• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *	- SMMUv1 and v2 implementations
23  *	- Stream-matching and stream-indexing
24  *	- v7/v8 long-descriptor format
25  *	- Non-secure access to the SMMU
26  *	- Context fault reporting
27  */
28 
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30 
31 #include <linux/delay.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/iommu.h>
37 #include <linux/iopoll.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/of_address.h>
41 #include <linux/pci.h>
42 #include <linux/platform_device.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
45 
46 #include <linux/amba/bus.h>
47 
48 #include "io-pgtable.h"
49 
50 /* Maximum number of stream IDs assigned to a single device */
51 #define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
52 
53 /* Maximum number of context banks per SMMU */
54 #define ARM_SMMU_MAX_CBS		128
55 
56 /* Maximum number of mapping groups per SMMU */
57 #define ARM_SMMU_MAX_SMRS		128
58 
59 /* SMMU global address space */
60 #define ARM_SMMU_GR0(smmu)		((smmu)->base)
61 #define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
62 
63 /*
64  * SMMU global address space with conditional offset to access secure
65  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
66  * nsGFSYNR0: 0x450)
67  */
68 #define ARM_SMMU_GR0_NS(smmu)						\
69 	((smmu)->base +							\
70 		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
71 			? 0x400 : 0))
72 
73 #ifdef CONFIG_64BIT
74 #define smmu_writeq	writeq_relaxed
75 #else
76 #define smmu_writeq(reg64, addr)				\
77 	do {							\
78 		u64 __val = (reg64);				\
79 		void __iomem *__addr = (addr);			\
80 		writel_relaxed(__val >> 32, __addr + 4);	\
81 		writel_relaxed(__val, __addr);			\
82 	} while (0)
83 #endif
84 
85 /* Configuration registers */
86 #define ARM_SMMU_GR0_sCR0		0x0
87 #define sCR0_CLIENTPD			(1 << 0)
88 #define sCR0_GFRE			(1 << 1)
89 #define sCR0_GFIE			(1 << 2)
90 #define sCR0_GCFGFRE			(1 << 4)
91 #define sCR0_GCFGFIE			(1 << 5)
92 #define sCR0_USFCFG			(1 << 10)
93 #define sCR0_VMIDPNE			(1 << 11)
94 #define sCR0_PTM			(1 << 12)
95 #define sCR0_FB				(1 << 13)
96 #define sCR0_BSU_SHIFT			14
97 #define sCR0_BSU_MASK			0x3
98 
99 /* Identification registers */
100 #define ARM_SMMU_GR0_ID0		0x20
101 #define ARM_SMMU_GR0_ID1		0x24
102 #define ARM_SMMU_GR0_ID2		0x28
103 #define ARM_SMMU_GR0_ID3		0x2c
104 #define ARM_SMMU_GR0_ID4		0x30
105 #define ARM_SMMU_GR0_ID5		0x34
106 #define ARM_SMMU_GR0_ID6		0x38
107 #define ARM_SMMU_GR0_ID7		0x3c
108 #define ARM_SMMU_GR0_sGFSR		0x48
109 #define ARM_SMMU_GR0_sGFSYNR0		0x50
110 #define ARM_SMMU_GR0_sGFSYNR1		0x54
111 #define ARM_SMMU_GR0_sGFSYNR2		0x58
112 
113 #define ID0_S1TS			(1 << 30)
114 #define ID0_S2TS			(1 << 29)
115 #define ID0_NTS				(1 << 28)
116 #define ID0_SMS				(1 << 27)
117 #define ID0_ATOSNS			(1 << 26)
118 #define ID0_CTTW			(1 << 14)
119 #define ID0_NUMIRPT_SHIFT		16
120 #define ID0_NUMIRPT_MASK		0xff
121 #define ID0_NUMSIDB_SHIFT		9
122 #define ID0_NUMSIDB_MASK		0xf
123 #define ID0_NUMSMRG_SHIFT		0
124 #define ID0_NUMSMRG_MASK		0xff
125 
126 #define ID1_PAGESIZE			(1 << 31)
127 #define ID1_NUMPAGENDXB_SHIFT		28
128 #define ID1_NUMPAGENDXB_MASK		7
129 #define ID1_NUMS2CB_SHIFT		16
130 #define ID1_NUMS2CB_MASK		0xff
131 #define ID1_NUMCB_SHIFT			0
132 #define ID1_NUMCB_MASK			0xff
133 
134 #define ID2_OAS_SHIFT			4
135 #define ID2_OAS_MASK			0xf
136 #define ID2_IAS_SHIFT			0
137 #define ID2_IAS_MASK			0xf
138 #define ID2_UBS_SHIFT			8
139 #define ID2_UBS_MASK			0xf
140 #define ID2_PTFS_4K			(1 << 12)
141 #define ID2_PTFS_16K			(1 << 13)
142 #define ID2_PTFS_64K			(1 << 14)
143 
144 /* Global TLB invalidation */
145 #define ARM_SMMU_GR0_TLBIVMID		0x64
146 #define ARM_SMMU_GR0_TLBIALLNSNH	0x68
147 #define ARM_SMMU_GR0_TLBIALLH		0x6c
148 #define ARM_SMMU_GR0_sTLBGSYNC		0x70
149 #define ARM_SMMU_GR0_sTLBGSTATUS	0x74
150 #define sTLBGSTATUS_GSACTIVE		(1 << 0)
151 #define TLB_LOOP_TIMEOUT		1000000	/* 1s! */
152 
153 /* Stream mapping registers */
154 #define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
155 #define SMR_VALID			(1 << 31)
156 #define SMR_MASK_SHIFT			16
157 #define SMR_MASK_MASK			0x7fff
158 #define SMR_ID_SHIFT			0
159 #define SMR_ID_MASK			0x7fff
160 
161 #define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
162 #define S2CR_CBNDX_SHIFT		0
163 #define S2CR_CBNDX_MASK			0xff
164 #define S2CR_TYPE_SHIFT			16
165 #define S2CR_TYPE_MASK			0x3
166 #define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
167 #define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
168 #define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)
169 
170 /* Context bank attribute registers */
171 #define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
172 #define CBAR_VMID_SHIFT			0
173 #define CBAR_VMID_MASK			0xff
174 #define CBAR_S1_BPSHCFG_SHIFT		8
175 #define CBAR_S1_BPSHCFG_MASK		3
176 #define CBAR_S1_BPSHCFG_NSH		3
177 #define CBAR_S1_MEMATTR_SHIFT		12
178 #define CBAR_S1_MEMATTR_MASK		0xf
179 #define CBAR_S1_MEMATTR_WB		0xf
180 #define CBAR_TYPE_SHIFT			16
181 #define CBAR_TYPE_MASK			0x3
182 #define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
183 #define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
184 #define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
185 #define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
186 #define CBAR_IRPTNDX_SHIFT		24
187 #define CBAR_IRPTNDX_MASK		0xff
188 
189 #define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
190 #define CBA2R_RW64_32BIT		(0 << 0)
191 #define CBA2R_RW64_64BIT		(1 << 0)
192 
193 /* Translation context bank */
194 #define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
195 #define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
196 
197 #define ARM_SMMU_CB_SCTLR		0x0
198 #define ARM_SMMU_CB_RESUME		0x8
199 #define ARM_SMMU_CB_TTBCR2		0x10
200 #define ARM_SMMU_CB_TTBR0		0x20
201 #define ARM_SMMU_CB_TTBR1		0x28
202 #define ARM_SMMU_CB_TTBCR		0x30
203 #define ARM_SMMU_CB_S1_MAIR0		0x38
204 #define ARM_SMMU_CB_S1_MAIR1		0x3c
205 #define ARM_SMMU_CB_PAR_LO		0x50
206 #define ARM_SMMU_CB_PAR_HI		0x54
207 #define ARM_SMMU_CB_FSR			0x58
208 #define ARM_SMMU_CB_FAR_LO		0x60
209 #define ARM_SMMU_CB_FAR_HI		0x64
210 #define ARM_SMMU_CB_FSYNR0		0x68
211 #define ARM_SMMU_CB_S1_TLBIVA		0x600
212 #define ARM_SMMU_CB_S1_TLBIASID		0x610
213 #define ARM_SMMU_CB_S1_TLBIVAL		0x620
214 #define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
215 #define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
216 #define ARM_SMMU_CB_ATS1PR		0x800
217 #define ARM_SMMU_CB_ATSR		0x8f0
218 
219 #define SCTLR_S1_ASIDPNE		(1 << 12)
220 #define SCTLR_CFCFG			(1 << 7)
221 #define SCTLR_CFIE			(1 << 6)
222 #define SCTLR_CFRE			(1 << 5)
223 #define SCTLR_E				(1 << 4)
224 #define SCTLR_AFE			(1 << 2)
225 #define SCTLR_TRE			(1 << 1)
226 #define SCTLR_M				(1 << 0)
227 #define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)
228 
229 #define CB_PAR_F			(1 << 0)
230 
231 #define ATSR_ACTIVE			(1 << 0)
232 
233 #define RESUME_RETRY			(0 << 0)
234 #define RESUME_TERMINATE		(1 << 0)
235 
236 #define TTBCR2_SEP_SHIFT		15
237 #define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
238 
239 #define TTBRn_ASID_SHIFT		48
240 
241 #define FSR_MULTI			(1 << 31)
242 #define FSR_SS				(1 << 30)
243 #define FSR_UUT				(1 << 8)
244 #define FSR_ASF				(1 << 7)
245 #define FSR_TLBLKF			(1 << 6)
246 #define FSR_TLBMCF			(1 << 5)
247 #define FSR_EF				(1 << 4)
248 #define FSR_PF				(1 << 3)
249 #define FSR_AFF				(1 << 2)
250 #define FSR_TF				(1 << 1)
251 
252 #define FSR_IGN				(FSR_AFF | FSR_ASF | \
253 					 FSR_TLBMCF | FSR_TLBLKF)
254 #define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
255 					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
256 
257 #define FSYNR0_WNR			(1 << 4)
258 
259 static int force_stage;
260 module_param_named(force_stage, force_stage, int, S_IRUGO);
261 MODULE_PARM_DESC(force_stage,
262 	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
263 
264 enum arm_smmu_arch_version {
265 	ARM_SMMU_V1 = 1,
266 	ARM_SMMU_V2,
267 };
268 
269 struct arm_smmu_smr {
270 	u8				idx;
271 	u16				mask;
272 	u16				id;
273 };
274 
275 struct arm_smmu_master_cfg {
276 	int				num_streamids;
277 	u16				streamids[MAX_MASTER_STREAMIDS];
278 	struct arm_smmu_smr		*smrs;
279 };
280 
281 struct arm_smmu_master {
282 	struct device_node		*of_node;
283 	struct rb_node			node;
284 	struct arm_smmu_master_cfg	cfg;
285 };
286 
287 struct arm_smmu_device {
288 	struct device			*dev;
289 
290 	void __iomem			*base;
291 	unsigned long			size;
292 	unsigned long			pgshift;
293 
294 #define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
295 #define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
296 #define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
297 #define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
298 #define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
299 #define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
300 	u32				features;
301 
302 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
303 	u32				options;
304 	enum arm_smmu_arch_version	version;
305 
306 	u32				num_context_banks;
307 	u32				num_s2_context_banks;
308 	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
309 	atomic_t			irptndx;
310 
311 	u32				num_mapping_groups;
312 	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
313 
314 	unsigned long			va_size;
315 	unsigned long			ipa_size;
316 	unsigned long			pa_size;
317 
318 	u32				num_global_irqs;
319 	u32				num_context_irqs;
320 	unsigned int			*irqs;
321 
322 	struct list_head		list;
323 	struct rb_root			masters;
324 };
325 
326 struct arm_smmu_cfg {
327 	u8				cbndx;
328 	u8				irptndx;
329 	u32				cbar;
330 };
331 #define INVALID_IRPTNDX			0xff
332 
333 #define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
334 #define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)
335 
336 enum arm_smmu_domain_stage {
337 	ARM_SMMU_DOMAIN_S1 = 0,
338 	ARM_SMMU_DOMAIN_S2,
339 	ARM_SMMU_DOMAIN_NESTED,
340 };
341 
342 struct arm_smmu_domain {
343 	struct arm_smmu_device		*smmu;
344 	struct io_pgtable_ops		*pgtbl_ops;
345 	spinlock_t			pgtbl_lock;
346 	struct arm_smmu_cfg		cfg;
347 	enum arm_smmu_domain_stage	stage;
348 	struct mutex			init_mutex; /* Protects smmu pointer */
349 	struct iommu_domain		domain;
350 };
351 
352 static struct iommu_ops arm_smmu_ops;
353 
354 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
355 static LIST_HEAD(arm_smmu_devices);
356 
357 struct arm_smmu_option_prop {
358 	u32 opt;
359 	const char *prop;
360 };
361 
362 static struct arm_smmu_option_prop arm_smmu_options[] = {
363 	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
364 	{ 0, NULL},
365 };
366 
to_smmu_domain(struct iommu_domain * dom)367 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
368 {
369 	return container_of(dom, struct arm_smmu_domain, domain);
370 }
371 
parse_driver_options(struct arm_smmu_device * smmu)372 static void parse_driver_options(struct arm_smmu_device *smmu)
373 {
374 	int i = 0;
375 
376 	do {
377 		if (of_property_read_bool(smmu->dev->of_node,
378 						arm_smmu_options[i].prop)) {
379 			smmu->options |= arm_smmu_options[i].opt;
380 			dev_notice(smmu->dev, "option %s\n",
381 				arm_smmu_options[i].prop);
382 		}
383 	} while (arm_smmu_options[++i].opt);
384 }
385 
dev_get_dev_node(struct device * dev)386 static struct device_node *dev_get_dev_node(struct device *dev)
387 {
388 	if (dev_is_pci(dev)) {
389 		struct pci_bus *bus = to_pci_dev(dev)->bus;
390 
391 		while (!pci_is_root_bus(bus))
392 			bus = bus->parent;
393 		return bus->bridge->parent->of_node;
394 	}
395 
396 	return dev->of_node;
397 }
398 
find_smmu_master(struct arm_smmu_device * smmu,struct device_node * dev_node)399 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
400 						struct device_node *dev_node)
401 {
402 	struct rb_node *node = smmu->masters.rb_node;
403 
404 	while (node) {
405 		struct arm_smmu_master *master;
406 
407 		master = container_of(node, struct arm_smmu_master, node);
408 
409 		if (dev_node < master->of_node)
410 			node = node->rb_left;
411 		else if (dev_node > master->of_node)
412 			node = node->rb_right;
413 		else
414 			return master;
415 	}
416 
417 	return NULL;
418 }
419 
420 static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct device * dev)421 find_smmu_master_cfg(struct device *dev)
422 {
423 	struct arm_smmu_master_cfg *cfg = NULL;
424 	struct iommu_group *group = iommu_group_get(dev);
425 
426 	if (group) {
427 		cfg = iommu_group_get_iommudata(group);
428 		iommu_group_put(group);
429 	}
430 
431 	return cfg;
432 }
433 
insert_smmu_master(struct arm_smmu_device * smmu,struct arm_smmu_master * master)434 static int insert_smmu_master(struct arm_smmu_device *smmu,
435 			      struct arm_smmu_master *master)
436 {
437 	struct rb_node **new, *parent;
438 
439 	new = &smmu->masters.rb_node;
440 	parent = NULL;
441 	while (*new) {
442 		struct arm_smmu_master *this
443 			= container_of(*new, struct arm_smmu_master, node);
444 
445 		parent = *new;
446 		if (master->of_node < this->of_node)
447 			new = &((*new)->rb_left);
448 		else if (master->of_node > this->of_node)
449 			new = &((*new)->rb_right);
450 		else
451 			return -EEXIST;
452 	}
453 
454 	rb_link_node(&master->node, parent, new);
455 	rb_insert_color(&master->node, &smmu->masters);
456 	return 0;
457 }
458 
register_smmu_master(struct arm_smmu_device * smmu,struct device * dev,struct of_phandle_args * masterspec)459 static int register_smmu_master(struct arm_smmu_device *smmu,
460 				struct device *dev,
461 				struct of_phandle_args *masterspec)
462 {
463 	int i;
464 	struct arm_smmu_master *master;
465 
466 	master = find_smmu_master(smmu, masterspec->np);
467 	if (master) {
468 		dev_err(dev,
469 			"rejecting multiple registrations for master device %s\n",
470 			masterspec->np->name);
471 		return -EBUSY;
472 	}
473 
474 	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
475 		dev_err(dev,
476 			"reached maximum number (%d) of stream IDs for master device %s\n",
477 			MAX_MASTER_STREAMIDS, masterspec->np->name);
478 		return -ENOSPC;
479 	}
480 
481 	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
482 	if (!master)
483 		return -ENOMEM;
484 
485 	master->of_node			= masterspec->np;
486 	master->cfg.num_streamids	= masterspec->args_count;
487 
488 	for (i = 0; i < master->cfg.num_streamids; ++i) {
489 		u16 streamid = masterspec->args[i];
490 
491 		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
492 		     (streamid >= smmu->num_mapping_groups)) {
493 			dev_err(dev,
494 				"stream ID for master device %s greater than maximum allowed (%d)\n",
495 				masterspec->np->name, smmu->num_mapping_groups);
496 			return -ERANGE;
497 		}
498 		master->cfg.streamids[i] = streamid;
499 	}
500 	return insert_smmu_master(smmu, master);
501 }
502 
find_smmu_for_device(struct device * dev)503 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
504 {
505 	struct arm_smmu_device *smmu;
506 	struct arm_smmu_master *master = NULL;
507 	struct device_node *dev_node = dev_get_dev_node(dev);
508 
509 	spin_lock(&arm_smmu_devices_lock);
510 	list_for_each_entry(smmu, &arm_smmu_devices, list) {
511 		master = find_smmu_master(smmu, dev_node);
512 		if (master)
513 			break;
514 	}
515 	spin_unlock(&arm_smmu_devices_lock);
516 
517 	return master ? smmu : NULL;
518 }
519 
__arm_smmu_alloc_bitmap(unsigned long * map,int start,int end)520 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
521 {
522 	int idx;
523 
524 	do {
525 		idx = find_next_zero_bit(map, end, start);
526 		if (idx == end)
527 			return -ENOSPC;
528 	} while (test_and_set_bit(idx, map));
529 
530 	return idx;
531 }
532 
__arm_smmu_free_bitmap(unsigned long * map,int idx)533 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
534 {
535 	clear_bit(idx, map);
536 }
537 
538 /* Wait for any pending TLB invalidations to complete */
__arm_smmu_tlb_sync(struct arm_smmu_device * smmu)539 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
540 {
541 	int count = 0;
542 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
543 
544 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
545 	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
546 	       & sTLBGSTATUS_GSACTIVE) {
547 		cpu_relax();
548 		if (++count == TLB_LOOP_TIMEOUT) {
549 			dev_err_ratelimited(smmu->dev,
550 			"TLB sync timed out -- SMMU may be deadlocked\n");
551 			return;
552 		}
553 		udelay(1);
554 	}
555 }
556 
arm_smmu_tlb_sync(void * cookie)557 static void arm_smmu_tlb_sync(void *cookie)
558 {
559 	struct arm_smmu_domain *smmu_domain = cookie;
560 	__arm_smmu_tlb_sync(smmu_domain->smmu);
561 }
562 
arm_smmu_tlb_inv_context(void * cookie)563 static void arm_smmu_tlb_inv_context(void *cookie)
564 {
565 	struct arm_smmu_domain *smmu_domain = cookie;
566 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
567 	struct arm_smmu_device *smmu = smmu_domain->smmu;
568 	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
569 	void __iomem *base;
570 
571 	if (stage1) {
572 		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
573 		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
574 			       base + ARM_SMMU_CB_S1_TLBIASID);
575 	} else {
576 		base = ARM_SMMU_GR0(smmu);
577 		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
578 			       base + ARM_SMMU_GR0_TLBIVMID);
579 	}
580 
581 	__arm_smmu_tlb_sync(smmu);
582 }
583 
arm_smmu_tlb_inv_range_nosync(unsigned long iova,size_t size,bool leaf,void * cookie)584 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
585 					  bool leaf, void *cookie)
586 {
587 	struct arm_smmu_domain *smmu_domain = cookie;
588 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
589 	struct arm_smmu_device *smmu = smmu_domain->smmu;
590 	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
591 	void __iomem *reg;
592 
593 	if (stage1) {
594 		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
595 		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
596 
597 		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
598 			iova &= ~12UL;
599 			iova |= ARM_SMMU_CB_ASID(cfg);
600 			writel_relaxed(iova, reg);
601 #ifdef CONFIG_64BIT
602 		} else {
603 			iova >>= 12;
604 			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
605 			writeq_relaxed(iova, reg);
606 #endif
607 		}
608 #ifdef CONFIG_64BIT
609 	} else if (smmu->version == ARM_SMMU_V2) {
610 		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
611 		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
612 			      ARM_SMMU_CB_S2_TLBIIPAS2;
613 		writeq_relaxed(iova >> 12, reg);
614 #endif
615 	} else {
616 		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
617 		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
618 	}
619 }
620 
621 static struct iommu_gather_ops arm_smmu_gather_ops = {
622 	.tlb_flush_all	= arm_smmu_tlb_inv_context,
623 	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
624 	.tlb_sync	= arm_smmu_tlb_sync,
625 };
626 
arm_smmu_context_fault(int irq,void * dev)627 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
628 {
629 	int flags, ret;
630 	u32 fsr, far, fsynr, resume;
631 	unsigned long iova;
632 	struct iommu_domain *domain = dev;
633 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
634 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
635 	struct arm_smmu_device *smmu = smmu_domain->smmu;
636 	void __iomem *cb_base;
637 
638 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
639 	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
640 
641 	if (!(fsr & FSR_FAULT))
642 		return IRQ_NONE;
643 
644 	if (fsr & FSR_IGN)
645 		dev_err_ratelimited(smmu->dev,
646 				    "Unexpected context fault (fsr 0x%x)\n",
647 				    fsr);
648 
649 	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
650 	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
651 
652 	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
653 	iova = far;
654 #ifdef CONFIG_64BIT
655 	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
656 	iova |= ((unsigned long)far << 32);
657 #endif
658 
659 	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
660 		ret = IRQ_HANDLED;
661 		resume = RESUME_RETRY;
662 	} else {
663 		dev_err_ratelimited(smmu->dev,
664 		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
665 		    iova, fsynr, cfg->cbndx);
666 		ret = IRQ_NONE;
667 		resume = RESUME_TERMINATE;
668 	}
669 
670 	/* Clear the faulting FSR */
671 	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
672 
673 	/* Retry or terminate any stalled transactions */
674 	if (fsr & FSR_SS)
675 		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
676 
677 	return ret;
678 }
679 
arm_smmu_global_fault(int irq,void * dev)680 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
681 {
682 	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
683 	struct arm_smmu_device *smmu = dev;
684 	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
685 
686 	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
687 	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
688 	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
689 	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
690 
691 	if (!gfsr)
692 		return IRQ_NONE;
693 
694 	dev_err_ratelimited(smmu->dev,
695 		"Unexpected global fault, this could be serious\n");
696 	dev_err_ratelimited(smmu->dev,
697 		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
698 		gfsr, gfsynr0, gfsynr1, gfsynr2);
699 
700 	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
701 	return IRQ_HANDLED;
702 }
703 
arm_smmu_init_context_bank(struct arm_smmu_domain * smmu_domain,struct io_pgtable_cfg * pgtbl_cfg)704 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
705 				       struct io_pgtable_cfg *pgtbl_cfg)
706 {
707 	u32 reg;
708 	u64 reg64;
709 	bool stage1;
710 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
711 	struct arm_smmu_device *smmu = smmu_domain->smmu;
712 	void __iomem *cb_base, *gr1_base;
713 
714 	gr1_base = ARM_SMMU_GR1(smmu);
715 	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
716 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
717 
718 	if (smmu->version > ARM_SMMU_V1) {
719 		/*
720 		 * CBA2R.
721 		 * *Must* be initialised before CBAR thanks to VMID16
722 		 * architectural oversight affected some implementations.
723 		 */
724 #ifdef CONFIG_64BIT
725 		reg = CBA2R_RW64_64BIT;
726 #else
727 		reg = CBA2R_RW64_32BIT;
728 #endif
729 		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
730 	}
731 
732 	/* CBAR */
733 	reg = cfg->cbar;
734 	if (smmu->version == ARM_SMMU_V1)
735 		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
736 
737 	/*
738 	 * Use the weakest shareability/memory types, so they are
739 	 * overridden by the ttbcr/pte.
740 	 */
741 	if (stage1) {
742 		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
743 			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
744 	} else {
745 		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
746 	}
747 	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
748 
749 	/* TTBRs */
750 	if (stage1) {
751 		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
752 
753 		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
754 		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
755 
756 		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
757 		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
758 		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
759 	} else {
760 		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
761 		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
762 	}
763 
764 	/* TTBCR */
765 	if (stage1) {
766 		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
767 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
768 		if (smmu->version > ARM_SMMU_V1) {
769 			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
770 			reg |= TTBCR2_SEP_UPSTREAM;
771 			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
772 		}
773 	} else {
774 		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
775 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
776 	}
777 
778 	/* MAIRs (stage-1 only) */
779 	if (stage1) {
780 		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
781 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
782 		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
783 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
784 	}
785 
786 	/* SCTLR */
787 	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
788 	if (stage1)
789 		reg |= SCTLR_S1_ASIDPNE;
790 #ifdef __BIG_ENDIAN
791 	reg |= SCTLR_E;
792 #endif
793 	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
794 }
795 
arm_smmu_init_domain_context(struct iommu_domain * domain,struct arm_smmu_device * smmu)796 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
797 					struct arm_smmu_device *smmu)
798 {
799 	int irq, start, ret = 0;
800 	unsigned long ias, oas;
801 	struct io_pgtable_ops *pgtbl_ops;
802 	struct io_pgtable_cfg pgtbl_cfg;
803 	enum io_pgtable_fmt fmt;
804 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
805 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
806 
807 	mutex_lock(&smmu_domain->init_mutex);
808 	if (smmu_domain->smmu)
809 		goto out_unlock;
810 
811 	/*
812 	 * Mapping the requested stage onto what we support is surprisingly
813 	 * complicated, mainly because the spec allows S1+S2 SMMUs without
814 	 * support for nested translation. That means we end up with the
815 	 * following table:
816 	 *
817 	 * Requested        Supported        Actual
818 	 *     S1               N              S1
819 	 *     S1             S1+S2            S1
820 	 *     S1               S2             S2
821 	 *     S1               S1             S1
822 	 *     N                N              N
823 	 *     N              S1+S2            S2
824 	 *     N                S2             S2
825 	 *     N                S1             S1
826 	 *
827 	 * Note that you can't actually request stage-2 mappings.
828 	 */
829 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
830 		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
831 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
832 		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
833 
834 	switch (smmu_domain->stage) {
835 	case ARM_SMMU_DOMAIN_S1:
836 		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
837 		start = smmu->num_s2_context_banks;
838 		ias = smmu->va_size;
839 		oas = smmu->ipa_size;
840 		if (IS_ENABLED(CONFIG_64BIT))
841 			fmt = ARM_64_LPAE_S1;
842 		else
843 			fmt = ARM_32_LPAE_S1;
844 		break;
845 	case ARM_SMMU_DOMAIN_NESTED:
846 		/*
847 		 * We will likely want to change this if/when KVM gets
848 		 * involved.
849 		 */
850 	case ARM_SMMU_DOMAIN_S2:
851 		cfg->cbar = CBAR_TYPE_S2_TRANS;
852 		start = 0;
853 		ias = smmu->ipa_size;
854 		oas = smmu->pa_size;
855 		if (IS_ENABLED(CONFIG_64BIT))
856 			fmt = ARM_64_LPAE_S2;
857 		else
858 			fmt = ARM_32_LPAE_S2;
859 		break;
860 	default:
861 		ret = -EINVAL;
862 		goto out_unlock;
863 	}
864 
865 	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
866 				      smmu->num_context_banks);
867 	if (IS_ERR_VALUE(ret))
868 		goto out_unlock;
869 
870 	cfg->cbndx = ret;
871 	if (smmu->version == ARM_SMMU_V1) {
872 		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
873 		cfg->irptndx %= smmu->num_context_irqs;
874 	} else {
875 		cfg->irptndx = cfg->cbndx;
876 	}
877 
878 	pgtbl_cfg = (struct io_pgtable_cfg) {
879 		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
880 		.ias		= ias,
881 		.oas		= oas,
882 		.tlb		= &arm_smmu_gather_ops,
883 		.iommu_dev	= smmu->dev,
884 	};
885 
886 	smmu_domain->smmu = smmu;
887 	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
888 	if (!pgtbl_ops) {
889 		ret = -ENOMEM;
890 		goto out_clear_smmu;
891 	}
892 
893 	/* Update our support page sizes to reflect the page table format */
894 	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
895 
896 	/* Initialise the context bank with our page table cfg */
897 	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
898 
899 	/*
900 	 * Request context fault interrupt. Do this last to avoid the
901 	 * handler seeing a half-initialised domain state.
902 	 */
903 	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
904 	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
905 			  "arm-smmu-context-fault", domain);
906 	if (IS_ERR_VALUE(ret)) {
907 		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
908 			cfg->irptndx, irq);
909 		cfg->irptndx = INVALID_IRPTNDX;
910 	}
911 
912 	mutex_unlock(&smmu_domain->init_mutex);
913 
914 	/* Publish page table ops for map/unmap */
915 	smmu_domain->pgtbl_ops = pgtbl_ops;
916 	return 0;
917 
918 out_clear_smmu:
919 	smmu_domain->smmu = NULL;
920 out_unlock:
921 	mutex_unlock(&smmu_domain->init_mutex);
922 	return ret;
923 }
924 
arm_smmu_destroy_domain_context(struct iommu_domain * domain)925 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
926 {
927 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
928 	struct arm_smmu_device *smmu = smmu_domain->smmu;
929 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
930 	void __iomem *cb_base;
931 	int irq;
932 
933 	if (!smmu)
934 		return;
935 
936 	/*
937 	 * Disable the context bank and free the page tables before freeing
938 	 * it.
939 	 */
940 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
941 	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
942 
943 	if (cfg->irptndx != INVALID_IRPTNDX) {
944 		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
945 		free_irq(irq, domain);
946 	}
947 
948 	if (smmu_domain->pgtbl_ops)
949 		free_io_pgtable_ops(smmu_domain->pgtbl_ops);
950 
951 	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
952 }
953 
arm_smmu_domain_alloc(unsigned type)954 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
955 {
956 	struct arm_smmu_domain *smmu_domain;
957 
958 	if (type != IOMMU_DOMAIN_UNMANAGED)
959 		return NULL;
960 	/*
961 	 * Allocate the domain and initialise some of its data structures.
962 	 * We can't really do anything meaningful until we've added a
963 	 * master.
964 	 */
965 	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
966 	if (!smmu_domain)
967 		return NULL;
968 
969 	mutex_init(&smmu_domain->init_mutex);
970 	spin_lock_init(&smmu_domain->pgtbl_lock);
971 
972 	return &smmu_domain->domain;
973 }
974 
arm_smmu_domain_free(struct iommu_domain * domain)975 static void arm_smmu_domain_free(struct iommu_domain *domain)
976 {
977 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
978 
979 	/*
980 	 * Free the domain resources. We assume that all devices have
981 	 * already been detached.
982 	 */
983 	arm_smmu_destroy_domain_context(domain);
984 	kfree(smmu_domain);
985 }
986 
arm_smmu_master_configure_smrs(struct arm_smmu_device * smmu,struct arm_smmu_master_cfg * cfg)987 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
988 					  struct arm_smmu_master_cfg *cfg)
989 {
990 	int i;
991 	struct arm_smmu_smr *smrs;
992 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
993 
994 	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
995 		return 0;
996 
997 	if (cfg->smrs)
998 		return -EEXIST;
999 
1000 	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1001 	if (!smrs) {
1002 		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1003 			cfg->num_streamids);
1004 		return -ENOMEM;
1005 	}
1006 
1007 	/* Allocate the SMRs on the SMMU */
1008 	for (i = 0; i < cfg->num_streamids; ++i) {
1009 		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1010 						  smmu->num_mapping_groups);
1011 		if (IS_ERR_VALUE(idx)) {
1012 			dev_err(smmu->dev, "failed to allocate free SMR\n");
1013 			goto err_free_smrs;
1014 		}
1015 
1016 		smrs[i] = (struct arm_smmu_smr) {
1017 			.idx	= idx,
1018 			.mask	= 0, /* We don't currently share SMRs */
1019 			.id	= cfg->streamids[i],
1020 		};
1021 	}
1022 
1023 	/* It worked! Now, poke the actual hardware */
1024 	for (i = 0; i < cfg->num_streamids; ++i) {
1025 		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1026 			  smrs[i].mask << SMR_MASK_SHIFT;
1027 		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1028 	}
1029 
1030 	cfg->smrs = smrs;
1031 	return 0;
1032 
1033 err_free_smrs:
1034 	while (--i >= 0)
1035 		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1036 	kfree(smrs);
1037 	return -ENOSPC;
1038 }
1039 
arm_smmu_master_free_smrs(struct arm_smmu_device * smmu,struct arm_smmu_master_cfg * cfg)1040 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1041 				      struct arm_smmu_master_cfg *cfg)
1042 {
1043 	int i;
1044 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1045 	struct arm_smmu_smr *smrs = cfg->smrs;
1046 
1047 	if (!smrs)
1048 		return;
1049 
1050 	/* Invalidate the SMRs before freeing back to the allocator */
1051 	for (i = 0; i < cfg->num_streamids; ++i) {
1052 		u8 idx = smrs[i].idx;
1053 
1054 		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1055 		__arm_smmu_free_bitmap(smmu->smr_map, idx);
1056 	}
1057 
1058 	cfg->smrs = NULL;
1059 	kfree(smrs);
1060 }
1061 
arm_smmu_domain_add_master(struct arm_smmu_domain * smmu_domain,struct arm_smmu_master_cfg * cfg)1062 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1063 				      struct arm_smmu_master_cfg *cfg)
1064 {
1065 	int i, ret;
1066 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1067 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1068 
1069 	/* Devices in an IOMMU group may already be configured */
1070 	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1071 	if (ret)
1072 		return ret == -EEXIST ? 0 : ret;
1073 
1074 	for (i = 0; i < cfg->num_streamids; ++i) {
1075 		u32 idx, s2cr;
1076 
1077 		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1078 		s2cr = S2CR_TYPE_TRANS |
1079 		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1080 		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1081 	}
1082 
1083 	return 0;
1084 }
1085 
arm_smmu_domain_remove_master(struct arm_smmu_domain * smmu_domain,struct arm_smmu_master_cfg * cfg)1086 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1087 					  struct arm_smmu_master_cfg *cfg)
1088 {
1089 	int i;
1090 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1091 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1092 
1093 	/* An IOMMU group is torn down by the first device to be removed */
1094 	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1095 		return;
1096 
1097 	/*
1098 	 * We *must* clear the S2CR first, because freeing the SMR means
1099 	 * that it can be re-allocated immediately.
1100 	 */
1101 	for (i = 0; i < cfg->num_streamids; ++i) {
1102 		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1103 
1104 		writel_relaxed(S2CR_TYPE_BYPASS,
1105 			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
1106 	}
1107 
1108 	arm_smmu_master_free_smrs(smmu, cfg);
1109 }
1110 
arm_smmu_attach_dev(struct iommu_domain * domain,struct device * dev)1111 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1112 {
1113 	int ret;
1114 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1115 	struct arm_smmu_device *smmu;
1116 	struct arm_smmu_master_cfg *cfg;
1117 
1118 	smmu = find_smmu_for_device(dev);
1119 	if (!smmu) {
1120 		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1121 		return -ENXIO;
1122 	}
1123 
1124 	if (dev->archdata.iommu) {
1125 		dev_err(dev, "already attached to IOMMU domain\n");
1126 		return -EEXIST;
1127 	}
1128 
1129 	/* Ensure that the domain is finalised */
1130 	ret = arm_smmu_init_domain_context(domain, smmu);
1131 	if (IS_ERR_VALUE(ret))
1132 		return ret;
1133 
1134 	/*
1135 	 * Sanity check the domain. We don't support domains across
1136 	 * different SMMUs.
1137 	 */
1138 	if (smmu_domain->smmu != smmu) {
1139 		dev_err(dev,
1140 			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1141 			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1142 		return -EINVAL;
1143 	}
1144 
1145 	/* Looks ok, so add the device to the domain */
1146 	cfg = find_smmu_master_cfg(dev);
1147 	if (!cfg)
1148 		return -ENODEV;
1149 
1150 	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1151 	if (!ret)
1152 		dev->archdata.iommu = domain;
1153 	return ret;
1154 }
1155 
arm_smmu_detach_dev(struct iommu_domain * domain,struct device * dev)1156 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1157 {
1158 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1159 	struct arm_smmu_master_cfg *cfg;
1160 
1161 	cfg = find_smmu_master_cfg(dev);
1162 	if (!cfg)
1163 		return;
1164 
1165 	dev->archdata.iommu = NULL;
1166 	arm_smmu_domain_remove_master(smmu_domain, cfg);
1167 }
1168 
arm_smmu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)1169 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1170 			phys_addr_t paddr, size_t size, int prot)
1171 {
1172 	int ret;
1173 	unsigned long flags;
1174 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1175 	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1176 
1177 	if (!ops)
1178 		return -ENODEV;
1179 
1180 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1181 	ret = ops->map(ops, iova, paddr, size, prot);
1182 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1183 	return ret;
1184 }
1185 
arm_smmu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)1186 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1187 			     size_t size)
1188 {
1189 	size_t ret;
1190 	unsigned long flags;
1191 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1192 	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1193 
1194 	if (!ops)
1195 		return 0;
1196 
1197 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1198 	ret = ops->unmap(ops, iova, size);
1199 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1200 	return ret;
1201 }
1202 
arm_smmu_iova_to_phys_hard(struct iommu_domain * domain,dma_addr_t iova)1203 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1204 					      dma_addr_t iova)
1205 {
1206 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1207 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1208 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1209 	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1210 	struct device *dev = smmu->dev;
1211 	void __iomem *cb_base;
1212 	u32 tmp;
1213 	u64 phys;
1214 	unsigned long va;
1215 
1216 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1217 
1218 	/* ATS1 registers can only be written atomically */
1219 	va = iova & ~0xfffUL;
1220 	if (smmu->version == ARM_SMMU_V2)
1221 		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1222 	else
1223 		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1224 
1225 	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1226 				      !(tmp & ATSR_ACTIVE), 5, 50)) {
1227 		dev_err(dev,
1228 			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1229 			&iova);
1230 		return ops->iova_to_phys(ops, iova);
1231 	}
1232 
1233 	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1234 	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1235 
1236 	if (phys & CB_PAR_F) {
1237 		dev_err(dev, "translation fault!\n");
1238 		dev_err(dev, "PAR = 0x%llx\n", phys);
1239 		return 0;
1240 	}
1241 
1242 	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1243 }
1244 
arm_smmu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)1245 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1246 					dma_addr_t iova)
1247 {
1248 	phys_addr_t ret;
1249 	unsigned long flags;
1250 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1251 	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1252 
1253 	if (!ops)
1254 		return 0;
1255 
1256 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1257 	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1258 			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1259 		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1260 	} else {
1261 		ret = ops->iova_to_phys(ops, iova);
1262 	}
1263 
1264 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1265 
1266 	return ret;
1267 }
1268 
arm_smmu_capable(enum iommu_cap cap)1269 static bool arm_smmu_capable(enum iommu_cap cap)
1270 {
1271 	switch (cap) {
1272 	case IOMMU_CAP_CACHE_COHERENCY:
1273 		/*
1274 		 * Return true here as the SMMU can always send out coherent
1275 		 * requests.
1276 		 */
1277 		return true;
1278 	case IOMMU_CAP_INTR_REMAP:
1279 		return true; /* MSIs are just memory writes */
1280 	case IOMMU_CAP_NOEXEC:
1281 		return true;
1282 	default:
1283 		return false;
1284 	}
1285 }
1286 
__arm_smmu_get_pci_sid(struct pci_dev * pdev,u16 alias,void * data)1287 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1288 {
1289 	*((u16 *)data) = alias;
1290 	return 0; /* Continue walking */
1291 }
1292 
__arm_smmu_release_pci_iommudata(void * data)1293 static void __arm_smmu_release_pci_iommudata(void *data)
1294 {
1295 	kfree(data);
1296 }
1297 
arm_smmu_init_pci_device(struct pci_dev * pdev,struct iommu_group * group)1298 static int arm_smmu_init_pci_device(struct pci_dev *pdev,
1299 				    struct iommu_group *group)
1300 {
1301 	struct arm_smmu_master_cfg *cfg;
1302 	u16 sid;
1303 	int i;
1304 
1305 	cfg = iommu_group_get_iommudata(group);
1306 	if (!cfg) {
1307 		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1308 		if (!cfg)
1309 			return -ENOMEM;
1310 
1311 		iommu_group_set_iommudata(group, cfg,
1312 					  __arm_smmu_release_pci_iommudata);
1313 	}
1314 
1315 	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
1316 		return -ENOSPC;
1317 
1318 	/*
1319 	 * Assume Stream ID == Requester ID for now.
1320 	 * We need a way to describe the ID mappings in FDT.
1321 	 */
1322 	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1323 	for (i = 0; i < cfg->num_streamids; ++i)
1324 		if (cfg->streamids[i] == sid)
1325 			break;
1326 
1327 	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1328 	if (i == cfg->num_streamids)
1329 		cfg->streamids[cfg->num_streamids++] = sid;
1330 
1331 	return 0;
1332 }
1333 
arm_smmu_init_platform_device(struct device * dev,struct iommu_group * group)1334 static int arm_smmu_init_platform_device(struct device *dev,
1335 					 struct iommu_group *group)
1336 {
1337 	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1338 	struct arm_smmu_master *master;
1339 
1340 	if (!smmu)
1341 		return -ENODEV;
1342 
1343 	master = find_smmu_master(smmu, dev->of_node);
1344 	if (!master)
1345 		return -ENODEV;
1346 
1347 	iommu_group_set_iommudata(group, &master->cfg, NULL);
1348 
1349 	return 0;
1350 }
1351 
arm_smmu_add_device(struct device * dev)1352 static int arm_smmu_add_device(struct device *dev)
1353 {
1354 	struct iommu_group *group;
1355 
1356 	group = iommu_group_get_for_dev(dev);
1357 	if (IS_ERR(group))
1358 		return PTR_ERR(group);
1359 
1360 	return 0;
1361 }
1362 
arm_smmu_remove_device(struct device * dev)1363 static void arm_smmu_remove_device(struct device *dev)
1364 {
1365 	iommu_group_remove_device(dev);
1366 }
1367 
arm_smmu_device_group(struct device * dev)1368 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1369 {
1370 	struct iommu_group *group;
1371 	int ret;
1372 
1373 	if (dev_is_pci(dev))
1374 		group = pci_device_group(dev);
1375 	else
1376 		group = generic_device_group(dev);
1377 
1378 	if (IS_ERR(group))
1379 		return group;
1380 
1381 	if (dev_is_pci(dev))
1382 		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
1383 	else
1384 		ret = arm_smmu_init_platform_device(dev, group);
1385 
1386 	if (ret) {
1387 		iommu_group_put(group);
1388 		group = ERR_PTR(ret);
1389 	}
1390 
1391 	return group;
1392 }
1393 
arm_smmu_domain_get_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)1394 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1395 				    enum iommu_attr attr, void *data)
1396 {
1397 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1398 
1399 	switch (attr) {
1400 	case DOMAIN_ATTR_NESTING:
1401 		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1402 		return 0;
1403 	default:
1404 		return -ENODEV;
1405 	}
1406 }
1407 
arm_smmu_domain_set_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)1408 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1409 				    enum iommu_attr attr, void *data)
1410 {
1411 	int ret = 0;
1412 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1413 
1414 	mutex_lock(&smmu_domain->init_mutex);
1415 
1416 	switch (attr) {
1417 	case DOMAIN_ATTR_NESTING:
1418 		if (smmu_domain->smmu) {
1419 			ret = -EPERM;
1420 			goto out_unlock;
1421 		}
1422 
1423 		if (*(int *)data)
1424 			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1425 		else
1426 			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1427 
1428 		break;
1429 	default:
1430 		ret = -ENODEV;
1431 	}
1432 
1433 out_unlock:
1434 	mutex_unlock(&smmu_domain->init_mutex);
1435 	return ret;
1436 }
1437 
1438 static struct iommu_ops arm_smmu_ops = {
1439 	.capable		= arm_smmu_capable,
1440 	.domain_alloc		= arm_smmu_domain_alloc,
1441 	.domain_free		= arm_smmu_domain_free,
1442 	.attach_dev		= arm_smmu_attach_dev,
1443 	.detach_dev		= arm_smmu_detach_dev,
1444 	.map			= arm_smmu_map,
1445 	.unmap			= arm_smmu_unmap,
1446 	.map_sg			= default_iommu_map_sg,
1447 	.iova_to_phys		= arm_smmu_iova_to_phys,
1448 	.add_device		= arm_smmu_add_device,
1449 	.remove_device		= arm_smmu_remove_device,
1450 	.device_group		= arm_smmu_device_group,
1451 	.domain_get_attr	= arm_smmu_domain_get_attr,
1452 	.domain_set_attr	= arm_smmu_domain_set_attr,
1453 	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1454 };
1455 
arm_smmu_device_reset(struct arm_smmu_device * smmu)1456 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1457 {
1458 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1459 	void __iomem *cb_base;
1460 	int i = 0;
1461 	u32 reg;
1462 
1463 	/* clear global FSR */
1464 	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1465 	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1466 
1467 	/* Mark all SMRn as invalid and all S2CRn as bypass */
1468 	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1469 		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1470 		writel_relaxed(S2CR_TYPE_BYPASS,
1471 			gr0_base + ARM_SMMU_GR0_S2CR(i));
1472 	}
1473 
1474 	/* Make sure all context banks are disabled and clear CB_FSR  */
1475 	for (i = 0; i < smmu->num_context_banks; ++i) {
1476 		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1477 		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1478 		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1479 	}
1480 
1481 	/* Invalidate the TLB, just in case */
1482 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1483 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1484 
1485 	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1486 
1487 	/* Enable fault reporting */
1488 	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1489 
1490 	/* Disable TLB broadcasting. */
1491 	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1492 
1493 	/* Enable client access, but bypass when no mapping is found */
1494 	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1495 
1496 	/* Disable forced broadcasting */
1497 	reg &= ~sCR0_FB;
1498 
1499 	/* Don't upgrade barriers */
1500 	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1501 
1502 	/* Push the button */
1503 	__arm_smmu_tlb_sync(smmu);
1504 	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1505 }
1506 
arm_smmu_id_size_to_bits(int size)1507 static int arm_smmu_id_size_to_bits(int size)
1508 {
1509 	switch (size) {
1510 	case 0:
1511 		return 32;
1512 	case 1:
1513 		return 36;
1514 	case 2:
1515 		return 40;
1516 	case 3:
1517 		return 42;
1518 	case 4:
1519 		return 44;
1520 	case 5:
1521 	default:
1522 		return 48;
1523 	}
1524 }
1525 
arm_smmu_device_cfg_probe(struct arm_smmu_device * smmu)1526 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1527 {
1528 	unsigned long size;
1529 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1530 	u32 id;
1531 	bool cttw_dt, cttw_reg;
1532 
1533 	dev_notice(smmu->dev, "probing hardware configuration...\n");
1534 	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1535 
1536 	/* ID0 */
1537 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1538 
1539 	/* Restrict available stages based on module parameter */
1540 	if (force_stage == 1)
1541 		id &= ~(ID0_S2TS | ID0_NTS);
1542 	else if (force_stage == 2)
1543 		id &= ~(ID0_S1TS | ID0_NTS);
1544 
1545 	if (id & ID0_S1TS) {
1546 		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1547 		dev_notice(smmu->dev, "\tstage 1 translation\n");
1548 	}
1549 
1550 	if (id & ID0_S2TS) {
1551 		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1552 		dev_notice(smmu->dev, "\tstage 2 translation\n");
1553 	}
1554 
1555 	if (id & ID0_NTS) {
1556 		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1557 		dev_notice(smmu->dev, "\tnested translation\n");
1558 	}
1559 
1560 	if (!(smmu->features &
1561 		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1562 		dev_err(smmu->dev, "\tno translation support!\n");
1563 		return -ENODEV;
1564 	}
1565 
1566 	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1567 		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1568 		dev_notice(smmu->dev, "\taddress translation ops\n");
1569 	}
1570 
1571 	/*
1572 	 * In order for DMA API calls to work properly, we must defer to what
1573 	 * the DT says about coherency, regardless of what the hardware claims.
1574 	 * Fortunately, this also opens up a workaround for systems where the
1575 	 * ID register value has ended up configured incorrectly.
1576 	 */
1577 	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
1578 	cttw_reg = !!(id & ID0_CTTW);
1579 	if (cttw_dt)
1580 		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1581 	if (cttw_dt || cttw_reg)
1582 		dev_notice(smmu->dev, "\t%scoherent table walk\n",
1583 			   cttw_dt ? "" : "non-");
1584 	if (cttw_dt != cttw_reg)
1585 		dev_notice(smmu->dev,
1586 			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1587 
1588 	if (id & ID0_SMS) {
1589 		u32 smr, sid, mask;
1590 
1591 		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1592 		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1593 					   ID0_NUMSMRG_MASK;
1594 		if (smmu->num_mapping_groups == 0) {
1595 			dev_err(smmu->dev,
1596 				"stream-matching supported, but no SMRs present!\n");
1597 			return -ENODEV;
1598 		}
1599 
1600 		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1601 		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1602 		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1603 		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1604 
1605 		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1606 		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1607 		if ((mask & sid) != sid) {
1608 			dev_err(smmu->dev,
1609 				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1610 				mask, sid);
1611 			return -ENODEV;
1612 		}
1613 
1614 		dev_notice(smmu->dev,
1615 			   "\tstream matching with %u register groups, mask 0x%x",
1616 			   smmu->num_mapping_groups, mask);
1617 	} else {
1618 		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1619 					   ID0_NUMSIDB_MASK;
1620 	}
1621 
1622 	/* ID1 */
1623 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1624 	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1625 
1626 	/* Check for size mismatch of SMMU address space from mapped region */
1627 	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1628 	size *= 2 << smmu->pgshift;
1629 	if (smmu->size != size)
1630 		dev_warn(smmu->dev,
1631 			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1632 			size, smmu->size);
1633 
1634 	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1635 	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1636 	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1637 		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1638 		return -ENODEV;
1639 	}
1640 	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1641 		   smmu->num_context_banks, smmu->num_s2_context_banks);
1642 
1643 	/* ID2 */
1644 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1645 	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1646 	smmu->ipa_size = size;
1647 
1648 	/* The output mask is also applied for bypass */
1649 	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1650 	smmu->pa_size = size;
1651 
1652 	/*
1653 	 * What the page table walker can address actually depends on which
1654 	 * descriptor format is in use, but since a) we don't know that yet,
1655 	 * and b) it can vary per context bank, this will have to do...
1656 	 */
1657 	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1658 		dev_warn(smmu->dev,
1659 			 "failed to set DMA mask for table walker\n");
1660 
1661 	if (smmu->version == ARM_SMMU_V1) {
1662 		smmu->va_size = smmu->ipa_size;
1663 		size = SZ_4K | SZ_2M | SZ_1G;
1664 	} else {
1665 		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1666 		smmu->va_size = arm_smmu_id_size_to_bits(size);
1667 #ifndef CONFIG_64BIT
1668 		smmu->va_size = min(32UL, smmu->va_size);
1669 #endif
1670 		size = 0;
1671 		if (id & ID2_PTFS_4K)
1672 			size |= SZ_4K | SZ_2M | SZ_1G;
1673 		if (id & ID2_PTFS_16K)
1674 			size |= SZ_16K | SZ_32M;
1675 		if (id & ID2_PTFS_64K)
1676 			size |= SZ_64K | SZ_512M;
1677 	}
1678 
1679 	arm_smmu_ops.pgsize_bitmap &= size;
1680 	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1681 
1682 	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1683 		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1684 			   smmu->va_size, smmu->ipa_size);
1685 
1686 	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1687 		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1688 			   smmu->ipa_size, smmu->pa_size);
1689 
1690 	return 0;
1691 }
1692 
1693 static const struct of_device_id arm_smmu_of_match[] = {
1694 	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1695 	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1696 	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1697 	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1698 	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1699 	{ },
1700 };
1701 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1702 
arm_smmu_device_dt_probe(struct platform_device * pdev)1703 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1704 {
1705 	const struct of_device_id *of_id;
1706 	struct resource *res;
1707 	struct arm_smmu_device *smmu;
1708 	struct device *dev = &pdev->dev;
1709 	struct rb_node *node;
1710 	struct of_phandle_args masterspec;
1711 	int num_irqs, i, err;
1712 
1713 	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1714 	if (!smmu) {
1715 		dev_err(dev, "failed to allocate arm_smmu_device\n");
1716 		return -ENOMEM;
1717 	}
1718 	smmu->dev = dev;
1719 
1720 	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1721 	smmu->version = (enum arm_smmu_arch_version)of_id->data;
1722 
1723 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1724 	smmu->base = devm_ioremap_resource(dev, res);
1725 	if (IS_ERR(smmu->base))
1726 		return PTR_ERR(smmu->base);
1727 	smmu->size = resource_size(res);
1728 
1729 	if (of_property_read_u32(dev->of_node, "#global-interrupts",
1730 				 &smmu->num_global_irqs)) {
1731 		dev_err(dev, "missing #global-interrupts property\n");
1732 		return -ENODEV;
1733 	}
1734 
1735 	num_irqs = 0;
1736 	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1737 		num_irqs++;
1738 		if (num_irqs > smmu->num_global_irqs)
1739 			smmu->num_context_irqs++;
1740 	}
1741 
1742 	if (!smmu->num_context_irqs) {
1743 		dev_err(dev, "found %d interrupts but expected at least %d\n",
1744 			num_irqs, smmu->num_global_irqs + 1);
1745 		return -ENODEV;
1746 	}
1747 
1748 	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1749 				  GFP_KERNEL);
1750 	if (!smmu->irqs) {
1751 		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1752 		return -ENOMEM;
1753 	}
1754 
1755 	for (i = 0; i < num_irqs; ++i) {
1756 		int irq = platform_get_irq(pdev, i);
1757 
1758 		if (irq < 0) {
1759 			dev_err(dev, "failed to get irq index %d\n", i);
1760 			return -ENODEV;
1761 		}
1762 		smmu->irqs[i] = irq;
1763 	}
1764 
1765 	err = arm_smmu_device_cfg_probe(smmu);
1766 	if (err)
1767 		return err;
1768 
1769 	i = 0;
1770 	smmu->masters = RB_ROOT;
1771 	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1772 					   "#stream-id-cells", i,
1773 					   &masterspec)) {
1774 		err = register_smmu_master(smmu, dev, &masterspec);
1775 		if (err) {
1776 			dev_err(dev, "failed to add master %s\n",
1777 				masterspec.np->name);
1778 			goto out_put_masters;
1779 		}
1780 
1781 		i++;
1782 	}
1783 	dev_notice(dev, "registered %d master devices\n", i);
1784 
1785 	parse_driver_options(smmu);
1786 
1787 	if (smmu->version > ARM_SMMU_V1 &&
1788 	    smmu->num_context_banks != smmu->num_context_irqs) {
1789 		dev_err(dev,
1790 			"found only %d context interrupt(s) but %d required\n",
1791 			smmu->num_context_irqs, smmu->num_context_banks);
1792 		err = -ENODEV;
1793 		goto out_put_masters;
1794 	}
1795 
1796 	for (i = 0; i < smmu->num_global_irqs; ++i) {
1797 		err = request_irq(smmu->irqs[i],
1798 				  arm_smmu_global_fault,
1799 				  IRQF_SHARED,
1800 				  "arm-smmu global fault",
1801 				  smmu);
1802 		if (err) {
1803 			dev_err(dev, "failed to request global IRQ %d (%u)\n",
1804 				i, smmu->irqs[i]);
1805 			goto out_free_irqs;
1806 		}
1807 	}
1808 
1809 	INIT_LIST_HEAD(&smmu->list);
1810 	spin_lock(&arm_smmu_devices_lock);
1811 	list_add(&smmu->list, &arm_smmu_devices);
1812 	spin_unlock(&arm_smmu_devices_lock);
1813 
1814 	arm_smmu_device_reset(smmu);
1815 	return 0;
1816 
1817 out_free_irqs:
1818 	while (i--)
1819 		free_irq(smmu->irqs[i], smmu);
1820 
1821 out_put_masters:
1822 	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1823 		struct arm_smmu_master *master
1824 			= container_of(node, struct arm_smmu_master, node);
1825 		of_node_put(master->of_node);
1826 	}
1827 
1828 	return err;
1829 }
1830 
arm_smmu_device_remove(struct platform_device * pdev)1831 static int arm_smmu_device_remove(struct platform_device *pdev)
1832 {
1833 	int i;
1834 	struct device *dev = &pdev->dev;
1835 	struct arm_smmu_device *curr, *smmu = NULL;
1836 	struct rb_node *node;
1837 
1838 	spin_lock(&arm_smmu_devices_lock);
1839 	list_for_each_entry(curr, &arm_smmu_devices, list) {
1840 		if (curr->dev == dev) {
1841 			smmu = curr;
1842 			list_del(&smmu->list);
1843 			break;
1844 		}
1845 	}
1846 	spin_unlock(&arm_smmu_devices_lock);
1847 
1848 	if (!smmu)
1849 		return -ENODEV;
1850 
1851 	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1852 		struct arm_smmu_master *master
1853 			= container_of(node, struct arm_smmu_master, node);
1854 		of_node_put(master->of_node);
1855 	}
1856 
1857 	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1858 		dev_err(dev, "removing device with active domains!\n");
1859 
1860 	for (i = 0; i < smmu->num_global_irqs; ++i)
1861 		free_irq(smmu->irqs[i], smmu);
1862 
1863 	/* Turn the thing off */
1864 	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1865 	return 0;
1866 }
1867 
1868 static struct platform_driver arm_smmu_driver = {
1869 	.driver	= {
1870 		.name		= "arm-smmu",
1871 		.of_match_table	= of_match_ptr(arm_smmu_of_match),
1872 	},
1873 	.probe	= arm_smmu_device_dt_probe,
1874 	.remove	= arm_smmu_device_remove,
1875 };
1876 
arm_smmu_init(void)1877 static int __init arm_smmu_init(void)
1878 {
1879 	struct device_node *np;
1880 	int ret;
1881 
1882 	/*
1883 	 * Play nice with systems that don't have an ARM SMMU by checking that
1884 	 * an ARM SMMU exists in the system before proceeding with the driver
1885 	 * and IOMMU bus operation registration.
1886 	 */
1887 	np = of_find_matching_node(NULL, arm_smmu_of_match);
1888 	if (!np)
1889 		return 0;
1890 
1891 	of_node_put(np);
1892 
1893 	ret = platform_driver_register(&arm_smmu_driver);
1894 	if (ret)
1895 		return ret;
1896 
1897 	/* Oh, for a proper bus abstraction */
1898 	if (!iommu_present(&platform_bus_type))
1899 		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1900 
1901 #ifdef CONFIG_ARM_AMBA
1902 	if (!iommu_present(&amba_bustype))
1903 		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1904 #endif
1905 
1906 #ifdef CONFIG_PCI
1907 	if (!iommu_present(&pci_bus_type))
1908 		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1909 #endif
1910 
1911 	return 0;
1912 }
1913 
arm_smmu_exit(void)1914 static void __exit arm_smmu_exit(void)
1915 {
1916 	return platform_driver_unregister(&arm_smmu_driver);
1917 }
1918 
1919 subsys_initcall(arm_smmu_init);
1920 module_exit(arm_smmu_exit);
1921 
1922 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1923 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1924 MODULE_LICENSE("GPL v2");
1925