• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/mm.h>
29 #include <linux/scatterlist.h>
30 #include <linux/vmalloc.h>
31 
iommu_dma_init(void)32 int iommu_dma_init(void)
33 {
34 	return iova_cache_get();
35 }
36 
37 /**
38  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
39  * @domain: IOMMU domain to prepare for DMA-API usage
40  *
41  * IOMMU drivers should normally call this from their domain_alloc
42  * callback when domain->type == IOMMU_DOMAIN_DMA.
43  */
iommu_get_dma_cookie(struct iommu_domain * domain)44 int iommu_get_dma_cookie(struct iommu_domain *domain)
45 {
46 	struct iova_domain *iovad;
47 
48 	if (domain->iova_cookie)
49 		return -EEXIST;
50 
51 	iovad = kzalloc(sizeof(*iovad), GFP_KERNEL);
52 	domain->iova_cookie = iovad;
53 
54 	return iovad ? 0 : -ENOMEM;
55 }
56 EXPORT_SYMBOL(iommu_get_dma_cookie);
57 
58 /**
59  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
60  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
61  *
62  * IOMMU drivers should normally call this from their domain_free callback.
63  */
iommu_put_dma_cookie(struct iommu_domain * domain)64 void iommu_put_dma_cookie(struct iommu_domain *domain)
65 {
66 	struct iova_domain *iovad = domain->iova_cookie;
67 
68 	if (!iovad)
69 		return;
70 
71 	if (iovad->granule)
72 		put_iova_domain(iovad);
73 	kfree(iovad);
74 	domain->iova_cookie = NULL;
75 }
76 EXPORT_SYMBOL(iommu_put_dma_cookie);
77 
78 /**
79  * iommu_dma_init_domain - Initialise a DMA mapping domain
80  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
81  * @base: IOVA at which the mappable address space starts
82  * @size: Size of IOVA space
83  *
84  * @base and @size should be exact multiples of IOMMU page granularity to
85  * avoid rounding surprises. If necessary, we reserve the page at address 0
86  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
87  * any change which could make prior IOVAs invalid will fail.
88  */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,u64 size)89 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size)
90 {
91 	struct iova_domain *iovad = domain->iova_cookie;
92 	unsigned long order, base_pfn, end_pfn;
93 
94 	if (!iovad)
95 		return -ENODEV;
96 
97 	/* Use the smallest supported page size for IOVA granularity */
98 	order = __ffs(domain->ops->pgsize_bitmap);
99 	base_pfn = max_t(unsigned long, 1, base >> order);
100 	end_pfn = (base + size - 1) >> order;
101 
102 	/* Check the domain allows at least some access to the device... */
103 	if (domain->geometry.force_aperture) {
104 		if (base > domain->geometry.aperture_end ||
105 		    base + size <= domain->geometry.aperture_start) {
106 			pr_warn("specified DMA range outside IOMMU capability\n");
107 			return -EFAULT;
108 		}
109 		/* ...then finally give it a kicking to make sure it fits */
110 		base_pfn = max_t(unsigned long, base_pfn,
111 				domain->geometry.aperture_start >> order);
112 		end_pfn = min_t(unsigned long, end_pfn,
113 				domain->geometry.aperture_end >> order);
114 	}
115 
116 	/* All we can safely do with an existing domain is enlarge it */
117 	if (iovad->start_pfn) {
118 		if (1UL << order != iovad->granule ||
119 		    base_pfn != iovad->start_pfn ||
120 		    end_pfn < iovad->dma_32bit_pfn) {
121 			pr_warn("Incompatible range for DMA domain\n");
122 			return -EFAULT;
123 		}
124 		iovad->dma_32bit_pfn = end_pfn;
125 	} else {
126 		init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
127 	}
128 	return 0;
129 }
130 EXPORT_SYMBOL(iommu_dma_init_domain);
131 
132 /**
133  * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
134  * @dir: Direction of DMA transfer
135  * @coherent: Is the DMA master cache-coherent?
136  *
137  * Return: corresponding IOMMU API page protection flags
138  */
dma_direction_to_prot(enum dma_data_direction dir,bool coherent)139 int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
140 {
141 	int prot = coherent ? IOMMU_CACHE : 0;
142 
143 	switch (dir) {
144 	case DMA_BIDIRECTIONAL:
145 		return prot | IOMMU_READ | IOMMU_WRITE;
146 	case DMA_TO_DEVICE:
147 		return prot | IOMMU_READ;
148 	case DMA_FROM_DEVICE:
149 		return prot | IOMMU_WRITE;
150 	default:
151 		return 0;
152 	}
153 }
154 
__alloc_iova(struct iommu_domain * domain,size_t size,dma_addr_t dma_limit)155 static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
156 		dma_addr_t dma_limit)
157 {
158 	struct iova_domain *iovad = domain->iova_cookie;
159 	unsigned long shift = iova_shift(iovad);
160 	unsigned long length = iova_align(iovad, size) >> shift;
161 
162 	if (domain->geometry.force_aperture)
163 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
164 	/*
165 	 * Enforce size-alignment to be safe - there could perhaps be an
166 	 * attribute to control this per-device, or at least per-domain...
167 	 */
168 	return alloc_iova(iovad, length, dma_limit >> shift, true);
169 }
170 
171 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
__iommu_dma_unmap(struct iommu_domain * domain,dma_addr_t dma_addr)172 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
173 {
174 	struct iova_domain *iovad = domain->iova_cookie;
175 	unsigned long shift = iova_shift(iovad);
176 	unsigned long pfn = dma_addr >> shift;
177 	struct iova *iova = find_iova(iovad, pfn);
178 	size_t size;
179 
180 	if (WARN_ON(!iova))
181 		return;
182 
183 	size = iova_size(iova) << shift;
184 	size -= iommu_unmap(domain, pfn << shift, size);
185 	/* ...and if we can't, then something is horribly, horribly wrong */
186 	WARN_ON(size > 0);
187 	__free_iova(iovad, iova);
188 }
189 
__iommu_dma_free_pages(struct page ** pages,int count)190 static void __iommu_dma_free_pages(struct page **pages, int count)
191 {
192 	while (count--)
193 		__free_page(pages[count]);
194 	kvfree(pages);
195 }
196 
__iommu_dma_alloc_pages(unsigned int count,gfp_t gfp)197 static struct page **__iommu_dma_alloc_pages(unsigned int count, gfp_t gfp)
198 {
199 	struct page **pages;
200 	unsigned int i = 0, array_size = count * sizeof(*pages);
201 	unsigned int order = MAX_ORDER;
202 
203 	if (array_size <= PAGE_SIZE)
204 		pages = kzalloc(array_size, GFP_KERNEL);
205 	else
206 		pages = vzalloc(array_size);
207 	if (!pages)
208 		return NULL;
209 
210 	/* IOMMU can map any pages, so himem can also be used here */
211 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
212 
213 	while (count) {
214 		struct page *page = NULL;
215 		int j;
216 
217 		/*
218 		 * Higher-order allocations are a convenience rather
219 		 * than a necessity, hence using __GFP_NORETRY until
220 		 * falling back to single-page allocations.
221 		 */
222 		for (order = min_t(unsigned int, order, __fls(count));
223 		     order > 0; order--) {
224 			page = alloc_pages(gfp | __GFP_NORETRY, order);
225 			if (!page)
226 				continue;
227 			if (PageCompound(page)) {
228 				if (!split_huge_page(page))
229 					break;
230 				__free_pages(page, order);
231 			} else {
232 				split_page(page, order);
233 				break;
234 			}
235 		}
236 		if (!page)
237 			page = alloc_page(gfp);
238 		if (!page) {
239 			__iommu_dma_free_pages(pages, i);
240 			return NULL;
241 		}
242 		j = 1 << order;
243 		count -= j;
244 		while (j--)
245 			pages[i++] = page++;
246 	}
247 	return pages;
248 }
249 
250 /**
251  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
252  * @dev: Device which owns this buffer
253  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
254  * @size: Size of buffer in bytes
255  * @handle: DMA address of buffer
256  *
257  * Frees both the pages associated with the buffer, and the array
258  * describing them
259  */
iommu_dma_free(struct device * dev,struct page ** pages,size_t size,dma_addr_t * handle)260 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
261 		dma_addr_t *handle)
262 {
263 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
264 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
265 	*handle = DMA_ERROR_CODE;
266 }
267 
268 /**
269  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
270  * @dev: Device to allocate memory for. Must be a real device
271  *	 attached to an iommu_dma_domain
272  * @size: Size of buffer in bytes
273  * @gfp: Allocation flags
274  * @prot: IOMMU mapping flags
275  * @handle: Out argument for allocated DMA handle
276  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
277  *		given VA/PA are visible to the given non-coherent device.
278  *
279  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
280  * but an IOMMU which supports smaller pages might not map the whole thing.
281  *
282  * Return: Array of struct page pointers describing the buffer,
283  *	   or NULL on failure.
284  */
iommu_dma_alloc(struct device * dev,size_t size,gfp_t gfp,int prot,dma_addr_t * handle,void (* flush_page)(struct device *,const void *,phys_addr_t))285 struct page **iommu_dma_alloc(struct device *dev, size_t size,
286 		gfp_t gfp, int prot, dma_addr_t *handle,
287 		void (*flush_page)(struct device *, const void *, phys_addr_t))
288 {
289 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
290 	struct iova_domain *iovad = domain->iova_cookie;
291 	struct iova *iova;
292 	struct page **pages;
293 	struct sg_table sgt;
294 	dma_addr_t dma_addr;
295 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
296 
297 	*handle = DMA_ERROR_CODE;
298 
299 	pages = __iommu_dma_alloc_pages(count, gfp);
300 	if (!pages)
301 		return NULL;
302 
303 	iova = __alloc_iova(domain, size, dev->coherent_dma_mask);
304 	if (!iova)
305 		goto out_free_pages;
306 
307 	size = iova_align(iovad, size);
308 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
309 		goto out_free_iova;
310 
311 	if (!(prot & IOMMU_CACHE)) {
312 		struct sg_mapping_iter miter;
313 		/*
314 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
315 		 * sufficient here, so skip it by using the "wrong" direction.
316 		 */
317 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
318 		while (sg_miter_next(&miter))
319 			flush_page(dev, miter.addr, page_to_phys(miter.page));
320 		sg_miter_stop(&miter);
321 	}
322 
323 	dma_addr = iova_dma_addr(iovad, iova);
324 	if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
325 			< size)
326 		goto out_free_sg;
327 
328 	*handle = dma_addr;
329 	sg_free_table(&sgt);
330 	return pages;
331 
332 out_free_sg:
333 	sg_free_table(&sgt);
334 out_free_iova:
335 	__free_iova(iovad, iova);
336 out_free_pages:
337 	__iommu_dma_free_pages(pages, count);
338 	return NULL;
339 }
340 
341 /**
342  * iommu_dma_mmap - Map a buffer into provided user VMA
343  * @pages: Array representing buffer from iommu_dma_alloc()
344  * @size: Size of buffer in bytes
345  * @vma: VMA describing requested userspace mapping
346  *
347  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
348  * for verifying the correct size and protection of @vma beforehand.
349  */
350 
iommu_dma_mmap(struct page ** pages,size_t size,struct vm_area_struct * vma)351 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
352 {
353 	unsigned long uaddr = vma->vm_start;
354 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
355 	int ret = -ENXIO;
356 
357 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
358 		ret = vm_insert_page(vma, uaddr, pages[i]);
359 		if (ret)
360 			break;
361 		uaddr += PAGE_SIZE;
362 	}
363 	return ret;
364 }
365 
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,int prot)366 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
367 		unsigned long offset, size_t size, int prot)
368 {
369 	dma_addr_t dma_addr;
370 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
371 	struct iova_domain *iovad = domain->iova_cookie;
372 	phys_addr_t phys = page_to_phys(page) + offset;
373 	size_t iova_off = iova_offset(iovad, phys);
374 	size_t len = iova_align(iovad, size + iova_off);
375 	struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev));
376 
377 	if (!iova)
378 		return DMA_ERROR_CODE;
379 
380 	dma_addr = iova_dma_addr(iovad, iova);
381 	if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
382 		__free_iova(iovad, iova);
383 		return DMA_ERROR_CODE;
384 	}
385 	return dma_addr + iova_off;
386 }
387 
iommu_dma_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)388 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
389 		enum dma_data_direction dir, struct dma_attrs *attrs)
390 {
391 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
392 }
393 
394 /*
395  * Prepare a successfully-mapped scatterlist to give back to the caller.
396  * Handling IOVA concatenation can come later, if needed
397  */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)398 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
399 		dma_addr_t dma_addr)
400 {
401 	struct scatterlist *s;
402 	int i;
403 
404 	for_each_sg(sg, s, nents, i) {
405 		/* Un-swizzling the fields here, hence the naming mismatch */
406 		unsigned int s_offset = sg_dma_address(s);
407 		unsigned int s_length = sg_dma_len(s);
408 		unsigned int s_dma_len = s->length;
409 
410 		s->offset += s_offset;
411 		s->length = s_length;
412 		sg_dma_address(s) = dma_addr + s_offset;
413 		dma_addr += s_dma_len;
414 	}
415 	return i;
416 }
417 
418 /*
419  * If mapping failed, then just restore the original list,
420  * but making sure the DMA fields are invalidated.
421  */
__invalidate_sg(struct scatterlist * sg,int nents)422 static void __invalidate_sg(struct scatterlist *sg, int nents)
423 {
424 	struct scatterlist *s;
425 	int i;
426 
427 	for_each_sg(sg, s, nents, i) {
428 		if (sg_dma_address(s) != DMA_ERROR_CODE)
429 			s->offset += sg_dma_address(s);
430 		if (sg_dma_len(s))
431 			s->length = sg_dma_len(s);
432 		sg_dma_address(s) = DMA_ERROR_CODE;
433 		sg_dma_len(s) = 0;
434 	}
435 }
436 
437 /*
438  * The DMA API client is passing in a scatterlist which could describe
439  * any old buffer layout, but the IOMMU API requires everything to be
440  * aligned to IOMMU pages. Hence the need for this complicated bit of
441  * impedance-matching, to be able to hand off a suitably-aligned list,
442  * but still preserve the original offsets and sizes for the caller.
443  */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,int prot)444 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
445 		int nents, int prot)
446 {
447 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
448 	struct iova_domain *iovad = domain->iova_cookie;
449 	struct iova *iova;
450 	struct scatterlist *s, *prev = NULL;
451 	dma_addr_t dma_addr;
452 	size_t iova_len = 0;
453 	int i;
454 
455 	/*
456 	 * Work out how much IOVA space we need, and align the segments to
457 	 * IOVA granules for the IOMMU driver to handle. With some clever
458 	 * trickery we can modify the list in-place, but reversibly, by
459 	 * hiding the original data in the as-yet-unused DMA fields.
460 	 */
461 	for_each_sg(sg, s, nents, i) {
462 		size_t s_offset = iova_offset(iovad, s->offset);
463 		size_t s_length = s->length;
464 
465 		sg_dma_address(s) = s_offset;
466 		sg_dma_len(s) = s_length;
467 		s->offset -= s_offset;
468 		s_length = iova_align(iovad, s_length + s_offset);
469 		s->length = s_length;
470 
471 		/*
472 		 * The simple way to avoid the rare case of a segment
473 		 * crossing the boundary mask is to pad the previous one
474 		 * to end at a naturally-aligned IOVA for this one's size,
475 		 * at the cost of potentially over-allocating a little.
476 		 */
477 		if (prev) {
478 			size_t pad_len = roundup_pow_of_two(s_length);
479 
480 			pad_len = (pad_len - iova_len) & (pad_len - 1);
481 			prev->length += pad_len;
482 			iova_len += pad_len;
483 		}
484 
485 		iova_len += s_length;
486 		prev = s;
487 	}
488 
489 	iova = __alloc_iova(domain, iova_len, dma_get_mask(dev));
490 	if (!iova)
491 		goto out_restore_sg;
492 
493 	/*
494 	 * We'll leave any physical concatenation to the IOMMU driver's
495 	 * implementation - it knows better than we do.
496 	 */
497 	dma_addr = iova_dma_addr(iovad, iova);
498 	if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
499 		goto out_free_iova;
500 
501 	return __finalise_sg(dev, sg, nents, dma_addr);
502 
503 out_free_iova:
504 	__free_iova(iovad, iova);
505 out_restore_sg:
506 	__invalidate_sg(sg, nents);
507 	return 0;
508 }
509 
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)510 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
511 		enum dma_data_direction dir, struct dma_attrs *attrs)
512 {
513 	/*
514 	 * The scatterlist segments are mapped into a single
515 	 * contiguous IOVA allocation, so this is incredibly easy.
516 	 */
517 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
518 }
519 
iommu_dma_supported(struct device * dev,u64 mask)520 int iommu_dma_supported(struct device *dev, u64 mask)
521 {
522 	/*
523 	 * 'Special' IOMMUs which don't have the same addressing capability
524 	 * as the CPU will have to wait until we have some way to query that
525 	 * before they'll be able to use this framework.
526 	 */
527 	return 1;
528 }
529 
iommu_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)530 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
531 {
532 	return dma_addr == DMA_ERROR_CODE;
533 }
534