
2836 /* only get completion event for the last rdma write */
2837 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2838 wr.wr.send_flags = IB_SEND_SIGNALED;
2839
2840 ret = ib_post_send(ch->qp, &wr.wr, &bad_wr);
2841 if (ret)
2842 break;
2843 }
2844
2845 if (ret)
2846 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2847 __func__, __LINE__, ret, i, n_rdma);
2848 if (ret && i > 0) {
2849 wr.wr.num_sge = 0;
2850 wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2851 wr.wr.send_flags = IB_SEND_SIGNALED;
2852 while (ch->state == CH_LIVE &&
2853 ib_post_send(ch->qp, &wr.wr, &bad_wr) != 0) {
2854 pr_info("Trying to abort failed RDMA transfer [%d]\n",
2855 ioctx->ioctx.index);
2856 msleep(1000);
2857 }
2858 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2859 pr_info("Waiting until RDMA abort finished [%d]\n",
2860 ioctx->ioctx.index);
2861 msleep(1000);
2862 }
2863 }
2864 out:
2865 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2866 atomic_add(n_rdma, &ch->sq_wr_avail);
2867 return ret;
2868 }
2869
2870 /**
2871 * srpt_xfer_data() - Start data transfer from initiator to target.
2872 */
srpt_xfer_data(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2873 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2874 struct srpt_send_ioctx *ioctx)
2875 {
2876 int ret;
2877
2878 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2879 if (ret) {
2880 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2881 goto out;
2882 }
2883
2884 ret = srpt_perform_rdmas(ch, ioctx);
2885 if (ret) {
2886 if (ret == -EAGAIN || ret == -ENOMEM)
2887 pr_info("%s[%d] queue full -- ret=%d\n",
2888 __func__, __LINE__, ret);
2889 else
2890 pr_err("%s[%d] fatal error -- ret=%d\n",
2891 __func__, __LINE__, ret);
2892 goto out_unmap;
2893 }
2894
2895 out:
2896 return ret;
2897 out_unmap:
2898 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2899 goto out;
2900 }
2901
srpt_write_pending_status(struct se_cmd * se_cmd)2902 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2903 {
2904 struct srpt_send_ioctx *ioctx;
2905
2906 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2907 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2908 }
2909
2910 /*
2911 * srpt_write_pending() - Start data transfer from initiator to target (write).
2912 */
srpt_write_pending(struct se_cmd * se_cmd)2913 static int srpt_write_pending(struct se_cmd *se_cmd)
2914 {
2915 struct srpt_rdma_ch *ch;
2916 struct srpt_send_ioctx *ioctx;
2917 enum srpt_command_state new_state;
2918 enum rdma_ch_state ch_state;
2919 int ret;
2920
2921 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2922
2923 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2924 WARN_ON(new_state == SRPT_STATE_DONE);
2925
2926 ch = ioctx->ch;
2927 BUG_ON(!ch);
2928
2929 ch_state = srpt_get_ch_state(ch);
2930 switch (ch_state) {
2931 case CH_CONNECTING:
2932 WARN(true, "unexpected channel state %d\n", ch_state);
2933 ret = -EINVAL;
2934 goto out;
2935 case CH_LIVE:
2936 break;
2937 case CH_DISCONNECTING:
2938 case CH_DRAINING:
2939 case CH_RELEASING:
2940 pr_debug("cmd with tag %lld: channel disconnecting\n",
2941 ioctx->cmd.tag);
2942 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2943 ret = -EINVAL;
2944 goto out;
2945 }
2946 ret = srpt_xfer_data(ch, ioctx);
2947
2948 out:
2949 return ret;
2950 }
2951
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2952 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2953 {
2954 switch (tcm_mgmt_status) {
2955 case TMR_FUNCTION_COMPLETE:
2956 return SRP_TSK_MGMT_SUCCESS;
2957 case TMR_FUNCTION_REJECTED:
2958 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2959 }
2960 return SRP_TSK_MGMT_FAILED;
2961 }
2962
2963 /**
2964 * srpt_queue_response() - Transmits the response to a SCSI command.
2965 *
2966 * Callback function called by the TCM core. Must not block since it can be
2967 * invoked on the context of the IB completion handler.
2968 */
srpt_queue_response(struct se_cmd * cmd)2969 static void srpt_queue_response(struct se_cmd *cmd)
2970 {
2971 struct srpt_rdma_ch *ch;
2972 struct srpt_send_ioctx *ioctx;
2973 enum srpt_command_state state;
2974 unsigned long flags;
2975 int ret;
2976 enum dma_data_direction dir;
2977 int resp_len;
2978 u8 srp_tm_status;
2979
2980 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2981 ch = ioctx->ch;
2982 BUG_ON(!ch);
2983
2984 spin_lock_irqsave(&ioctx->spinlock, flags);
2985 state = ioctx->state;
2986 switch (state) {
2987 case SRPT_STATE_NEW:
2988 case SRPT_STATE_DATA_IN:
2989 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2990 break;
2991 case SRPT_STATE_MGMT:
2992 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2993 break;
2994 default:
2995 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2996 ch, ioctx->ioctx.index, ioctx->state);
2997 break;
2998 }
2999 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3000
3001 if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
3002 return;
3003
3004 dir = ioctx->cmd.data_direction;
3005
3006 /* For read commands, transfer the data to the initiator. */
3007 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3008 !ioctx->queue_status_only) {
3009 ret = srpt_xfer_data(ch, ioctx);
3010 if (ret) {
3011 pr_err("xfer_data failed for tag %llu\n",
3012 ioctx->cmd.tag);
3013 return;
3014 }
3015 }
3016
3017 if (state != SRPT_STATE_MGMT)
3018 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3019 cmd->scsi_status);
3020 else {
3021 srp_tm_status
3022 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3023 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3024 ioctx->cmd.tag);
3025 }
3026 ret = srpt_post_send(ch, ioctx, resp_len);
3027 if (ret) {
3028 pr_err("sending cmd response failed for tag %llu\n",
3029 ioctx->cmd.tag);
3030 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3031 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3032 target_put_sess_cmd(&ioctx->cmd);
3033 }
3034 }
3035
srpt_queue_data_in(struct se_cmd * cmd)3036 static int srpt_queue_data_in(struct se_cmd *cmd)
3037 {
3038 srpt_queue_response(cmd);
3039 return 0;
3040 }
3041
srpt_queue_tm_rsp(struct se_cmd * cmd)3042 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3043 {
3044 srpt_queue_response(cmd);
3045 }
3046
srpt_aborted_task(struct se_cmd * cmd)3047 static void srpt_aborted_task(struct se_cmd *cmd)
3048 {
3049 struct srpt_send_ioctx *ioctx = container_of(cmd,
3050 struct srpt_send_ioctx, cmd);
3051
3052 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3053 }
3054
srpt_queue_status(struct se_cmd * cmd)3055 static int srpt_queue_status(struct se_cmd *cmd)
3056 {
3057 struct srpt_send_ioctx *ioctx;
3058
3059 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3060 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3061 if (cmd->se_cmd_flags &
3062 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3063 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3064 ioctx->queue_status_only = true;
3065 srpt_queue_response(cmd);
3066 return 0;
3067 }
3068
srpt_refresh_port_work(struct work_struct * work)3069 static void srpt_refresh_port_work(struct work_struct *work)
3070 {
3071 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3072
3073 srpt_refresh_port(sport);
3074 }
3075
srpt_ch_list_empty(struct srpt_device * sdev)3076 static int srpt_ch_list_empty(struct srpt_device *sdev)
3077 {
3078 int res;
3079
3080 spin_lock_irq(&sdev->spinlock);
3081 res = list_empty(&sdev->rch_list);
3082 spin_unlock_irq(&sdev->spinlock);
3083
3084 return res;
3085 }
3086
3087 /**
3088 * srpt_release_sdev() - Free the channel resources associated with a target.
3089 */
srpt_release_sdev(struct srpt_device * sdev)3090 static int srpt_release_sdev(struct srpt_device *sdev)
3091 {
3092 struct srpt_rdma_ch *ch, *tmp_ch;
3093 int res;
3094
3095 WARN_ON_ONCE(irqs_disabled());
3096
3097 BUG_ON(!sdev);
3098
3099 spin_lock_irq(&sdev->spinlock);
3100 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3101 __srpt_close_ch(ch);
3102 spin_unlock_irq(&sdev->spinlock);
3103
3104 res = wait_event_interruptible(sdev->ch_releaseQ,
3105 srpt_ch_list_empty(sdev));
3106 if (res)
3107 pr_err("%s: interrupted.\n", __func__);
3108
3109 return 0;
3110 }
3111
__srpt_lookup_port(const char * name)3112 static struct srpt_port *__srpt_lookup_port(const char *name)
3113 {
3114 struct ib_device *dev;
3115 struct srpt_device *sdev;
3116 struct srpt_port *sport;
3117 int i;
3118
3119 list_for_each_entry(sdev, &srpt_dev_list, list) {
3120 dev = sdev->device;
3121 if (!dev)
3122 continue;
3123
3124 for (i = 0; i < dev->phys_port_cnt; i++) {
3125 sport = &sdev->port[i];
3126
3127 if (!strcmp(sport->port_guid, name))
3128 return sport;
3129 }
3130 }
3131
3132 return NULL;
3133 }
3134
srpt_lookup_port(const char * name)3135 static struct srpt_port *srpt_lookup_port(const char *name)
3136 {
3137 struct srpt_port *sport;
3138
3139 spin_lock(&srpt_dev_lock);
3140 sport = __srpt_lookup_port(name);
3141 spin_unlock(&srpt_dev_lock);
3142
3143 return sport;
3144 }
3145
3146 /**
3147 * srpt_add_one() - Infiniband device addition callback function.
3148 */
srpt_add_one(struct ib_device * device)3149 static void srpt_add_one(struct ib_device *device)
3150 {
3151 struct srpt_device *sdev;
3152 struct srpt_port *sport;
3153 struct ib_srq_init_attr srq_attr;
3154 int i;
3155
3156 pr_debug("device = %p, device->dma_ops = %p\n", device,
3157 device->dma_ops);
3158
3159 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3160 if (!sdev)
3161 goto err;
3162
3163 sdev->device = device;
3164 INIT_LIST_HEAD(&sdev->rch_list);
3165 init_waitqueue_head(&sdev->ch_releaseQ);
3166 spin_lock_init(&sdev->spinlock);
3167
3168 if (ib_query_device(device, &sdev->dev_attr))
3169 goto free_dev;
3170
3171 sdev->pd = ib_alloc_pd(device);
3172 if (IS_ERR(sdev->pd))
3173 goto free_dev;
3174
3175 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3176
3177 srq_attr.event_handler = srpt_srq_event;
3178 srq_attr.srq_context = (void *)sdev;
3179 srq_attr.attr.max_wr = sdev->srq_size;
3180 srq_attr.attr.max_sge = 1;
3181 srq_attr.attr.srq_limit = 0;
3182 srq_attr.srq_type = IB_SRQT_BASIC;
3183
3184 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3185 if (IS_ERR(sdev->srq))
3186 goto err_pd;
3187
3188 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3189 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3190 device->name);
3191
3192 if (!srpt_service_guid)
3193 srpt_service_guid = be64_to_cpu(device->node_guid);
3194
3195 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3196 if (IS_ERR(sdev->cm_id))
3197 goto err_srq;
3198
3199 /* print out target login information */
3200 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3201 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3202 srpt_service_guid, srpt_service_guid);
3203
3204 /*
3205 * We do not have a consistent service_id (ie. also id_ext of target_id)
3206 * to identify this target. We currently use the guid of the first HCA
3207 * in the system as service_id; therefore, the target_id will change
3208 * if this HCA is gone bad and replaced by different HCA
3209 */
3210 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
3211 goto err_cm;
3212
3213 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3214 srpt_event_handler);
3215 if (ib_register_event_handler(&sdev->event_handler))
3216 goto err_cm;
3217
3218 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3219 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3220 sizeof(*sdev->ioctx_ring[0]),
3221 srp_max_req_size, DMA_FROM_DEVICE);
3222 if (!sdev->ioctx_ring)
3223 goto err_event;
3224
3225 for (i = 0; i < sdev->srq_size; ++i)
3226 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3227
3228 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3229
3230 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3231 sport = &sdev->port[i - 1];
3232 sport->sdev = sdev;
3233 sport->port = i;
3234 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3235 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3236 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3237 INIT_WORK(&sport->work, srpt_refresh_port_work);
3238 INIT_LIST_HEAD(&sport->port_acl_list);
3239 spin_lock_init(&sport->port_acl_lock);
3240
3241 if (srpt_refresh_port(sport)) {
3242 pr_err("MAD registration failed for %s-%d.\n",
3243 srpt_sdev_name(sdev), i);
3244 goto err_ring;
3245 }
3246 snprintf(sport->port_guid, sizeof(sport->port_guid),
3247 "0x%016llx%016llx",
3248 be64_to_cpu(sport->gid.global.subnet_prefix),
3249 be64_to_cpu(sport->gid.global.interface_id));
3250 }
3251
3252 spin_lock(&srpt_dev_lock);
3253 list_add_tail(&sdev->list, &srpt_dev_list);
3254 spin_unlock(&srpt_dev_lock);
3255
3256 out:
3257 ib_set_client_data(device, &srpt_client, sdev);
3258 pr_debug("added %s.\n", device->name);
3259 return;
3260
3261 err_ring:
3262 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3263 sdev->srq_size, srp_max_req_size,
3264 DMA_FROM_DEVICE);
3265 err_event:
3266 ib_unregister_event_handler(&sdev->event_handler);
3267 err_cm:
3268 ib_destroy_cm_id(sdev->cm_id);
3269 err_srq:
3270 ib_destroy_srq(sdev->srq);
3271 err_pd:
3272 ib_dealloc_pd(sdev->pd);
3273 free_dev:
3274 kfree(sdev);
3275 err:
3276 sdev = NULL;
3277 pr_info("%s(%s) failed.\n", __func__, device->name);
3278 goto out;
3279 }
3280
3281 /**
3282 * srpt_remove_one() - InfiniBand device removal callback function.
3283 */
srpt_remove_one(struct ib_device * device,void * client_data)3284 static void srpt_remove_one(struct ib_device *device, void *client_data)
3285 {
3286 struct srpt_device *sdev = client_data;
3287 int i;
3288
3289 if (!sdev) {
3290 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3291 return;
3292 }
3293
3294 srpt_unregister_mad_agent(sdev);
3295
3296 ib_unregister_event_handler(&sdev->event_handler);
3297
3298 /* Cancel any work queued by the just unregistered IB event handler. */
3299 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3300 cancel_work_sync(&sdev->port[i].work);
3301
3302 ib_destroy_cm_id(sdev->cm_id);
3303
3304 /*
3305 * Unregistering a target must happen after destroying sdev->cm_id
3306 * such that no new SRP_LOGIN_REQ information units can arrive while
3307 * destroying the target.
3308 */
3309 spin_lock(&srpt_dev_lock);
3310 list_del(&sdev->list);
3311 spin_unlock(&srpt_dev_lock);
3312 srpt_release_sdev(sdev);
3313
3314 ib_destroy_srq(sdev->srq);
3315 ib_dealloc_pd(sdev->pd);
3316
3317 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3318 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3319 sdev->ioctx_ring = NULL;
3320 kfree(sdev);
3321 }
3322
3323 static struct ib_client srpt_client = {
3324 .name = DRV_NAME,
3325 .add = srpt_add_one,
3326 .remove = srpt_remove_one
3327 };
3328
srpt_check_true(struct se_portal_group * se_tpg)3329 static int srpt_check_true(struct se_portal_group *se_tpg)
3330 {
3331 return 1;
3332 }
3333
srpt_check_false(struct se_portal_group * se_tpg)3334 static int srpt_check_false(struct se_portal_group *se_tpg)
3335 {
3336 return 0;
3337 }
3338
srpt_get_fabric_name(void)3339 static char *srpt_get_fabric_name(void)
3340 {
3341 return "srpt";
3342 }
3343
srpt_get_fabric_wwn(struct se_portal_group * tpg)3344 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3345 {
3346 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3347
3348 return sport->port_guid;
3349 }
3350
srpt_get_tag(struct se_portal_group * tpg)3351 static u16 srpt_get_tag(struct se_portal_group *tpg)
3352 {
3353 return 1;
3354 }
3355
srpt_tpg_get_inst_index(struct se_portal_group * se_tpg)3356 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3357 {
3358 return 1;
3359 }
3360
srpt_release_cmd(struct se_cmd * se_cmd)3361 static void srpt_release_cmd(struct se_cmd *se_cmd)
3362 {
3363 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3364 struct srpt_send_ioctx, cmd);
3365 struct srpt_rdma_ch *ch = ioctx->ch;
3366 unsigned long flags;
3367
3368 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3369 WARN_ON(ioctx->mapped_sg_count != 0);
3370
3371 if (ioctx->n_rbuf > 1) {
3372 kfree(ioctx->rbufs);
3373 ioctx->rbufs = NULL;
3374 ioctx->n_rbuf = 0;
3375 }
3376
3377 spin_lock_irqsave(&ch->spinlock, flags);
3378 list_add(&ioctx->free_list, &ch->free_list);
3379 spin_unlock_irqrestore(&ch->spinlock, flags);
3380 }
3381
3382 /**
3383 * srpt_close_session() - Forcibly close a session.
3384 *
3385 * Callback function invoked by the TCM core to clean up sessions associated
3386 * with a node ACL when the user invokes
3387 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3388 */
srpt_close_session(struct se_session * se_sess)3389 static void srpt_close_session(struct se_session *se_sess)
3390 {
3391 DECLARE_COMPLETION_ONSTACK(release_done);
3392 struct srpt_rdma_ch *ch;
3393 struct srpt_device *sdev;
3394 unsigned long res;
3395
3396 ch = se_sess->fabric_sess_ptr;
3397 WARN_ON(ch->sess != se_sess);
3398
3399 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3400
3401 sdev = ch->sport->sdev;
3402 spin_lock_irq(&sdev->spinlock);
3403 BUG_ON(ch->release_done);
3404 ch->release_done = &release_done;
3405 __srpt_close_ch(ch);
3406 spin_unlock_irq(&sdev->spinlock);
3407
3408 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3409 WARN_ON(res == 0);
3410 }
3411
3412 /**
3413 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3414 *
3415 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3416 * This object represents an arbitrary integer used to uniquely identify a
3417 * particular attached remote initiator port to a particular SCSI target port
3418 * within a particular SCSI target device within a particular SCSI instance.
3419 */
srpt_sess_get_index(struct se_session * se_sess)3420 static u32 srpt_sess_get_index(struct se_session *se_sess)
3421 {
3422 return 0;
3423 }
3424
srpt_set_default_node_attrs(struct se_node_acl * nacl)3425 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3426 {
3427 }
3428
3429 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3430 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3431 {
3432 struct srpt_send_ioctx *ioctx;
3433
3434 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3435 return srpt_get_cmd_state(ioctx);
3436 }
3437
3438 /**
3439 * srpt_parse_i_port_id() - Parse an initiator port ID.
3440 * @name: ASCII representation of a 128-bit initiator port ID.
3441 * @i_port_id: Binary 128-bit port ID.
3442 */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3443 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3444 {
3445 const char *p;
3446 unsigned len, count, leading_zero_bytes;
3447 int ret;
3448
3449 p = name;
3450 if (strncasecmp(p, "0x", 2) == 0)
3451 p += 2;
3452 ret = -EINVAL;
3453 len = strlen(p);
3454 if (len % 2)
3455 goto out;
3456 count = min(len / 2, 16U);
3457 leading_zero_bytes = 16 - count;
3458 memset(i_port_id, 0, leading_zero_bytes);
3459 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3460 if (ret < 0)
3461 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
3462 out:
3463 return ret;
3464 }
3465
3466 /*
3467 * configfs callback function invoked for
3468 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3469 */
srpt_init_nodeacl(struct se_node_acl * se_nacl,const char * name)3470 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3471 {
3472 struct srpt_port *sport =
3473 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3474 struct srpt_node_acl *nacl =
3475 container_of(se_nacl, struct srpt_node_acl, nacl);
3476 u8 i_port_id[16];
3477
3478 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3479 pr_err("invalid initiator port ID %s\n", name);
3480 return -EINVAL;
3481 }
3482
3483 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3484 nacl->sport = sport;
3485
3486 spin_lock_irq(&sport->port_acl_lock);
3487 list_add_tail(&nacl->list, &sport->port_acl_list);
3488 spin_unlock_irq(&sport->port_acl_lock);
3489
3490 return 0;
3491 }
3492
3493 /*
3494 * configfs callback function invoked for
3495 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3496 */
srpt_cleanup_nodeacl(struct se_node_acl * se_nacl)3497 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3498 {
3499 struct srpt_node_acl *nacl =
3500 container_of(se_nacl, struct srpt_node_acl, nacl);
3501 struct srpt_port *sport = nacl->sport;
3502
3503 spin_lock_irq(&sport->port_acl_lock);
3504 list_del(&nacl->list);
3505 spin_unlock_irq(&sport->port_acl_lock);
3506 }
3507
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item * item,char * page)3508 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3509 char *page)
3510 {
3511 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3512 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3513
3514 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3515 }
3516
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item * item,const char * page,size_t count)3517 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3518 const char *page, size_t count)
3519 {
3520 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3521 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3522 unsigned long val;
3523 int ret;
3524
3525 ret = kstrtoul(page, 0, &val);
3526 if (ret < 0) {
3527 pr_err("kstrtoul() failed with ret: %d\n", ret);
3528 return -EINVAL;
3529 }
3530 if (val > MAX_SRPT_RDMA_SIZE) {
3531 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3532 MAX_SRPT_RDMA_SIZE);
3533 return -EINVAL;
3534 }
3535 if (val < DEFAULT_MAX_RDMA_SIZE) {
3536 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3537 val, DEFAULT_MAX_RDMA_SIZE);
3538 return -EINVAL;
3539 }
3540 sport->port_attrib.srp_max_rdma_size = val;
3541
3542 return count;
3543 }
3544
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item * item,char * page)3545 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3546 char *page)
3547 {
3548 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3549 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3550
3551 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3552 }
3553
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item * item,const char * page,size_t count)3554 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3555 const char *page, size_t count)
3556 {
3557 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3558 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3559 unsigned long val;
3560 int ret;
3561
3562 ret = kstrtoul(page, 0, &val);
3563 if (ret < 0) {
3564 pr_err("kstrtoul() failed with ret: %d\n", ret);
3565 return -EINVAL;
3566 }
3567 if (val > MAX_SRPT_RSP_SIZE) {
3568 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3569 MAX_SRPT_RSP_SIZE);
3570 return -EINVAL;
3571 }
3572 if (val < MIN_MAX_RSP_SIZE) {
3573 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3574 MIN_MAX_RSP_SIZE);
3575 return -EINVAL;
3576 }
3577 sport->port_attrib.srp_max_rsp_size = val;
3578
3579 return count;
3580 }
3581
srpt_tpg_attrib_srp_sq_size_show(struct config_item * item,char * page)3582 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3583 char *page)
3584 {
3585 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3586 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3587
3588 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3589 }
3590
srpt_tpg_attrib_srp_sq_size_store(struct config_item * item,const char * page,size_t count)3591 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3592 const char *page, size_t count)
3593 {
3594 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3595 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3596 unsigned long val;
3597 int ret;
3598
3599 ret = kstrtoul(page, 0, &val);
3600 if (ret < 0) {
3601 pr_err("kstrtoul() failed with ret: %d\n", ret);
3602 return -EINVAL;
3603 }
3604 if (val > MAX_SRPT_SRQ_SIZE) {
3605 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3606 MAX_SRPT_SRQ_SIZE);
3607 return -EINVAL;
3608 }
3609 if (val < MIN_SRPT_SRQ_SIZE) {
3610 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3611 MIN_SRPT_SRQ_SIZE);
3612 return -EINVAL;
3613 }
3614 sport->port_attrib.srp_sq_size = val;
3615
3616 return count;
3617 }
3618
3619 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3620 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3621 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3622
3623 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3624 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3625 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3626 &srpt_tpg_attrib_attr_srp_sq_size,
3627 NULL,
3628 };
3629
srpt_tpg_enable_show(struct config_item * item,char * page)3630 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3631 {
3632 struct se_portal_group *se_tpg = to_tpg(item);
3633 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3634
3635 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3636 }
3637
srpt_tpg_enable_store(struct config_item * item,const char * page,size_t count)3638 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3639 const char *page, size_t count)
3640 {
3641 struct se_portal_group *se_tpg = to_tpg(item);
3642 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3643 unsigned long tmp;
3644 int ret;
3645
3646 ret = kstrtoul(page, 0, &tmp);
3647 if (ret < 0) {
3648 pr_err("Unable to extract srpt_tpg_store_enable\n");
3649 return -EINVAL;
3650 }
3651
3652 if ((tmp != 0) && (tmp != 1)) {
3653 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3654 return -EINVAL;
3655 }
3656 if (tmp == 1)
3657 sport->enabled = true;
3658 else
3659 sport->enabled = false;
3660
3661 return count;
3662 }
3663
3664 CONFIGFS_ATTR(srpt_tpg_, enable);
3665
3666 static struct configfs_attribute *srpt_tpg_attrs[] = {
3667 &srpt_tpg_attr_enable,
3668 NULL,
3669 };
3670
3671 /**
3672 * configfs callback invoked for
3673 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3674 */
srpt_make_tpg(struct se_wwn * wwn,struct config_group * group,const char * name)3675 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3676 struct config_group *group,
3677 const char *name)
3678 {
3679 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3680 int res;
3681
3682 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3683 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3684 if (res)
3685 return ERR_PTR(res);
3686
3687 return &sport->port_tpg_1;
3688 }
3689
3690 /**
3691 * configfs callback invoked for
3692 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3693 */
srpt_drop_tpg(struct se_portal_group * tpg)3694 static void srpt_drop_tpg(struct se_portal_group *tpg)
3695 {
3696 struct srpt_port *sport = container_of(tpg,
3697 struct srpt_port, port_tpg_1);
3698
3699 sport->enabled = false;
3700 core_tpg_deregister(&sport->port_tpg_1);
3701 }
3702
3703 /**
3704 * configfs callback invoked for
3705 * mkdir /sys/kernel/config/target/$driver/$port
3706 */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3707 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3708 struct config_group *group,
3709 const char *name)
3710 {
3711 struct srpt_port *sport;
3712 int ret;
3713
3714 sport = srpt_lookup_port(name);
3715 pr_debug("make_tport(%s)\n", name);
3716 ret = -EINVAL;
3717 if (!sport)
3718 goto err;
3719
3720 return &sport->port_wwn;
3721
3722 err:
3723 return ERR_PTR(ret);
3724 }
3725
3726 /**
3727 * configfs callback invoked for
3728 * rmdir /sys/kernel/config/target/$driver/$port
3729 */
srpt_drop_tport(struct se_wwn * wwn)3730 static void srpt_drop_tport(struct se_wwn *wwn)
3731 {
3732 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3733
3734 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3735 }
3736
srpt_wwn_version_show(struct config_item * item,char * buf)3737 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3738 {
3739 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3740 }
3741
3742 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3743
3744 static struct configfs_attribute *srpt_wwn_attrs[] = {
3745 &srpt_wwn_attr_version,
3746 NULL,
3747 };
3748
3749 static const struct target_core_fabric_ops srpt_template = {
3750 .module = THIS_MODULE,
3751 .name = "srpt",
3752 .node_acl_size = sizeof(struct srpt_node_acl),
3753 .get_fabric_name = srpt_get_fabric_name,
3754 .tpg_get_wwn = srpt_get_fabric_wwn,
3755 .tpg_get_tag = srpt_get_tag,
3756 .tpg_check_demo_mode = srpt_check_false,
3757 .tpg_check_demo_mode_cache = srpt_check_true,
3758 .tpg_check_demo_mode_write_protect = srpt_check_true,
3759 .tpg_check_prod_mode_write_protect = srpt_check_false,
3760 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3761 .release_cmd = srpt_release_cmd,
3762 .check_stop_free = srpt_check_stop_free,
3763 .shutdown_session = srpt_shutdown_session,
3764 .close_session = srpt_close_session,
3765 .sess_get_index = srpt_sess_get_index,
3766 .sess_get_initiator_sid = NULL,
3767 .write_pending = srpt_write_pending,
3768 .write_pending_status = srpt_write_pending_status,
3769 .set_default_node_attributes = srpt_set_default_node_attrs,
3770 .get_cmd_state = srpt_get_tcm_cmd_state,
3771 .queue_data_in = srpt_queue_data_in,
3772 .queue_status = srpt_queue_status,
3773 .queue_tm_rsp = srpt_queue_tm_rsp,
3774 .aborted_task = srpt_aborted_task,
3775 /*
3776 * Setup function pointers for generic logic in
3777 * target_core_fabric_configfs.c
3778 */
3779 .fabric_make_wwn = srpt_make_tport,
3780 .fabric_drop_wwn = srpt_drop_tport,
3781 .fabric_make_tpg = srpt_make_tpg,
3782 .fabric_drop_tpg = srpt_drop_tpg,
3783 .fabric_init_nodeacl = srpt_init_nodeacl,
3784 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl,
3785
3786 .tfc_wwn_attrs = srpt_wwn_attrs,
3787 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3788 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3789 };
3790
3791 /**
3792 * srpt_init_module() - Kernel module initialization.
3793 *
3794 * Note: Since ib_register_client() registers callback functions, and since at
3795 * least one of these callback functions (srpt_add_one()) calls target core
3796 * functions, this driver must be registered with the target core before
3797 * ib_register_client() is called.
3798 */
srpt_init_module(void)3799 static int __init srpt_init_module(void)
3800 {
3801 int ret;
3802
3803 ret = -EINVAL;
3804 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3805 pr_err("invalid value %d for kernel module parameter"
3806 " srp_max_req_size -- must be at least %d.\n",
3807 srp_max_req_size, MIN_MAX_REQ_SIZE);
3808 goto out;
3809 }
3810
3811 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3812 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3813 pr_err("invalid value %d for kernel module parameter"
3814 " srpt_srq_size -- must be in the range [%d..%d].\n",
3815 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3816 goto out;
3817 }
3818
3819 ret = target_register_template(&srpt_template);
3820 if (ret)
3821 goto out;
3822
3823 ret = ib_register_client(&srpt_client);
3824 if (ret) {
3825 pr_err("couldn't register IB client\n");
3826 goto out_unregister_target;
3827 }
3828
3829 return 0;
3830
3831 out_unregister_target:
3832 target_unregister_template(&srpt_template);
3833 out:
3834 return ret;
3835 }
3836
srpt_cleanup_module(void)3837 static void __exit srpt_cleanup_module(void)
3838 {
3839 ib_unregister_client(&srpt_client);
3840 target_unregister_template(&srpt_template);
3841 }
3842
3843 module_init(srpt_init_module);
3844 module_exit(srpt_cleanup_module);
3845